Ulrich bundles on intersection of two 4-dimensional quadrics

Cho, Yonghwa

KIAS

Nov 25, 2019

Introduction

(joint work w/ Yeongrak Kim & Kyoung-Seog Lee)

$$S = k[x_0, \dots, x_{n+1}] \ni F$$
 homogeneous of degree d

$$X=(F=0)\subset \mathbb{P}^{n+1}$$
 smooth hypersurface

Question. $\exists M \in Mat_{d \times d}(S_1)$ such that $F = \det M$?

Theorem(Segre 1951). $X_3 \subset \mathbb{P}^3_k$ smooth cubic defined by (F = 0). TFAE

- (1) $F = \det M$ for some $M \in \operatorname{Mat}_{3 \times 3}(S_1)$
- (2) X_3 contains a twisted cubic curve
- (3) $X_3 \sim_{bir} \mathbb{P}^2_k$
- (4) X_3 contains a k-rational point and 6 disjoint lines

Introduction

We work over $k = \mathbb{C}$

Set-theoretic analogy:

Proposition. $X^n \subset \mathbb{P}^{n+1}$ smooth hypersurface. TFAE

- (1) $F^r = \det M$ for some $M \in \mathsf{Mat}_{dr \times dr}(S_1)$
- (2) $\exists \mathcal{E}$ vector bundle of rank r s.t.

$$0 o \mathcal{O}_{\mathbb{P}^{n+1}}(-1)^{dr} o \mathcal{O}_{\mathbb{P}^{n+1}}^{dr} o \mathcal{E} o 0$$

Ulrich bundles

Proposition-Definition(Eisenbud-Schreyer).

- $i: X^n \hookrightarrow \mathbb{P}^{n+c}$ smooth projective, \mathcal{E} locally free sheaf over X. TFAE
 - (1) \mathcal{E} admits a linear resolution

$$0 \to \mathcal{O}(-c)^{b_c} \to \mathcal{O}(-c+1)^{b_{c-1}} \to \ldots \to \mathcal{O}(-1)^{b_1} \to \mathcal{O}^{b_0} \to i_*\mathcal{E} \to 0$$

- (2) $H^{\bullet}(\mathcal{E}(-j)) = 0$ for j = 1, ..., n
- (3) For any finite linear projection $\pi\colon X\to\mathbb{P}^n$, $\pi_*\mathcal{E}=\mathcal{O}^t_{\mathbb{P}^n}$ for some t.

 \mathcal{E} is called an **Ulrich sheaf(bundle)** if it satisfies above.

Remark. Definition depends on $\mathcal{O}_X(1)$

Question(Eisenbud-Schreyer). Does any *X* admit Ulrich bundles?

Examples

1. $X = \mathbb{P}^n$ \mathcal{E} Ulrich $\Leftrightarrow \mathcal{E} = \mathcal{O}^t$ for some t.

$$H^{ullet}(\mathcal{E}(-j)) = 0, \ j = 1, \dots, n \iff \mathcal{E} \in {}^{\perp}\langle \mathcal{O}(1), \dots, \mathcal{O}(n) \rangle$$

$$\mathsf{D}^{\mathsf{b}}(\mathbb{P}^n) = \langle \mathcal{O}, \mathcal{O}(1), \dots, \mathcal{O}(n) \rangle \text{ full exceptional collection}$$

$$\langle \mathcal{O} \rangle \cap \mathsf{Coh}(X) = \{ \mathcal{O}^t : t \in \mathbb{Z}_{\geq 1} \} \cup \{0\}$$

