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Goal: study the behavior of solutions as N — oo



Setting of Problem: Main Goal

Derivation of pressureless Euler system (ey = O(1)):
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Setting of Problem: Main Goal

Derivation of pressureless Euler system (ey = O(1)):

dip+Vi-(pu)=0, xeR? t>0,
9e(pu) + Vi - (pu ® u)

= —ypu — pVxV — pVxWx p + p/w(x = y)(u(y) = u(x)) p(y) dy

Derivation of continuity-type equation (¢y — 0 as N — co):

0:p+ Vs - (p0) = 0,

where

V5l = —FVAV — VW A i+ / W(x — y)(aly) — 5(x))a(y) dy

Ref.- Ha, Carrillo, Tadmor, Shvydkoy, Tan, ...



Mean-field limit: from particle to kinetic

As N — oo, (at the formal level) we can derive the following Vlasov-type
equation from the particle system:

Wf 4+ v -Vif =V, - ((7v+ ViV + VW xp)f)+ V., - (F(f)f) =0
> p = p(x,t): local particle density

p(x, t) = / f(x,v,t)dv

> F(f) = F(f)(x, v, t): nonlocal velocity alignment force

F(f)(x,v,t):= //w(x —y)(w = Vv)f(y,w,t)dydw



Mean-field limit: from particle to kinetic

As N — oo, (at the formal level) we can derive the following Vlasov-type
equation from the particle system:

Of + v Vuf — V- (7 + ViV + VoW % p)f) + V, - (F(F)F) =

> p = p(x,t): local particle density

p(x, t) = / f(x,v,t)dv

> F(f) = F(f)(x, v, t): nonlocal velocity alignment force
F(f)(x,v,t):= / P(x = y)(w = Vv)f(y,w,t)dydw

Empirical measure: p" associated to a solution to the particle system

N

pe (x, v) = Z Gatenute

As long as there exists a solution to the particle system, p satisfies the kinetic
equation in the sense of distributions.

Ref.- Golse, Ha, Carrillo, Serfaty, Jabin, Hauray, Samir, Pickl, Wang, ...



Hydrodynamic limit: from kinetic to hydrodynamic
Macroscopic observables:

> pu: local momentum, pE: local energy

pu ::/vfdv, pE ::/|v|2fdv

> P: strain tensor, g: heat flux

P::/(u—v)®(u—v)fdv, q::/\v—u|2(v—u)fdv
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> pu: local momentum, pE: local energy

pu ::/vfdv, pE ::/|v|2fdv

> P: strain tensor, g: heat flux

P::/(u—v)®(u—v)fdv, q::/\v—u|2(v—u)fdv
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Oep+ Vi - (pu) =0,
Oc(pu) + Vi (pu®@u)+ V- P
= —ypu — pVxV = pVi Wk p + p/w(x = y)(u(y) = u(x))p(y) dy,
O:(pE) + Vx - (pEu+ Pu+ q)
= —vpE —pu-V,V —pu-V,Wxp

iy / B(x — y) (u(x) - uly) — E(x)) ply) d.
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‘ mono-kinetic closure: f(x, v, t) dxdv =~ p(x, t) dx ® dy(x,v)(dv) ‘

Pressureless Euler-type system:

9p+ Vi (pu) =0,
Ae(pu) + Vi - (pu ® u)

= —ypu = pVxV — pVxWx p + p/w(x = y)(uly) — u(x))p(y) dy

Maxwellian closure: f(x, v,t) ~ p(x, t) exp(—|u(x, t) — v|?/2)

Isothermal Euler-type system:

Oep+ Vi - (pu) =0,
Oe(pu) + Vi - (pu @ u) + Vip

= —ypu — pViV — pViWxp + p/w(x = y)(u(y) — u(x))o(y) dy
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» 0 =1 and € — 0: Maxwellian closure
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Hydrodynamic limit: from kinetic to hydrodynamic

Kinetic equation:
Of + v -Vif =V, - ((yv+ VxV + VW xp)f)+ V., - (F(f)f)
= évv (oVuf — (u—v)f)

» o0 =0 and € — 0: mono-kinetic closure

» o =1 and € — 0: Maxwellian closure
Main mathematical tool: Relative entropy (or modulated energy) method

= Lecture 4

Question: derivation from the particle system?

