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Statistical mechanics: the description of the matter at a
mesoscopic level

Goal:

To describe the macroscopic
behaviour of a fluid

by the movement of its elementary,
microscopic components.

The fluid will be described by the quantity f(t, x, v), the density of particles lying
at time t at point x and moving with velocity v.

f is called the one-particle density function in the phase space.
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In 1872, Boltzmann obtained his famous equation:

∂tf + v · ∇xf =

∫
Rd
v∗

∫
Sd−1
ω

B(v − v∗, ω)
î
f(t, x, v′)f(t, x, v′∗)

− f(t, x, v)f(t, x, v∗)
ó

dω dv∗,

For a solution f of the Boltzmann equation, if one considers the entropy:

H(f)(t) =

∫
x

∫
v
f(t, x, v) ln f(t, x, v) dv dx,

one can prove that, if f is not an equilibrium (i.e. a Maxwellian), then:

d

dt
H(f)(t) = −1

4

∫
x

∫
v

∫
v∗

∫
ω

B(v − v∗, ω)
(
f(v′)f(v′∗)− f(v)f(v∗)

)
× ln

(f(v′)f(v′∗)

f(v)f(v∗)

)
dω dv∗ dv dx < 0.

This is the H-theorem (1872).
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Defining the dynamics of the particles: the hard sphere
model
One assumes that the gas is monoatomic and electrically neutral. The gas is
composed of spherical particles of diameter ε, evolving in a domain without
boundary: the Euclidean space Rd (d ≥ 2), or the torus Td. The position of the
particle i at time t will be denoted xi(t), and its velocity at time t vi(t).

Second Newton’s law: far enough from the other particles, each particle i moves
in straight line, with constant velocity.

Second Newton’s law: far enough from the other particles, each particle i moves
in straight line, with constant velocity.

If d(xi(t), xj(t)) > ε for j 6= i, then
d

dt
vi(t) = 0

(so that locally xi(t) = xi(t0) + (t− t0)vi(t0)).
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Elastic collisions: when two particles
collide, the velocities are modified in order
to transform pre-collisional configurations
into post-collisional configurations,
preserving the momentum and the kinetic
energy.
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Elastic collisions: when two particles
collide, the velocities are modified in order
to transform pre-collisional configurations
into post-collisional configurations,
preserving the momentum and the kinetic
energy.

If d(xi(t), xj(t)) = ε, we defineß
v′1 = v1 − (ω · (v1 − v2))ω,

v′2 = v2 + (ω · (v1 − v2))ω

with ω =
x2 − x1
|x2 − x1|

·

Second Newton’s law: far enough from the other particles, each particle i moves
in straight line, with constant velocity.

If d(xi(t), xj(t)) > ε for j 6= i, then
d

dt
vi(t) = 0

(so that locally xi(t) = xi(t0) + (t− t0)vi(t0)).

Elastic collisions: when two particles
collide, the velocities are modified in order
to transform pre-collisional configurations
into post-collisional configurations,
preserving the momentum and the kinetic
energy.

Figure: Collision between two particles
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Introducing the BBGKY hierarchy
One studies the system of N hard spheres evolving in the Euclidean space Rd,
described by the configuration ZN and the evolution of the distribution function
fN of the system in the phase space DεN .
One denotes:

ZN = (x1, v1, . . . , xN , vN ) = (z1, . . . , zN ) ∈ R2dN ,

with zi = (xi, vi) ∈ R2d, and

DεN =
{
ZN ∈ R2dN/ ∀i 6= j, |xi − xj | > ε

}
.
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= fN (t, x1, v1, . . . , xi, v
′
i, . . . , xj , v

′
j , . . . , xN , vN )

when |xi − xj | = ε and (xi − xj) · (vi − vj) > 0.
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Introducing the BBGKY hierarchy
One studies the system of N hard spheres evolving in the Euclidean space Rd,
described by the configuration ZN and the evolution of the distribution function
fN of the system in the phase space DεN .

