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Collective Behavior Models

Swarming by Nature or by design?

The ghysics of flecking

Fish schools and Birds flocks.
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Individual Based Models (Particle models)

Swarming = Aggregation of agents of similar size and body type generally moving in
a coordinated way.
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Individual Based Models (Particle models)

Swarming = Aggregation of agents of similar size and body type generally moving in
a coordinated way.

Highly developed social organization: insects (locusts, ants, bees ...), fishes, birds,
micro-organisms (myxo-bacteria, ...) and artificial robots for unmanned vehicle
operation.
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Collective Behavior Models

Individual Based Models (Particle models)

Swarming = Aggregation of agents of similar size and body type generally moving in
a coordinated way.

Highly developed social organization: insects (locusts, ants, bees ...), fishes, birds,
micro-organisms (myxo-bacteria, ...) and artificial robots for unmanned vehicle
operation.

a

[nteraction regions between individuals

¢ Aoki, Helmerijk et al., Barbaro, Birnir et al.
@ Repulsion Region: Ry.
@ Attraction Region: Ay.

@ Orientation Region: Ok.
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Individual Based Models (Particle models)

Swarming = Aggregation of agents of similar size and body type generally moving in
a coordinated way.

Highly developed social organization: insects (locusts, ants, bees ...), fishes, birds,
micro-organisms (myxo-bacteria, ...) and artificial robots for unmanned vehicle
operation.

Interaction regions between individuals”

“ Aoki, Helmerijk et al., Barbaro, Birnir et al.

@ Repulsion Region: Ry.

@ Attraction Region: A;.

@ Orientation Region: Ok.

Metric versus Topological Interaction
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2nd Order Model: Newton’s like equations

D’Orsogna, Bertozzi et al. model (PRL 2006):

( dx;
= Vi,
dt
{ dv;
m—= = (e= Bl )vi= 2, VU(lxi - x).
- j#i

U(r)

Pair-wise
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2nd Order Model: Newton’s like equations

D’Orsogna, Bertozzi et al. model (PRL 2006):

( dx;
= Vi,
dt
{ dv;
m—= = (e= Bl )vi= 2, VU(lxi - x).
- j#i

Model assumptions:

@ Self-propulsion and friction terms
determines an asymptotic speed of U@

va/p.

Pair-wise
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Collective Behavior Models

2nd Order Model: Newton’s like equations

D’Orsogna, Bertozzi et al. model (PRL 2006):

( dx;
= Vi,
dt
% dv;
m?i = (a =B | )vi - Z VU(|xi - xj|)-
L j#i

Model assumptions:

@ Self-propulsion and friction terms
determines an asymptotic speed of U@

m' Pair-wise
@ Attraction/Repulsion modeled by an
effective pairwise potential U(x).
U(r) = —~Cae” " + Cre™**.
r

One can also use Bessel functions in 2D
and 3D to produce such a potential.
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2nd Order Model: Newton’s like equations

D’Orsogna, Bertozzi et al. model (PRL 2006):

( dx;
= Vi,
dt
% dv;
m?i = (a =B | )vi - Z VU(|xi - xj|)-
L j#i

= CR/CA > 1, f = ER/EA < 1 and

Model assumptions: 5
Cl<1:

@ Self-propulsion and friction terms
determines an asymptotic speed of U@

m' Pair-wise
@ Attraction/Repulsion modeled by an
effective pairwise potential U(x).
U(r) = —~Cae” " + Cre™**.
r

One can also use Bessel functions in 2D
and 3D to produce such a potential.
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Model with an asymptotic velocity

Classification of possible patterns: Morse potential. D’Orsogna, Bertozzi et al.
model (PRL 2006).
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Model with an asymptotic speed

Typical patterns: milling, double milling or flocking:
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Velocity consensus model

Cucker-Smale Model (IEEE Automatic Control 2007):

{ d.?(j
— =V,
dt ;
4 "
dv; :
— A LV:; — Vi ).
dr ; ) ( i f)

with the communication rate, v > 0:

I
(1+|xi—x

aij = a(|x; —x|) =

_))-\I, .
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Velocity consensus model

Cucker-Smale Model (IEEE Automatic Control 2007):

{ d_?(j
PR—— — 1!.‘
dt ;
4 "
dv; :
— A LV:; — Vi ).
df ; ) ( i f)

with the communication rate, v > 0:

I
(1+|xi-x?)"

aij = a(|x; —x|) =

Asymptotic flocking: v < 1/2; Cucker-Smale.
General Proof for 0 < « < 1/2; C.-Fornasier-Rosado-Toscani.
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Variations

Leadership, Geometrical Constraints, and Cone of Influence

Cucker-Smale with local influence regions:

(/.1‘,‘
—=V,
dt
) dv;
—= 2, a(li-x|)(v-w),
ak =
\ JE'-*:(I)

where ¥;(7) c {1,..., N} is the set of dependence, given by
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Variations

Leadership, Geometrical Constraints, and Cone of Influence

Cucker-Smale with local influence regions:

(/.1‘,‘
—=V,
dt
) dv;
—= 2, a(li-x|)(v-w),
ak =
\ JE'-*:(I)

where ¥;(7) c {1,..., N} is the set of dependence, given by

(1) 3={1 <{<N: e =) % >a}.

e = xif[vil

Cone of Vision:
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Roosting Forces