Ref.- Karper-Mellet-Trivisa(2015), Figalli-Kang(2019), Carrillo-C.-Jung(2021), ...



Key observation

Mono-kinetic ansatz: p(x, t)d,(«,)(v) is a solution to the kinetic equation in
the sense of distributions as long as (p, u)(x, t) is a strong solution to the
pressureless Euler-type system:

Otp+ Vi - (pu) =0,
pOtu+ p(u - Vi)u = —ypu — pVxV — pVWx p+ p/w(x = y)(uly) — u(x))p(y) dy



Key observation

Mono-kinetic ansatz: p(x, t)d,(«,)(v) is a solution to the kinetic equation in
the sense of distributions as long as (p, u)(x, t) is a strong solution to the
pressureless Euler-type system:

Bep + Vi - (pu) =0,
PO+ plu- Vi )u = —ypu — pVxV = pVW s p + p / W(x = y)(u(y) — u(x))p(y) dy
Indeed, for any ¢ € C5(R? x RY), we obtain
% / / P(x, V)p(x, 1) y(x,1y (dv) dx
- % e (x, u(x, £)p(x, t) dx
= /cp(x,u(x, t))atpdx+/(vvw)(x7 b, 8)) - (Bew)p e
= () + ).

Using the continuity equation, (/) can be easily rewritten as
(1) = [ Valiotx utx. ) - (ou) o

— [ [0 x) - (001 e+ () 1)) ol ToJu o



Key observation

For (II), we use the momentum equation to obtain
(1) =~ [ (Vo). utx, ) - - - u
= [T ulx, ) - (u+ VoV + VW p) o

+ / / (Vo) (x, u(x, £)) - ((y) — u(x))(x — y)p(x)oly) dicly



Key observation

For (1), we use the momentum equation to obtain
(1) =~ [ (Vo). utx, ) - - - u
= [T ulx, ) - (u+ VoV + VW p) o
+ [ (7000 0 ) - () — uo)x = Yoty iy
—— [ (Vo) a0 plu- V. Ju
— [[(F)00) - (v + TV T ) ()

][ 02000 (0= 000 = 3990503t () iy



Key observation

Thus, we have

% / / (%, V)PButety (V) dx
_ / / (Vo) (x, V) - V) pbugeny(dV) dx

~ [T )+ (0 + TV 4 VW ) gy ()

+ / / / (Vo) (3, V) - (W — V)b (x — y)p(x)Butrty ()0 )Buty 0y () cixly.



Key observation

Thus, we have
% / / (%, V)PButety (V) dx
— [ (@) b () o
~ [T )+ (0 + TV 4 VW ) gy ()
][00 (0= 000 = 3P0 (@)1t ) iy

Note that

/ / / / (To) (5, v) - (W — V) (x — 3)p (X)) (AV)0y oty o) (cw) lxcly
— [ (720 x0) - F(08.)00x)oucc ()

This shows that p(x, t)d,(x,¢+)(v) satisfies the kinetic equation:
Of +v-Vuf =V, - ((yv+ ViV + VW xp)f)+V, - (F(f)f) =0

in the sense of distributions.

Ref.- Carrillo-D’Orsogna-Panferov(2009), Kang-Kim(2020), ...



Key observation

Observation: both the empirical measure ;"(t) associated to the particle
system and the monokinetic solutions p(x, t) ® du(x,¢)(v), with (p, u)(x, t)
satisfying the pressureless Euler-type equations in the strong sense, are
distributional solutions of the “same” kinetic equation.