Introducing the marginals f
(s)
N of the distribution function:

f
(s)
N (Zs) =

∫
R2d(N−s)

fN (t, Zs, zs+1, . . . , zN )1Dε
N

dzs+1 . . . dzN ,
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∂tf
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(s+1),

where CN,εs,s+1 is the collision term, which writes:

CN,εs,s+1f
(s+1) =

s∑
i=1

(N − s)εd−1
∫
Sd−1
ω

∫
Rd

vs+1

ω · (vs+1 − vi)

× f (s+1)
N (t, Zs, xi + εω, vs+1) dω dvs+1.
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∂tf
(s)
N +

s∑
i=1

vi · ∇xif
(s)
N = CN,εs,s+1f

(s+1).

Those N equations constitute the BBGKY hierarchy.
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The Boltzmann-Grad limit, and the Boltzmann hierarchy

So far, no link was given between the number N of particles of the system, and
the radius ε/2 of those particles.
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The Boltzmann-Grad limit, and the Boltzmann hierarchy

One will consider the Boltzmann-Grad limit:

Nεd−1 = 1.
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The Boltzmann-Grad limit, and the Boltzmann hierarchy

One will consider the Boltzmann-Grad limit:

Nεd−1 = 1.

This means that the mean free path does not depend on the number N of particles
of the system.
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The Boltzmann-Grad limit, and the Boltzmann hierarchy

One will consider the Boltzmann-Grad limit:

Nεd−1 = 1.

Taking the limit ε→ 0, Nεd−1 = 1, the collision term becomes (formally):

s∑
i=1

∫
Sd−1
ω

∫
Rd

vs+1

[
ω · (vs+1 − vi)

]
+
f
(s+1)
N (t, x1, v1, . . . , xi, v

′
i, . . . , xi, v

′
s+1) dω dvs+1

−
s∑
i=1

∫
Sd−1
ω

∫
Rd

vs+1

[
ω · (vs+1 − vi)

]
+
f
(s+1)
N (t, Zs, xi, vs+1) dω dvs+1.
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The Boltzmann-Grad limit, and the Boltzmann hierarchy

One will consider the Boltzmann-Grad limit:

Nεd−1 = 1.

One defines the Boltzmann hierarchy as the infinite sequence of equations:

∀s ≥ 1, ∂tf
(s) +
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The Boltzmann-Grad limit, and the Boltzmann hierarchy

What’s the link between the Boltzmann hierarchy and the Boltzmann equation?
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if one assumes in addition that the second marginal is tensorized:

f (2)(t, x1, v1, x2, v2) = f (1)(t, x1, v1)f (1)(t, x2, v2),

the first marginal is a solution of the Boltzmann equation.

Goal: proving the convergence of the solutions of the BBGKY hierarchy
towards the solutions of the Boltzmann hierarchy.
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Rewritting the hierarchies...

One considers the integrated in time versions of the hierarchies.
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f
(s)
N (t, Zs) = f

(s)
N,0

Ä
T s,ε−t (Zs)

ä
+

∫ t

0
CN,εs,s+1f

(s+1)
N

Ä
u, T s,εu−t(Zs)

ä
du,

Théophile Dolmaire Lanford’s theorem
France-Korea Kinetic Summer School, 08/21 9

/ 34



Rewritting the hierarchies...

One considers the integrated in time versions of the hierarchies.

f
(s)
N (t, Zs) = f

(s)
N,0

Ä
T s,ε−t (Zs)

ä
+

∫ t

0
CN,εs,s+1f

(s+1)
N

Ä
u, T s,εu−t(Zs)

ä
du,

f (s)(t, Zs) = f
(s)
0

Ä
T s,0−t (Zs)

ä
+

∫ t

0
C0s,s+1f

(s+1)
Ä
u, T s,0u−t(Zs)

ä
du.
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ä
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For the Boltzmann hierarchy, the hard sphere transport is replaced by the
free transport with boundary conditions T s,0.

Théophile Dolmaire Lanford’s theorem
France-Korea Kinetic Summer School, 08/21 9

/ 34



An explicit expression of the solutions to the hierarchies
Few notations (I)

Let us introduce some notations here.

Notations for the integrated in time transport-collision operator for the
BBGKY hierarchy. For any positive integers N and s, and any sequence of

functions
(
f
(s)
N

)
1≤s≤N belonging to the space X̃

N,ε,β̃,µ̃
, we will denote the

function

t 7→
∫ t

0

T s,ε−u C
N,ε
s,s+1T s+1,ε

u f
(s+1)
N (u, ·) du

as IN,εs f
(s+1)
N .

