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Review: formal derivation of hydrodynamic collective behavior models

Kinetic collective behavior models(VE):

Of 1 v-Vof — V- (3 + ViV + VW % p)f) + V., - (F(£)f)

0,

where F is the nonlocal velocity alignment force given by
FO v t) = [ [ 60x = )(w = V)F(y, w.t) dydw

Macroscopic observables:

> p = p(x,t): local particle density, pu: local momentum

p::/fdv, pu::/vfdv

Local balanced laws:

O0tp+ Vi - (pu) =0,
O(pu) + Vi - (pu® u) + Vi - (/(u—v)@(u—v)fdv)

 pt— PV — VW pt p / W(x — y)(uly) — u(x))oly) dy



Review: formal derivation of hydrodynamic collective behavior models

mono-kinetic closure: f(x,v,t) =~ p(x,t) ® dyx,v)(v)

Pressureless Euler-type System(PES):

Oep + Vi - (pu) =0,
Oe(pu) + Vi - (pu ® u)
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Review: formal derivation of hydrodynamic collective behavior models

mono-kinetic closure: f(x,v,t) =~ p(x,t) ® dyx,v)(v)

Pressureless Euler-type System(PES):

Oep+ Vi - (pu) =0,
9:(pu) + Vi - (pu @ u)

o pu— PV — Wk p 4 p / W(x — y)(uly) — u(x))oly) dy

Maxwellian closure: f(x, v, t) ~ p(x, t) exp(—|u(x, t) — v|*/2)

Isothermal Euler-type System(IES):

Otp + Vi - (pu) =0,
Oe(pu) + V- (pu ® u) + Vip

= —ypu — pVxV — pVW % p + p/w(x = y)(u(y) — u(x))p(y) dy



Part I: From kinetic to Euler

Kinetic collective behavior models:
Of + v - Vuf =V ((v+ (VxV + VW % p))f) + V. - (F[f]f) = Nep[f],

where Ngp is nonlinear Fokker—Planck operator given by
Nep[Fl(x,v) = Vo - (B(v — u)f + 0V f) = oV, - (fvv log Mi)

with the local Maxwellian

o ﬁd/2 5|U _ V|2
M. = (2mo)d/? &P 20 ’

and positive constants $ and o.



Part I: From kinetic to Euler

Kinetic collective behavior models:
Of + v - Vuf =V ((v+ (VxV + VW % p))f) + V. - (F[f]f) = Nep[f],

where Ngp is nonlinear Fokker—Planck operator given by
p
Nep[fl(x,v) ==V, - (B(v—u)f +oV,f) =0V, (fvv log ﬁ)

with the local Maxwellian

o ﬁd/2 _5'“ _ V|2
M= Grayar &P 20 )

and positive constants $ and o.

Asymptotic regimes:

» Strong local alignment and diffusion: ¢ = 8 = ¢~}

—> Isothermal Euler-type system

» Strong local alignment without diffusion: ¢ =0, 8 =¢~!

—>  Pressureless Euler-type system

Ref.- Villani(2002), Karper-Mellet-Trivisa(2015), Figalli-Kang(2019), ...



Main assumptions

(H1) The initial data related to the entropy are well-prepared:

/ (65 (log & — log po) + (o — £5)) dx = O(V/2)

and
/ (/ fy log fy dv — po log p0> dx = O(V/e).

(H2) The initial data related to the kinetic energy part in the entropy are
well-prepared:

/pg\uo—u§|2 dx = O(v/€) and / (/ fs |v|)* dv — po|uo|2) dx = O(V/¢).
(H3) The bounded Lipschitz distance between initial local densities satisfies

dz(p5, po) = O(VE).



Main results

Theorem A. Let ¢ be a weak solution to the equation (VE) with 8 =0 =1/¢ in
“some” sense and (p, u) be a strong solution to the system (IES) in “some” sense up
to the time T* > 0. Suppose that 1) € L> and the assumptions (H1)—(H2) hold.
Then we have the following inequalities for 0 < e < 1land t < T*:

(i) Coulomb case AW = —4p:

1 1
3 [l = acs [l ax+ S [ IVW (o )P o

3 [ 5008 0= I 00 — ) — (57(5) — ul )P s

< CVE+C [ I9W ok (oo — ) o

(ii) lrregular case VW € L°°:
1 t
5 [ ol =P [rrlnaxt [ ] o760l (0 - (P ds

3 [ 5008 000 = I 00 = u0) — (57(5) — ul )P s
< Cyfe.