Kinetic

/ f \
Particle Fluid

N
" P& oy,
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Mathematical tools
Modulated kinetic energy:

1
7/ flv — u|? dxdv
2

Comparison with the modulated macroscopic kinetic energy:

1 1 1
5/ flv — ul? dxdv = 5/-pf|u,cfu|2 dx +§/ flv—ur|? dxdv
—_—

modulated mesoscopic energy  modulated macroscopic energy

Discrete version of the modulated kinetic energy:

N OIU0) =5 [[ o= v larar) = NZMX, ).8) — w(t)

Bounded Lipschitz distance: Let 11, € M(R?) be two Radon measures.
Then the bounded Lipschitz distance, which is denoted by
dar : M(RY) x M(RY) — R, between x and v is defined by
der(u) = sun | [ 60:) () = ()
$eQ

where the admissible set 2 of test functions are given by

Q= {¢>:Rd SR (Il <1, Lip() = sup X)W 1}.
x#£y [x -yl



Main Theorem

Theorem A. Let T >0, ey = 1, and Z"(t) = {(xi(t), vi(t))}I; be a solution
to the particle system, and let (p, u) be the unique classical solution of the
pressureless Euler-type system satisfying p > 0 on R? x [0, T),

p € C([0, T]; P(RY)) and u € L>°(0, T; WH*(R9)) up to time T > 0 with
initial data (po, uo). Suppose that the interaction potential W and the
communication weight function ¢ satisfy V,W € W>*(R9) and

b € WH(R?), respectively. up to time T > 0 with initial data (po, up). Then
we have

/ v — u(x, £) Pl (dxdv) + d3(pX(), p( 1)

<c ( [ 1v = w0 (o) + déL(po”,po)) ,

Ylleentips [[VW (w10, and T.

where C > 0 only depends on ||u||icnLip, |



Main Theorem

In particular, if the initial data are chosen such that the right hand side of the
above inequality goes to zero as N — oo, then the following consequences hold:

/ N(dv) = N Z 6 — p weakly in L=(0, T*; M(R?)),

i=1
/vu (dv) = N Z Vi 0, — pu  weakly in L=(0, T*; M(R?)),
/(v @ v)puM(dv) = N Z(v, @ Vi) by, — pu®@u weakly in L(0, T*; M(R?)),
and

p’ = p®48, weakly in L(0, T*; M(RY x RY))

as N — co.



Proof of Theorem A: convergence

For the convergence estimates, we find

(i) convergence of local moment:

dps (/v,uN(dv), pu) < (/ v — u(x)]u (dxdv)) 2+ Cda(p", p),

(ii) convergence of local energy:

o ([ ), puo u)
g//|v—u(x)\ dxdv)+C(//|v—u><)| (dxdv)) v

+ Cdau(p", p),

(i) convergence of empirical measure:

dhuli,p5.) < € [ [ v = ) ¥ (eba) + € (o, ).

Here C > 0 is independent of .



Estimate of the modulated kinetic energy

Proposition A. Let T > 0, ZV(t) = {(xi(t), vi(t))}); be a solution to the
particle system, and let (p, u) be the unique classical solution of the
pressureless Euler-type system up to time T > 0. Then we have

d

pn —eNEZN(0)|U(1)) + 29N (2" (1) U( M)+ 2 Z D(xi = x)|vi = u(x)?

i,j=1
< ceNEN ()| u(t)) + Cdg (o (), (-, 1)),

where

N
eNE"(0)|u() / |u— v[? uf! (dxdv) = N ; luxi(2), 1) = vi(t) %,

o :/utN dv,

and C > 0 is independent of N and 7.

In particular, this implies

"z ()u(t)) < ceM (2| W) + C/Ot dgu(pf (), () ds.



Proof of Proposition A

Straightforward computations yield
d 0% N
*SN(ZN(t)\U(t)) + > luCa(e), £) = vi()®
i=1

=N Z u(xi(t), ) = vi(2)) - ((vi(t) — u(xi(2), 1)) - Viu(xi(2), t)

—%2;((u>) vi(1) - (VW 5 p)(x) = (VW 5 p")(x) )
T S(ula(e), 1) — vi(8) - F (), (1)

/w (8) = Y)(uly. £) — u(x(t), ) ply £) dy

,fzi/, i(£) = x(1)) (vi(t) — vi(2))-



Proof of Proposition A (conti.)