Similarly, for the Boltzmann hierarchy we will denote

t 7→
∫ t

0

T s,0t−uC0s,s+1f
(s+1)(u, ·) du

as I0sf (s+1) for any sequence of functions
(
f (s)

)
s≥1 belonging to X̃

0,β̃,µ̃
.
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An explicit expression of the solutions to the hierarchies
Few notations (II)

The iterations of those operators

t 7→
∫ t

0
T s,ε−t1C

N,ε
s,s+1T

s+1,ε
t1

∫ t1

0
T s+1,ε
−t2 CN,εs+1,s+2T

s+2,ε
t2 . . .∫ tk−1

0
T s+k−1,ε−tk CN,εs+k−1,s+kT

s+k,ε
tk

f
(s+k)
N (tk, ·) dtk . . . dt2 dt1

and

t 7→
∫ t

0
T s,0−t1C

0
s,s+1T

s+1,0
t1

∫ t1

0
T s+1,0
−t2 C0s+1,s+2T

s+2,0
t2 . . .∫ tk−1

0
T s+k−1,0−tk C0s+k−1,s+kT

s+k,0
tk

f (s+k)(tk, ·) dtk . . . dt2 dt1

will be respectively denoted as

IN,εs,s+k−1f
(s+k)
N and I0s,s+k−1f (s+k).
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The detailed expression of the elementary terms
The Duhamel formula (BBGKY version)

It is then possible to prove the following result, giving an explicit
expression of the solutions to the hierarchy in terms of the initial data.

Iterated Duhamel formula for the solution of the BBGKY hierarchy

Let N be a positive integer and ε > 0. In the Boltzmann-Grad limit
Nεd−1 = 1, for any strictly real numbers β0 > 0, µ0, and any sequence of
initial data

FN,0 =
Ä
f
(s)
N,0

ä
1≤s≤N ∈ XN,ε,β0,µ0 ,

the unique solution of the integrated form of the conjugated BBGKY
hierarchy with initial datum FN,0 is

HN = t 7→
(
f
(s)
N,0 +

N−s∑
k=1

Ä
IN,εs,s+k−1f

(s+k)
N,0

ä
(t, ·)

)
1≤s≤N

.
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The detailed expression of the elementary terms
The Duhamel formula (Boltzmann version)

We have of course a similar result concerning the Boltzmann hierarchy.

Iterated Duhamel formula for the solution of the Boltzmann hierarchy

For any strictly real numbers β0 > 0, µ0, and any sequence of initial data

F0 =
Ä
f
(s)
0

ä
s≥1 ∈ X0,β0,µ0 ,

the unique solution of the integrated form of the Boltzmann hierarchy with
initial datum F0 is

F = t 7→
(
T s,0t f

(s)
0 (·) +

+∞∑
k=1

I0s,s+k−1
Ä
u 7→ T s+k,0u f

(s+k)
0

ä
(t, ·)

)
s≥1

.
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The detailed expression of the elementary terms
Another step forward into the decomposition

Keeping in mind that the collision operator was defined as

C0s,s+1f
(s+1) =

s∑
i=1

[∫
Sd−1×Rd

[
ω · (vs+1 − vi)

]
+
f (s+1)(t, . . . , xi, v

′
i, . . . , xi, v

′
s+1)

−
[
ω · (vs+1 − vi)

]
−f

(s+1)
N (t, Zs, xi, vs+1) dω dvs+1

]
,

this suggests the decomposition:∫ t

0

T s,0t−t1C
0
s,s+1T

s+1,0
t1 f

(s+1)
0 (t1, ·) dt1 =

s∑
j1=1

(
I0 s
+,j1
− I0 s
−,j1

)(
t1 7→ T s+1,0

t1 f
(s+1)
0

)
,

and then

I0s,s+k−1 =
( ∑
1≤j1≤s
±1

(±1)I0 s
±1,j1

)
◦ · · · ◦

( ∑
1≤jk≤s+k−1

±k

(±k)I0s+k−1
±k,jk

)
.
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The detailed expression of the elementary terms
The final definition of the elementary terms

The final decomposition of the solution into elementary terms (for
example, of the Boltzmann hierarchy) will be:

F =
(
T s,0t f

(s)
0 +

+∞∑
k=1

∑
Jk,Mk

(±1) . . . (±k)I0s,s+k−1
Jk,Mk

Ä
u 7→ T s+k,0u f

(s+k)
0

ä)
s≥1

,

with Jk = (j1, . . . , jk) and Mk = (±1, . . . ,±k), and s ≤ jl ≤ s+ l − 1.