2. $Q^n \subset \mathbb{P}^{n+1}$ quadric

 ${\mathcal E}$ is Ulrich & indecomposable $\Leftrightarrow {\mathcal E}$ is a spinor bundle

$$\mathsf{D^b}(\mathcal{Q}^n) = \left\{ egin{array}{ll} \left\langle \, \mathcal{S}, \, \mathcal{O}(1), \, \dots, \mathcal{O}(n) \,
ight
angle & n \; \mathsf{odd} \ \left\langle \, \mathcal{S}^+, \, \mathcal{S}^-, \, \mathcal{O}(1), \, \dots, \mathcal{O}(n) \,
ight
angle & n \; \mathsf{even} \end{array}
ight.$$

Corollary. $(x_0^2 + \ldots + x_{n+1}^2)^r = \det M$ for some $M \in \operatorname{Mat}_{2r \times 2r}(S_1)$ if and only if $2^{\lfloor \frac{n-1}{2} \rfloor}$ divides r.

Fano threefolds of index 2

[Beauville] Fano threefold of index 2 admits an Ulrich bundle of rank 2

[Casanellas-Hartshorne-Geiß-Schreyer] X a general cubic threefold, $r \geq 2$

 \Rightarrow there is an $r^2 + 1$ dimensional family of stable Ulrich bundles

Remark. Both use Serre construction: $0 \to \mathcal{O}_X^{r-1} \to \mathcal{E} \to \mathcal{I}_C \otimes \mathcal{L} \to 0$

[Lahoz-Macrì-Stellari] removes genericity assumption from [CHGS]

Derived categories

X a Fano threefold of index 2
$$(\omega_X = \mathcal{O}_X(-2))$$

$$\Rightarrow$$
 D^b(X) = \langle O(-1), \mathcal{O} , \mathcal{A}_X \rangle semiorthogonal decomposition

Ulrich condition: $H^{\bullet}(\mathcal{E}(-j)) = 0$, j = 1, 2, 3, equivalently

$$\operatorname{Ext}^{\bullet}(\mathcal{E}^{\vee}(1), \mathcal{O}(1-j)) = 0, \quad 1-j = 0, -1, -2$$

$$\Rightarrow \mathcal{E}^{\vee}(1) \in \mathcal{A}_X \& \operatorname{Ext}^{\bullet}(\mathcal{E}^{\vee}(1), \mathcal{O}(-2)) = 0.$$

Strategy. Study Ulrich bundles as objects in A_X

From now on,
$$X:=Q_0\cap Q_\infty$$
 (smooth), $Q_0,Q_\infty\in |\mathcal{O}_{\mathbb{P}^5}(2)|$

In this case, $A_X \simeq D^b(C)$ for some curve of g(C) = 2 [Bondal-Orlov]

Fourier-Mukai kernel: restricted spinor bundles

Quadric pencil
$$|Q_t|_{t\in\mathbb{C}\cup\{\infty\}}$$
, $Q_t=(q_0+tq_\infty=0)\subset\mathbb{P}^5$

Fourier-Mukai kernel: restricted spinor bundles

Quadric pencil
$$|Q_t|_{t\in\mathbb{C}\cup\{\infty\}}$$
, $Q_t=(q_0+tq_\infty=0)\subset\mathbb{P}^5$

If
$$Q_{t_0}$$
 is smooth $\to \exists 2$ spinor bundles $\mathcal{S}_{Q_{t_0}}^{\pm}$ $(\mathcal{S}_{t_0}^{\pm} := \mathcal{S}_{Q_{t_0}}^{\pm}|_X)$
If Q_{t_1} is singular $\to Q_{t_1} = \mathsf{Cone}(v,Q^3)$, unique spinor bundle $\mathcal{S}_{Q_{t_1}}$ over Q^3
 $\mathcal{S}_{t_1} := \mathsf{pullback\ along\ } X \to Q_{t_1} \setminus \{v\} \to Q^3$

Fourier-Mukai kernel: restricted spinor bundles

Quadric pencil $|Q_t|_{t\in\mathbb{C}\cup\{\infty\}}$, $Q_t=(q_0+tq_\infty=0)\subset\mathbb{P}^5$