For (1),
(1) < IVxu( HLOO* Z |u(xi(t), ) — vi(t)[?

=2|[Vxu(- t )I\Lng(Z (D)IU(2)).
For (1), we notice that

(VW 5 (p = p") G t)llee < VW oo e (0", p),

thus

NZ(V' u(xi(t), 1)) - (VW x (p = p"))(xi(2). 1)

N 1/2
< IVaW i dai(p", p) (,b Z lvi(t) — u(xi(t), t)|2>

= VWl dee(p”, p) vV 2EN(ZV (1) U(1)).



Proof of Proposition A (conti.)

(i = % Z(u(XI) —vi)- % Zdz(x; = x)(u(x) — vj)

S ) - v ) ([ 905 = )wt) = ot

= [ s =) ~ ") dy)
= ()1 + (1),

Here
N
(1)1 < llleee % > lux) — vil* = 2wl €Y (2" (1) U(t))
i=1
and

() < Z B — ) |vi — )P + CV/ENZN(E)]UE)) dec(p”, p),

where C > 0 only depends on [|9)||yy1,00 and |[ullyy1,c0.



Lemma A. Let p" and p be defined as above. Then we have
t
@Bu(6(11). (. 0) < Caby (el o) + € [ EM(2V(2) U(s))

where C > 0 depends only on ||u|| e (0,7;Lip) @and T.



Proof of Lemma A

Consider a forward characteristics 7 = n(x, t) for the pressureless Euler-type
system:

dn(x,t) _

dt

subject to the initial data: n(x,0) = x € R%.

u(n(x;t),t)

e Lipschitz continuous regularity of u implies that
> the characteristic 7 is well-defined,

» 7 is Lipschitz continuous in RY:

[n(x,t) = n(y, t)] < Clx —yl,

where C > 0 depends only on ||u|| o0 (0, 7;Lip) and T

e Note that

/ o(n(x, £))po(x) dx = / S(x)p(x. 1) dx

for p € W (RY).



Proof of Lemma A (conti.)
We also get

(6) = 0l 0] < ps(0) —xI + [ vils) — uln(x.s), )] d.
0
Here,
/ vils) — u(n(x.s).s)| ds

<[ vils) — u(i(s).s) ds + / u(a(s). s) — uln(x.s),s)| ds

< / 1vi(s) — u(xi(s), s)] ds + [[ullui / Ixi(s) — n(x, )| ds.
This yields

() — (e £)] < Clx(0) — x| + € / vils) — u(i(s). s)| ds,

where C depends only on ||u| (0, T:Lip) and T. In particular, by taking
x = x;(0), we get

Ixi(t) = n(xi(0), )] < C/Ot |vi(s) — u(xi(s), s)| ds.



Proof of Lemma A (conti.)
Then for any ¢ € W"*°(R?) we estimate

\ / H()(0" — ) dx

/ $(n(x, £))po dx

=4

N2 ot
Z¢<x o(n(x(0), 1))+ Z (n(x(0), t
N

N
7 2 l6bute) o 7 22 otat(0
7_()+(,,).
Here,
)= 50 3 0 o). 01 < 155 [75 1wt

<17 ([ te”(z”(s)w(s)) ds) 1/2.

/ o(n(x, £))po dx

/¢(n X, t))po dx

(xi(s),

s)| ds




Proof of Lemma A (conti.)

we notice that

!
0 20010500, 0) = [ ot 1) o

Using this identity, the Lipschitz estimate for 7, and the fact ¢ € Wh*°(R9),
we find

For the estimate of (/

< Cdau(pd, po)

(11 = \ [ otnte 00~ o) ox

for some C > 0 depending on ||¢||,y1,00 and ||n||Lp- Hence,

t 1/2
dee(pt () (-, 1)) < Cdai(pds po) + € (/0 e"(2"(s)|U(s)) dS)

for 0 <t < T, where C > 0 depends only on ||u|| o0, 7;Lip) and T.



