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Goal of the talk

Use the kinetic viewpoint to construct numerical approximations of
systems of PDEs arising in fluid dynamics, plasmas, and more.

The fundamental example Finite volumes for Euler equations:

I Godunov method
Riemann solver with resolution of algebraic equations at each
cell interface

I Kinetic method

Euler =limit of BGK

discretized Euler =limit of discretized BGK

Resolution of transport equations

First paper in that direction: R.H. Sanders and K.H. Prendergast, On

the origin of the 3 kiloparsec arm, Astrophys. J. (1974)
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BGK (Bhatnagar-Gross-Krook) model for Euler equations -
1954

It is a simplification of the Boltzmann equation governing the
distribution function f (x , t, ξ) of an homogeneous gas:

∂t f
ε+ξ ·∇x f

ε =
1

ε
(M(Pf ε, ξ)− f ε) , Pf ε =

∫
R3

 1
ξ

1
2 |ξ|

2

 f εdξ.

linear transport equation with source-term.

ε: proportionnal to the Knudsen number.
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M(U, ξ): maxwellian function satisfying

∀U = (ρ, ρu, E), PM(U, ξ) = U, P(ξM(U, ξ)) = F (U)

and entropy properties. F : flux of Euler equations.

Macroscopic limit: ε→ 0

f ε → f = M(U), U = Pf

and U is an entropy solution of Euler equations.

The idea is to discretize the BGK equation in such a way that when
ε→ 0 we obtain a consistent and stable discretization of Euler
equations, ie to construct an Asymptotic Preserving (AP) scheme
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Finite Volume method for hyperbolic systems of
conservation laws

∂tU + ∂xF (U) = 0, (x , t) ∈ R× [0,T ]

with U(x , t) ∈ V ⊂ RK .

Cj =]xj− 1
2
, xj+ 1

2
[, xj+ 1

2
− xj− 1

2
= ∆x , t0 = 0, tn+1 = tn + ∆t.∫ tn+1

tn

∫
Cj

∂tU + ∂xF (U)dx dt = 0

∫
Cj

U(x , tn+1)dx =

∫
Cj

U(x , tn)dx

−
∫ tn+1

tn

F (U(xj+ 1
2
, t))dt +

∫ tn+1

tn

F (U(xj− 1
2
, t))dt
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Finite Volume method for hyperbolic systems of
conservation laws

Un
j ∼

1

∆x

∫
Cj

U(x , tn)dx , F n
j+ 1

2
∼ 1

∆t

∫ tn+1

tn

F (U(xj+ 1
2
, t))dt

Approximate formula:

Un+1
j = Un

j −
∆t

∆x

(
F n
j+ 1

2
− F n

j− 1
2

)
.

The numerical approximation is determined by the choice of F n
j+ 1

2

.

F n
j+ 1

2
= F(Un

j ,U
n
j+1), F(U,U) = F (U) (conservativity).

Simple choices as centred formula F(U,V ) = 1
2 (F (U) + F (V )) are not

stable even in the linear case.
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Finite Volume method for conservation laws

In order to compute physically relevant solutions, the scheme must
satisfy some discrete discrete entropy inequality: if η is an entropy
for the system:

η(Un+1
j )− η(Un

j )

∆t
+
Gn
j+ 1

2

− Gn
j− 1

2

∆x
≤ 0.

Gn
j+ 1

2

: numerical entropy flux.
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Finite Volume method for conservation laws

Godunov method: solve the Riemann problem at interface exactly,
i.e. : ∀xj+ 1

2
, find the exact solution Uj+ 1

2
of the system with

Uj+ 1
2
(x , tn) = Un

j if x < xj+ 1
2
, Uj+ 1

2
(x , tn) = Un

j+1 if x > xj+ 1
2
.

Then set as numerical flux

F n
j+ 1

2
=

1

∆t

∫ tn+1

tn

F (Uj+ 1
2
(xj+ 1

2
, t))dt.

May be difficult and expensive.

Under CFL condition, this is equivalent to set Un+1
j as the average

of the exact solution at t = tn+1 when U(x , tn) =
∑

j U
n
j 11Cj

(x).



9

Alternatives to Godunov method

In order to avoid the exact resolution of the Riemann problem at
each interface: approximate solvers and Lax-Friedrichs type
schemes. Among them:

I HLL solver

I kinetic solvers

I relaxation solvers

These methods are closely linked.