If Q_{t_0} is smooth $\to \exists 2$ spinor bundles $\mathcal{S}_{Q_{t_0}}^{\pm}$ $(\mathcal{S}_{t_0}^{\pm} := \mathcal{S}_{Q_{t_0}}^{\pm}|_X)$ If Q_{t_1} is singular $\to Q_{t_1} = \mathsf{Cone}(v,Q^3)$, unique spinor bundle $\mathcal{S}_{Q_{t_1}}$ over Q^3

$$\mathcal{S}_{t_1} := \mathsf{pullback} \; \mathsf{along} \; X o Q_{t_1} \setminus \{v\} o Q^3$$

 $C \xrightarrow{2:1} \mathbb{P}^1$, branched over 6 points (g(C) = 2)

S := a universal family, *i.e.* vector bundle over $X \times C$ s.t.

$$\mathcal{S}\big|_{X\times\{c\}}=\mathcal{S}_c,\quad c=[\mathcal{S}_c]$$

Fourier-Mukai Transform

$$\mathsf{D^b}(X) = \langle \mathcal{O}(-1), \mathcal{O}, \mathcal{A}_X \rangle$$

[Bondal-Orlov]: $\Phi_{\mathcal{S}}$ induces $\mathsf{D}^\mathsf{b}(\mathcal{C}) \simeq \mathcal{A}_{\mathcal{X}}$

Note. The right adjoint

$$\Phi_{\mathcal{S}}^{!} \colon \operatorname{D^b}(X) \to \operatorname{D^b}(C), \qquad \mathcal{E}^{\bullet} \mapsto q_*(p^*\mathcal{E}^{\bullet} \otimes \mathcal{S}^{\vee}) \otimes \omega_{C}[1]$$

is the left inverse to $\Phi_{\mathcal{S}}$. $(\Phi_{\mathcal{S}}^! \Phi_{\mathcal{S}} = Id)$

Fourier-Mukai Transform

$$\mathsf{D^b}(X) = \langle \, \mathcal{O}(-1), \, \mathcal{O}, \, \mathcal{A}_X \, \rangle$$

[Bondal-Orlov]: $\Phi_{\mathcal{S}}$ induces $D^b(C) \simeq \mathcal{A}_X$

Note. The right adjoint

$$\Phi_{\mathcal{S}}^{!} \colon \operatorname{D}^{b}(X) \to \operatorname{D}^{b}(C), \qquad \mathcal{E}^{\bullet} \mapsto q_{*}(p^{*}\mathcal{E}^{\bullet} \otimes \mathcal{S}^{\vee}) \otimes \omega_{C}[1]$$

is the left inverse to $\Phi_{\mathcal{S}}$. $(\Phi_{\mathcal{S}}^! \Phi_{\mathcal{S}} = Id)$

Main Theorem

 $X, C, \Phi_{\mathcal{S}}, \dots$ as before

 $\mathcal{M}_X^{\mathsf{s}}(r) := \mathsf{moduli}$ space of stable Ulrich bundles of rank r over X

 $\mathcal{U}_{\mathsf{C}}^{\mathsf{s}}(r,2r) := \mathsf{moduli}$ space of stable bundles of $(\mathsf{rk},\mathsf{deg}) = (r,2r)$ over C

Theorem(C.-Kim-Lee). $\Phi_{\mathcal{S}}^!$ induces an open embedding

$$\varphi \colon \mathcal{M}_{X}^{\mathsf{s}}(r) \hookrightarrow \mathcal{U}_{C}^{\mathsf{s}}(r,2r), \qquad \mathcal{E} \mapsto \Phi_{\mathcal{S}}^{!}(\mathcal{E}^{\vee}(1))$$

Moreover, $\mathcal{M}_X^{s}(r)$ is nonempty for $r \geq 2$.

Remark.

