A Fick relaxation BGK model for a mixture of polyatomic gases

GUILLON Kévin

Collaboration with Stéphane BRULL and Philippe THIEULLEN

August, 26th 2021

Introduction - Motivations

$$Q(f, f) \sim \mathcal{R}(f) = \nu(f)(G(f) - f),$$

- <u>Aim</u>: Construct a BGK operator for a polyatomic mixture providing correct phenomenological coefficients at hydrodynamic limit (Fick, viscosities)
 - [Giovangigli, 1999] : general derivation,
 - [Brull, Pavan, Schneider (2012)]: monoatomic mixture,
 - [Schneider (2015)] : polyatomic mixture w/ discrete energy.
- In this article, polyatomic mixture w/ continuous energy (formalism derived from [Borgnakke, Larsen (1975)],
- Issues :
 - Fitting constraints with conservation laws, H theorem, successful entropy minimization [Junk (1999)], correct coefficients,
 - Performing inclusive polyatomic model, containing monoatomic case

Polyatomic framework and first requirements

Expression of the phenomenological coefficients

3 Construction of the BGK operator

Contents

1 Polyatomic framework and first requirements

Expression of the phenomenological coefficients

3 Construction of the BGK operator

Polyatomic gases modelization

- $N \ge 1$ gases, $x, v \in \mathbb{R}^3$, $t \ge 0$, $f(t, x, v, l) = (f_i(t, x, v, \frac{l_i}{l_i}))_{1 \le i \le N}$,
- $\delta_i \geq 0$, $\delta := \sum_i \frac{n_i}{n} \delta_i$,
- $I_i^{\frac{2}{\delta_i}} \geq 0$ continuous level of internal energy of i, $I = ^T (I_1, \dots, I_N)$,
- Natural inner product, for $g(v, I) = (g_i)_{1 \le i \le N}$, $h(v, I) = (h_i)_{1 \le i \le N}$:

$$\langle g, h \rangle := \sum_{i=1}^{N} \iint g_i(v, l_i) h_i(v, l_i) dv dl_i$$

ullet Weighted inner product with a Maxwellian vector ${\mathcal M}$:

$$\langle g, h \rangle_{\mathcal{M}} := \sum_{i=1}^{N} \iint g_i(v, I_i) h_i(v, I_i) \mathcal{M}_i(v, I_i) dv dI_i$$

August, 26th 2021

Macroscopic quantities

$$e_i = {}^T (0, \ldots, 0, \underset{i}{1}, 0, \ldots, 0), \ \overline{w} = \sum_i w_i e_i.$$

- $n_i := \langle f, e_i \rangle$,
- $\bullet \ \rho_i := m_i n_i,$
- $u_i := \frac{1}{m_i} \langle f, ve_i \rangle$,
- $n := \sum_i n_i$, $\rho := \sum_i \rho_i$, $u := \sum_i \frac{\rho_i}{\rho} u_i$,
- $nE_{tr} := \left\langle f, \frac{1}{2}\overline{m}(v-u)^2 \right\rangle = \frac{1}{2}\sum_i \iint m_i(v-u)^2 f_i dv dl_i =: \frac{3}{2}nkT_{tr},$
- $nE_{int} := \left\langle f, \overline{\frac{I^2}{\delta}} \right\rangle = \sum_i \iint I_i^{\frac{2}{\delta_i}} f_i dv dI_i =: \frac{\delta}{2} nkT_{int},$
- $\bullet \ \mathcal{E} := \textbf{\textit{E}}_{int} + \textbf{\textit{E}}_{tr} = \frac{\delta}{2} k \textbf{\textit{T}}_{int} + \frac{3}{2} k \textbf{\textit{T}}_{tr} =: \frac{\delta + 3}{2} k \textbf{\textit{T}}.$

August, 26th 2021

Conservation vectors

Conservation space

The collisional invariants are:

$$\begin{cases} \phi_1 = \begin{pmatrix} 1 \\ \vdots \\ 0 \end{pmatrix}, \dots, \phi_N = \begin{pmatrix} 0 \\ \vdots \\ 1 \end{pmatrix} \text{ (Mass)} \\ 1 \leq j \leq 3, \phi_{N+j} = \begin{pmatrix} m_1 v_{x_j} \\ \vdots \\ m_N v_{x_j} \end{pmatrix} \text{ (Total Momentum)} \\ \phi_{N+4} = \begin{pmatrix} \frac{1}{2} m_1 v^2 + I_1^{\frac{2}{\delta_1}} \\ \vdots \\ \frac{1}{2} m_N v^2 + I_N^{\frac{2}{\delta_N}} \end{pmatrix} \text{ (Total Energy)} \end{cases}$$

 $\mathbb{K} = Span(\phi_i, 1 \le i \le N + 4)$ is the conservation space.