Proof of Theorem A

Applying Gronwall's lemma and Young's inequality to the differential inequality
in Proposition A yields

MM olu(e) < ce" (@) + € [ LB (), pl15)) .

where C > 0 is independent of N. We then use Lemma A to have

ENENW)U(E)) + da(pt (), (-, )
< CeN (29 |Up) + Cdii(po , po)

e " @), plr5)) ds + € / N2 (5)|U(s)) d.

We finally apply Gronwall's to the above to conclude the desired result.



Mean-field limit: singular interaction potential case
Let d > 1 and consider a potential W has the form of

W(x)=|x|"* max{d—2,0}<a<d Vd>1
or ~
W(x) = —log|x| ford =1 or2.



Mean-field limit: singular interaction potential case
Let d > 1 and consider a potential W has the form of

W(x)=|x|"* max{d—2,0}<a<d Vd>1
or ~
W(x) = —log|x| ford =1 or2.

Theorem A’. Let T >0, ey = 1, and ZV(t) = {(x;(t), vi(t))} Y, be a solution to the
particle system, and let (p, u) be the unique classical solution of the pressureless

Euler-type system with nonlocal interaction forces W up to time T > 0 with initial

data (po, up). Assume that the classical solution (p, u) satisfies

p € L®(0, T; (P N L®)(RY)) and v € L=(0, T; WH(RY)). In the case s > d — 1,
we further assume that p € L>°(0, T;C%(R?)) for some 0 > o — d + 1. Then there
exists 8 < 2 such that

] 1v= utx 0P ) + @B (o), (e 1)
+ [ W= = 60" — o)) ey
< [ 1v= w02 uf(ac) + € (ol o)

€[] W= (ol = po) (I — po)ly) iy + CNA2,
where C > 0 is independent of N.

Ref.- Serfaty(2020), C.-Jeong(preprint, 2020).



Mean-field /small inertia limit: formal derivation

Newtonian dynamics:

d

ax;:v,-, i=1,...,N,

EN—ZVi

V(xi) —
P - VV(x)

t>0,

Zvvv(x, xj)+NZw(x, %)(v

vi)



Mean-field /small inertia limit: formal derivation

Newtonian dynamics:

%X{:V{, i=1,....,N, t>0,
ENEV,- = —VV(x)— ZVW(X, X))+ — N Zq/)(x, - V)

By Theorem A, we expect that for sufficiently large N > 1, the above particle
system can be well approximated by

en (0:(p) + V - (pd @ )

— pE— PV VW54 D / B(x — y)aly) - 5(x)) #ly) dy



Mean-field /small inertia limit: formal derivation

Newtonian dynamics:

%X{:V{, i=1,....,N, t>0,
ENEV,‘Z—’)/V, VV(xi) — ZVW(X, )(J)-i-NZ?/)(X, Vi — Vi)

By Theorem A, we expect that for sufficiently large N > 1, the above particle
system can be well approximated by

Op+ V- (pi) =0,

en (0:(pd) + V - (pi @ 0))
B8 = PV = pVW [ 6lx = y) (@) — 8() 7)oy

At the formal level, as ey — 0, we have
Op+ V- (pa) =0,

0= pi— YV YW j 45 / B(x — y)(aly) — (x)) ply) dy



Mean-field/Small inertia limit

We rewrite the continuity-type equations as
dep+ V - (p) = 0,
en0:(pll) + enV - (P @ i)
=—ypid—pVV — VW xp+p / Y(x — y)(a(y) — a(x)) ply) dy+enpe,

where € := 0:a+ - Vii.