Adding a roosting area to the model:

dx;
i N
dt
| d
% =(a-p \w\?)l’; -~ Z VU(|x; —x;|) - Vi Vi, [Q(h) . Lfi] _
¢

JEI

4

with the roosting potential ¢ given by ¢(x) := g (R|XI ) :
Roos

Roosting effect: milling flocks N = 400, Ryo0st = 20. l
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Adding Noise

Self-Propelling/Friction/Interaction with Noise Particle Model:

Xi =i,

dv; = [((1 - Bvil)vi - Vs, Y U(lxi —xj|) | dt + V20 dLi(2) ,
J#i

\

where I';(#) are N independent copies of standard Wiener processes with values in
R? and o > 0 is the noise strength.
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Adding Noise

Self-Propelling/Friction/Interaction with Noise Particle Model:

% =i,

dv; = |:((} — Bil*)vi = Vs, Z U(|xi —x;j]) ] dt+20dl'i(1) ,

where I';(¢) are N independent copies of standard Wiener processes with values in
R? and o > 0 is the noise strength. The Cucker—Smale Particle Model with Noise:

dx; = vidt ,

| N N
dvi = a(|x;j — xi|) (vj — vi) dt + ¢ 20 > a(|xj —xi|)dLi(1) .

\ J=1 Jj=1
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Fixed Speed models

Vicsek’s model

Assume N particles moving at unit speed:
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Vicsek’s model

Assume N particles moving at unit speed: reorientation & diffusion:
dx! = V! dt,

dv, = \/iP(V:) odB, — P(V,) (ﬁ ZK(X;—X‘;’)(V,’ - V;’))df.
j=1
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Fixed Speed models

Vicsek’s model

Assume N particles moving at unit speed: reorientation & diffusion:
dx! = V! dt,

dv, = \/EP(V,') odB, — P(V,) (ﬁ ZJ’(’()(’}X‘}’)(V,I - V;’))df.
j=1

Here P(v) is the projection operator on the tangent space at v/|v| to the unit sphere in
RY ie.,
VRV

IE

P(v)=1-

‘!
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Vicsek’s model

Assume N particles moving at unit speed: reorientation & diffusion:
dX: = V! dt,

dV! =\/2P(V!)odB, — P(V)) (ﬁ Y K(Xi-X)(V, - V-;’))dr.
j=1

Here P(v) is the projection operator on the tangent space at v/|v| to the unit sphere in
RY ie.,
VRV

~

v[?

P(v)=1-

Noise in the Stratatonovich sense: imposed by the rigorous construction of the
Brownian motion on a manifold. Rigorous derivation: Bolley-Caiiizo-C.
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Vicsek’s model

Assume N particles moving at unit speed: reorientation & diffusion:
dX: = V! dt,

dV! =\/2P(V!)odB, — P(V)) N Y K(X;-X)(V,=V}) |dt.
j=1

Here P(v) is the projection operator on the tangent space at v/|v| to the unit sphere in
RY ie.,
VRV

v[?

P(v)=1-

Noise in the Stratatonovich sense: imposed by the rigorous construction of the
Brownian motion on a manifold. Rigorous derivation: Bolley-Caiiizo-C.

Main issue: phase transition? Degond-Liu-Frouvelle.
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Ist Order Friction Model:

Edelshtein-Keshet, Mogilner (JMB 2000): Assume the variations of the velocity and
speed are much smaller than spatial variations, then from Newton’s equation:

dz)(; dx;
m—p - ta—-+ Y VU(lxi-x])=0

J#EI
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Ist Order Friction Model:

Edelshtein-Keshet, Mogilner (JMB 2000): Assume the variations of the velocity and
speed are much smaller than spatial variations, then from Newton’s equation:

d*x; dx;
m% +a—x +> VU(]xi —x]) =0
¢

J#EI

L > Ul -5

af
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Ist Order Friction Model:

Edelshtein-Keshet, Mogilner (JMB 2000): Assume the variations of the velocity and
speed are much smaller than spatial variations, then from Newton’s equation:

d’x; dx;
e i a—-+ Y VU(lxi-x])=0
d’t .
‘J” +div (pv) =
ax_ Z VU(|x;i — x;|) in the continuum setting = { (pv) =
dl ; y=-=VU * P
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Ist Order Friction Model:

Edelshtein-Keshet, Mogilner (JMB 2000): Assume the variations of the velocity and
speed are much smaller than spatial variations, then from Newton’s equation:

d*x; dx;

g+ ol + 39U - 5]) =0
d?t =
[ axi - . . {Jf) +div (ov) =
= == Z TU(‘ Xi — -’t‘j‘) in the continuum SC“Il]g = { ([ )
dr - b= —VU %

Flock So]utlons: stationary states x; of the 1st order model are connected to
particular solutions of the Bertozzi etal 2nd order model of the form

xi(1) =x; +tvo

with vy fixed with |vo|* = i
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Ist Order Friction Model:

Edelshtein-Keshet, Mogilner (JMB 2000): Assume the variations of the velocity and
speed are much smaller than spatial variations, then from Newton’s equation:

o D, VU(lxi —x]) =0
d*t d IV
b : : : 92 4 div(pv) =0
— = - Z VU(|xi —x|) in the continuum setting = ot (pv)
a J# | v=-VU *p