GUILLON Kévin (Bordeaux) August, 26th 2021

Basic physical requirements

Hypotheses for ${\cal R}$

- **Onservation laws:** $\langle \mathcal{R}(f), \phi \rangle = 0 \Leftrightarrow \phi \in \mathbb{K}$,
- 4 H-Theorem:

$$\partial_t \langle f, \log f - 1 \rangle + \nabla \cdot \langle vf, \log f - 1 \rangle = \langle \mathcal{R}(f), \log f \rangle \leq 0,$$

equality iff $f = \mathcal{M}$, with:

$$\mathcal{M}_{i} = n_{i} \left(\frac{m_{i}}{2\pi kT}\right)^{\frac{3}{2}} \left(\frac{1}{kT}\right)^{\frac{\delta_{i}}{2}} \Lambda_{i}^{-1} \exp\left(-\frac{m_{i}(v-u)^{2}}{2kT} - \frac{I_{i}^{\frac{\delta_{i}}{\delta_{i}}}}{kT}\right),$$

$$\Lambda_{i} = \int_{0}^{\infty} \exp\left(-I_{i}^{\frac{2}{\delta_{i}}}\right) dI_{i} = \frac{\delta_{i}}{2} \Gamma\left(\frac{\delta_{i}}{2}\right).$$

9 Properties at order 1: $\mathcal{L} := \mathcal{M}^{-1}D(\mathcal{R}(\mathcal{M}\cdot))$ is continuous, self adjoint, < 0 on \mathbb{K}^{\perp} with $Ker(\mathcal{L}) = \mathbb{K}$.

GUILLON Kévin (Bordeaux)

August, 26th 2021

Contents

Polyatomic framework and first requirements

Expression of the phenomenological coefficients

3 Construction of the BGK operator

Phenomenologic coefficients

Navier-Stokes equations for a mixture:

$$\begin{cases} \partial_t \rho_i + \nabla \cdot (\rho_i u + J_i) = 0, \\ \partial_t (\rho u) + \nabla \cdot (\rho u \otimes u + p + J_u) = 0, \\ \partial_t (\rho E) + \nabla \cdot ((\rho E + p)u) + \nabla \cdot (J_q + J_u \cdot u) = 0. \end{cases}$$

Phenomenologic coefficients

Navier-Stokes equations for a mixture:

$$\begin{cases} \partial_t \rho_i + \nabla \cdot (\rho_i u + J_i) = 0, \\ \\ \partial_t (\rho u) + \nabla \cdot (\rho u \otimes u + p + J_u) = 0, \\ \\ \partial_t (\rho E) + \nabla \cdot ((\rho E + p)u) + \nabla \cdot (J_q + J_u \cdot u) = 0. \end{cases}$$

Thermodynamic of irreversible processes:

• Mass fluxes :
$$J_i = \sum_{j=1}^N L_{ij} \nabla (-\frac{\mu_j}{kT}) + \frac{L_{iq}}{kT} \nabla (-\frac{1}{kT}),$$

• Heat flux :
$$J_q = \sum_{j=1}^N \frac{L_{qj}}{kT} \nabla (-\frac{\mu_j}{kT}) + \frac{L_{qq}}{kT} \nabla (-\frac{1}{kT}),$$

• Velocity flux : $J_u = -\eta \sigma(u) - \eta_V \nabla \cdot u I d_3$.

Aim: recovering green coefficients at hydrodynamic limit.

Expression of \mathcal{L}

Chapman Enskog expansion at order $1\Rightarrow \mathcal{L}_i(g)=\frac{(\partial_t+v\cdot\nabla)\mathcal{M}_i}{\mathcal{M}_i}$;

$$\mathcal{L}[\mathcal{R}](g) = kTA : \sigma(u) + B \cdot \nabla(-\frac{1}{kT}) + \sum_{j=1}^{N} \Phi_{j} \cdot \nabla(-\frac{\mu_{j}}{kT}) - \alpha \nabla \cdot u$$

$$\Phi_{j} := P_{\mathbb{K}^{\perp}}(C_{j}), C_{j} =^{T} (0, \dots, 0, v - u, 0, \dots, 0),
\uparrow_{j}
A(V)_{i} := V_{i} \otimes V_{i} - \frac{1}{3}V_{i}^{2}, V_{i} = \sqrt{\frac{m_{i}}{kT}}(v - u)
B(v)_{i} := (v - u)(\frac{1}{2}kTV_{i}^{2} + I_{i}^{\frac{2}{\delta_{i}}} - \frac{nm_{i}}{\rho}(\frac{\delta + 5}{2})kT),
\alpha(V, I)_{i} := (\frac{1}{\delta + 3} - \frac{1}{3})V_{i}^{2} + \frac{\delta - \delta_{i}}{\delta + 3} + 2\frac{I_{i}^{\frac{2}{\delta_{i}}}}{kT(\delta + 3)} = -P_{\mathbb{K}^{\perp}}(\frac{1}{2}V^{2}) = \frac{1}{kT}P_{\mathbb{K}^{\perp}}(\overline{I_{\delta}^{2}})
\mu_{j} = -kT \ln\left(\frac{n_{j}\Lambda_{j}^{-1}}{(\frac{2\pi kT}{m_{i}})^{\frac{3}{2}}}\right).$$

August, 26th 2021 1

NS identification \Rightarrow Expressions of the CE Fluxes :

