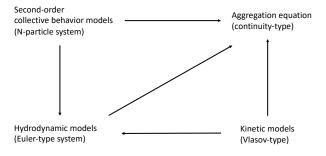
Rigorous derivation of the continuum hydrodynamic equations

Young-Pil Choi (based on the work with José A. Carrillo)

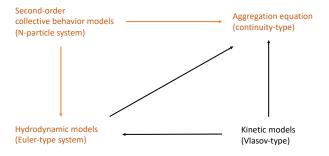
Department of Mathematics Yonsei University

Virtual Summer school on Kinetic and fluid equations for collective dynamics France-Korea International Research Laboratory in Mathematics Aug. 25, 2021

Outline of talk



Outline of talk



Setting of Problem: Main Equation

Newtonian dynamics:

$$\frac{d}{dt}x_{i} = v_{i}, \quad i = 1, \dots, N, \quad t > 0,$$

$$\varepsilon_{N} \frac{d}{dt}v_{i} = \underbrace{-\gamma v_{i}}_{Damping} \underbrace{-\nabla V(x_{i})}_{Confinement} \underbrace{-\frac{1}{N} \sum_{j=1}^{N} \nabla W(x_{i} - x_{j})}_{Attraction/Repulsion} + \underbrace{\frac{1}{N} \sum_{j=1}^{N} \psi(x_{i} - x_{j})(v_{j} - v_{i})}_{Alignment}$$

- $ightharpoonup \gamma > 0$: strength of the linear damping in velocity
- $V: \mathbb{R}^d \to \mathbb{R}$: confinement potential
- $W: \mathbb{R}^d \to \mathbb{R}$: interaction potential
- $\psi: \mathbb{R}^d \to \mathbb{R}_+$: communication weight

Setting of Problem: Main Equation

Newtonian dynamics:

$$\frac{d}{dt}x_{i} = v_{i}, \quad i = 1, \dots, N, \quad t > 0,$$

$$\varepsilon_{N}\frac{d}{dt}v_{i} = \underbrace{-\gamma v_{i}}_{Damping}\underbrace{-\nabla V(x_{i})}_{Confinement}\underbrace{-\frac{1}{N}\sum_{j=1}^{N}\nabla W(x_{i} - x_{j})}_{Attraction/Repulsion} + \underbrace{\frac{1}{N}\sum_{j=1}^{N}\psi(x_{i} - x_{j})(v_{j} - v_{i})}_{Alignment}$$

- $ightharpoonup \gamma > 0$: strength of the linear damping in velocity
- $V: \mathbb{R}^d \to \mathbb{R}$: confinement potential
- $W: \mathbb{R}^d \to \mathbb{R}$: interaction potential
- $\psi: \mathbb{R}^d \to \mathbb{R}_+$: communication weight

Examples: Newton's equations(Vlasov–Poisson system), Cucker–Smale model, Second-order aggregation equations, ...

Setting of Problem: Main Equation

Newtonian dynamics:

$$\frac{d}{dt}x_{i} = v_{i}, \quad i = 1, \dots, N, \quad t > 0,$$

$$\varepsilon_{N}\frac{d}{dt}v_{i} = \underbrace{-\gamma v_{i}}_{Damping}\underbrace{-\nabla V(x_{i})}_{Confinement}\underbrace{-\frac{1}{N}\sum_{j=1}^{N}\nabla W(x_{i} - x_{j})}_{Attraction/Repulsion} + \underbrace{\frac{1}{N}\sum_{j=1}^{N}\psi(x_{i} - x_{j})(v_{j} - v_{i})}_{Alignment}$$

- $ightharpoonup \gamma > 0$: strength of the linear damping in velocity
- $V: \mathbb{R}^d \to \mathbb{R}$: confinement potential
- $W: \mathbb{R}^d \to \mathbb{R}$: interaction potential
- $\psi: \mathbb{R}^d \to \mathbb{R}_+$: communication weight

Examples: Newton's equations(Vlasov–Poisson system), Cucker–Smale model, Second-order aggregation equations, ...

Goal: study the behavior of solutions as $N \to \infty$

Setting of Problem: Main Goal

Derivation of pressureless Euler system ($\varepsilon_N = O(1)$):

$$\begin{split} \partial_t \rho + \nabla_x \cdot (\rho u) &= 0, \quad x \in \mathbb{R}^d, \quad t > 0, \\ \partial_t (\rho u) + \nabla_x \cdot (\rho u \otimes u) &= -\gamma \rho u - \rho \nabla_x V - \rho \nabla_x W \star \rho + \rho \int \psi(x - y) (u(y) - u(x)) \, \rho(y) \, dy \end{split}$$

Setting of Problem: Main Goal

Derivation of pressureless Euler system ($\varepsilon_N = O(1)$):

$$\begin{split} \partial_t \rho + \nabla_x \cdot (\rho u) &= 0, \quad x \in \mathbb{R}^d, \quad t > 0, \\ \partial_t (\rho u) + \nabla_x \cdot (\rho u \otimes u) &= -\gamma \rho u - \rho \nabla_x V - \rho \nabla_x W \star \rho + \rho \int \psi(x - y) (u(y) - u(x)) \, \rho(y) \, dy \end{split}$$

Derivation of continuity-type equation ($\varepsilon_N \to 0$ as $N \to \infty$):

$$\partial_t \bar{\rho} + \nabla_x \cdot (\bar{\rho} \bar{u}) = 0,$$

where

$$\gamma \bar{\rho} \bar{u} = -\bar{\rho} \nabla_{\mathsf{x}} V - \bar{\rho} \nabla_{\mathsf{x}} W \star \bar{\rho} + \bar{\rho} \int \psi(\mathsf{x} - \mathsf{y}) (\bar{u}(\mathsf{y}) - \bar{u}(\mathsf{x})) \bar{\rho}(\mathsf{y}) \, d\mathsf{y}$$

Mean-field limit: from particle to kinetic

As $N \to \infty$, (at the formal level) we can derive the following Vlasov-type equation from the particle system:

$$\partial_t f + v \cdot \nabla_x f - \nabla_v \cdot ((\gamma v + \nabla_x V + \nabla_x W \star \rho) f) + \nabla_v \cdot (F(f) f) = 0$$

• $\rho = \rho(x, t)$: local particle density

$$\rho(x,t) := \int f(x,v,t) \, dv$$

▶ F(f) = F(f)(x, v, t): nonlocal velocity alignment force

$$F(f)(x,v,t) := \iint \psi(x-y)(w-v)f(y,w,t) \, dydw$$

Mean-field limit: from particle to kinetic

As $N \to \infty$, (at the formal level) we can derive the following Vlasov-type equation from the particle system:

$$\partial_t f + v \cdot \nabla_x f - \nabla_v \cdot ((\gamma v + \nabla_x V + \nabla_x W \star \rho) f) + \nabla_v \cdot (F(f) f) = 0$$

• $\rho = \rho(x, t)$: local particle density

$$\rho(x,t) := \int f(x,v,t) \, dv$$

ightharpoonup F(f) = F(f)(x, v, t): nonlocal velocity alignment force

$$F(f)(x,v,t) := \iint \psi(x-y)(w-v)f(y,w,t) \, dydw$$

Empirical measure: μ^N associated to a solution to the particle system

$$\mu_t^N(x,v) := \frac{1}{N} \sum_{i=1}^N \delta_{(x_i(t),v_i(t))}$$

As long as there exists a solution to the particle system, μ^N satisfies the kinetic equation in the sense of distributions.