Flock Solutions: stationary states x; of the 1st order model are connected to
particular solutions of the Bertozzi etal 2nd order model of the form
xi(1) =x; + tvo

with vy fixed with |vo|* = 3-
For which potentials do we evolve towards some nontrivial steady states/patterns?
Is there any implication of the stability from first to 2nd order models?
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1 st order Models

Ist Order Friction Model:

Edelshtein-Keshet, Mogilner (JMB 2000): Assume the variations of the velocity and
speed are much smaller than spatial variations, then from Newton’s equation:

d x:‘ d.X}
m gyt + 2 VU (- 5)) =0
d*t o
11 : : : 92 4 div(pv) =0
== - Z VU(|xi — xj]) in the continuum setting = { ot (/ )
dt : VU,

Flock So]utlonsz stationary states x; of the 1st order model are connected to
particular solutions of the Bertozzi etal 2nd order model of the form

xi(1) =x; + tvo

. - . 2
with vy fixed with |vo|” = 3.
For which potentials do we evolve towards some nontrivial steady states/patterns?

Is there any implication of the stability from first to 2nd order models?

If repulsion is very strong and localized while attraction has a larger length-scale, we
assume U = U, + do, and thus
dp

= di vU, + A
B iv (p * ) p
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Mesoscopic models

Model with asymptotic velocity + Attraction/Repulsion:

9 j
% + V- V\f -+ di\ﬁ.[((.}- — _,{'3‘1-"')1.'.}('] = divln [(V\U * p)f] — (.
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Mesoscopic models

Model with asymptotic velocity + Attraction/Repulsion:

9 j
% + V- V\f -+ di\ﬁ.[((.}- — _,{'3‘1-"')1.'.}('] = divln [(V\U * p)f] — (.

Velocity consensus Model:

of ou ' V—w T TR
En +v-Vif =V, [ (/! 0% = f(y,w,t)dy du)f (x, v, !)}

i

- -

:=£(f) (x,v,1)
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Mesoscopic models

Model with asymptotic velocity + Attraction/Repulsion:

9 j
% + V- V\f -+ di\ﬁ.[((_}' — _.{"3‘1-"')1.'.}('] = divln [(V\U * p)f] — ().

Velocity consensus Model:

of o ] V=1 oo Y v § Flx v
En +v-Vif =V, [ (/! OF k=g f(y,w,t)dy du)f (x, v, !)}

i

;=€ (f) (x,v,1)

- -

Orientation, Attraction and Repulsion:

y
fd—i Sy S sl T B ) = 0 S o, B s v, 31
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Definition of the distance

Transporting measures:

Given T : RY — R mesurable, we say that v = T#pu, if v[K] := p[T~"(K)] for all
mesurable sets K C R, equivalently
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Definition of the distance

Transporting measures:

Given T : RY — RY mesurable, we say that v = T#u, if V[K] :=
mesurable sets K C R, equivalently

p[T~'(K)] for all

/ wdv = / (poT)du for all p € C,,(R“f).
JRA JR4
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Vlasov-like Models

Definition of the distance

Transporting measures:

Given T : RY — R mesurable, we say that v = T#pu, if v[K] := p[T~"(K)] for all
mesurable sets K C R, equivalently

/ pdv = / (poT)du for all ¢ € C,,(R“f).
JRd JRd

Random variables:

Say that X 1s a random variable with law given by p, 1s to say
X:(Q,AP) — (Rd, B4) is a mesurable map such that X#P = p, i.e.,

/; p(x)dp = !/“(apo,\’)dp = E[p(X)].
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Vlasov-like Models

Definition of the distance

Transporting measures:

Given T : RY — R mesurable, we say that v = T#pu, if v[K] := p[T~"(K)] for all
mesurable sets K C R, equivalently

/ pdv = / (poT)du for all ¢ € C,,(R“f).
JRd JRd

y
Random variables:
Say that X 1s a random variable with law given by p, 1s to say
X:(Q,AP) — (Rd, B4) is a mesurable map such that X#P = p, i.e.,
/, p(x)dp = /(sﬁ o X)dP = E[p(X)].
J R JQ
4

Kantorovich-Rubinstein-Wasserstein Distance p = 1, 2:
Wy (u, v) = infix vy {E[|X — Y|"]}
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Vlasov-like Models

Definition of the distance

Transporting measures:

Given T : RY — R mesurable, we say that v = T#pu, if v[K] := p[T~"(K)] for all
mesurable sets K C R, equivalently

/ pdv = / (poT)du for all ¢ € C,,(R“f).
JRd JRd

y
Random variables:
Say that X 1s a random variable with law given by p, 1s to say
X:(Q,AP) — (Rd, B4) is a mesurable map such that X#P = p, i.e.,
/, p(x)dp = /(sﬁ o X)dP = E[p(X)].
J R JQ
4

Kantorovich-Rubinstein-Wasserstein Distance p = 1, 2:
Wy (u, v) = infix vy {E[|X — Y|"]}

where (X, Y) are couples of random variables with j, and v as respective laws.
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1

Well-posedness in probability measures

Existence, uniqueness and stability

Take a potential U € C;(R?), and fy a measure on R? x R? with compact support.
There exists a solution f € C([0, +00); Pi(R?)) in the sense of solving the equation
through the characteristics: f; :== P'#fy with P’ the flow map associated to the
equation.

