Three cohomology classes on $\overline{\mathcal{M}}_{g,n}$

France – Korea conference

Dimitri Zvonkine

$$\mathcal{M}_{g,n} = \left\{ egin{array}{l} ext{genus } g ext{ curves with} \\ n ext{ distinct marked numbered points} \end{array}
ight\} / \sim$$

$$\mathcal{M}_{g,n} = \left\{egin{array}{l} ext{genus g curves with} \ n ext{ distinct marked numbered points} \end{array}
ight\}/\sim$$

 $\blacktriangleright \ \mathcal{M}_{0,3} = \mathsf{point}$

$$\mathcal{M}_{g,n} = \left\{ egin{array}{l} ext{genus g curves with} \\ n ext{ distinct marked numbered points} \end{array}
ight\} / \sim$$

- $ightharpoonup \mathcal{M}_{0,3} = \mathsf{point}$
- $\blacktriangleright \ \mathcal{M}_{0,4} = \mathbb{C}\mathrm{P}^1 \setminus \{0,1,\infty\}$

$$\mathcal{M}_{g,n} = \left\{ egin{array}{l} { t genus} \ { t g} \ { t curves} \ { t with the sum bered} \ { t points} \end{array}
ight\}/\sim$$

- $ightharpoonup \mathcal{M}_{0,3} = \mathsf{point}$
- $\begin{array}{c} \blacktriangleright \ \mathcal{M}_{0,4} = \mathbb{C}\mathrm{P}^1 \setminus \{0,1,\infty\} \\ & \quad \quad \cup \\ t \mapsto \left(\mathbb{C}\mathrm{P}^1,0,1,\infty,t\right) \end{array}$

$$\mathcal{M}_{g,n} = \left\{ egin{array}{l} ext{genus g curves with} \\ n ext{ distinct marked numbered points} \end{array}
ight\} / \sim$$

- $ightharpoonup \mathcal{M}_{0,3} = \mathsf{point}$
- $ightharpoonup \mathcal{M}_{1,1} = \mathbb{H}/\mathrm{SL}(2,\mathbb{Z})$

$$\mathcal{M}_{g,n} = \left\{ egin{array}{l} { t genus} \ g \ { t curves} \ { t with} \\ n \ { t distinct} \ { t marked} \ { t numbered} \ { t points} \end{array}
ight\} / \sim$$

$$ightharpoonup \mathcal{M}_{0,3} = \mathsf{point}$$

$$\mathcal{M}_{0,4} = \mathbb{C}\mathrm{P}^1 \setminus \{0,1,\infty\}$$

$$U$$

$$t \mapsto (\mathbb{C}\mathrm{P}^1,0,1,\infty,t)$$

$$\mathcal{M}_{g,n} = \left\{ egin{array}{l} { t genus} \ { t g} \ { t curves} \ { t with} \ { t n} \ { t distinct} \ { t marked} \ { t numbered} \ { t points} \ \end{array}
ight\} / \sim$$

- $ightharpoonup \mathcal{M}_{0,3} = \mathsf{point}$
- $\blacktriangleright \ \mathcal{M}_{0,4}=\mathbb{C}\mathrm{P}^1\setminus\{0,1,\infty\}$

Ψ

$$t\mapsto (\mathbb{C}\mathrm{P}^1,0,1,\infty,t)$$

$$\qquad \qquad \mathcal{M}_{1,1} = \mathbb{H}/\mathrm{SL}(2,\mathbb{Z})$$

$$\tau \mapsto (\mathbb{C}/(\mathbb{Z} + \tau \mathbb{Z}), 0)$$

 $\overline{\mathcal{M}}_{g,n} = \mathsf{Deligne} ext{-Mumford compactification of } \mathcal{M}_{g,n}$

Universal curve

Tautological classes

$$\psi_i = c_1(L_i)$$
 $\psi_1, \dots, \psi_n \in H^2(\overline{\mathcal{M}}_{g,n})$