Macroscopic observables:

• ρu : local momentum, ρE : local energy

$$\rho \mathbf{u} := \int \mathbf{v} f \, d\mathbf{v}, \quad \rho \mathbf{E} := \int |\mathbf{v}|^2 f \, d\mathbf{v}$$

▶ P: strain tensor, q: heat flux

$$P:=\int (u-v)\otimes (u-v)f\,dv,\quad q:=\int |v-u|^2(v-u)f\,dv$$

Macroscopic observables:

• ρu : local momentum, ρE : local energy

$$\rho u := \int v f \, dv, \quad \rho E := \int |v|^2 f \, dv$$

▶ P: strain tensor, q: heat flux

$$P:=\int (u-v)\otimes (u-v)f\,dv,\quad q:=\int |v-u|^2(v-u)f\,dv$$

Local balanced laws:

$$\begin{split} \partial_{t}\rho + \nabla_{x} \cdot (\rho u) &= 0, \\ \partial_{t}(\rho u) + \nabla_{x} \cdot (\rho u \otimes u) + \nabla_{x} \cdot P \\ &= -\gamma \rho u - \rho \nabla_{x} V - \rho \nabla_{x} W \star \rho + \rho \int \psi(x - y)(u(y) - u(x))\rho(y) \, dy, \\ \partial_{t}(\rho E) + \nabla_{x} \cdot (\rho E u + P u + q) \\ &= -\gamma \rho E - \rho u \cdot \nabla_{x} V - \rho u \cdot \nabla_{x} W \star \rho \\ &+ \rho \int \psi(x - y) \left(u(x) \cdot u(y) - E(x) \right) \rho(y) \, dy. \end{split}$$

mono-kinetic closure:
$$f(x, v, t) dxdv \simeq \rho(x, t) dx \otimes \delta_{u(x,v)}(dv)$$

Pressureless Euler-type system:

$$\begin{split} \partial_t \rho + \nabla_x \cdot (\rho u) &= 0, \\ \partial_t (\rho u) + \nabla_x \cdot (\rho u \otimes u) \\ &= -\gamma \rho u - \rho \nabla_x V - \rho \nabla_x W \star \rho + \rho \int \psi(x - y) (u(y) - u(x)) \rho(y) \, dy \end{split}$$

mono-kinetic closure:
$$f(x, v, t) dx dv \simeq \rho(x, t) dx \otimes \delta_{u(x,v)}(dv)$$

Pressureless Euler-type system:

$$\begin{split} \partial_t \rho + \nabla_x \cdot (\rho u) &= 0, \\ \partial_t (\rho u) + \nabla_x \cdot (\rho u \otimes u) \\ &= -\gamma \rho u - \rho \nabla_x V - \rho \nabla_x W \star \rho + \rho \int \psi(x - y) (u(y) - u(x)) \rho(y) \, dy \end{split}$$

Maxwellian closure:
$$f(x, v, t) \simeq \rho(x, t) \exp(-|u(x, t) - v|^2/2)$$

Isothermal Euler-type system:

$$\begin{split} \partial_t \rho + \nabla_x \cdot (\rho u) &= 0, \\ \partial_t (\rho u) + \nabla_x \cdot (\rho u \otimes u) + \nabla_x \rho \\ &= -\gamma \rho u - \rho \nabla_x V - \rho \nabla_x W \star \rho + \rho \int \psi(x - y) (u(y) - u(x)) \rho(y) \, dy \end{split}$$

Kinetic equation:

$$\partial_t f + v \cdot \nabla_x f - \nabla_v \cdot ((\gamma v + \nabla_x V + \nabla_x W \star \rho) f) + \nabla_v \cdot (F(f) f)$$

$$= \frac{1}{\varepsilon} \nabla_v \cdot (\sigma \nabla_v f - (u - v) f)$$

- $\sigma = 0$ and $\varepsilon \to 0$: mono-kinetic closure
- $\sigma = 1$ and $\varepsilon \to 0$: Maxwellian closure

Kinetic equation:

$$\partial_t f + v \cdot \nabla_x f - \nabla_v \cdot ((\gamma v + \nabla_x V + \nabla_x W \star \rho) f) + \nabla_v \cdot (F(f) f)$$

$$= \frac{1}{\varepsilon} \nabla_v \cdot (\sigma \nabla_v f - (u - v) f)$$

- \bullet $\sigma = 0$ and $\varepsilon \to 0$: mono-kinetic closure
- $\sigma = 1$ and $\varepsilon \to 0$: Maxwellian closure

Main mathematical tool: Relative entropy (or modulated energy) method

⇒ Lecture 4

Kinetic equation:

$$\partial_t f + v \cdot \nabla_x f - \nabla_v \cdot ((\gamma v + \nabla_x V + \nabla_x W \star \rho) f) + \nabla_v \cdot (F(f) f)$$

$$= \frac{1}{\varepsilon} \nabla_v \cdot (\sigma \nabla_v f - (u - v) f)$$

- $\sigma = 0$ and $\varepsilon \to 0$: mono-kinetic closure
- $\sigma = 1$ and $\varepsilon \to 0$: Maxwellian closure

Main mathematical tool: Relative entropy (or modulated energy) method

Question: derivation from the particle system?

Ref.- Karper-Mellet-Trivisa(2015), Figalli-Kang(2019), Carrillo-C.-Jung(2021), ...

Mono-kinetic ansatz: $\rho(x,t)\delta_{u(x,t)}(v)$ is a solution to the kinetic equation in the sense of distributions as long as $(\rho,u)(x,t)$ is a strong solution to the pressureless Euler-type system:

$$\begin{split} &\partial_t \rho + \nabla_x \cdot (\rho u) = 0, \\ &\rho \partial_t u + \rho (u \cdot \nabla_x) u = -\gamma \rho u - \rho \nabla_x V - \rho \nabla_x W \star \rho + \rho \int \psi(x - y) (u(y) - u(x)) \rho(y) \, dy \end{split}$$

Mono-kinetic ansatz: $\rho(x,t)\delta_{u(x,t)}(v)$ is a solution to the kinetic equation in the sense of distributions as long as $(\rho,u)(x,t)$ is a strong solution to the pressureless Euler-type system:

$$\begin{split} & \partial_t \rho + \nabla_x \cdot (\rho u) = 0, \\ & \rho \partial_t u + \rho (u \cdot \nabla_x) u = -\gamma \rho u - \rho \nabla_x V - \rho \nabla_x W \star \rho + \rho \int \psi(x - y) (u(y) - u(x)) \rho(y) \, dy \end{split}$$