- (1) $\mathcal{M}_X^{\mathsf{s}}(r)$ is nonsingular, quasi-projective of dimension r^2+1
- (2) φ is not surjective in general

$$\begin{split} \mathcal{E} \in \mathcal{M}_X^{\mathrm{s}}(r) &\iff \mathcal{H}^{\bullet}(\mathcal{E}(-j)) = 0, \ j = 1, 2, 3 \\ &\iff \mathsf{Ext}_X^p(\mathcal{E}^{\vee}(1), \mathcal{O}(-j')) = 0, \ j' = 0, 1, 2 \\ &\iff \mathcal{E}^{\vee}(1) \in \mathcal{A}_X \ \& \ \mathsf{Ext}_X^p(\mathcal{E}^{\vee}(1), \omega_X) = 0 \end{split}$$

Use
$$\Phi_{\mathcal{S}}^{!} \colon \mathcal{A}_{X} \xrightarrow{\sim} \mathsf{D}^{\mathsf{b}}(C) \colon \Phi_{\mathcal{S}}^{!}(\mathcal{E}^{\vee}(1)), \ \Phi_{\mathcal{S}}^{!}\omega_{X} \in \mathsf{D}^{\mathsf{b}}(C)$$

 $\Phi_{\mathcal{S}}^!\omega_X$ is related to the *second Raynaud bundle*, Indeed,

Proposition. $\Phi_{\mathcal{S}}^! \omega_X = \mathcal{R}^{\vee} \otimes \omega_{\mathcal{C}}^2[-2]$, where $\mathcal{R} \in \mathcal{U}_{\mathcal{C}}^{\mathsf{s}}(4,4)$ with the property

$$H^0(\mathcal{R} \otimes L) = H^1(\mathcal{R} \otimes L) = \mathbb{C}, \ \forall L \in \text{Pic}^0 \ C.$$

Proposition. Let $\mathcal E$ be Ulrich bundle of rank r. Then $F:=\Phi_{\mathcal E}^!(\mathcal E^\vee(1))$ is a locally free sheaf concentrated at degree 0 (as complex). Moreover, $\operatorname{rk} \mathcal F = r$, $\operatorname{deg} \mathcal F = 2r$, and

 \mathcal{E} is (semi)stable \Leftrightarrow F is (semi)stable.

Proof(outline). The pth cohomology sheaf of $\Phi_{\mathcal{S}}^!(\mathcal{E}^\vee(1))$ is

$$\mathcal{H}^p := R^{p+1} p_*(q^*(\mathcal{E}^\vee(1)) \otimes \mathcal{S}^\vee) \otimes \omega_{\mathcal{C}} \quad \text{Recall: } \Phi^!_{\mathcal{S}}(\mathcal{G}) = p_*(q^*\mathcal{G} \otimes \mathcal{S}^\vee) \otimes \omega_{\mathcal{C}}[1]$$

Base change: $\mathcal{H}^p \otimes \kappa(c) o H^{p+1}(\mathcal{E}^{\vee}(1) \otimes \mathcal{S}_c^{\vee})$

From the properties of spinor bundles on quadrics:

$$0 o \mathcal{S}_{ au c}^ee o \mathcal{O}_X^4 o \mathcal{S}_c^ee (1) o 0.$$

Since $H^{\bullet}(\mathcal{E}^{\vee}(j)) = 0$ for j = 1, 0, -1, get

$$H^{p+1}(\mathcal{E}^{\vee}(1)\otimes\mathcal{S}_c^{\vee})\simeq H^{p+2}(\mathcal{E}^{\vee}(1)\otimes\mathcal{S}_c^{\vee}(-1))=\ldots,$$

and conclude $H^{p+1}(\ldots) = 0$ for p > 0.

If ch $F = s + d[P_C]$, $[P_C] \in H^2(C, \mathbb{Z})$, then GRR formula reads

$$\cosh \Phi_{\mathcal{S}} F = p_* \left(\operatorname{ch}(q^* F) \cdot \operatorname{ch} S \cdot \operatorname{td} \mathcal{T}_q \right)$$

$$= (2d - 3s) + (d - 2s)[H_X] + s[L_X] + \frac{1}{2}(2s - d)[P_X]$$

For \mathcal{E} an Ulrich bundle of rank r, ch $\mathcal{E} = r - r[L_X] \implies s = r$, d = 2r.