] Dobrushin-Hepp-Neunzert, 1977-79 for the Vlasov.
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1

Well-posedness in probability measures

Existence, uniqueness and stability

Take a potential U € C;(R?), and fy a measure on R? x R? with compact support.
There exists a solution f € C([0, +00); Pi(R?)) in the sense of solving the equation
through the characteristics: f; :== P'#fy with P’ the flow map associated to the
equation.

Moreover, the solutions remains compactly supported for all time with a possibly
growing in time support.

] Dobrushin-Hepp-Neunzert, 1977-79 for the Vlasov.
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|

Well-posedness 1n probability measures

Existence, uniqueness and stability

Take a potential U € C7(R?), and fy a measure on R? x R? with compact support.
There exists a solution f € C([0, +00); Pi(R?)) in the sense of solving the equation
through the characteristics: f; := P'#f, with P' the flow map associated to the
equation.

Moreover, the solutions remains compactly supported for all time with a possibly
growing in time support.

Moreover, given any two solutions f and g with initial data f, and go, there 1s an
increasing function depending on the size of the support of the solutions and the
parameters, such that

Wi(fi, g:) < a(t) Wi(fo, go)

1 Dobrushin-Hepp-Neunzert, 1977-79 for the Vlasov.



Kinetic Models and measure solutions
O000®0

Vlasov-like Models

Convergence of the particle method

@ Empirical measures: if x;, v; : [O, T) — RY, for i = l,...,N,is asolution to the
ODE system,

¢ dx;
e 11‘.,
dt r

dv;

dt

\

= - -

then the f : [0, T) — P (RY) given by

N

fu(t) == Z”fr'fS(.n(s).w(r)>

=1

is the solution corresponding to initial atomic measures.
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Vlasov-like Models

Convergence of the particle method

@ Empirical measures: if x;, v; : [O, T) — RY, for i = l,...,N,is asolution to the
ODE system,

r dx;
e Pfq
dt

4 propulsion-friction

(h’,‘ g A e
—= (=MW" - -+
([f ( ‘ "l ) l

\

then the f : [0, T) — P (RY) given by

N

fu(t) == Z”fr'fS(.n(s).w(r)>

=1

is the solution corresponding to initial atomic measures.
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Vlasov-like Models

Convergence of the particle method

@ Empirical measures: if x;, v; : [O, T) — RY, for i = l,...,N,is asolution to the
ODE system,

r dx;
e Pf-.
dt

4 propulsion-friction attraction-repulsion

(l'l" g A 3 - r 2
— = (a=BWw - D) mVU(x—x|) +
dt -

\ JFi

then the f : [0, T) — P (RY) given by

N

fu(t) == Z”fr'fS(.n(s).w(r)>

=1

is the solution corresponding to initial atomic measures.
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Convergence of the particle method

® Empirical measures: if x;, v; : [O, T) — RY, for i = l,...,N,is asolution to the
ODE system,

¢ dx;
e 1qu
dt | |

; g o orientation
4 propulsion-friction attraction- Iepulsmn A .

(h:. L ; s ~ 7
— = (a=PBMl ) = E m;VU(|xi — \,| ) + E mja; (vi — vi) .
dt ' .

N J#I =1

then the f : [0, T) — P (RY) given by

N

fu(t) == Z”fr'fS(.n(s).w(r)>

=1

is the solution corresponding to initial atomic measures.
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Convergence of the particle method

@ Empirical measures: if x;, v; : [0, T)— RY fori = I,...,N,is asolution to the
ODE system,

¢ dx;
_— = Pf-
dt ' _ _
) L. . . orientation
4 propulsion-friction attraction-repulsion p A -
s / 7 ~ N
(fh’j g . 2 o
T (a= Bl = Do mVU( —xl) + D may (- ).
\ ‘ J#I J=1

then the f : [0, T) — P (RY) given by

N

() =D mib ) i)

i=1
1s the solution corresponding to initial atomic measures.

@ Convergence of approximations of measures by particles due to the stability at
any given time 7 as an alternative derivation of the kinetic models.
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Mean-Field Limait

Just take as many particles as needed in order to have

N ~  poN
Wi(f,fY) < alt)y Wi(fo, fo') =0 asN — o0
by sampling the initial data in a suitable way.
f"'-: : ;"
g9 - 4 4 .‘
:' ¢ a0 ? -
\. o€ " L 4 .“._
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Vlasov-like Models

Mean-Field Limit

Just take as many particles as needed in order to have

Wi(fi,f') < a(t) Wilfo,fo ) — 0

as N — o0

by sampling the initial data in a suitable way.

The sequences of particle solutions becomes a Cauchy sequence with the distance W,

converging to the solution of the kinetic equation.
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O0000e
Vlasov-like Models

Mean-Field Limit

Just take as many particles as needed in order to have

Wil ) < o) Wifo,fo) =0 asN — oo

by sampling the initial data in a suitable way.