Indeed, for any $\varphi \in \mathcal{C}^1_0(\mathbb{R}^d \times \mathbb{R}^d)$, we obtain

$$\frac{d}{dt} \iint \varphi(x, v) \rho(x, t) \, \delta_{u(x, t)}(dv) \, dx$$

$$= \frac{d}{dt} \int \varphi(x, u(x, t)) \rho(x, t) \, dx$$

$$= \int \varphi(x, u(x, t)) \partial_t \rho \, dx + \int (\nabla_v \varphi)(x, u(x, t)) \cdot (\partial_t u) \rho \, dx$$

$$=: (I) + (II).$$

Using the continuity equation, (I) can be easily rewritten as

$$(I) = \int \nabla_{x}(\varphi(x, u(x, t))) \cdot (\rho u) dx$$

$$= \iint (\nabla_{x}\varphi)(x, v) \cdot (\rho v) \delta_{u(x, t)}(dv) dx + \int (\nabla_{v}\varphi)(x, u(x, t)) \cdot \rho(u \cdot \nabla_{x}) u dx.$$

For (II), we use the momentum equation to obtain

$$(II) = -\int (\nabla_{\nu}\varphi)(x, u(x, t)) \cdot \rho(u \cdot \nabla_{x})u \, dx$$

$$-\int (\nabla_{\nu}\varphi)(x, u(x, t)) \cdot (\gamma u + \nabla_{x}V + \nabla_{x}W \star \rho) \, \rho \, dx$$

$$+ \iint (\nabla_{\nu}\varphi)(x, u(x, t)) \cdot (u(y) - u(x))\psi(x - y)\rho(x)\rho(y) \, dxdy$$

For (II), we use the momentum equation to obtain

$$(II) = -\int (\nabla_{v}\varphi)(x, u(x, t)) \cdot \rho(u \cdot \nabla_{x})u \, dx$$

$$-\int (\nabla_{v}\varphi)(x, u(x, t)) \cdot (\gamma u + \nabla_{x}V + \nabla_{x}W \star \rho) \rho \, dx$$

$$+ \iint (\nabla_{v}\varphi)(x, u(x, t)) \cdot (u(y) - u(x))\psi(x - y)\rho(x)\rho(y) \, dxdy$$

$$= -\int (\nabla_{v}\varphi)(x, u(x, t)) \cdot \rho(u \cdot \nabla_{x})u \, dx$$

$$- \iint (\nabla_{v}\varphi)(x, v) \cdot (\gamma v + \nabla_{x}V + \nabla_{x}W \star \rho) \, \rho \delta_{u(x, t)}(dv) \, dx$$

$$+ \iiint (\nabla_{v}\varphi)(x, v) \cdot (w - v)\psi(x - y)\rho(x)\delta_{u(x, t)}(dv)\rho(y)\delta_{u(y, t)}(dw) \, dxdy.$$

Thus, we have

$$\begin{split} \frac{d}{dt} & \iint \varphi(x,v) \rho \delta_{u(x,t)}(dv) \, dx \\ & = \iint ((\nabla_x \varphi)(x,v) \cdot v) \rho \delta_{u(x,t)}(dv) \, dx \\ & - \int (\nabla_v \varphi)(x,v) \cdot (\gamma v + \nabla_x V + \nabla_x W \star \rho) \, \rho \delta_{u(x,t)}(dv) \, dx \\ & + \iiint (\nabla_v \varphi)(x,v) \cdot (w-v) \psi(x-y) \rho(x) \delta_{u(x,t)}(dv) \rho(y) \delta_{u(y,t)}(dw) \, dx dy. \end{split}$$

Thus, we have

$$\begin{split} \frac{d}{dt} & \iint \varphi(x,v) \rho \delta_{u(x,t)}(dv) \, dx \\ & = \iint ((\nabla_x \varphi)(x,v) \cdot v) \rho \delta_{u(x,t)}(dv) \, dx \\ & - \int (\nabla_v \varphi)(x,v) \cdot (\gamma v + \nabla_x V + \nabla_x W \star \rho) \, \rho \delta_{u(x,t)}(dv) \, dx \\ & + \iiint (\nabla_v \varphi)(x,v) \cdot (w-v) \psi(x-y) \rho(x) \delta_{u(x,t)}(dv) \rho(y) \delta_{u(y,t)}(dw) \, dx dy. \end{split}$$

Note that

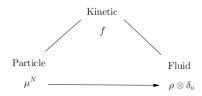
$$\iiint (\nabla_{v}\varphi)(x,v) \cdot (w-v)\psi(x-y)\rho(x)\delta_{u(x,t)}(dv)\rho(y)\delta_{u(y,t)}(dw) dxdy$$
$$= \iint (\nabla_{v}\varphi)(x,v) \cdot F(\rho\delta_{u})\rho(x)\delta_{u(x,t)}(dv) dx.$$

This shows that $\rho(x,t)\delta_{u(x,t)}(v)$ satisfies the kinetic equation:

$$\partial_t f + v \cdot \nabla_x f - \nabla_v \cdot ((\gamma v + \nabla_x V + \nabla_x W \star \rho) f) + \nabla_v \cdot (F(f) f) = 0$$

in the sense of distributions.

Observation: both the empirical measure $\mu^N(t)$ associated to the particle system and the monokinetic solutions $\rho(x,t)\otimes\delta_{u(x,t)}(v)$, with $(\rho,u)(x,t)$ satisfying the pressureless Euler-type equations in the strong sense, are distributional solutions of the "same" kinetic equation.



Modulated kinetic energy:

$$\frac{1}{2} \iint f|v - u|^2 \, dx dv$$

Modulated kinetic energy:

$$\frac{1}{2} \iint f|v-u|^2 \, dx dv$$

Comparison with the modulated macroscopic kinetic energy:

$$\frac{1}{2} \iint f|v-u|^2 \, dx dv \qquad = \qquad \frac{1}{2} \int \rho_f |u_f-u|^2 \, dx \qquad + \frac{1}{2} \iint f|v-u_f|^2 \, dx dv$$
 modulated mesoscopic energy modulated macroscopic energy

Modulated kinetic energy:

$$\frac{1}{2} \iint f|v-u|^2 \, dx dv$$

Comparison with the modulated macroscopic kinetic energy:

$$\underbrace{\frac{1}{2} \iint f|v-u|^2 dxdv}_{} = \underbrace{\frac{1}{2} \int \rho_f |u_f-u|^2 dx}_{} + \underbrace{\frac{1}{2} \iint f|v-u_f|^2 dxdv}_{}$$

modulated mesoscopic energy modulated macroscopic energy

Discrete version of the modulated kinetic energy:

$$\mathcal{E}^{N}(\mathcal{Z}^{N}(t)|U(t)) := \frac{1}{2} \iint |u - v|^{2} \, \mu_{t}^{N}(dxdv) = \frac{1}{2N} \sum_{i=1}^{N} |u(x_{i}(t), t) - v_{i}(t)|^{2}$$