Here C > 0 is a positive constant independent of € and H denotes the classical
relative entropy between two probability densities p; and pa:

H(p1lp2) = /

P2

PLp —z

S 9z=p1logpr —p2logpy — (1 + log p2)(p1 — p2)-



Main results

Corollary A. Suppose that all the assumptions in Theorem A hold. Then we have the
following convergences hold for the weakly regular case (ii):

p°—=p, put —pu, pUERUT > pu®u ae. andin L>(0, T*;Ll),
/f€v®vdv~>pu®u+p]ld><d a.e. andin LP(O, T*;Ll) for 1<p<2
as ¢ — 0. The same convergences for the Coulomb case (i) can be obtained if

/|VW*(po—p8)|2dx—>O as £ 0.

Moreover, we assume that the confinement potential V satisfies |V V/(x)|? < C|V/(x)|
for some C > 0. Then for t < T*, we have

1/2
17 = Myl < € ([ ] 1O 1My ) ) 4 c1

for the weakly regular case (ii), and

1/2
17 = Mpalls < € ([ ] 105 1My ) i) 4 c2

+C (min {1,/|VW* (5 — po)|? dx})l/4

for the Coulomb case (i), where C > 0 is independent of € > 0 and

P _lu=v?
M, , = ——— .
P omya € :



Main results

Theorem B. Let ¢ be a weak solution to the equation (VE) with 8 =1/e and 0 =0
in “some” sense and (p, u) be a strong solution to the system (PES) in “some” sense
up to the time T* > 0. Suppose that 1) € W1 and the assumptions (H2)—(H3)
hold. Then we have the following inequalities for 0 < e <1 and t < T*:

(i) Coulomb case AW = —4q:
/Z—E\UE — u\2 dx + % / [VW x (p — pE)\2 dx + dzBL(pE,p)
5[] e 0= I 0 = o) = () — uty)) Pl
< CVE+ C [ I9W (o — )P

(ii) Regular case VW € Whoo:

/%\ue—ulzdx—&-d L(p°, p)+/ / x)|u®(x) = u(x)|? dxds

5 [ 70 0= I (0 = o) = (°(5) = ) ey
< CVe.

Here C > 0 is a positive constant independent of e.



Main results

Corollary B. Suppose that all the assumptions in Theorem B hold. If
/|VW*(po —p5)2dx =0 as £—0
for Coulomb case, then the following convergences hold:
p° —p, pu® —pu, p°u® @u® — pu weakly in L>(0, T*; M),
/fev @vdv = pu®u weakly in L1(0, T*; M), and

& = p®¥d, weaklyin LP(0, T*; M)
ase — 0, for 1 < p < 2. Here M is the space of nonnegative Radon measures.



Main ideas: Relative entropy method

We rewrite (IES) as a conservative form:
8:U+ V- A(U) = F(U),

0
U= (f;) with m=pu, A(U):= (mgm )7
P

Plaxd

where

and

B 0
FU) = (pfw(x = y)(u(y) = u(x))p(y) dy — pu — p(VV + VW x P)) '



Main ideas: Relative entropy method

We rewrite (IES) as a conservative form:
8:U+ V- A(U) = F(U),
where

U:= (ﬁ]) with m=pu, A(U):= (mgm

) plg

and
0

0
xd )’

FU) = (pfw(x = y)(u(y) = u(x))p(y) dy — pu — p(VV + VW x P)) '

The entropy of the above system is given by
2
m
E(U) = s + plogp
2p
and the relative entropy is the quantity:

E(UIV) == E(U) — E(U) = DE(U)(U = U) with U:= (é

where DE(U) denotes the derivation of E with respect to p, m.



