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A question

None of the two first steps is true for open manifolds ! (examples
by P. Scott, S. Maillot).

Instead we’d better look at examples of (families of) 3-manifolds.

I Decomposable manifolds.

I Contractible manifolds.
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Definition

X = a class of closed 3-manifolds. A manifold M is a connected
sum of members of X if

∃ locally finite simplicial tree T
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∃ locally finite simplicial tree T

v5

v1

v2
v3

v4

v6

and v 7→ Xv ∈ X defined on
vertices of T

≈ M

Xv2
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Xv4

Xv5
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One result

Definition
(M, g) has bounded geometry if ∃Q, ρ > 0 such that | Sectg |6 Q
and injg > ρ.

Theorem (Bessières-B.-Maillot)

M has a complete metric of bounded geometry and Scal > 1 iff
there is a finite collection F of spherical manifolds such that M is
a (maybe infinite) connected sum of copies of S2 × S1 and
members of F .
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I Compact case due to Perelman + Schoen-Yau or
Gromov-Lawson.

I A variant of Perelman’s Ricci flow with surgery, which we call
surgical solution of the Ricci flow.

I Improvement by Jian Wang ; No bounded geometry
assumption, no Ricci flow ! Instead, minimal surfaces.
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I T1 is unknotted in S3 and Ti is knotted and null-homotopic in
Ti−1, for i > 1.

On the picture Ti+1 ⊂ Ti ⊂ Ti−1.
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I W = ∩Ti is the Whitehead continuum.

I X = S3 \W ⊂ S3 is a (the) whitehead manifold (genus one).

Theorem
X is contractible and not homeomorphic to R3.

The idea is that the core of Ti and the meridian of Ti−1 form the
Whitehead link.
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Whitehead manifolds

What is known :

I X × R ' R4 (Glimm-Shapiro) and X × X ' R6 (Glimm).

I Uncountably many examples (McMillan) (compare to
countably many closed 3-manifolds).

I Uncountably many examples which do not embed in S3

(Kister-McMillan).

I Examples that cannot cover non-trivially any manifold
(Myers).
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Geometry of Whitehead manifolds

Theorem (J. Wang, 2019)

Whitehead manifolds cannot carry a complete metric of
non-negative scalar curvature.

previous results,

I No complete metric of non-positive sectional curvature.

I No complete metric of uniformly positive scalar curvature
(Gromov-Lawson, Chang-Weinberger-Yu, BBM).

I No complete metric of non-negative Ricci curvature (G. Liu).
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Some ideas of the proof

For the Whitehead construction, let Nk = S3 \ Tk then,
X = ∪kNk .

I Let γk ⊂ ∂Nk be a meridian curve,

I it spans a minimising disk Dk ⊂ Nk (Plateau problem),

I the number of connected components of Dk ∩ N1 which
intersect N0 goes to +∞ with k .

I We assume that Dk converges towards Σ a complete stable
minimal surface, which by Schoen-Yau is diffeomorphic to R2.
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Some ideas of the proof

I The number of connected components of Σ ∩ N1 intersecting
N0 is infinite.

I Meeks-Yau ; each of these components contains a definite
amount of area.

I An extrinsic version of Cohn-Vossen’s inequality reads,∫
Σ
κ(x)dv(x) ≤ 2π ,

with κ = ambient scalar curvature.

I By compactness κ(x) ≥ C on N1, a contradiction !

I Too naive, Dk converges towards a lamination with complete
stable minimal leaves.
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