In what follows we give a brief overview of the history of kinetic
approach of conservation laws.
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HLL solver
A. Harten, P.D. Lax, B. Van Leer, On upstream differencing and

Godunov-type schemes for hyperbolic conservation laws, SIAM Rev.

(1983)

Exact solution of the Riemann problem

Uj+ 1
2
(x , t) = W

(x − xj+ 1
2

t − tn
;Un

j ,U
n
j+1

)
and W is a superposition of simple waves (shocks, rarefactions,
contact discontinuities).

Denoting ai (U) the eigenvalues of F ′(U):

λ− = min
i
{ai (U), ai (V )}, λ+ = max

i
{ai (U), ai (V )}.

For y < λ−: W (y ,U,V ) = U.

For y > λ+: W (y ,U,V ) = V .
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HLL solver

HLL scheme : W (y ,U,V ) is replaced by the superposition of three
constant states U,Z ,V :

w(y ,U,V ) =


U if y < λ−,

Z if λ− < y < λ+,

V else.
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HLL solver: the numerical flux

Some more considerations lead to

F(U,V ) =


F (U) if λ− > 0,

F (V ) if λ+ < 0,

−λ−F (V ) + λ+F (U)

λ+ − λ−
+

λ+λ−

λ+ − λ−
(V − U) else.

Explicit, easy to implement.
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Kinetic interpretation of flux splitting methods

Euler equations:

F ′(U) = A(U) = R(U)Λ(U)R(U)−1, Λ(U) = diag(ai (U)).

By homogeneity of F the Euler identity holds:

F (U) = A(U)U.

Denoting Λ± =diag(a±i ) and A± = RΛ±R−1:

F (U) = F+(U)− F−(U), F±(U) = A±(U)U.
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Kinetic interpretation of flux splitting methods

Steger-Warming scheme:

F n
j+ 1

2
= F+(Un

j )− F−(Un
j+1)

Harten, Lax and Van Leer give a kinetic interpretation of this
scheme with a Maxwellian function supported by the characteristic
velocities ai (U).

A. Harten, P.D. Lax, B. Van Leer, On upstream differencing and

Godunov-type schemes for hyperbolic conservation laws, SIAM Rev.

(1983)
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Kinetic numerical methods
Y. Brenier, Résolution déquations d’évolution quasilinéaires en dimension

N d’espace à l’aide d’équations linéaires en dimension N+1. JDE (1983).

Scalar conservation law

∂tU +
N∑

n=1

∂xnFn(U) = 0, (x , t) ∈ RN × [0,T ]

with U(x , t) ∈ V ⊂ R.

Kinetic equation (linear related equation):

∂ts +
N∑

n=1

F ′n(ξ)∂xns = 0.

Maxwellian function:

χ(u, ξ) =


1 if 0 < ξ < u

−1 if u < ξ < 0

0 else.



16

Moment operator:

∀g ∈ L1(R), Pg =

∫
R
g(ξ)dξ.

The following time-splitting procedure converges in L1 when
∆t → 0:

I Projection on the Maxwellian state:

sn(x , ξ) = χ(un(x), ξ).

I Transport:

∀(x , ξ) ∈ RN × R, sn+1(x , ξ) = sn(x − tF ′(ξ)).

I Moment operator:

∀x ∈ RN , un+1(x) = P(sn+1(x , .)).
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Related BGK model

∂t f +
N∑

n=1

F ′n(ξ)∂xn f =
1

ε
(χ(Pf , ξ)− f ) . (1)

One has∫
R
χ(U, ξ)dξ = U,

∫
R
F ′(ξ)χ(U, ξ)dξ = F (U)− F (0).

The same model appears in Y. Giga and T. Miyakawa, A kinetic

construction of global solutions of first order quasilinear equations, Duke

Math. J. (1983).

Convergence of (1) to weak entropy solutions of the scalar
conservation law:
B. Perthame and E. Tadmor, A kinetic equation with kinetic entropy

functions for scalar conservation laws, Commun. Math. Phys. (1991).
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Kinetic interpretation of Engquist-Osher scheme

Consider the 1D scalar conservation law with F strictly convex,
UF ′(U) ≥ 0, F (0) = 0:

∂tU + ∂xF (U) = 0.

F−(U) = −F (U) if U < 0, 0 else

F+(U) = F (U) if U > 0, 0 else.