Modulated kinetic energy:

$$\frac{1}{2} \iint f|v-u|^2 \, dx dv$$

Comparison with the modulated macroscopic kinetic energy:

$$\frac{1}{2} \iint f|v-u|^2 dxdv = \underbrace{\frac{1}{2} \int \rho_f |u_f-u|^2 dx}_{+} + \frac{1}{2} \iint f|v-u_f|^2 dxdv$$

modulated mesoscopic energy modulated macroscopic energy

Discrete version of the modulated kinetic energy:

$$\mathcal{E}^{N}(\mathcal{Z}^{N}(t)|U(t)) := \frac{1}{2} \iint |u - v|^{2} \, \mu_{t}^{N}(dxdv) = \frac{1}{2N} \sum_{i=1}^{N} |u(x_{i}(t), t) - v_{i}(t)|^{2}$$

Bounded Lipschitz distance: Let $\mu, \nu \in \mathcal{M}(\mathbb{R}^d)$ be two Radon measures. Then the bounded Lipschitz distance, which is denoted by $\mathrm{d}_{\mathit{BL}}: \mathcal{M}(\mathbb{R}^d) \times \mathcal{M}(\mathbb{R}^d) \to \mathbb{R}_+$, between μ and ν is defined by

$$\mathrm{d}_{BL}(\mu,
u) := \sup_{\phi \in \Omega} \left| \int \phi(x) (\mu(dx) - \nu(dx)) \right|,$$

where the admissible set Ω of test functions are given by

$$\Omega:=\left\{\phi:\mathbb{R}^d\to\mathbb{R}:\|\phi\|_{L^\infty}\leq 1,\ Lip(\phi):=\sup_{x\neq y}\frac{|\phi(x)-\phi(y)|}{|x-y|}\leq 1\right\}.$$

Main Theorem

Theorem A. Let T>0, $\varepsilon_N=1$, and $\mathcal{Z}^N(t)=\{(x_i(t),v_i(t))\}_{i=1}^N$ be a solution to the particle system, and let (ρ,u) be the unique classical solution of the pressureless Euler-type system satisfying $\rho>0$ on $\mathbb{R}^d\times[0,T)$, $\rho\in\mathcal{C}([0,T];\mathcal{P}(\mathbb{R}^d))$ and $u\in L^\infty(0,T;\mathcal{W}^{1,\infty}(\mathbb{R}^d))$ up to time T>0 with initial data (ρ_0,u_0) . Suppose that the interaction potential W and the communication weight function ψ satisfy $\nabla_x W\in\mathcal{W}^{1,\infty}(\mathbb{R}^d)$ and $\psi\in\mathcal{W}^{1,\infty}(\mathbb{R}^d)$, respectively. up to time T>0 with initial data (ρ_0,u_0) . Then we have

$$\begin{split} \iint |v-u(x,t)|^2 \mu_t^N(dxdv) + d_{BL}^2(\rho_t^N(\cdot),\rho(\cdot,t)) \\ &\leq C \left(\iint |v-u_0(x)|^2 \mu_0^N(dxdv) + d_{BL}^2(\rho_0^N,\rho_0) \right), \end{split}$$

where C > 0 only depends on $||u||_{L^{\infty} \cap Lip}$, $||\psi||_{L^{\infty} \cap Lip}$, $||\nabla W||_{\mathcal{W}^{1,\infty}}$, and T.

Main Theorem

In particular, if the initial data are chosen such that the right hand side of the above inequality goes to zero as $N \to \infty$, then the following consequences hold:

$$\int \mu^N(dv) = \frac{1}{N} \sum_{i=1}^N \delta_{x_i} \rightharpoonup \rho \quad \text{weakly in } L^\infty(0, T^*; \mathcal{M}(\mathbb{R}^d)),$$

$$\int v \, \mu^N(dv) = \frac{1}{N} \sum_{i=1}^N v_i \, \delta_{x_i} \rightharpoonup \rho u \quad \text{weakly in } L^\infty(0, T^*; \mathcal{M}(\mathbb{R}^d)),$$

$$\int (v \otimes v) \, \mu^N(dv) = \frac{1}{N} \sum_{i=1}^N (v_i \otimes v_i) \, \delta_{x_i} \rightharpoonup \rho u \otimes u \quad \text{weakly in } L^\infty(0, T^*; \mathcal{M}(\mathbb{R}^d)),$$
and
$$\mu^N \rightharpoonup \rho \otimes \delta_u \quad \text{weakly in } L^\infty(0, T^*; \mathcal{M}(\mathbb{R}^d \times \mathbb{R}^d))$$
as $N \to \infty$

Proof of Theorem A: convergence

For the convergence estimates, we find

(i) convergence of local moment:

$$\mathrm{d}_{BL}\left(\int v\,\mu^N(dv),\,\rho u\right)\leq \left(\iint |v-u(x)|^2\mu^N(dxdv)\right)^{1/2}+C\,\mathrm{d}_{BL}(\rho^N,\rho),$$

(ii) convergence of local energy:

$$\begin{split} \mathrm{d}_{BL} \left(\int (v \otimes v) \, \mu^N(dv), \, \rho u \otimes u \right) \\ & \leq \iint |v - u(x)|^2 \mu^N(dx dv) + C \left(\iint |v - u(x)|^2 \mu^N(dx dv) \right)^{1/2} \\ & + C \, \mathrm{d}_{BL}(\rho^N, \rho), \end{split}$$

(iii) convergence of empirical measure:

$$\mathrm{d}^2_{BL}(\mu^N,\rho\delta_u)\leq C\iint |v-u(x)|^2\,\mu^N(dxdv)+C\,\mathrm{d}^2_{BL}(\rho^N,\rho).$$

Here C > 0 is independent of N.

Estimate of the modulated kinetic energy

Proposition A. Let T>0, $\mathcal{Z}^N(t)=\{(x_i(t),v_i(t))\}_{i=1}^N$ be a solution to the particle system, and let (ρ,u) be the unique classical solution of the pressureless Euler-type system up to time T>0. Then we have

$$\frac{d}{dt} \mathcal{E}^{N}(\mathcal{Z}^{N}(t)|U(t)) + 2\gamma \mathcal{E}^{N}(\mathcal{Z}^{N}(t)|U(t)) + \frac{1}{N^{2}} \sum_{i,j=1}^{N} \psi(x_{i} - x_{j})|v_{i} - u(x_{i})|^{2}$$

$$\leq C \mathcal{E}^{N}(\mathcal{Z}^{N}(t)|U(t)) + C \operatorname{d}_{BL}^{2}(\rho_{t}^{N}(\cdot), \rho(\cdot, t)),$$

where

$$\mathcal{E}^{N}(\mathcal{Z}^{N}(t)|U(t)) = \frac{1}{2} \iint |u - v|^{2} \mu_{t}^{N}(dxdv) = \frac{1}{2N} \sum_{i=1}^{N} |u(x_{i}(t), t) - v_{i}(t)|^{2},$$

$$\rho_{t}^{N} = \int \mu_{t}^{N} dv,$$

and C > 0 is independent of N and γ .