If $\mathcal{E} \in \mathcal{M}_{\mathcal{L}}^{\mathsf{s}}(r)$, then $F := \Phi_{\mathcal{S}}^{!}(\mathcal{E}^{\vee}(1))$ stable bundle with $\mathsf{rk} = r$, $\mathsf{deg} = 2r$, and

$$\begin{split} 0 &= \mathsf{Ext}_X^p(\mathcal{E}^\vee(1), \omega_X) = \mathsf{Hom}_{\mathsf{D}^\mathsf{b}(X)}(\Phi_{\mathcal{S}} F, \omega_X[p]) \\ &= \mathsf{Hom}_{\mathsf{D}^\mathsf{b}(C)}(F, \mathcal{R}^\vee \otimes \omega_C^2[p-2]) \\ &= \mathsf{Ext}_C^{p-2}(F, \mathcal{R}^\vee \otimes \omega_C^2) \end{split}$$

Claim. General *F* satisfies the above properties.

(remark: it suffices to study the cases r = 2, 3)

Key: $X = \mathcal{SU}_{\mathcal{C}}(2, \xi^*)$ for some $\xi \in \operatorname{Pic}^1 \mathcal{C}$ with \mathcal{S} the universal family

$$H^1(F \otimes \mathcal{S}_x) \simeq \operatorname{Hom}(\mathcal{F}, \mathcal{S}_x^{\vee} \otimes \omega_{\mathcal{C}})^*$$
. Assume $\exists f \colon F \to \mathcal{S}_x^{\vee} \otimes \omega_{\mathcal{C}}$ nonzero

$$0 \to F' \to F \xrightarrow{f} \mathcal{S}_x^\vee \otimes \omega_C \to 0$$

F' semistable with $\mu = \frac{2r-5}{r-2} = 2 - \frac{1}{r-2}$

$$\begin{aligned} \dim\{F\} &\leq & \dim\{F'\} &+ \dim\{x\} + \dim\mathbb{P}\operatorname{Ext}^{1}(\mathcal{S}_{x}^{\vee} \otimes \omega_{C}, F') \\ &= (r^{2} - 4r + 5) + & 3 &+ & (3r - 5) \\ &< r^{2} + 1 = \dim\mathcal{U}_{C}^{s}(r, 2r) \text{ (if } r \geq 3) \end{aligned}$$

Similar argument for proving $\operatorname{Ext}^p(F,\mathcal{R}^\vee\otimes\omega^2_C)=0$:

(
$$r=3$$
) take nonzero $f\colon \mathcal{R} \to F^\vee \otimes \omega_\mathcal{C}^2$, then $\mu(\operatorname{im} f) \in \{\frac32, \frac43, \frac53, \frac63\}$.

 \rightarrow Do case-by-case dimension counting...

Further questions

In general, $\mathcal{M}_X^{\mathsf{s}}(r)
eq \mathcal{U}_C^{\mathsf{s}}(r,2r)$

Example. Let $P \in C$ be a point, and $F := \mathcal{R}^{\vee} \otimes \omega_C^2 \otimes \mathcal{O}_C(-P) \in \mathcal{U}_C^s(4,8)$. Clearly, there is a nonzero map $F \to \mathcal{R}^{\vee} \otimes \omega_C^2$.

Question. $\overline{\mathcal{M}_X^{\mathsf{s}}}(r) = ?$

Theorem[Qin]. Let $\mathcal{I}_X(2)$ be the moduli space of instanton sheaves of charge 2. Then, $\mathcal{I}_X(2)$ is projective and contains $\mathcal{M}_X^s(2)$.