Main ideas: Relative entropy method
|G — ul® +H(plp)

NI
S

Relative entropy:
elv) =



Main ideas: Relative entropy method

Relative entropy: _
— P _ _
e(UIU) = Sla— ul® + H(plp)

Lemma A. The relative entropy & satisfies the following equality:
2 [e@uyac+ 2 [[ 500060 = DI ~ () — (@) — ) Pescy

:/8tE(U) dx—/V(DE(U)):A(U|U) dx
—/DE(U) [0:0 + Vv - A(0) — F(0)] dx
5 [ 080 =l - G aicy
= [ 70060) = B = V)@ — () - (uly) = ulx)) iy
- /ﬁ|E7 ul? 7ﬁ|ﬁ\2dx+/vv-ﬁﬁdx
+/p(a— W)Wk (p— 5) + pid - YW % pdx,

where A(U|U) is the relative flux functional given by
A(U|U) := A(U) — A(U) — DA(U)(U - V).



Main ideas: Relative entropy method

Free energy estimate: Set

F(f): //flogfdxdv+ // [V|?f dxdv+= / W (x—y)p(x)p(y) dxdy+/ Vpdx
and 1

D(f) = // 2 19uF = F(u— V)P dxav
Then we have

ff>+/( D)+ 5 [ [ 6=l () = w0 () (y)dxdy)
+/0 /pE\uEFc/xdsSf(ﬂfHCa

where C > 0 depends only T and ||¢|| .



Main ideas: Relative entropy method

Free energy estimate: Set

F(f) - //flogfdxdv+ //\v|2fdxdv+ / W(x— y)p(x)p(y)dxdy+/vpdx

and 1
D(f) = // 2 19uF = F(u— V)P dxav
Then we have

f5)+/ ( D(f)+ = //”Lﬁ x — y)|uf(x) — u® (y)|2 € (x)p° (y)dxdy)
+ [ [ i anas < 765 +
where C > 0 depends only T and |9} oo .

To Do: Global-in-time existence of weak solution satisfying the above free energy
inequality



Main ideas: Relative entropy method

Proposition A. Let f¢ be a global weak solution to the equation (VE) and (p, u) be a
strong solution to the system (IES) on the time interval [0, T]. Then we have

/£(UE|U) dx+/0t/p5(x)\u5(x)f u(x)? dxds
5 [ 000 = )10 = o)) = () = ()P
< CVe+ C/t/S(U5|U)dxds
0
+ t [ 760w () = u)) - (VW (0 = p)(x) s

for 0 < e <1, where C > 0 is independent of .



Proof of Proposition A

It follows from Lemma A that

/s(usw) dx+/0t/p5(x)|u5(x)7u(x)|2dxds
‘2 /0 t [ 5000 00 = I () = ) — (u(5) = ) Pebeds
:/€(U5\Uo)dx+/E(U5)fE(Ug)dxf/Ot/V(DE(U)):A(UE|U) dxds
—/Ot/DE(U) [0sUF +V - A(UF) — F(US)] dxds
3 [ ] 50 00t =l () = () s
= [ 0000 = 570 = ) ) = o) ) = ) s
+/0 /p (X)|u5(x)|2dxds+/0t/VV(X)-pS(X)US(X) dxds

+ / t / P (U (x) = u(x)) - (VW 5 (p = p°))(x) + p=(x)u" (x) - (VW  p°)(x) dxdls
0

9
=: Z I7.
i=1



Proof of Proposition A
> Assumptions (H1) & (H2):
1
Ii = [ £(Us1Ub) dx = 5 [ p51ug — wol d + [ (o lpo) b = O(VE).

> Free energy estimates:

> F<oWR)+ce

i€{2,4,5,7,8,9}
+ t [ 700w () = w) - (VW (0 p))(x) s
> Relative flux:
Is = /Ot/Vu (pf (U — u) ® (u° — u)dxds < ||Vul|pe /Ot/:‘:(UE|U) dxds.
> Velocity alignment:

I < 20|l oo [ /O / / P2 (9)1py) — p° ()11 (x) — u(x)| dxdyds
:2a||u||muw||w/o o= ol [ 7001u" () = )] deds

t
< C/ /£(U5|U)dxds.
0



Proof of Theorem A: Coulomb case

Lemma A’. Suppose that the interaction potential W satisfies AW = —&y. Then we
have

M/WW*(p PN ax = [ TWr (o= ) ((pu) — (57 u7)) o
for t € [0, T].