In particular, this implies

$$\mathcal{E}^N(\mathcal{Z}^N(t)|U(t)) \leq C\mathcal{E}^N(\mathcal{Z}_0^N|U_0) + C\int_0^t \mathrm{d}_{BL}^2(\rho_s^N(\cdot),\rho(\cdot,s))\,ds.$$

Proof of Proposition A

Straightforward computations yield

$$\begin{split} \frac{d}{dt} \mathcal{E}^{N}(\mathcal{Z}^{N}(t)|U(t)) + \frac{\gamma}{N} \sum_{i=1}^{N} |u(x_{i}(t), t) - v_{i}(t)|^{2} \\ &= \frac{1}{N} \sum_{i=1}^{N} (u(x_{i}(t), t) - v_{i}(t)) \cdot ((v_{i}(t) - u(x_{i}(t), t)) \cdot \nabla_{x}) u(x_{i}(t), t) \\ &- \frac{1}{N} \sum_{i=1}^{N} (u(x_{i}(t), t) - v_{i}(t)) \cdot \left((\nabla_{x} W \star \rho)(x_{i}) - (\nabla_{x} W \star \rho^{N})(x_{i}) \right) \\ &+ \frac{1}{N} \sum_{i=1}^{N} (u(x_{i}(t), t) - v_{i}(t)) \cdot F(x_{i}(t), v_{i}(t)) \\ &=: (I) + (II) + (III), \end{split}$$

where

$$\begin{split} \mathrm{F}(x_i(t),v_i(t)) &:= \int \psi(x_i(t)-y)(u(y,t)-u(x_i(t),t))\rho(y,t)\,dy \\ &- \frac{1}{N} \sum_{j=1}^N \psi(x_i(t)-x_j(t))(v_j(t)-v_i(t)). \end{split}$$

Proof of Proposition A (conti.)

For (I),

$$(I) \leq \|\nabla_{\mathbf{x}} u(\cdot,t)\|_{L^{\infty}} \frac{1}{N} \sum_{i=1}^{N} |u(x_i(t),t) - v_i(t)|^2$$
$$= 2\|\nabla_{\mathbf{x}} u(\cdot,t)\|_{L^{\infty}} \mathcal{E}^N(\mathcal{Z}^N(t)|U(t)).$$

For (II), we notice that

$$\|(\nabla_x W \star (\rho - \rho^N))(\cdot, t)\|_{L^{\infty}} \leq \|\nabla_x W\|_{\mathcal{W}^{1,\infty}} d_{BL}(\rho^N, \rho),$$

thus

$$(II) = \frac{1}{N} \sum_{i=1}^{N} (v_i(t) - u(x_i(t), t)) \cdot (\nabla_x W \star (\rho - \rho^N))(x_i(t), t)$$

$$\leq \|\nabla_x W\|_{\mathcal{W}^{1,\infty}} \, \mathrm{d}_{BL}(\rho^N, \rho) \left(\frac{1}{N} \sum_{i=1}^{N} |v_i(t) - u(x_i(t), t)|^2\right)^{1/2}$$

$$= \|\nabla_x W\|_{\mathcal{W}^{1,\infty}} \, \mathrm{d}_{BL}(\rho^N, \rho) \sqrt{2\mathcal{E}^N(\mathcal{Z}^N(t)|U(t))}.$$

Proof of Proposition A (conti.)

$$(III) = \frac{1}{N} \sum_{i=1}^{N} (u(x_i) - v_i) \cdot \frac{1}{N} \sum_{j=1}^{N} \psi(x_i - x_j) (u(x_j) - v_j)$$

$$+ \frac{1}{N} \sum_{i=1}^{N} (u(x_i) - v_i) \cdot \left(\int \psi(x_i - y) (u(y) - u(x_i)) \rho(y) dy - \int \psi(x_i - y) (u(y) - v_i) \rho^N(y) dy \right)$$

$$=: (III)_1 + (III)_2.$$

Here

$$(III)_1 \leq \|\psi\|_{L^{\infty}} \frac{1}{N} \sum_{i=1}^{N} |u(x_i) - v_i|^2 = 2\|\psi\|_{L^{\infty}} \mathcal{E}^N(\mathcal{Z}^N(t)|U(t))$$

and

$$(III)_2 \leq -\frac{1}{N^2} \sum_{i=1}^N \psi(x_i - x_j) |v_i - u(x_i)|^2 + C\sqrt{\mathcal{E}^N(\mathcal{Z}^N(t)|U(t))} \, d_{BL}(\rho^N, \rho),$$

where C > 0 only depends on $\|\psi\|_{\mathcal{W}^{1,\infty}}$ and $\|u\|_{\mathcal{W}^{1,\infty}}$.

Lemma A. Let ρ^N and ρ be defined as above. Then we have

$$\mathrm{d}^2_{BL}(\rho^N(\cdot,t),\rho(\cdot,t)) \leq C\,\mathrm{d}^2_{BL}(\rho^N_0,\rho_0) + C\int_0^t \mathcal{E}^N(\mathcal{Z}^N(s)|U(s))\,ds,$$

where C > 0 depends only on $||u||_{L^{\infty}(0,T;Lip)}$ and T.

Proof of Lemma A

Consider a forward characteristics $\eta = \eta(x,t)$ for the pressureless Euler-type system:

$$\frac{d\eta(x,t)}{dt}=u(\eta(x,t),t)$$

subject to the initial data: $\eta(x,0) = x \in \mathbb{R}^d$.

- Lipschitz continuous regularity of u implies that
 - ightharpoonup the characteristic η is well-defined,
 - η is Lipschitz continuous in \mathbb{R}^d :

$$|\eta(x,t)-\eta(y,t)|\leq C|x-y|,$$

where C > 0 depends only on $||u||_{L^{\infty}(0,T;Lip)}$ and T

• Note that

$$\int \phi(\eta(x,t))\rho_0(x)\,dx = \int \phi(x)\rho(x,t)\,dx$$

for $\phi \in \mathcal{W}^{1,\infty}(\mathbb{R}^d)$.

We also get

$$|x_i(t)-\eta(x,t)|\leq |x_i(0)-x|+\int_0^t|v_i(s)-u(\eta(x,s),s)|\,ds.$$

Here,

$$\int_{0}^{t} |v_{i}(s) - u(\eta(x, s), s)| ds$$

$$\leq \int_{0}^{t} |v_{i}(s) - u(x_{i}(s), s)| ds + \int_{0}^{t} |u(x_{i}(s), s) - u(\eta(x, s), s)| ds$$

$$\leq \int_{0}^{t} |v_{i}(s) - u(x_{i}(s), s)| ds + ||u||_{Lip} \int_{0}^{t} |x_{i}(s) - \eta(x, s)| ds.$$

This yields

$$|x_i(t) - \eta(x,t)| \le C|x_i(0) - x| + C \int_0^t |v_i(s) - u(x_i(s),s)| ds,$$

where C depends only on $||u||_{L^{\infty}(0,T;Lip)}$ and T. In particular, by taking $x=x_i(0)$, we get

$$|x_i(t) - \eta(x_i(0), t)| \le C \int_0^t |v_i(s) - u(x_i(s), s)| ds.$$

Proof of Lemma A (conti.)