Mean-field/Small inertia limit

We rewrite the continuity-type equations as
05+ - (5) = 0,
en0:(pil) +enV - (U ® )
= —pid—pVV —pVWxp+p / Y(x — y)(a(y) — @(x)) ply) dy-+enpe,
where € := 0:a+ - Vii.

Theorem B. Let T >0 and d > 1. Let ZN(t) = {(x;(t), vi(t))}, be a solution to
the particle system, and let (p, u) be the unique classical solution of the
aggregation-type equation satisfying 5 € C([0, T]; P(R%)) and 5 > 0 on R? x [0, T),
i€ L0, T; WHo°(RY)) and 8:i € L>°(RY x (0, T)) up to time T > 0 with the
initial data pp. Suppose that the strength of damping ~ > 0 is large enough. If the
initial datum are chosen such that

] 1v= a0 Pud(axav) + dau (o) >0 35 W o,
then we have
/v,/"(dv Zv, 55 — pi weakly in L1(0, T; M(R%))

and
N — 565 weakly in L1(0, T; M(RY x RY))

as N — oo (and thus ey — 0).



Mean-field/Small inertia limit

In fact, we have the following quantitative bound estimate:
t
da(pt'(-), (-, 1)) +/0 // [v — a(x, s)|?ul (dxdv) ds

< CEN/ v — L_lo(X)|2p6V(dXdV) + CdéL(p(’,\’,ﬁo) + Csfv

and

SRy )+ [ [ 1v = a0 0)Pul (o)
en

C
cu+em) [ [ 1v= a0 dxc) + =By (o8 o) + Cen
N

for all t € [0, T], where C > 0 is independent of both ey and N but depending on
3]l oo (0, Tiyvrso0ys 10edl oo, IVxWllypi,o0. [[#llyp1,00 and .



Mean-field/Small inertia limit

In fact, we have the following quantitative bound estimate:
t
da(pt'(-), (-, 1)) +/0 // [v — a(x, s)|?ul (dxdv) ds

< CEN/ v — Eo(x)|2p,6v(dxdv) + CdéL(pQ’,ﬁo) + Csfv

and

SRy )+ [ [ 1v = a0 0)Pul (o)
EN

c
ca+ 6N)// v — o(x) P (dxdv) + = d2,(pd, o) + Cen
N

for all t € [0, T], where C > 0 is independent of both ey and N but depending on
3]l oo (0, Tiyvrso0ys 10edl oo, IVxWllypi,o0. [[#llyp1,00 and .

Proof of Theorem B. By using a similar argument as before, we find

EN(EN (D) 0(1)) + ﬂ / CEN(ZN(5)|0(s)) ds

- N2 Z/ Y(xi(s) — xj(s))|vi(s) — E(X,-(s),s)|2 ds

i,j=1

_ c B
<Nz 10o) + adéL(Pé\’mo) + Cep.



Mean-field/Small inertia limit: singular interaction potential case

Theorem B'. Let T >0 and 2"(t) = {(xi(t), vi(t))}!L; be a solution to the
particle system, and let (5, ) be the unique strong solution of the

continuity-type equation with W up to time T > 0 with the initial data po.
Suppose that the strength of damping v > 0 is large enough and (p, i) satisfies

p € L®(RY x (0, T)). We further assume that 5 € L>(0, T;C° (R?)) for some
oc>a—d+1inthe case s > d — 1. Then there exists 8 < 2 such that

(el (.70 + [ W= )6 = )6 = P)y) iy

+/ //|vfu(x s)|2ul (dxdv) ds

< Cdg(pt p0) + C N W(x — y)(ph — o) (x)(pd — Po)(y) dxdy

+ CEN/ |v — do(x)|?ud (dxdv) + Ce3 + CNA~2

for all t € [0, T], where C > 0 is independent of ey and N.



Conclusion

Summary:

- Quantitative mean-field limit of Newton dynamics: derivation of
pressureless Euler system with nonlocal interaction forces

- Quantitative mean-field/small inertia limit of Newton dynamics: derivation
of continuity-type equation
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Thank you for your attention.