The sequences of particle solutions becomes a Cauchy sequence with the distance W,

converging to the solution of the kinetic equation.
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Hauray-Jabin 2011: mean field limit for Vlasov with potentials such that
IVU| < r~®, with o < | with initial data for Vlasov in L' N L.
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Conditions on E:

@ E is continuous on [0, 7] x RY
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Proof of the Theorem

Conditions on E:

@ E is continuous on [0, 7] x RY,

© For some C > 0,

|E(t,x)| < Ce(1+ |x]), forallt,x € [0,T] x R, and
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Proof

Proof of the Theorem

Conditions on E:

@ E is continuous on [0, 7] x RY,

© For some C > 0,

|E(t,x)| < Ce(1+ |x]), forallt,x € [0,T] x R, and

© E is locally Lipschitz with respect to x, i.e., for any compact set K C R there is
some Lg > 0 such that

|E(fax) —E(ij)| < Lle_y‘a = [01 T]? X,y € K.
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Proof

Proof of the Theorem

Of +v-Vif +E-Vyf +divy((a — B|v[*)vf) =0,
which is a linear first-order equation. The associated characteristic system of ODE’s

1S

L
dt

%v = E(1,X) + V(a— B|V]).
[d
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Proof of the Theorem

Of +v-Vif +E-Vf +divy((a = B|v[*)vf) = 0,

which is a linear first-order equation. The associated characteristic system of ODE’s

is
dy_v,
dt
{ e
SV=EwX)+V(ia—B|VP).
dt
Flow Map:

Given (Xo, Vo) € R? x R there exists a unique solution (X, V) to the ODE system in
C' ([0, T]; R x RY) satisfying X(0) = X, and V(0) = Vo. In addition, there exists a
constant C which depends only on 7', |Xo|, |Vo|, a, 8 and the constant Cg, such that

(X (1), V(1) < |(Xo, Vo)| e forallz € [0, T].
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Proof of the Theorem

We can thus consider the flow at time ¢ € [0, T') of ODE’s equations
TE: R x R - R? x R

Again by basic results in ode’s, the map (¢, x, v) — T¢(x,v) = (X, V) with (X, V) the
solution at time ¢ to the ODE system with initial data (x, v), is jointly continuous in
(t,x,v).
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Proof

Proof of the Theorem

We can thus consider the flow at time ¢ € [0, T') of ODE’s equations
Te R x R - R x R

Again by basic results in ode’s, the map (¢, x, v) — T¢(x,v) = (X, V) with (X, V) the

solution at time ¢ to the ODE system with initial data (x, v), is jointly continuous in
(,x,Vv).

For a measure f) € P, (Rd x R? ), the function

f£:00,T) —» Pi(R! x RY),  t > fi := Ti#fo

is the unique measure solution to the linear PDE.
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Proof

Proof of the Theorem

Estimates on characteristics:

@ Taking characteristics with initial data inside a fixed ball then there exists R > 0
depending on 7, in which the whole trajectories are inside a possibly larger ball
of radius R for all times 7 € [0, 7.
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Proof of the Theorem

Estimates on characteristics:

@ Taking characteristics with initial data inside a fixed ball then there exists R > 0
depending on 7, in which the whole trajectories are inside a possibly larger ball
of radius R for all times 7 € [0, 7.

@ For some constant C which depends only on ¢, 3, R and Lip R(E" ), for all P%in
Br

Ct
e’ — | | 2
E_\' o E\'

Tp (P) = T (PY)| <

sup

s€[0,T) L>°(BR)
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Proof of the Theorem

Estimates on characteristics:

@ Taking characteristics with initial data inside a fixed ball then there exists R > 0
depending on 7, in which the whole trajectories are inside a possibly larger ball
of radius R for all times 7 € [0, 7.

@ For some constant C which depends only on ¢, 3, R and Lip R(E" ), for all P%in

Br |
t /0 f 0 e — 1
Ter(P7) = T2 (P)| < sup -
s€[0,T) L=< (BRr)
@ For some constant C as before
ITE(Py) — TE(P2)| < [Py — Py € JoMmeEOt4s e g 77,
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Proof of the Theorem

Error on transported measures through different flows:

Let 71,72 : RY — RY be two Borel measurable functions. Also, take f € Py (RY).
Then,
W| (7_{ #f Tj#f) S H7~| = 75“1_"-‘-@(&!.”)]3]") :

Continuity in time for solutions of the linear transport:

Wi(Te#f, Te#f) < Clt —s|, foranyt,s € [0,T].
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Proof

Proof of the Theorem

Error on transported measures through different flows:

Let 71,72 : RY — RY be two Borel measurable functions. Also, take f € Py (RY).
Then,
WI (7_{ #}(' Tj#f) S H,?-I = T?HLI'(HUP]}!”) 3

Continuity in time for solutions of the linear transport:

Wi(Te#f, Te#f) < Clt —s|, foranyt,s € [0,T].

Error on transported measures through different initial data:

Take a locally Lipschitz map 7 : RY — R? and f, g € P;(R?), both with compact
support contained in the ball Bg. Then,

Wi(T#f, T#g) < LWi(f,8),

where L is the Lipschitz constant of 7 on the ball Bg.
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Wi(f:, &) = Wi (T; #fo, Tg #8o)

IAIA

IA

VAN
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Proof

Proof of the Theorem

Wl (ﬁr#ﬁ}a 7;#30)
Wi (T7 #fo, T #fo) + Wi (T, #fo, T, #8o)

Wi (fr,gf)

<
<

IA

VAN
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Proof of the Theorem

Wi(fi, &) = Wi (TF #fo, Ty #80)
< Wi (T #ho, Te#0) + Wi(T#0, Ty #80)