Then for any $\phi \in \mathcal{W}^{1,\infty}(\mathbb{R}^d)$ we estimate

$$\begin{split} \left| \int_{\mathbb{R}^{d}} \phi(x) (\rho^{N} - \rho) \, dx \right| \\ &= \left| \frac{1}{N} \sum_{i=1}^{N} \phi(x_{i}(t)) - \int \phi(\eta(x, t)) \rho_{0} \, dx \right| \\ &= \left| \frac{1}{N} \sum_{i=1}^{N} (\phi(x_{i}(t)) - \phi(\eta(x_{i}(0), t))) + \frac{1}{N} \sum_{i=1}^{N} \phi(\eta(x_{i}(0), t)) - \int \phi(\eta(x, t)) \rho_{0} \, dx \right| \\ &\leq \frac{1}{N} \sum_{i=1}^{N} |\phi(x_{i}(t)) - \phi(\eta(x_{i}(0), t))| + \left| \frac{1}{N} \sum_{i=1}^{N} \phi(\eta(x_{i}(0), t)) - \int \phi(\eta(x, t)) \rho_{0} \, dx \right| \\ &=: (I) + (II). \end{split}$$

Here,

$$\begin{aligned} (I) &\leq \frac{\|\phi\|_{Lip}}{N} \sum_{i=1}^{N} |x_i(t) - \eta(x_i(0), t)| \leq \frac{\|\phi\|_{Lip}}{N} \int_0^t \sum_{i=1}^{N} |v_i(s) - u(x_i(s), s)| \, ds \\ &\leq \|\phi\|_{Lip} \sqrt{T} \left(\int_0^t \mathcal{E}^N(\mathcal{Z}^N(s)|U(s)) \, ds \right)^{1/2}. \end{aligned}$$

Proof of Lemma A (conti.)

For the estimate of (II), we notice that

$$\frac{1}{N}\sum_{i=1}^N \phi(\eta(x_i(0),t)) = \int \phi(\eta(x,t))\rho_0^N dx.$$

Using this identity, the Lipschitz estimate for η , and the fact $\phi \in \mathcal{W}^{1,\infty}(\mathbb{R}^d)$, we find

$$(II) = \left| \int \phi(\eta(x,t))(\rho_0^N - \rho_0) \, dx \right| \le C \, \mathrm{d}_{BL}(\rho_0^N, \rho_0)$$

for some C>0 depending on $\|\phi\|_{\mathcal{W}^{1,\infty}}$ and $\|\eta\|_{\mathit{Lip}}.$ Hence,

$$\mathrm{d}_{BL}(\rho_t^N(\cdot),\rho(\cdot,t)) \leq C\,\mathrm{d}_{BL}(\rho_0^N,\rho_0) + C\left(\int_0^t \mathcal{E}^N(\mathcal{Z}^N(s)|U(s))\,ds\right)^{1/2}$$

for $0 \le t \le T$, where C > 0 depends only on $||u||_{L^{\infty}(0,T;Lip)}$ and T.

Proof of Theorem A

Applying Grönwall's lemma and Young's inequality to the differential inequality in **Proposition A** yields

$$\mathcal{E}^N(\mathcal{Z}^N(t)|U(t)) \leq C\mathcal{E}^N(\mathcal{Z}_0^N|U_0) + C\int_0^t d_{BL}^2(\rho_s^N(\cdot),\rho(\cdot,s)) ds,$$

where C > 0 is independent of N. We then use **Lemma A** to have

$$\begin{split} \mathcal{E}^{N}(\mathcal{Z}^{N}(t)|U(t)) + & d_{BL}^{2}(\rho_{t}^{N}(\cdot), \rho(\cdot, t)) \\ & \leq C \mathcal{E}^{N}(\mathcal{Z}_{0}^{N}|U_{0}) + C d_{BL}^{2}(\rho_{0}^{N}, \rho_{0}) \\ & + C \int_{0}^{t} d_{BL}^{2}(\rho_{s}^{N}(\cdot), \rho(\cdot, s)) ds + C \int_{0}^{t} \mathcal{E}^{N}(\mathcal{Z}^{N}(s)|U(s)) ds. \end{split}$$

We finally apply Grönwall's to the above to conclude the desired result.

Mean-field limit: singular interaction potential case

Let $d \geq 1$ and consider a potential \widetilde{W} has the form of

$$\widetilde{W}(x) = |x|^{-\alpha} \quad \max\{d-2,0\} \le \alpha < d \quad \forall d \ge 1$$

or

$$\widetilde{W}(x) = -\log|x|$$
 for $d = 1$ or 2.

Let $d \geq 1$ and consider a potential \widetilde{W} has the form of

$$\widetilde{W}(x) = |x|^{-\alpha} \quad \max\{d-2,0\} \le \alpha < d \quad \forall d \ge 1$$

or

$$\widetilde{W}(x) = -\log|x|$$
 for $d = 1$ or 2.

Theorem A'. Let T>0, $\varepsilon_N=1$, and $\mathcal{Z}^N(t)=\{(x_i(t),v_i(t))\}_{i=1}^N$ be a solution to the particle system, and let (ρ,u) be the unique classical solution of the pressureless Euler-type system with nonlocal interaction forces \widetilde{W} up to time T>0 with initial data (ρ_0,u_0) . Assume that the classical solution (ρ,u) satisfies $\rho\in L^\infty(0,T;(\mathcal{P}\cap L^\infty)(\mathbb{R}^d))$ and $u\in L^\infty(0,T;\mathcal{W}^{1,\infty}(\mathbb{R}^d))$. In the case $s\geq d-1$, we further assume that $\rho\in L^\infty(0,T;\mathcal{C}^\sigma(\mathbb{R}^d))$ for some $\sigma>\alpha-d+1$. Then there exists $\beta<2$ such that

$$\begin{split} &\iint |v-u(x,t)|^2 \, \mu_t^N(dxdv) + \, \mathrm{d}_{BL}^2(\rho_t^N(\cdot),\rho(\cdot,t)) \\ &+ \iint_{\Delta^c} \widetilde{W}(x-y)(\rho^N-\rho)(x)(\rho^N-\rho)(y) \, dxdy \\ &\leq C \iint |v-u_0(x)|^2 \, \mu_0^N(dxdv) + C \, \mathrm{d}_{BL}^2(\rho_0^N,\rho_0) \\ &+ C \iint_{\Delta^c} \widetilde{W}(x-y)(\rho_0^N-\rho_0)(x)(\rho_0^N-\rho_0)(y) \, dxdy + C N^{\beta-2}, \end{split}$$

where C > 0 is independent of N.