What can be said about a generic elementary term?
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From the operators to the pseudo-trajectories

Let us take k = 1, m1 = − (and s and j1 being generic), that

is we consider I0s,s
(j1,−)

Ä
u 7→ T s+1,0

u f
(s+1)
0

ä
.

∫ t

0

∫
ω

∫
vs+1

î
ω ·
Ä
vs+1 − (T s,0t1−t(Zs))

V,j
äó
−

× f (s+1)
0

Ä
T s+1,0
−t1

Ä
T s,0t1−t(Zs),

Ä
T s,0t1−t(Zs)

äX,j
, vs+1

ää
dω dvs+1 dt1
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The plan for the convergence of the solutions
The behaviour of the pseudo-trajectories
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A serious obstacle to the convergence of the
pseudo-trajectories:
The recollisions
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The elimination of the recollisions: the geometrical lemma
The decisive contribution of Gallagher, Saint-Raymond and Texier (2014) (I)

We are now at the heart of the control of the recollisions. It relies on the
following lemma of geometry:

Shooting lemma [Gallagher, Saint-Raymond, Texier 2014]

Let ε, a and ε0 be three positive numbers such that ε� a� ε0. Let x1 and x2
be two vectors of Rd such that |x2 − x1| ≥ ε0, and v1 a vector of B(0, R) such
that |v1| ≤ R. Then, for any x1 ∈ B(x1, a), x2 ∈ B(x2, a) and v2 ∈ B(0, R):

• if v2 is not in the cylinder of radius 6Ra/ε0 and of axis v1 + Vect(x2 − x1),
then:

∀t ≥ 0, |(x1 − tv1)− (x2 − tv2)| > ε,

• if v2 is not in the cylinder of radius 6ε0/δ and of axis v1 + Vect(x2 − x1),
then:

∀t ≥ δ, |(x1 − tv1)− (x2 − tv2)| > ε0.
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The elimination of the recollisions: the stability of the
good configurations by adjunction
The decisive contribution of Gallagher, Saint-Raymond and Texier (2014) (II)

With the shooting lemma, we can now prove that:

Stability of the good configurations [Gallagher, Saint-Raymond,
Texier 2014]

If Zk is a good configuration of type ε0, there exists a subset
Bk(Zk) ⊂ Sd−1 ×B(0, R) of small measure:

|Bk(Zk)| ≤ Ck
(
Rηd−1 +Rd

( a
ε0

)d−1
+R

(ε0
δ

)d−1))
such that if (ω, vk+1) /∈ Bk(Zk), then:

• the configuration (Zk, xk, vk+1) is a good configuration of type ε0 after at
most δ,

• for all Xk ∈ B(Xk, a), the configuration (Xk, V k, xk + εω, vk+1) is a good
configuration of type ε.
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Théophile Dolmaire Lanford’s theorem
France-Korea Kinetic Summer School, 08/21 21

/ 34



The elimination of the recollisions: the stability of the
good configurations by adjunction
The decisive contribution of Gallagher, Saint-Raymond and Texier (2014) (II)

With the shooting lemma, we can now prove that:

Stability of the good configurations [Gallagher, Saint-Raymond,
Texier 2014]

If Zk is a good configuration of type ε0, there exists a subset
Bk(Zk) ⊂ Sd−1 ×B(0, R) of small measure:

|Bk(Zk)| ≤ Ck
(
Rηd−1 +Rd

( a
ε0

)d−1
+R

(ε0
δ

)d−1))
such that if (ω, vk+1) /∈ Bk(Zk), then:

• the configuration (Zk, xk, vk+1) is a good configuration of type ε0 after at
most δ,

• for all Xk ∈ B(Xk, a), the configuration (Xk, V k, xk + εω, vk+1) is a good
configuration of type ε.
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The elimination of the recollisions: final comments
The decisive contribution of Gallagher, Saint-Raymond and Texier (2014) (III)

The stability of the good configurations shows that, except for a small
amount of adjunction parameters, the pseudo-trajectories that are built are
without recollision.