Proof of Theorem A. Note that

[ =0 (TW o= g+ [ YW (o 57)- ((pu) ~ (5 u7)) o
=/VW*(p—pE)‘U(p—pE)dX
= [ IW o= ) u (AW (o ) ox
:—%/|VW*(p—pe)|2V~udx-‘r/VW*(p—ps)@VW*(p—pe):Vudx,

ie.,

\/ = 0) (VW (= ) ot [ TWor o= %) ((pu) — (07 ) i

3
< IVl [ 1VW (o= )P o



Proof of Theorem A: Coulomb case

This together with Lemma A’ and Proposition A yields
/S(UE\U) dx + % / (VW (p— pF) dx + /Ot/pf(x)\uf(x) — u(x)|? dxds
+3 /0 t [ #0006 (00x = 70100 (0 = ) = (u () ~ uly)) Py
< CvE+ 3 [I9Wr (oo — )P dx
+ C/Ot/g(uf\u) dxds + C/Ot/\VW*(p—p5)|2dxds.
We finally apply Gronwall’s lemma to the above to conclude the desired result.

Remark. The convergence

/\VW*(p—p€)|2dx—>0 as £—0
implies
pS—p in L0, T;H1).
Indeed, we can easily find

0" = pllg-1 < [IVW i (p = p°)ll2-



Proof of Theorem A: Irregular case

Lemma A”. Suppose that the interaction potential W satisfies VW € L°°(Q). Then
we have

’/pE(X)(UE(X) —u(x)) - (VW (p = p%))(x) dx

<2|IVW|| oo /S(UE\U) dx

Proof of Theorem A. By combining Lemma A’ and Proposition A, we find
t
/E(UE|U) dx + 'y/ /pg(x)|u5(x) — u(x)|? dxds
H 2] 000 01— 170 = ) = () = ) s
t
<CVe+C(l+~v+ a)/ /8(U5|U) dxds.
0
We complete the proof by using the Gronwall inequality to the above.

Remark. The modulated interaction energy
[19W (o - )P ox

is not required.



Pressureless case

> Conservative form of (PES):

8 U+ V- AU) = F(U),

e () A= ().

0

where

and

FU) = (pfw(xfyxu(y) — u(x))ply) dy — pu—p(VV + YW % p)

> Entropy (kinetic energy):

|ml?
2p
> Relative entropy (modulated kinetic energy):

E(0|U) :=E(0) — E(U) — DE(U)(T — U)
|d—ul® with O:= (f;) .

E(U) =

N[



Modulated kinetic energy estimate

Proposition B. Let T > 0, f¢ be a global weak solution to the (VE) with & = 0, and
let (p, u) be a strong solution to the (PES) on the time interval [0, T]. Then we have

/é(UE|U) dx+/t/é(UE|U)dxds
0
3 [ ] R = DI 00— u0) = (0) = )P
< /f(Ug\Uo)dx+R(f0€)f/E(Ug)der C/t/f(UE\U)dxderCe
0

vcf " () ds + / t [ 760w () = uto)) - (VW (p = p)(x) s

for t € [0, T], where K(f) denotes the kinetic energy for the kinetic equation, i.e.,

R(f) := %//|v\2fdxdv.



Proof of Proposition B

For the term with the communication weight function 1), we denoted it by /¢ and split
into two terms:

[ /0 t / / P2 ()(p(y) — PP ())B(x — ¥) (6" (x) — u(x)) - u(y) dxdyds
+ /0 / / P2 ()P(y) — 07 (x — Y) (6 (x) — u(x)) - u(x) dxdyds

=: /f+/28,

where 7 can be estimated as
1= | [ [ ([0 =5 00ut =t ) -5l (2) = o) s
< ¢ [" et 0) [ 6700l () — )

t t
< C/O d%, (0%, p) ds + C/O /f(UE|U)dxds.

Here we used the fact that y — (-, y)u(y) is bounded and Lipschitz continuous.
Similarly, I2E can be estimated, and thus

t t
[1e| < c/o d%, (p%, p) ds + c/o /é‘(UE\U)dxds,

where C > 0 is independent of € > 0.