F+ and F− are increasing functions. Numerical flux of
Engquist-Osher:

F n
j+ 1

2
= F+(Un

j )− F−(Un
j+1)
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This scheme can be obtained as follows: for all n ≥ 0

I Maxwellian projection: f nj (ξ) = χ(Un
j , ξ),

I Upwind scheme on the transport equation:

f
n+ 1

2
j (ξ) = f nj (ξ)− F+′(ξ)

∆t

∆x

(
f nj (ξ)− f nj−1(ξ)

)
+ F−′(ξ)

∆t

∆x

(
f nj+1(ξ)− f nj (ξ)

)
I Moment operator:

Un+1
j =

∫
R
f
n+ 1

2
j (ξ)dξ.
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Kinetic schemes for hyperbolic systems

Models for gas dynamics:
B. Perthame, Boltzmann type schemes for gas dynamics and the entropy

property, SINUM (1990).

See the book B. Perthame, Kinetic formulation of conservation laws.

Oxford lecture series in mathematics and its applications, 21 (2002) and
ref. therein.
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Jin and Xin’s relaxation scheme

S. Jin and Z. Xin, The relaxation schemes for systems of conservation

laws in arbitrary space dimensions. CPAM (1995). 1D simplified
version : consider a hyperbolic system

(1) ∂tU + ∂xF (U) = 0, U(x , t) ∈ V ⊂ RK .

Relaxation approximation by a semilinear hyperbolic system of 2K
equations∂tU

ε + ∂xV
ε = 0

∂tV
ε + a2∂xU

ε =
1

ε
(F (Uε)− V ε) , a > 0.

Formally when ε→ 0, (Uε,V ε)→ (U,F (U)) and U is a solution
of (1).
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Stability condition

Chapman-Enskog expansion:

V ε = F (Uε)− εV (1).

V (1) = ∂tV
ε + a2∂xU

ε

= ∂tF (Uε) + a2∂xU
ε + O(ε)

= F ′(Uε)∂tU
ε + a2∂xU

ε + O(ε)

= −F ′(Uε)∂xV
ε + a2∂xU

ε + O(ε)

Hence:

∂tU
ε + ∂xF (Uε) = ε∂x

(
(a2I − F ′(Uε)2)∂xU

ε
)
.

A subcharacteristic condition (TP Liu) is necessary: a has to be
large enough w.r.t. F ′.
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Relaxing and relaxed schemes
Relaxing scheme: for ε > 0 fixed, fractional step method:

1) Upwind scheme on the homogeneous part.
2) Exact resolution of the source-term on [tn, tn+1]:∂tU

ε = 0

∂tV
ε =

1

ε
(F (Uε)− V ε) .

Obtention of the relaxed scheme by making ε −→ 0 in the relaxed
scheme. A Lax-Friedrichs type scheme is obtained:

Un+1
j = Un

j −
∆t

2∆x
(F (Un

j+1)−F (Un
j−1))+a

∆t

2∆x
(Un

j+1−2Un
j +Un

j−1).

Higher order in space and time is possible and easy.

Convergence in the 1D scalar case for relaxing and relaxed
schemes: D. A.-D. and R. Natalini, Convergence of relaxation schemes

for conservation laws, App Anal. (1996).

Convergence of the model: R. Natalini, CPAM (1996).
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BGK interpretation of Jin and Xin’s model

∂tU
ε + ∂xV

ε = 0

∂tV
ε + a2∂xU

ε =
1

ε
(F (Uε)− V ε) , a > 0.

Diagonalization:

f − =
1

2

(
U − V

a

)
, f + =

1

2

(
U +

V

a

)
.

Denoting M±(U) =
±F (U) + aU

2a
:


∂t f
− − a∂x f

− =
1

ε

(
M−(f − + f +)− f −

)
∂t f

+ + a∂x f
+ =

1

ε

(
M+(f − + f +)− f +

)
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This is formally a discrete vectorial BGK model:

f =

(
f −

f +

)
∈ R2K , Pf = f − + f +, M =

(
M−

M+

)
The moment operator P is an integration with the counting
measure satisfying

PM(U) = U, PΛM(U) = F (U)

with Λ = diag(−aIK , aIK ). Discrete analogue of

∫
R
M(U, ξ)dξ = U,

∫
R3

 1
ξ

1
2 |ξ|

2

 ξM(U, ξ)dξ = F (U)

for Euler equations.
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Generalization

Multidimensional hyperbolic system

∂tU +
D∑

d=1

∂xdFd(U) = 0, U(x , t) ∈ V ⊂ RK .