As a consequence, the difference between the positions of the
pseudo-trajectories of the BBGKY and the Boltzmann hierarchies are only
due to the size of the particles, and is then given by:

kε

after the k-th adjunction.

We completed our program!
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The Lanford’s theorem in the Euclidean space

Theorem [Lanford 1975], [Gallagher, Saint-Raymond, Texier 2014]

Let f0 : R2d → R+ be a continuous density of probability such that∣∣∣∣∣∣∣∣f0(x, v) exp
(β

2
|v|2

)∣∣∣∣∣∣∣∣
L∞(R2d)

< +∞

for some β > 0.

Then, in the Boltzmann-Grad limit N → +∞, Nεd−1 = 1, f
(1)
N converges

towards the solution f of the Boltzmann equation with the cross section
b(v, ω) = (v · ω)+ with f0 as initial data, in the following sense. For all
compact set K ⊂ Rd:∣∣∣∣∣

∣∣∣∣∣1K(x)

∫
Rd
v

ϕ(v)
Ä
f
(1)
N − f

ä
(x, v) dv

∣∣∣∣∣
∣∣∣∣∣
L∞([0,T ]×Rd

x)

−→
N→+∞

0.

If in addition f0 is Lipschitz-continuous, the rate of convergence is of order
O(εa) with

a <
d− 1

d+ 1
.
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Plan of the talk

1 Introducing the Boltzmann equation and Lanford’s theorem
The Boltzmann equation
From the dynamics of the particles to a statistical description of the
system
The observation of Grad: a way to obtain a rigorous derivation
The convergence of the solutions

2 The extensions of Lanford’s theorem to domains with boundary
Prescribing the boundary conditions
The case of the half-space
The case of a general convex obstacle
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Prescribing the boundary conditions
Defining the dynamics of the particles (bis): the hard spheres, with specular reflection

We now assume that the particles evolve outside an obstacle Ω ∈ Rd. Far enough
from this obstacle, we keep the same assumptions concerning the dynamics of the
particles.

Far enough from the obstacle (i.e. when d(Ω, xi(t)) > ε/2) and from the other
particles (i.e. when d(xi(t), xj(t)) > ε for j 6= i), each particle i moves in
straight line, with constant velocity.

Figure: Collision between two
particles: |x1 − x2| = ε

ß
v′1 = v1 − (ω · (v1 − v2))ω,

v′2 = v2 + (ω · (v1 − v2))ω,

with ω =
x2 − x1

|x2 − x1|

Figure: Bouncing against the
obstacle : d(x1,Ω) = ε/2

v
′
1 = v1 − 2(v1 · n)n
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A first case of a domain with boundary: the case of the
half-space
What does it change?

We assume here that Ω = {(x1, . . . , xd) ∈ Rd / x1 ≤ 0}.

The hierarchies and the functional spaces in which they are solved remain the
same.

Concerning the pseudo-trajectories, the wall can produce new divergences:

→ The bouncings increase the
distance between the particles,

→ There are time intervals during
which the velocities are very
different.
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A first case of a domain with boundary: the case of the
half-space
A more complicated (but solvable) shooting lemma

In the case of the half-space, there are more possibilities for two particles
to collide:

There are more cases to consider to obtain an analogous shooting lemma.
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A first case of a domain with boundary: the case of the
half-space
An important obstruction in the stability of the good configurations

In the case when there is an obstacle, one has to introduce a cut-off on the
proximity between the obstacle and the particle undergoing an adjunction.

