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Definition : The rank of Q € S,— {0} is defined as

rank(Q) = min{¢ | Q=hi++n} for hy,...hES,}.

Example : (1) rank(z,r;) = 2 (2) rank(zyz, —xz;) = 3 (3) rank(xgx; —xyxy) = 4

(4) For any hy,hy,hyh,ES;, we have

hy hy

rank hy Iy

) — I"al’lk <h1h4 — h2h3> S 4 .

Remark : (1) 1 < rank(Q) <r+1

(2) Let X P" be a non-degenerate irreducible projective variety. Then

3 < rank(Q) <r+1 for all Q € I(X),.
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and
{z;1 I € A,} the set of homogeneous coordinates on P

r+d 1
d ) , P— [---,x](P),---] is called the Veronese embedding.

(1) The map v, : P — IP(

(2) For any I JK,L= A, satisfying I+ /= K+ L, we have

'z’ — 2"z = 0 and hence zz,—zxz;, € (v, (P)).

Indeed,
(22— 2gz; | 1L K. LEA;, I+J= K+ L} generates the homogeneous ideal 7(v,(P")).
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Theorem (Han-Lee-Moon-Park, 2019) : Suppose that char(X) # 2,3. Then

/ (uE(P’)) is generated by quadrics of rank 3 for all » =1 and ¢ > 2.

Corollary 1. : For X< P’ let m be an integer such that

X is j-normal for all j > m and /(X)) = {/(X)_,)> (e.g., m = reg(X)).
Then for all £ > m,
the £th Veronese variety v,(X) of X is ideal-theoretically a linear section of v,(P").

In particular, /(v,(X)) is generated by quadrics of rank 3.
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(1) We say that (X,L) satisfies property V, if

Xc PHYX,L) is projectively normal and its homogeneous ideal /(X) is generated by quadrics.

(2) (Mark Green, 1984) We say that (X,L) satisfies property N, for some p > 2 if

the minimal free resolution of 7(X) is of the form
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where S = Sym ™ H'X,L)

(3) We say that (X,L) satisfies property QR(k) if

I/(X) can be generated by quadratic equations of rank < k.
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and let L be a very ample line bundle on X. Then

(X, Kxy+ (n+1+p)L+ B) satisfies property N, for any p = 0 and for any nef line bundle B.

Corollary (Ein-Lazarsfeld, 1993) : Let X be a smooth complex projective variety of dimension #

and let L be a very ample line bundle on X of degree 4. Then

(X, L") satisfies property N,,; ,.

Theorem (Inamda, 1997) : Let X be a projective variety and A an ample line bundle on X.

Then for every positive integer p, there exists a number #(p) such that

(X, A") satisfies property N, for every £ = n(p).
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Definition : Let L be a very ample line bundle on a projective variety X.

(1) A decomposition L = L,;XL, defines the multiplication map
7. HYAX,L,) x HYX,L,) — H'X,L) (= the space of linear forms on P H'(X,L))

and hence a matrix 2(Z,,L,) of linear forms on P H'(X,L).

Then (£2(L,,L,),2) is contained in the homogeneous ideal of X C PHX,L).

(2) We say that (X,Z) is determinantally presented if

there is a decomposition Z = L,®L, such that 7(X) = [Q2(L,L,),2).

Remark : If (X,L) is determinantally presented, then it satisfies property QR(4).
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(X.L) = (PL0O.(3)). 0,(3) = 0,(1)®0,(2)

= H'(PL0,(1)) = Kls.t), H'(P.0u(2)) = Kls"st.t)
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In this case, /(2(L,,L,),2) is exactly the homogeneous ideal of X C P #'(X,L).
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= HO(P2,0P2(1)> = Klx,y,2}, HO<[P>2,OP2(2)> = K{xz,y2,22,xy,xz,yz}
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In this case, I(2(L;,L,),2) is exactly the homogeneous ideal of X C P HYX,L).

More Examples : (1) Rational Normal Scrolls

(2) Segre Embedding o(P*x P") < P®*o*
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Theorem (Eisenbud-Koh-Stillman, 1988) : Let C be an integral curve of arithmetic genus g.

If & is a line bundle on C of degree > 4¢+2, then (C, %) is determinantally presented.