Ref.- Serfaty(2020), C.-Jeong(preprint, 2020).

Mean-field/small inertia limit: formal derivation

Newtonian dynamics:

$$\begin{split} &\frac{d}{dt}x_i=v_i, \quad i=1,\ldots,N, \quad t>0, \\ &\varepsilon_N\frac{d}{dt}v_i=-\gamma v_i-\nabla V(x_i)-\frac{1}{N}\sum_{j=1}^N\nabla W(x_i-x_j)+\frac{1}{N}\sum_{j=1}^N\psi(x_i-x_j)(v_j-v_i) \end{split}$$

Mean-field/small inertia limit: formal derivation

Newtonian dynamics:

$$\begin{split} &\frac{d}{dt}x_i=v_i, \quad i=1,\ldots,N, \quad t>0, \\ &\varepsilon_N\frac{d}{dt}v_i=-\gamma v_i-\nabla V(x_i)-\frac{1}{N}\sum_{j=1}^N\nabla W(x_i-x_j)+\frac{1}{N}\sum_{j=1}^N\psi(x_i-x_j)(v_j-v_i) \end{split}$$

By **Theorem A**, we expect that for sufficiently large $N\gg 1$, the above particle system can be well *approximated* by

$$\begin{split} &\partial_t \bar{\rho} + \nabla \cdot (\bar{\rho} \bar{u}) = 0, \\ &\varepsilon_{N} \left(\partial_t (\bar{\rho} \bar{u}) + \nabla \cdot (\bar{\rho} \bar{u} \otimes \bar{u}) \right) \\ &= -\gamma \bar{\rho} \bar{u} - \bar{\rho} \nabla V - \bar{\rho} \nabla W \star \bar{\rho} + \bar{\rho} \int \psi(x - y) (\bar{u}(y) - \bar{u}(x)) \, \bar{\rho}(y) \, dy. \end{split}$$

Mean-field/small inertia limit: formal derivation

Newtonian dynamics:

$$\begin{split} &\frac{d}{dt}x_i=v_i, \quad i=1,\ldots,N, \quad t>0, \\ &\varepsilon_N\frac{d}{dt}v_i=-\gamma v_i-\nabla V(x_i)-\frac{1}{N}\sum_{i=1}^N\nabla W(x_i-x_j)+\frac{1}{N}\sum_{i=1}^N\psi(x_i-x_j)(v_j-v_i) \end{split}$$

By **Theorem A**, we expect that for sufficiently large $N\gg 1$, the above particle system can be well *approximated* by

$$\begin{split} \partial_t \bar{\rho} + \nabla \cdot (\bar{\rho} \bar{u}) &= 0, \\ \varepsilon_N \left(\partial_t (\bar{\rho} \bar{u}) + \nabla \cdot (\bar{\rho} \bar{u} \otimes \bar{u}) \right) \\ &= -\gamma \bar{\rho} \bar{u} - \bar{\rho} \nabla V - \bar{\rho} \nabla W \star \bar{\rho} + \bar{\rho} \int \psi(x-y) (\bar{u}(y) - \bar{u}(x)) \, \bar{\rho}(y) \, dy. \end{split}$$

At the formal level, as $\varepsilon_N \to 0$, we have

$$\begin{split} &\partial_t \bar{\rho} + \nabla \cdot (\bar{\rho} \bar{u}) = 0, \\ &\mathbf{0} = -\gamma \bar{\rho} \bar{u} - \bar{\rho} \nabla V - \bar{\rho} \nabla W \star \bar{\rho} + \bar{\rho} \int \psi(x - y) (\bar{u}(y) - \bar{u}(x)) \, \bar{\rho}(y) \, dy. \end{split}$$

Mean-field/Small inertia limit

We rewrite the continuity-type equations as

$$\begin{split} \partial_t \bar{\rho} + \nabla \cdot (\bar{\rho} \bar{u}) &= 0, \\ \varepsilon_N \partial_t (\bar{\rho} \bar{u}) + \varepsilon_N \nabla \cdot (\bar{\rho} \bar{u} \otimes \bar{u}) \\ &= -\gamma \bar{\rho} \bar{u} - \bar{\rho} \nabla V - \bar{\rho} \nabla W \star \bar{\rho} + \bar{\rho} \int \psi(x-y) (\bar{u}(y) - \bar{u}(x)) \, \bar{\rho}(y) \, \mathrm{d}y + \varepsilon_N \bar{\rho} \bar{e}, \end{split}$$
 where $\bar{e} := \partial_t \bar{u} + \bar{u} \cdot \nabla \bar{u}$.

Mean-field/Small inertia limit

We rewrite the continuity-type equations as

$$\begin{split} &\partial_{t}\bar{\rho}+\nabla\cdot(\bar{\rho}\bar{u})=0,\\ &\varepsilon_{N}\partial_{t}(\bar{\rho}\bar{u})+\varepsilon_{N}\nabla\cdot(\bar{\rho}\bar{u}\otimes\bar{u})\\ &=-\gamma\bar{\rho}\bar{u}-\bar{\rho}\nabla V-\bar{\rho}\nabla W\star\bar{\rho}+\bar{\rho}\int\psi(x-y)(\bar{u}(y)-\bar{u}(x))\,\bar{\rho}(y)\,dy+\varepsilon_{N}\bar{\rho}\bar{e}, \end{split}$$

where $\bar{e} := \partial_t \bar{u} + \bar{u} \cdot \nabla \bar{u}$.

Theorem B. Let T>0 and $d\geq 1$. Let $\mathcal{Z}^N(t)=\{(x_i(t),v_i(t))\}_{i=1}^N$ be a solution to the particle system, and let $(\bar{\rho},\bar{u})$ be the unique classical solution of the aggregation-type equation satisfying $\bar{\rho}\in\mathcal{C}([0,T];\mathcal{P}(\mathbb{R}^d))$ and $\bar{\rho}>0$ on $\mathbb{R}^d\times[0,T)$, $\bar{u}\in L^\infty(0,T;\mathcal{W}^{1,\infty}(\mathbb{R}^d))$ and $\partial_t\bar{u}\in L^\infty(\mathbb{R}^d\times(0,T))$ up to time T>0 with the initial data $\bar{\rho}_0$. Suppose that the strength of damping $\gamma>0$ is large enough. If the initial datum are chosen such that

$$\iint |v - \bar{u}_0(x)|^2 \mu_0^N(dxdv) + d_{BL}(\rho_0^N, \bar{\rho}_0) \to 0 \quad \text{as} \quad N \to \infty,$$

then we have

$$\int v \, \mu^N(dv) = \frac{1}{N} \sum_{i=1}^N v_i \, \delta_{\mathsf{x}_i} \rightharpoonup \bar{\rho} \bar{u} \quad \text{weakly in } L^1(0,T;\mathcal{M}(\mathbb{R}^d))$$

and

$$\mu^N \rightharpoonup \bar{\rho} \delta_{\bar{u}}$$
 weakly in $L^1(0, T; \mathcal{M}(\mathbb{R}^d \times \mathbb{R}^d))$

as $N \to \infty$ (and thus $\varepsilon_N \to 0$).