< || - 7;|’Lm(sup%) + L W1 (fo, 8o)

=

=
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Proof of the Theorem

Wi(fi, &) = Wi (TF #fo, Ty #80)
< Wi (T #ho, Te#0) + Wi(T#0, Ty #80)

< || - 7;|’Lm(sup%) + L W1 (fo, 8o)

!
<Ca [ € EIA] — Bl oy s+ Lo Wi (s 0

=
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Proof

Proof of the Theorem

Wi(fi, &) = Wi (TF #fo, Ty #80)
< Wi (T #ho, Te#0) + Wi(T#0, Ty #80)

< || - 7;|’Lm(sup%) + L W1 (fo, 8o)

!
<Ca [ € EIA] — Bl oy s+ Lo Wi (s 0

< C3Lipy(VU) f e“TIWI (S, g5) ds + €7 Wi (fo, g0)-
0
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2nd order models

The Bertozzi-D’Orsogna model:

(% =

[
Vv = (o — Blvj )"IJF_ZVU(U—M) Fe L, N
2 =
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Stability of flocks for second order models

2nd order models

The Bertozzi-D’Orsogna model:

(% = v

[t
Vv = (a— Blv; )"IJF_ZVU(U—M) e L N
\ =

a>b>0.
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2nd order models

The Bertozzi-D’Orsogna model:

Xj = Vj
N
l =
<1,:(u—jpf )‘J+_ZVU(U_’H) Fe e N
\ =

with o, # > 0. Particular case U(x) = k(|x|) with

ra f'b
k(r) = — — —, >b > 0.
(r) g a
(.i‘;‘: Vj
I N l N
<‘;:NZH(‘J_’lr‘)("f—"’_f)“FNZVU(u—1}) j=1,...,N
x (=3
with H(x) = g(|x|) given by
|
g(r) = v >0
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Asymptotic solutions

Definition

e We call a flock ring, the solution such that {x; }f’zl are equally distributed on a circle
with a certain radius, R and {v;}'_, = uo, with |uo| = \/at/B.

e We call a mill ring, the solution such that {x; }}”: , are equally distributed on a circle
with a certain radius, R and {v;}}_, = \/a/Bx;"/|x;| with x;- the orthogonal vector.

y
/ -

// // P ~ .

/ / / N
/ / / \
/ / I :
/ / \ ;

/ / \ )

///// \HHK/

Figure : Flock and mill ring solutions.
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Instabilities for Flocks

Change of Variables

@ Change of variables to the comoving frame:

YV = X; f — Upl
g r'() 0 }:1N
zj = vj(t) — uo
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Instabilities for Flocks

Change of Variables

@ Change of variables to the comoving frame:

= x;i(t) — upt
{),’ r;'() Uo ‘}: 1:.--_-.N=

g = vj(t) — uo

Then the system reads

£ .

Vi =%
N
. 2 1 .-
&= (a—Blgl )(Zj+”0)+ﬁ;VU(y!_yf) J=1 N
\ I#]

Write the stationary ring (v}, 7)) = (Re'”, 0) where §; = =2, forj=1,...,N.

A general flock spatial profile will be denoted by (%;, 0).
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Instabilities for Flocks

Change of Variables

@ Change of variables to the comoving frame:

Then the system reads
Vi =17

N
: 2 | L
zi = (a— Blz|")(zj + uo) + N ;E_] YUy —y) l,...,N.
) I#]

L.

Write the stationary ring (v}, 7)) = (Re'”, 0) where §; = =2, forj=1,...,N.
A general flock spatial profile will be denoted by (%;, 0).

@ Consider the following type of perturbations:

i-‘(t) — ij + hj(t)a with |hj| < 1.
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Analysis of the stability of flocks (I)

@ Write the matrix of the linearized system for these perturbations

02y Idoy
L=
M = 2 O)Z/{ 0

where M is symmetric and represents the 2N x 2N Jacobian that results from
linearizing the first order model,
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Analysis of the stability of flocks (I)

@ Write the matrix of the linearized system for these perturbations

Oav Idon
[ =
M -2 ;ﬂ/{ 0

where M is symmetric and represents the 2N x 2N Jacobian that results from
linearizing the first order model, M = (Gj) with G;; being the 2 X 2-blocks defined
as
- ZHESS Ux; —%;) fori=j
Gij = i
Hess U(xi — X;) fori #j

with Hess U denoting the Hessian matrix of the interaction potential U.

?
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Instabilities for Flocks

Analysis of the stability of flocks (I)

@ Write the matrix of the linearized system for these perturbations

Oav Idon
[ =
M -2 32/{ 0

where M is symmetric and represents the 2N x 2N Jacobian that results from
linearizing the first order model, M = (Gj) with G;; being the 2 X 2-blocks defined
as
- ZHess Ux; —%;) fori=j
Gij = j#i ;
Hess U(xi — X;) fori #j

with Hess U denoting the Hessian matrix of the interaction potential U.

Uy 1s the diagonal matrix with N blocks of the 2 X 2 matrix uuut‘; along the diagonal.
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Instabilities for Flocks

Analysis of the stability of flocks (I)

@ Write the matrix of the linearized system for these perturbations

Oav Idon
[ =
M -2 32/{ 0

where M is symmetric and represents the 2N x 2N Jacobian that results from
linearizing the first order model, M = (Gj) with G;; being the 2 X 2-blocks defined
as
- ZHess Ux; —%;) fori=j
Gij = j#i ;
Hess U(xi — X;) fori #j

with Hess U denoting the Hessian matrix of the interaction potential U.