Theorem (Sidman-Smith, 2011) : Let X be an irreducible projective variety. Then

every sufficiently ample line bundle on X is determinantlly presented.

That is, there exists a line bundle 4 on X such that

(X,L) is determinantlly presented if Z® A~ ' is ample.
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Theorem (M. Pucci, 1998) : For the Veronese variety v,(P") < P, it holds that

I(vy(P™) = 12(0p.(1),0,.(d—1)), 2).

In particular, (IP”, OIPn(d)) is determinantally presented.

Theorem (Huy Tai Ha, 2002) : The ideal of a Segre variety o(P" x---x P") < P  +1) 1)1

1S generated by the 2-minors of a generic hypermatrix of indeterminates.

n n ]‘t_‘[
Theorem (A. Bernardi, 2008) : For a Segre-Veronese variety P x---xP™ e Oldnd) p 25

the homogeneous ideal is generated by the 2-minors of a generic symmetric hypermatrix.

Theorem (Sidman-Smith, 2011) :

() If t >3, then o(P"x---xP™) c P is not determinantally presented.

o(d,,...,d,)

(2) The ideal of P" x---x P" — is determinantally presented

if at least t+—2 of d,,...,d, are at least 2.
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Theorem (Han-Lee-Moon-Park, 2019) : Suppose that char(X) # 2,3. Then

(IP”, OIP,,(d)) satisfies property QR(3) for all » > 1 and 4 > 2.

—1 and ¢: HY0,.(d)) — H(0.(1)).

Sketch of the Proof : Step 1. (Q-map) : Let N = P

n+d>
n

Q: H0,(1))x H(0,.(1)) x H(Op(d—2)) —  I(v,(P"),

(f.9.1) —  Qf.g.h) = o(fh)e(g’h) —o(fgh)®

It suffices to show that /m(Q) spans 7 (ud([P’”)>2.

Step 2. : The case »=1 is proved by using the above @-map.

Step 3. : The case d =2 case is proved by using the above ¢@-map and an induction on #.

Step 4. : Double induction on (n,d) + Aut(v,(P"),P") H
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In particular, (Pl),Opl(d)> satisfies property QR(3).
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Corollary 1. : For X< P’, let m be an integer such that

X is j-normal for all ; > m and /(X) = (I(X)_,) (e.g., m = reg(X)).
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Corollary 2. : Let L be a very ample line bundle on a projective variety X such that (X,L)

satisfies property N,. Then (X,L? satisfies property QR(3) for all d > 2.

Example : Let X = Gr(4,k") be the Grassmannian manifold of ~-dimensional subspaces of %".

Let L be the generator of Pic(X) which defines the Plucker embedding of X.

When >3 and 1 <{<#»n—2,

(X,L) fails to satisfy property QR(5) and (X,L9 satisfies property QR(3) for all d > 2.
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Corollary 1. : For X< P’, let m be an integer such that

X is j-normal for all ; > m and /(X) = (I(X)_,) (e.g., m = reg(X)).

Then (X,Ox(¢)) satisfies property QR(3) for all £ = m.

Corollary 2. : Let L be a very ample line bundle on a projective variety X such that (X,L)

satisfies property N,. Then (X,L? satisfies property QR(3) for all d > 2.

Corollary 3. : Let A be an ample line bundle on a projective variety X. Then there is a positive

integer d, such that (X, A9 satisfies property QR(3) for all even d = d,.
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© Curves of High Degree

Let C be a projective integral curve of arithmetic genus ¢ and let £ be a line bundle of degree

d on C.

(1) (B. Saint-Donat, 1972) If d > 2¢+2, then (C, %) satisfies property QR(4).

(2) (M. Green, 1984) Suppose that C is a smooth curve and ¢ > 5. For D:= ngC(C) - P9

the degree 2 part of /(D) is spanned by quadrics of rank < 4.

% So, if C is not hyperelliptic and trigonal, then (C,KC) satisfies property QR(4).

(3) (Eisenbud-Koh-Stillman, 1988) If 4 > 4¢+2, then (C, %) is determinantally presented.

Theorem (Park, 2019) : If g=0,1 and d > 2g+2 or ¢ =2 and d = 4¢9+4, then

(C, ¥ ) satisfies property QR(3).