In fact, we have the following quantitative bound estimate:

$$\begin{split} d_{BL}^2(\rho_t^N(\cdot),\bar{\rho}(\cdot,t)) + \int_0^t \iint |v-\bar{u}(x,s)|^2 \mu_s^N(dxdv) \, ds \\ & \leq C\varepsilon_N \iint |v-\bar{u}_0(x)|^2 \mu_0^N(dxdv) + Cd_{BL}^2(\rho_0^N,\bar{\rho}_0) + C\varepsilon_N^2 \end{split}$$

and

$$\begin{split} &\frac{1}{\varepsilon_N} d_{BL}^2(\rho_t^N(\cdot), \bar{\rho}(\cdot, t)) + \iint |v - \bar{u}(x, t)|^2 \mu_t^N(dxdv) \\ &\leq C(1 + \varepsilon_N) \iint |v - \bar{u}_0(x)|^2 \mu_0^N(dxdv) + \frac{C}{\varepsilon_N} d_{BL}^2(\rho_0^N, \bar{\rho}_0) + C\varepsilon_N \end{split}$$

for all $t \in [0,T]$, where C>0 is independent of both ε_N and N but depending on $\|\bar{u}\|_{L^{\infty}(0,T;\mathcal{W}^{1,\infty})}$, $\|\partial_t \bar{u}\|_{L^{\infty}}$, $\|\nabla_X W\|_{\mathcal{W}^{1,\infty}}$, $\|\psi\|_{\mathcal{W}^{1,\infty}}$, and γ .

In fact, we have the following quantitative bound estimate:

$$\begin{split} d_{BL}^2(\rho_t^N(\cdot),\bar{\rho}(\cdot,t)) + \int_0^t \iint |v-\bar{u}(x,s)|^2 \mu_s^N(dxdv) \, ds \\ & \leq C\varepsilon_N \iint |v-\bar{u}_0(x)|^2 \mu_0^N(dxdv) + Cd_{BL}^2(\rho_0^N,\bar{\rho}_0) + C\varepsilon_N^2 \end{split}$$

and

$$\begin{split} &\frac{1}{\varepsilon_N} d_{BL}^2(\rho_t^N(\cdot), \bar{\rho}(\cdot, t)) + \iint |v - \bar{u}(x, t)|^2 \mu_t^N(dxdv) \\ &\leq C(1 + \varepsilon_N) \iint |v - \bar{u}_0(x)|^2 \mu_0^N(dxdv) + \frac{C}{\varepsilon_N} d_{BL}^2(\rho_0^N, \bar{\rho}_0) + C\varepsilon_N \end{split}$$

for all $t\in [0,T]$, where C>0 is independent of both ε_N and N but depending on $\|\bar{u}\|_{L^\infty(0,T;\mathcal{W}^{1,\infty})}, \|\partial_t \bar{u}\|_{L^\infty}, \|\nabla_x W\|_{\mathcal{W}^{1,\infty}}, \|\psi\|_{\mathcal{W}^{1,\infty}}$, and γ .

Proof of Theorem B. By using a similar argument as before, we find

$$\begin{split} \mathcal{E}^{N}(\mathcal{Z}^{N}(t)|\bar{U}(t)) + \frac{2\gamma - C}{\varepsilon_{N}} \int_{0}^{t} \mathcal{E}^{N}(\mathcal{Z}^{N}(s)|\bar{U}(s)) \, ds \\ + \frac{1}{\varepsilon_{N}N^{2}} \sum_{i,j=1}^{N} \int_{0}^{t} \psi(x_{i}(s) - x_{j}(s))|v_{i}(s) - \bar{u}(x_{i}(s), s)|^{2} \, ds \\ \leq \mathcal{E}^{N}(\mathcal{Z}_{0}^{N}|\bar{U}_{0}) + \frac{C}{\varepsilon_{N}} d_{BL}^{2}(\rho_{0}^{N}, \bar{\rho}_{0}) + C\varepsilon_{N}. \end{split}$$

Theorem B'. Let T>0 and $\mathcal{Z}^N(t)=\{(x_i(t),v_i(t))\}_{i=1}^N$ be a solution to the particle system, and let $(\bar{\rho},\bar{u})$ be the unique strong solution of the continuity-type equation with \widetilde{W} up to time T>0 with the initial data $\bar{\rho}_0$. Suppose that the strength of damping $\gamma>0$ is large enough and $(\bar{\rho},\bar{u})$ satisfies $\bar{\rho}\in L^\infty(\mathbb{R}^d\times(0,T))$. We further assume that $\bar{\rho}\in L^\infty(0,T;\mathcal{C}^\sigma(\mathbb{R}^d))$ for some $\sigma>\alpha-d+1$ in the case $s\geq d-1$. Then there exists $\beta<2$ such that

$$\begin{split} \mathrm{d}_{BL}^2(\rho_t^N(\cdot),\bar{\rho}(\cdot,t)) + \iint_{\Delta^c} \widetilde{W}(x-y)(\rho^N - \bar{\rho})(x)(\rho^N - \bar{\rho})(y) \, dxdy \\ + \int_0^t \iint |v - \bar{u}(x,s)|^2 \mu_s^N(dxdv) \, ds \\ & \leq C \, \mathrm{d}_{BL}^2(\rho_0^N,\bar{\rho}_0) + C \iint_{\Delta^c} \widetilde{W}(x-y)(\rho_0^N - \bar{\rho}_0)(x)(\rho_0^N - \bar{\rho}_0)(y) \, dxdy \\ & + C\varepsilon_N \iint |v - \bar{u}_0(x)|^2 \mu_0^N(dxdv) + C\varepsilon_N^2 + CN^{\beta-2} \end{split}$$

for all $t \in [0, T]$, where C > 0 is independent of ε_N and N.

Conclusion

Summary:

- Quantitative mean-field limit of Newton dynamics: derivation of pressureless Euler system with nonlocal interaction forces
- Quantitative mean-field/small inertia limit of Newton dynamics: derivation of continuity-type equation

Conclusion

Summary:

- Quantitative mean-field limit of Newton dynamics: derivation of pressureless Euler system with nonlocal interaction forces
- Quantitative mean-field/small inertia limit of Newton dynamics: derivation of continuity-type equation

Reference:

 J. A. Carrillo and Y.-P. Choi, Mean-field limits: from particle descriptions to macroscopic equations, Arch. Ration. Mech. Anal., 241, (2021), 1529–1573.

Conclusion

Summary:

- Quantitative mean-field limit of Newton dynamics: derivation of pressureless Euler system with nonlocal interaction forces
- Quantitative mean-field/small inertia limit of Newton dynamics: derivation of continuity-type equation

Reference:

 J. A. Carrillo and Y.-P. Choi, Mean-field limits: from particle descriptions to macroscopic equations, Arch. Ration. Mech. Anal., 241, (2021), 1529–1573.

Thank you for your attention.