Uy 1s the diagonal matrix with N blocks of the 2 X 2 matrix zmu(": along the diagonal.
Assume that up = e; = (1, 0) by rotational symmetry.
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Analysis of the stability of flocks (II)

Symmetries & Linear Instability

Due to translational invariance and rotational invariance of the velocity configuration,
zero is always an eigenvalue of the linearized matrix L.
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Analysis of the stability of flocks (II)

Symmetries & Linear Instability

Due to translational invariance and rotational invariance of the velocity configuration,
zero is always an eigenvalue of the linearized matrix L.

Moreover, there 1s always a generalized eigenvector associated to the zero eigenvalue
generated from the eigenvector due to rotational invariance of the velocity
configuration.
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Analysis of the stability of flocks (II)

Symmetries & Linear Instability

Due to translational invariance and rotational invariance of the velocity configuration,
zero is always an eigenvalue of the linearized matrix L.

Moreover, there 1s always a generalized eigenvector associated to the zero eigenvalue
generated from the eigenvector due to rotational invariance of the velocity
configuration.

Therefore, a flock solution is always linearly unstable.
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Instabilities for Flocks

Analysis of the stability of flocks (II)

Symmetries & Linear Instability

Due to translational invariance and rotational invariance of the velocity configuration,
zero is always an eigenvalue of the linearized matrix L.

Moreover, there 1s always a generalized eigenvector associated to the zero eigenvalue
generated from the eigenvector due to rotational invariance of the velocity
configuration.

Therefore, a flock solution is always linearly unstable.

y
Instability Result - Spectral Equivalence
The linearized second order system around the flock solution has an eigenvalue with
positive real part if and only if the linearized first order system around the flock
solution has a positive eigenvalue.

v

(Albi, Balagué, C., von Brecht; submitted)
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Instabilities for Flocks

Particle Simulations: Perturbation of flocks
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Asymptotic Stability Result for Flocks

Stability: New change of variables

@ Original coordinates: flock transversal profile

X =
NS x5
V| =
VN= as s

flock solution:

zr = (X+wt,w)", [vo| = Va/B.
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Asymptotic Stability Result for Flocks

Stability: New change of variables

@ Original coordinates: flock transversal profile

@ New coordinates: relative to mean velocity X == 5

m(r) =+ >, vi(?).

KN = o

‘./:| —fi’l'.:...

VW —m=...

1 G-

flock solution:

zr = (%,0,m), |m| = \/a/p.
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Asymptotic Stability Result for Flocks

Stability: New change of variables

@ Original coordinates: flock transversal profile

@ New coordinates: relative to mean velocity Xi — I =
m(t) = %Z, vi(1).
— all flocks are stationary, 4N + 2-dimensional
dynamics z — F(z) Xy —m=...
Vi —m=...

VW —m=...

m=...

flock solution:

zr = (x,0,m) , |m| = /a/B.
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Stability: New change of variables

@ Original coordinates: flock transversal profile

' , : 1 X1—m=...
@ New coordinates: relative to m(t) = > . vi(t).
— all flocks are stationary, 4N + 2-dimensional
dynamics z > F(2) Xy —m =
@ Reduce dynamics to mean-velocity consistent Vi ==
states, by choosing a invariant base B:
]:‘g = f]spanB o SpanB.
LR [ A
m=...

flock solution:

{F = ()’E',O,m) ’ |m| = N/ O!/B
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Stability: New change of variables

@ Original coordinates: flock transversal profile

@ New coordinates: relative to m(z) = % Zi vi(1). Xp—m=...

— all flocks are stationary, 4N + 2-dimensional

dynamics z > F(2) Xy —m=...

@ Reduce dynamics to mean-velocity consistent Vi — i =...
states, by choosing a invariant base B:
B

— Study the linearisation z ~ zr + Fp (z — zf) Vy — = ...
I’? -2
(OENXEN _If?\':f] EX}]g Oy x2 \ m=...
) flock solution:
GE)]  —Iy_1 ®28m@m’)  Osy_ax Hlock solution
IF = (x,(),m), |m| — Va/ﬁ‘

KO'_?XZN 02 x2n—2 —2B(m® mr)/
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Result

Suppose the first-order aggregation system

dx; _ Z VU(xi — %),

dr -
i#]

is linearly stable except for translational and rotational invariance at a stationary
profile x.
Then the transformed second-order system behaves well:
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Asymptotic Stability Result for Flocks

Result

Suppose the first-order aggregation system

dx; _ Z VU(xi — %),

dr -
i#]

is linearly stable except for translational and rotational invariance at a stationary
profile x.
Then the transformed second-order system behaves well:

@ FJ has no generalised eigenvector for eigenvalue zero.
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Result

Suppose the first-order aggregation system

o 3 VU ).

dr
i#i

is linearly stable except for translational and rotational invariance at a stationary
profile x.
Then the transformed second-order system behaves well:

@ FJ has no generalised eigenvector for eigenvalue zero.

@ dim(eig(Fj5,0)) = 4 with 4 eigenvectors that all represent linearised flow
within the set of stationary flock solutions.