Relation between dp;(p, p°) & E(UF|U)

Lemma B. Let T > 0, f¢ be a global weak solution to the (VE) with o = 0, and let
(p, u) be a strong solution to the (PES) on the time interval [0, T]. Then we have

t 1/2
dae(p(t), p°(t)) < Cdpi(po,p5) + C (/0 /é(ua\U) dxds)

for 0 <t < T, where C > 0 is independent of € > 0.

Ref.- Figalli-Kang(2019), Carrillo-C.(2020), C.(2021)



Proof of Theorem B

(i) Coulomb case: Lemma A + Lemma B + Proposition B —-
/é(ufw) dx+/|VW*(pfp5)\2dx+ d%L(pE,p)Jr/Ot/c‘f(UglU)dxds
b [ 5008 0t = 1w ) = o) = (6 0) — ) s
< CVE+ C [ IVW (o = ) dx + C by (55 o)
+C/Ot/£(uf|u) dxds+C/Ot/|VW*(p—p5)\2dxds+C/0t d, (0, p) ds.

(i) Regular case: Note that

’/pE(X)(UE(X) —u(x)) - (VW (p = p%))(x) dx

< Cab(p )+ € [ olut — uf o,

The above observation + Lemma B + Proposition B —>

/é(UE|U)dx+ d%L(pE,p)Jr/Ot/c‘f(UglU)dxds
‘ & (x)p X — uf(x) — u(x)) — (u® —u 2 dx
[ [ 0" 0wtx = w0 = ) = (") = w()P el
< Cye+ C/O d2BL(p€,p)ds+C/o /é(UE|U)dxds.



Part II: From kinetic to aggregation

Vlasov—Fokker—Planck(VFP) equation:
ef* + e v - Vuf  +e7'V, - (FF(F(x,0°) — e 'v)) = e °ALf°
» £~ > 0: strength of the linear damping in velocity and diffusion

> p‘g = fRd fe dv
» F:RY x P(RY) — R?: driving force of the system given by

F(x.p) = —(VV)(x) = (VW p)(x)  for (x,p) € B x P(R),

where V : RY — R and W : R — R are given functions



Part II: From kinetic to aggregation

Vlasov—Fokker—Planck(VFP) equation:
OfS +e v Vo f e 'V, - (F°(F(x, p%) — s_lv)) = 2N f°

» £~ > 0: strength of the linear damping in velocity and diffusion

> p‘g = fRd fedv

» F:RY x P(RY) — R?: driving force of the system given by

F(x,p) = —=(VV)(x) = (VW x p)(x) for (x,p) € R? x P(RY),
where V : RY — R and W : R — R are given functions

Example: Vlasov—Poisson—Fokker—Planck system; VW = ¢x/|x|%, d > 1.

Here, the constant ¢ can be chosen ( = £1 according to applications in either
plasma physics or astrophysics.



Part II: From kinetic to aggregation

Vlasov—Fokker—Planck(VFP) equation:
ef* + e v - Vuf  +e7'V, - (FF(F(x,0°) — e 'v)) = e °ALf°
» £~ > 0: strength of the linear damping in velocity and diffusion

> p‘g = fRd fe dv
» F:RY x P(RY) — R?: driving force of the system given by

F(x.p) = —(VV)(x) = (VW p)(x)  for (x,p) € B x P(R),

where V : RY — R and W : R — R are given functions

Example: Vlasov—Poisson—Fokker—Planck system; VW = (x/|x|%, d > 1.
Here, the constant ¢ can be chosen ( = £1 according to applications in either
plasma physics or astrophysics.

Goal: study the behaviors of solutions of VFP equations when ¢ — 0



Part II: From kinetic to aggregation

Aggregation-Diffusion(AD) equation:

0ep+ Vi - (pF (-, p)) = Asp



Part II: From kinetic to aggregation

Aggregation-Diffusion(AD) equation:

0ep+ Vi - (pF (-, p)) = Asp

Examples: Keller—Segel model with W satisfying AW = §y, biological pattern
formation, semi-conductor equations, ...



