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Moduli spaces

My, = Deligne-Mumford compactification of M, ,
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Tautological classes

o ¢,‘ = Cl(L,') wla . -awn S Hz(ﬂg,”)

e Hodge bundle E — Mgm:
fiber E, = {holomorphic 1-forms on C,}.

Am = cm(E) Am € H*™(Mg,n)

e Boundary strata
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Ch(Veande bund|e) [Marian, Oprea, Pandharipande, Pixton, Z]

Jac(C) = {flat connections on the trivial U(1) bundle over C}
U

©

HO(Jac, O(k©)) = f-functions of degree k

M= { flat connections on the trivial SU(2) bundle over C }

U with monodromies at marked points

©
HO(M, O(k©)) = higher §-functions

— Verlinde bundle Vg n(p1, ..., ftn),
i = representation of level k



ch(Verlinde bundle)

a2 2g—h*(I)
cth,,,(D,...,D): e 1 Z m

stable graphs r with
even degree vertices
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Double ramification CyC|e [Janda, Pandharipande, Pixton, Z]
ai,...,an €7, > ai=0
DRgn(a1,---,an) = {(C,x1,...,xn) € Mg | > aix; principal}

DRg n(a1,...,an) € Hzg(ﬂg,n)



Double ramification cycle

Weighting of [ mod r:



Double ramification cycle

Weighting of [ mod r:

w : {half-edges} — Z/rZ such that



Double ramification cycle

Weighting of [ mod r:

w : {half-edges} — Z/rZ such that
» w(i-th leg) = a; mod r;



Double ramification cycle

Weighting of [ mod r:

w : {half-edges} — Z/rZ such that
» w(i-th leg) = a; mod r;
> w(h')+ w(h") =0 mod r for (H,h") = edge;



Double ramification cycle

Weighting of [ mod r:

w : {half-edges} — Z/rZ such that
» w(i-th leg) = a; mod r;
> w(h')+ w(h") =0 mod r for (H,h") = edge;
> > around vertex W(h) =0 mod r.



Double ramification cycle
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Double ramification cycle

This is mixed degree cohomology class polynomial in r.

— Plug r = 0 and take deg 2g part. Get DRg n(a1, ..., an).
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GWen={(C,x1,...,x) € Mg, | 3f : C — CPL, f(x;) =0}

Sum over deg f —> mixed-degree cohomology class.
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Gromov-Witten theory of CP!
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> Forget blue legs, take push-forward.
» Plug ¢, =0 for all v.

— Get GWg .