2 ~~ translation in space, 1 ~= rotation in space, 1 ~= rotation in mean velocity
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Result

Suppose the first-order aggregation system

o 3 VU ).

dr
i#i

is linearly stable except for translational and rotational invariance at a stationary
profile x.
Then the transformed second-order system behaves well:

@ FJ has no generalised eigenvector for eigenvalue zero.

@ dim(eig(Fj5,0)) = 4 with 4 eigenvectors that all represent linearised flow
within the set of stationary flock solutions.

2 ~~ translation in space, 1 ~= rotation in space, 1 ~= rotation in mean velocity

@ All non-zero eigenvalues of Fj have negative real-part.
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Stability Theorem

This is sufficient to establish that the family of flock solutions

NCYED:

is a normally hyperbolic invariant manifold with a purely stable tangent-bundle
splitting and exponentially decaying local stability (7, translation, R|¢| rotation).

Zr = {(x*, 0,m), x* = T:R[¢]#,

(C., Huang, Martin; Nonlinear Analysis: Real World Applications 2014)

/ after pertubation

Flock solution ™=~ _.~~
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Convergence of the particle method

Empirical measures: if x;,v; : [0, T) — RY, fori = l1,...,N,1s asolution to the

ODE system,
¢ dx;
=¥
dt
$
@ = - +
dr
then the fy : [0, T) — P;(RY) given by
N N
fi\'(r) T Z”?!—6(_\'!-({').p“.(!)') W]th Z”I;’ — ] .
=] =1

is expected to be the solution corresponding to initial atomic measures.
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Convergence of the particle method

Empirical measures: if x;,v; : [0, T) — RY, fori = l1,...,N,1s asolution to the

ODE system,
¢ dx;
=V},

dt f

4 propulsion-friction
dv; e e
— = (a—-8vi| ) - +
dt

\

then the fy : [0, T) — P;(RY) given by

N

f\"l
f;\(f) = ZH?g(\)h(_”({-).1,“_(!).) with Z”“ = 1.

i=l =1

is expected to be the solution corresponding to initial atomic measures.
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Convergence of the particle method

Empirical measures: if x;,v; : [0,7) — R?, fori = 1,...,N, is a solution to the

ODE system,
rdx;
- Vi,

dt

4 propulsion-friction attraction-repulsion
dv; g A e N °
?; = (a=pBWvil)wv - Zn'{,-VU(\.r; —xj|) +

\ JFi

then the fy : [0, T) — P;(R?) given by

4'\"

N
f\(f) = Z”?fa(_\;({).w(r}) with ZHI; = | ]

=1 =1

is expected to be the solution corresponding to initial atomic measures.
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Vlasov-like Models

Convergence of the particle method

Empirical measures: if x;,v; : [0,7) — R?, fori = 1,...,N, is a solution to the

ODE system,
rdx;
= V;.
dt f _ '
: : ‘1entat
¢ propulsion-friction attraction-repulsion p priemation .
A p A g N
dv; g AN
?; = (a=pBWvil)wv - Zn'{,-VU(\.r; —xj|) + Zm_;u,j (vi — vi).
. J#i j=1
then the fy : [0, T) — P;(R?) given by
N N
f\(f) = Z”?fa(_\;({).w(r}) with ZHI; = ] ]
i=1 i=1

is expected to be the solution corresponding to initial atomic measures.
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Mesoscopic models

Model with asymptotic velocity + Attraction/Repulsion:

I j
% + V- V\f ~+ diVI.[((.}- — _,{'3‘1-"')1.'.}('] = divln [(V\U * p)f] — ().
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Mesoscopic models

Model with asymptotic velocity + Attraction/Repulsion:

I j
% + V- V\f ~+ diVI.[((.}- — _,{'3‘1-"')1.'.}('] = divln [(V\U * p)f] — ().

Velocity consensus Model:

of o ' = i o e d Y
e +v-Vif =V, [ (/! 0% =3 f(y,w,t)dy du)f (x, v, I)}

- -

"

:=£(f) (x,v,1)
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Vlasov-like Models

Mesoscopic models

Model with asymptotic velocity + Attraction/Repulsion:

I j
% + V- V\f ~+ diV;-[((.}' o _.{'3‘1-"')1.'.}('] = divln [(V\U * p)f] — ().

Velocity consensus Model:

of o ' V= oo vo. 1Y v § Flx: v
e +v-Vif =V, [ (/! OF k=g f(y,w,t)d du)f (x, v, I)}

;=€ (f) (x,v,1)

Orientation, Attraction and Repulsion:

N
T vV = div, (VU % p)f] = Vo - [E0) v, )/ (3, v,0)].
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Macroscopic equations

Monokinetic Solutions

Assuming that there is a deterministic velocity for each position and time,
f(x,v,t) = p(x,t) 5(v — u(x, 1)) is a distributional solution if and only if,
( i + div,(pu) = 0,
ot |

Ou . . =5 i
P 5 + p(u-Viu=p(a—Blul)u—p(V.Uxp).

L 1
-0 o 50
T b= 463
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What about mills?

b=0.1
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@ Simple modelling of the three main mechanisms leads to complicated patterns.
More information from particular species should be included to make more
realistic models (Helmelrijk & collaborators, ...)

@ Stability of flocks is understood. However, mill’s stability remains unknown.
@ Phase transitions from ordered to disordered state driven by noise.
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