BGK model:

∂t f
ε +

D∑
d=1

Λd∂xd f
ε =

1

ε
(M(Pf ε)− f ε) , f ε(x , t) ∈ (RK )L.

Λd = diag (vd ,1IK , . . . , vd ,LIK ), vd ,l ∈ R,

P ∈ L
(
(RK )L,RK

)
, and M = (M1, . . . ,ML): V → (RK )L.
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Compatibility conditions

∀U ∈ V, PM(U) = U, PΛdM(U) = Fd(U), d = 1, . . . ,D.

Often Pf =
∑

l fl .

Chapman-Enskog expansion can be generalized:

Uε = Pf ε

∂tU
ε +

∑
d

∂xdFd(Uε) = ε
∑
d

∂xd ∑
j

Bdj(U
ε)∂xdU

ε


with

Bdj(U) = PΛdΛjM
′(U)− F ′d(U)F ′j (U).
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Stability

Convergence of Uε = Pf ε towards an entropy solution of the
system of conservation laws?

Scalar case: U0: initial condition. We suppose that the
Maxwellian functions are monotone nondecreasing functions:

∀U ∈ [−‖U0‖∞, ‖U0‖∞], M ′l (U) ≥ 0, l = 1, . . . , L.

Example: Jin and Xin’s model: L = 2,

M−(U) =
−F (U) + aU

2a
, M+(U) =

F (U) + aU

2a
.

M− and M+ are increasing functions if and only if the
subcharacteristic condition is satisfied:

∀U ∈ [−‖U0‖∞, ‖U0‖∞], −a ≤ F ′(U) ≤ a.
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Scalar case

Theorem 1 R. Natalini, JDE 1998. U0 ∈ L∞(RD) and
f0 = M(U0). For all l , Ml is nondecresing on [−‖U0l∞, ‖U0l∞].
For ε > 0 fixed the BGK system has a unique solution
f ε ∈ C ([0,∞[, L1

loc ∩ L∞). Moreover

Ml(−‖U0‖∞) ≤ f εl ≤ Ml(‖U0‖∞), l = 1, . . . , L.

Main argument: The BGK system is quasimonotone (B. Hanouzet
and R. Natalini, Diff. Int. Eq. 1996).

Theorem 2 R. Natalini, JDE 1998. Same assumptions. Uε = Pf ε

converges to the unique entropy solution of the Cauchy problem
for the conservation law.

Boundary conditions: V. Milisic, Proc. Amer. Math. Soc. 2003.
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Systems

F. Bouchut, J. Stat. Phys. 1999: let E be a set of entropies for
the system of conservation laws. For η ∈ E a related kinetic
entropy Hη is a convex function s.t. Gl ,η = Hη ◦Ml satisfies:

I PGη(U) = η(U),

I ∀Uf s.t. f = M(Uf ), PGη(Uf ) ≤ PHη(f ).

The existence of Hη for all η ∈ E is equivalent to the fact that
η ∈ E (M ′l )

tη′′ is symmetric and

∀U ∈ V, σ(M ′l (U)) ⊂ [0,+∞[; l = 1, . . . , L.

In this case the Chapman-Enskog expansion is η-dissipative.

see also D. Serre, Ann. Inst. H. Poincaré 2000 for 2x2 1D systems.
S. Bianchini, CPAM 2006 for 1D strictly hyperbolic systems (data
small in BV).
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Examples of BGK vectorial models

1D, L=2. Pf =
∑

l fl .
∂t f1 + λ−∂x f1 =

1

ε
(M1(f1 + f2)− f1)

∂t f2 + λ+∂x f2 =
1

ε
(M2(f1 + f2)− f2)

with

M1(U) =
λ+U − F (U)

λ+ − λ−
, M2(U) =

−λ−U + F (U)

λ+ − λ−
,

Stability conditions: (M ′l )
tη′′ is symmetric for all entropy η.

λ− ≤ F ′(U) ≤ λ+.
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2D version

L=4. Pf =
∑

l fl .

Λ1 =


λ−1 IK 0 0 0

0 0 0 0
0 0 λ+

1 IK 0
0 0 0 0

 , Λ2 =


0 0 0 0
0 λ−2 IK 0 0
0 0 0 0
0 0 0 λ+

2 IK

 .

Stability conditions: (M ′l )
tη′′ is symmetric for all entropy η.