Tautological classes

•
$$\psi_i := c_1(L_i)$$
 $\psi_1, \dots, \psi_n \in H^2(\overline{\mathcal{M}}_{g,n})$

• Hodge bundle $E \to \overline{\mathcal{M}}_{g,n}$: fiber $E_p = \{\text{holomorphic 1-forms on } C_p\}$.

$$\lambda_m := c_m(E)$$
 $\lambda_m \in H^{2m}(\overline{\mathcal{M}}_{g,n})$

• Boundary strata

General tautological class

General tautological class

General tautological class

$$j: \overline{\mathcal{M}}_{3,4} \times \overline{\mathcal{M}}_{1,2} \times \overline{\mathcal{M}}_{0,5} \to \overline{\mathcal{M}}_{6,3}$$

ch(Verlinde bundle) [Marian, Oprea, Pandharipande, Pixton, Z]

ch(Verlinde bundle) [Marian, Oprea, Pandharipande, Pixton, Z]

 $\operatorname{Jac}(C) = \{ \text{flat connections on the trivial } U(1) \text{ bundle over } C \}$

$$\operatorname{Jac}(\mathbf{C}) = \{ \text{flat connections on the trivial } U(1) \text{ bundle over } C \} \ \cup \ \Theta$$

$$H^0(\operatorname{Jac},\mathcal{O}(k\Theta)) = \theta$$
-functions of degree k

$$\begin{array}{l} \operatorname{Jac}(\mathbf{C}) = \{ \text{flat connections on the trivial } \textit{U}(1) \text{ bundle over } \textit{C} \} \\ \cup \\ \Theta \end{array}$$

$$H^0(\operatorname{Jac}, \mathcal{O}(k\Theta)) = \theta$$
-functions of degree k

$$M = \left\{ \begin{array}{c} \text{flat connections on the trivial } SU(2) \text{ bundle over } C \\ \text{with monodromies at marked points} \end{array} \right\}$$

 $H^0(M, \mathcal{O}(k\Theta)) = \text{higher } \theta\text{-functions}$

$$\begin{array}{l} \operatorname{Jac}(\mathbf{C}) = \{ \text{flat connections on the trivial } \textit{U}(1) \text{ bundle over } \textit{C} \} \\ \cup \\ \Theta \end{array}$$

$$H^0(\operatorname{Jac},\mathcal{O}(k\Theta)) = \theta$$
-functions of degree k

$$M = \left\{ \begin{array}{c} \text{flat connections on the trivial } SU(2) \text{ bundle over } C \\ \text{with monodromies at marked points} \end{array} \right\}$$

$$H^0(M, \mathcal{O}(k\Theta)) = \text{higher } \theta\text{-functions}$$

$$\longrightarrow$$
 Verlinde bundle $V_{g,n}(\mu_1,\ldots,\mu_n)$, μ_i = representation of level k

ch(Verlinde bundle)

$$\operatorname{ch} V_{g,n}(\square,\ldots,\square) = e^{-\lambda_1/2} \sum_{\substack{\text{stable graphs } \Gamma \text{ with} \\ \text{even degree vertices}}} \frac{2^{g-n^2(1)}}{|\operatorname{Aut}(\Gamma)|}$$

Double ramification cycle [Janda, Pandharipande, Pixton, Z]

$$a_1,\ldots,a_n\in\mathbb{Z},\qquad \sum a_i=0$$

Double ramification cycle [Janda, Pandharipande, Pixton, Z]

$$a_1,\ldots,a_n\in\mathbb{Z},\qquad \sum a_i=0$$

$$\mathrm{DR}_{g,n}(a_1,\ldots,a_n) = \left\{ (C,x_1,\ldots,x_n) \in \overline{\mathcal{M}}_{g,n} \mid \sum a_i x_i \text{ principal} \right\}$$

$$a_1,\ldots,a_n\in\mathbb{Z},\qquad \sum a_i=0$$

$$\mathrm{DR}_{g,n}(a_1,\ldots,a_n) = \left\{ (\textit{C},\textit{x}_1,\ldots,\textit{x}_n) \in \overline{\mathcal{M}}_{g,n} \ | \ \sum a_i \textit{x}_i \ \mathsf{principal} \right\}$$

$$\mathrm{DR}_{g,n}(a_1,\ldots,a_n)\in H^{2g}(\overline{\mathcal{M}}_{g,n})$$

Weighting of Γ mod r:

Weighting of Γ mod r:

 $w: \{\mathsf{half\text{-}edges}\} o \mathbb{Z}/r\mathbb{Z} \; \mathsf{such \; that}$

Weighting of Γ mod r:

```
w: \{\mathsf{half-edges}\} \to \mathbb{Z}/r\mathbb{Z} \text{ such that }
```

 \triangleright $w(i\text{-th leg}) = a_i \mod r$;

Weighting of Γ mod r:

 $w: \{\mathsf{half\text{-}edges}\} \to \mathbb{Z}/r\mathbb{Z} \; \mathsf{such \; that}$

- \triangleright $w(i\text{-th leg}) = a_i \mod r$;
- $w(h') + w(h'') = 0 \mod r \text{ for } (h', h'') = \text{edge};$

Weighting of Γ mod r:

 $w: \{\mathsf{half-edges}\} \to \mathbb{Z}/r\mathbb{Z} \text{ such that }$

- \blacktriangleright w(i-th leg) = $a_i \mod r$;
- $w(h') + w(h'') = 0 \mod r \text{ for } (h', h'') = \text{edge};$
- ightharpoonup \sum around vertex $w(h) = 0 \mod r$.

$$\sum_{\substack{\text{stable graphs }\Gamma \text{ with}\\ \text{weighting }w}} \frac{r^{-h^1(\Gamma)}}{|\mathrm{Aut}(\Gamma)|}$$

This is mixed degree cohomology class polynomial in r.

This is mixed degree cohomology class polynomial in r.

 \longrightarrow Plug r = 0 and take deg 2g part. Get $DR_{g,n}(a_1, \ldots, a_n)$.

Gromov-Witten theory of $\mathbb{C}\mathrm{P}^1$ [Rosset]

Gromov-Witten theory of $\mathbb{C}P^1$ [Rosset]

$$GW_{g,n} = \left\{ (C, x_1, \dots, x_n) \in \overline{\mathcal{M}}_{g,n} \mid \exists f : C \to \mathbb{C}\mathrm{P}^1, \ f(x_i) = 0 \right\}$$

Sum over deg $f \longrightarrow \text{mixed-degree}$ cohomology class.

$$A(z) = \sum_{m \ge 0} \frac{(2m)!}{(m!)^3} \left(-\frac{z}{2^6} \right)^m,$$

$$B(z) = \sum_{m \ge 0} \frac{1+2m}{1-2m} \cdot \frac{(2m)!}{(m!)^3} \left(-\frac{z}{2^6} \right)^m,$$

$$A(z) = \sum_{m \ge 0} \frac{(2m)!}{(m!)^3} \left(-\frac{z}{2^6} \right)^m,$$

$$B(z) = \sum_{m \ge 0} \frac{1+2m}{1-2m} \cdot \frac{(2m)!}{(m!)^3} \left(-\frac{z}{2^6} \right)^m,$$

Vertex $v \longrightarrow \text{variable } \zeta_v$, $\zeta_v^2 = 1$.

Forget blue legs, take push-forward.

- Forget blue legs, take push-forward.
- ▶ Plug $\zeta_v = 0$ for all v.

- Forget blue legs, take push-forward.
- ▶ Plug $\zeta_v = 0$ for all v.

 $\longrightarrow \operatorname{\mathsf{Get}} \mathrm{GW}_{g,n}.$