Part II: From kinetic to aggregation

Aggregation-Diffusion(AD) equation:

0ep+ Vi - (pF (-, p)) = Asp

Examples: Keller—Segel model with W satisfying AW = §y, biological pattern
formation, semi-conductor equations, ...
Gradient flow structure: AD equation can be written as

Oep — V- (0Vx6,E(p)) =0,

where 1
E(p) = /(Iogp—l— vV + EW*p) dp



Part II: From kinetic to aggregation

Aggregation-Diffusion(AD) equation:

0ep+ Vi - (pF (-, p)) = Asp

Examples: Keller—Segel model with W satisfying AW = §y, biological pattern
formation, semi-conductor equations, ...
Gradient flow structure: AD equation can be written as

Oep — V- (0Vx6,E(p)) =0,

where 1
E(p) = /(Iogp—l— vV + EW*p) dp

Goal: establish the quantified overdamped limit from VFP to AD equations
ase —0



Previous works
o W =0 case:
» seminal work of Kramers(1940); formal discussion, now known as
Smoluchowski-Kramers limit, coarse-graining map
> Nelson(1967); rigorous derivation, SDEs
L

» Duong-Lamacz-Peletier-Schlichting-Sharma(2018); first quantitative result

e W # 0 case:

» Poupaud-Soler(2000), Goudon(2005), El Ghani-Masmoudi(2010);
Vlasov—Poisson—Fokker—Planck system, qualitative

» Duong-Lamacz-Peletier-Sharma(2017); W € C2 n WHH(RY) &
VW € Whe(RY), qualitative

Motivation: no results on the quantified overdamped limit for VFP equation
even with smooth interaction potentials

Ref.- Jabin(2000), Fetecau-Sun(2015), Carrillo-C.(2020), ...



Remark: from Euler to AD

AD equation can also be derived from compressible Euler equations with
nonlocal interactions.

e C.-Jeong(preprint): from Euler—Riesz to the fractional porous medium
equations
Oep” + V- (p°u") =0,
1 1 1 _
O(p ) + V- (P70 @ u%) + 26 Vp(p°) = —_p"u” + —ewp VA" p°

l e—0

Oep+ cwV - (pVA*~p) = ce Ap(p).

» AT = (—A)aTid: Riesz operator, d —2 < a < d
> A7 = o aW xp with W = |x|7%, cw €R
> p(p) =p” withy >1, ¢, > 0.

Ref.- Lattanzio, Tzavaras, Carrillo, Soler, Huang, Pan, Coulombel, Goudon, ...



Formal derivation of AD from VFP

> Rewrite VFP equation as

1 1 1
O:f° + oV Ve + gvv < (F(x,p°)f%) = ?vv (Vo fE +vfF)

> Note that .
1 ) e
RHS = ?V., . (f VV IOg W) 5

where 49 is the standard d-dimensional normal distribution (or
Maxwellian)

droy 1 —Iv2)2
N (v) = (2W)d/2e

» RHS has the order £72, and thus

Fo(x, v) ~ p*(x). A ?(v) fore < 1.

(1)



Formal derivation of AD from VFP

\4

v

v

v

If we set m® = [ vf® dv, then we find

6‘tp5+évxom5:0,

O:m® + éVw (/ v vIFe dv) = épEF(~,pE) ——=m".

We then use (1) to obtain

EVX- (/v®vf5dv) :EVX,OE
€ €

0em® + €71V, p° = e pF(-, p°) — 72mF for e <
e7tm® ~ p°F(-, pf) — Vxp® fore < 1

Inserting this into the continuity equation (2) yields

£2

fore <1,

1

Dep™ + V- (p°F (-, p%)) ~ Axp”,

which is our limiting equation.



Main result

Concerning the potential function V, we assume throughout this paper that
0 < V € Lip,.(R?),
(A1) there exists cy > 0 such that

(VV)(X)| < ev(1+|x]) forallxeR? and [|[VV|Lip < cv;
(A%) for any r € [1,00):

cv.r = sup |(VV)(x)]"e V™ < 0.
xeRd

Remark. quadratic confinement potential V = |x|?/2

2-Wasserstein distance:

1/2
axr)i= it ([ xe v ataan)

for any Borel probability measures u and v on R™, m € N, where M(u,v) is the
set of all probability measures on R™ x R"™ with first and second marginals
and v, respectively, i.e. for ¢, 1) € Cp(R™)