1

2
λ−d ≤ F ′d(U) ≤ 1

2
λ+
d .

see D. A-D. and R. Natalini, SINUM 2000 for more examples with
linear combinations of U and Fd(U).
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Flux decomposition in 1D

As for Engquist-Osher of Steger-Warming, suppose that
F (U) = F+(U)− F−(U) with σ(F±′(U)) ⊂ [0,∞[. BGK system:
λ > 0, U =

∑
l fl .

∂t f1 − λ∂x f1 =
1

ε

(
F−(U)

λ
− f1

)
∂t f2 =

1

ε

(
U − F+(U) + F−(U)

λ
− f2

)
∂t f3 + λ∂x f3 =

1

ε

(
F+(U)

λ
− f3

)
see also F. Bouchut, Entropy satisfying flux vector splitting and
kinetic BGK models, Numer. Math. 2003
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Numerical methods
D. A-D. and R. Natalini, SINUM 2000

Each BGK model provides a numerical method by the same
procedure as above:

1) Numerical approximation of the BGK model by fractional step
method:
I Upwind method on the free transport equations: obtention of

f ε,n+1/2

I Exact resolution of the source-term:

f ε′j =
1

ε

(
M(Pf εj )− f εj

)
We have Pf ε′ = 0 so

Uε,n+1
j = Pf

ε,n+1/2
j ,

f ε,n+1
j = M(Uε,n+1

j ) + e−∆t/ε
(
f
ε,n+1/2
j −M(Uε,n+1

j )
)
.
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2)Relaxed limit of the scheme:ε→ 0

I Projection onto equilibrium:

f nj = M(Un
j )

I Transport (upwind). In 1D

f
n+ 1

2
j = f nj −

∆t

∆x
Λ(f n

j+ 1
2
− f n

j− 1
2
)

Un+1
j = Pf

n+ 1
2

j .

Same procedure as Brenier (1983): transport-collapse.



36

First order relaxed numerical flux

If f n
j+ 1

2

= Φ(f nj , f
n
j+1) then

Un+1
j = Un

j −
∆t

∆x
(F n

j+ 1
2
− F n

j− 1
2
)

with
F n
j+ 1

2
= F(Un

j ,U
n
j+1) = PΛΦ(M(Un

j ),M(Un
j+1))

Consistence:

F(U,U) = PΛΦ((MU),M(U)) = F (U).

Scalar case: convergence to the unique entropy solution of
Cauchy Problem (monotony).
Boundary conditions: D. A-D. and V. Milisic, Numer. Math. 2004.
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Application to the presented BGK models

Application to model 2: HLL method.

Application to FDM: flux vector splitting.
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Higher order schemes

In time: RK2 Heun. In space, there are 2 viewpoints:

I. Replace the upwind scheme by a second order MUSCL type

scheme: f
n+ 1

2
j is obtained by affine reconstruction, exact transport

and exact average on Cj .

Works well, good stability properties, at least in the scalar case
(TVD, L∞).

Problems:
Computation of K × L slopes ∀j , n.
For systems: positivity is not necessarily preserved.
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II. Forget BGK and apply the second order procedure on the
relaxed numerical flux :

1) Affine reconstruction of Un
j :

Un
j (x) = Un

j + σnj (x − xj).

2) Modified numerical flux:

F n
j+ 1

2

= F
(
Un
j (x + ∆x/2),Un

j+1(x −∆x/2)
)
.
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Interest and drawbacks of such methods

I BGK models provide flexible, easy to implement finite volume
schemes.

I Great stability

I Drawback: contact discontinuities are not accurate
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Other numerical techniques

I Finite elements T. Katsaounis and C. Makridakis, Math of
Comp. 2001).

I Discontinuous Galerkin method, lattice Boltzmann method:
B. Graille, JCP 1994,
Coulette et al, Computers and Fluids 2019

I Residual distribution schemes: D. Torlo, PhD thesis with R.
Abgrall, 2020.
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Other problems

I Parabolic problems: kinetic models with diffusive scaling: F.
Bouchut, F. Guarguaglini, R. Natalini, Indiana Univ. Math. J.
2000.
D. A-D., R. Natalini, S. Tang, Math. of Comp. 2003.

I Incompressible Navier-Stokes equations: M.F. Carfora, R.
Natalini, M2ANB 2008,
Bouchut et al, SIAM J. Comput. Math. 2018.

I A non conservative hyperbolic system : the Euler
bitemperature model for plasma out of thermic equilibrium:
will be the topic of the second talk.