Théophile Dolmaire Lanford’s theorem
France-Korea Kinetic Summer School, 08/21 28

/ 34



A first case of a domain with boundary: the case of the
half-space
An important obstruction in the stability of the good configurations

In the case when there is an obstacle, one has to introduce a cut-off on the
proximity between the obstacle and the particle undergoing an adjunction.
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A first case of a domain with boundary: the case of the
half-space
An extended proof to take into account the cut-off in proximity with obstacle

In the case when there is an obstacle, the particle that undergoes the
adjunction has to be at a distance at least ρ from this obstacle.

How could we take this condition into account, since the positions are not
part of the adjunction parameters?

It is not possible to prevent the particles to be too close to the obstacle in
general. But actually, it is sufficient that the particle experiencing the
adjunction is far from the obstacle at the time of adjunction.

Therefore, we can exclude the times such that the chosen particle is too
close to the obstacle. But this amount of times can be huge, if the particle
is grazing the obstacle!

One has to make sure in addition that no particle of the system has a
grazing velocity, which implies another cut-off.
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A first case of a domain with boundary: the case of the
half-space

Lanford’s theorem in the half-space with specular reflexion, [D. 2019]

Let f0 :
{
x ∈ Rd

}
× Rd → R+ be a continuous density of probability such that

f(x, v) −→
|(x,v)|→+∞

0 and

∣∣∣∣∣∣∣∣f0(x, v) exp
(β

2
|v|2
)∣∣∣∣∣∣∣∣

L∞(R2d)

< +∞

for some β > 0. Consider the system of N hard spheres of diameter ε inside the
half-space with specular reflexion, initially distributed according to f0 and
independent. Then, in the Boltzmann-Grad limit N → +∞, Nεd−1 = 1, its

distribution function f
(1)
N converges to the solution of the Boltzmann equation f

with the cross section b(v, ω) = (v · ω)+, with specular reflexion and with initial
data f0, in the following sense:∣∣∣∣∣∣1K(x, v)

(
f
(1)
N − f

)
(x, v)

∣∣∣∣∣∣
L∞([0,T ]×{x·e1>0}×{v·e1 6=0})

−→
N→+∞

0.

If in addition
√
f0 is Lipschitz with respect to the position variable uniformly in

the velocity variable, the rate of convergence is O(εa) with a < 13/128.
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Towards more general domains: outside a convex obstacle

We assume now that the obstacle Ω is a convex part of the plane R2.

The control of the recollision is conceptually the same as in the case of the
half-space: before a collision, two particles can bounce against the
obstacle at most once (leading to four possible ways to collide).

But in that general case, the trajectories are not explicit anymore!
⇒ It is much more complicated to obtain the shooting lemma in that case.
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Solving the shooting lemma outside a general convex
obstacle
Characterizing the velocities solving the shooting problem

In the case of the whole Euclidean space, or of the half-space, the set of velocities
of a particle travelling from a disk to another one are easily pictured: this set is a
cone.

In the case of a general convex obstacle, the analog of this set is not that simple.
The first step to solve the shooting lemma is to describe this set.

We introduce the notion of interior and
exterior pairs of tangent lines to two
disks.

Such pairs exist, are unique, and the
velocities solving the shooting lemma are
contained between those lines.
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Solving the shooting lemma outside a general convex
obstacle
Characterizing the velocities solving the shooting problem

It remains to control the angle between the interior and the exterior tangent lines
to the disk containing the starting point.

We can reach that goal using the family
of isoptics of the two disks.

Shooting lemma [D., to be
published]

Let a 6= 1, 0 < β < 1, and u ≥ aβ . We
assume that there is a trajectory,
starting from x1 = (0, 1) and reaching
x2 = (0,−1), with a bouncing at (u, v).
The set of velocities of the trajectories
starting from B(x1, a) and reaching
B(x2, a) after a bouncing has a size
bounded by:

C(β)a1−β +
2M

cos θ
a+ o(a/d).
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Works in progress and open questions

We are currently studying the derivation of the Boltzmann equation inside
the disk.

The case of the general convex obstacle is performed only in the
two-dimensional case.
Besides even more general obstacles, one can study other boundary
conditions. For example, the case of the diffusive boundary condition turns
out to be very difficult. Indeed, the very first steps (well-posedness of the
dynamics of the particles, analog of the BBGKY hierarchy?) of Lanford’s
program seem hard to tackle.
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