[+ vt atad) = [ out@r+ [ v,



Main result

Theorem C. Under suitable assumptions on solutions to VFP and AD
equations, if W satisfies

VW e L9(Br) NW" (R \ Bg) for some R > 0 and g € (1, 00].

and one of the following conditions:
(i) (Weakly singular) VW € W'(Bar),
(ii) (Purely repulsive) W is positive definite, or
(i) (Attractive Newtonian) W is given by the Newtonian potential, i.e.
AW = do,
then
sup d3(p°,p) < C (di(pé,po)Jrez),

0<t< T«
for some constants C > 0, T, > 0 independent of ¢ < 1.

Examples.
repulsive cases:  W(x) = |C ‘2 with —1<a<d-1
X
attractive cases:  W(x) = —|Ca—|’§ with —1<a<d-2
x
repulsive/attractive cases: |W(x)| < —— with —1<a<d-2

e Vlasov—Poisson—Fokker—Planck system — Keller—SegeI equations



Idea of Proof

(Step 1) Intermediate equation via a coarse-graining map:
rF:RxR? - RY x RY, M(x,v) = (x+ev,v).

Set
p= / fe(x —ev,v)dv.
Then p° satisfies
8tﬁs + Vi f = AXﬁE )

7 (x, t):/F(xfsv,ps)fa(xfz-:v7 v, t)dv.

(Step 2) Error estimate between VFP and the intermediate equations:

d3(5°,p°) < €° // [v|? < dxdv .

We recall

o° :z/i‘s(x7 v)dv.



Idea of Proof

(Step 3) Weighted LP-norm by the exponential of Hamiltonian
H(x,v) = V(x) + |v|]?/2:

1/p
HW4::<//f%W*dew)

— a (p—1)H
sy = | 3 [ 198717 " dae

la|<k

1/p

Uniform-in-¢ estimates:
(4
sup |1, < C
0<t< Ty xH

for some C > 0, T, > 0 independent of ¢ < 1. This yields
psv /_)E € WLP(Rd)7
and by Morrey's inequality, for p > d

L5 e L (R,



Idea of Proof

(Step 4) Error estimate between the intermediate and AD equations
(Evolution-Variational Inequality):

1d — — — 1 5
5 3¢ B 0) S AP p) = 29w (7, p) + 5 Iz

Remark. gradient-flow structure of AD equation

> Yw: modulated interaction energy given by
Tl = [[ Wox =)= )@)n = v)(e)  for v € PR

> €e°: error term given by

_dr

=5 (x) = F(x,p%) for p°-almost every x € R?
pE

e®(x) :

On the estimate of e°:
£ £\\2
%1250y < Ce® (1+ M(F9))?,

where

M(£%) = 1]l e + // lv| F¥ dxdv.
x,H



Idea of Proof

On the estimates of %,y

1. Smooth interaction: If VW is globally Lipschitz, then
|Dw (1, v)| < VW ||Lip d3(,v) .
2. Weakly singular interaction: If V2W € L*(R), then
VW (= 02 < [IV°Wilis da(p, ).
In particular, we obtain
(P11, )| < 9 W o (1= ) gy 11— vl < v/ 92 W s dB(a, ),

where ¢ := max{||p]|roe, ||V]|Lo }
3. Repulsive case: 9w > 0.

4. Newtonian attractive: When W is the fundamental solution of the
Laplacian, i.e. AW = 6o, Yw takes the alternative form

D) = = [ [VWor (= ) d2? =~ = vl

from which we obtain

Dw(p,v) = —coo di (11, v) -



Remarks

Regular case: VW € L> N Lip(RY)

(f)e<1 € C([0, T]; P2(R? x R?)), p € C([0, T]; P2(R?)) + entropy
inequality — error estimate in 2-Wasserstein distance

Irregular case: VW € L=(R?)

e~V € [*(R?) — error estimate in bounded and Lipschitz distance
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Summary:

- Part I: Quantified hydrodynamic limit from kinetic to
isothermal/pressureless Euler-type equations

- Part Il: Quantified overdamped limit from kinetic to
aggregation-diffusion equations
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Thank you for your attention.