NS identification \Rightarrow Expressions of the CE Fluxes :

$$J_{i}[\mathcal{R}] = \langle \Phi_{i}, g \rangle_{\mathcal{M}} \quad J_{u}[\mathcal{R}] = kT \langle A - \alpha I_{3}, g \rangle_{\mathcal{M}} \quad J_{q}[\mathcal{R}] = \langle B, g \rangle_{\mathcal{M}}$$

NS identification \Rightarrow Expressions of the CE Fluxes :

$$J_{i}[\mathcal{R}] = \langle \Phi_{i}, g \rangle_{\mathcal{M}} \quad J_{u}[\mathcal{R}] = kT \langle A - \alpha I_{3}, g \rangle_{\mathcal{M}} \quad J_{q}[\mathcal{R}] = \langle B, g \rangle_{\mathcal{M}}$$

$$ullet$$
 $L_{ij}[\mathcal{R}] = rac{1}{3} \left\langle \Phi_i, \mathcal{L}[\mathcal{R}]^{-1} \Phi_j
ight
angle_{\mathcal{M}},$

- $L_{iq}[\mathcal{R}] = \frac{1}{3} \left\langle \Phi_i, \mathcal{L}[\mathcal{R}]^{-1}(B) \right\rangle_{\mathcal{M}}, \ L_{qj}[\mathcal{R}] = \frac{1}{3} \left\langle B, \mathcal{L}[\mathcal{R}]^{-1} \Phi_j \right\rangle_{\mathcal{M}},$
- $L_{qq}[\mathcal{R}] = \frac{1}{3} \langle B, \mathcal{L}[\mathcal{R}]^{-1}(B) \rangle_{\mathcal{M}}$,
- $\left| \eta[\mathcal{R}] = -\frac{1}{6} k^2 T^2 \left\langle A, \mathcal{L}[\mathcal{R}]^{-1}(A) \right\rangle_{\mathcal{M}} \right|, \left[\eta_V[\mathcal{R}] = -kT \left\langle \alpha, \mathcal{L}[\mathcal{R}]^{-1}(\alpha) \right\rangle_{\mathcal{M}} \right].$

August, 26th 2021 12

NS identification \Rightarrow Expressions of the CE Fluxes :

$$J_{i}[\mathcal{R}] = \langle \Phi_{i}, g \rangle_{\mathcal{M}} \quad J_{u}[\mathcal{R}] = kT \langle A - \alpha I_{3}, g \rangle_{\mathcal{M}} \quad J_{q}[\mathcal{R}] = \langle B, g \rangle_{\mathcal{M}}$$

$$\bullet \ \, \bigg| \ \, L_{ij}[\mathcal{R}] = \frac{1}{3} \left\langle \Phi_i, \mathcal{L}[\mathcal{R}]^{-1} \Phi_j \right\rangle_{\mathcal{M}} \bigg|,$$

- $L_{iq}[\mathcal{R}] = \frac{1}{3} \left\langle \Phi_i, \mathcal{L}[\mathcal{R}]^{-1}(\mathcal{B}) \right\rangle_{\mathcal{M}}, \ L_{qj}[\mathcal{R}] = \frac{1}{3} \left\langle \mathcal{B}, \mathcal{L}[\mathcal{R}]^{-1} \Phi_j \right\rangle_{\mathcal{M}},$
- $L_{qq}[\mathcal{R}] = \frac{1}{3} \langle B, \mathcal{L}[\mathcal{R}]^{-1}(B) \rangle_{\mathcal{M}}$

•
$$\eta[\mathcal{R}] = -\frac{1}{6}k^2T^2\langle A, \mathcal{L}[\mathcal{R}]^{-1}(A)\rangle_{\mathcal{M}}$$
, $\eta_V[\mathcal{R}] = -kT\langle \alpha, \mathcal{L}[\mathcal{R}]^{-1}(\alpha)\rangle_{\mathcal{M}}$.

 $\mathbb{C} := Span\{\Phi_i, 1 \le i \le N\}$ space of Fick constraints.

Inverse problem:

Find $\mathcal{R}(f)$ well defined satisfying $(L[\mathcal{R}], \eta[\mathcal{R}], \eta_V[\mathcal{R}]) = (L^{emp}, \eta^{emp}, \eta_V^{emp}).$

Remark : Coefficients depend on $\mathcal{L}[\mathcal{R}]^{-1}$ and not $\mathcal{L}[\mathcal{R}]!$

Properties of the empirical coefficients

Study of the empirical Fick Matrix

- $igl) \sum_i m_i J_i = 0 \Rightarrow rank(L^{emp}) \leq N-1 \text{ (actually } =),$
- ② L^* defined by $L_{ij}^* := k \frac{L_{ij}}{||C_i||||C_j||}$ is symmetric (Casimir-Onsager relations), $\sigma(L^*) = \{d_1 < 0, d_{N-1} < 0, d_N = 0\},$
- If $W^T L^* W = Diag(d_1,..,d_N)$, then $(w_r := \sum_s W_{rs} \frac{C_s}{||C_s||})_{r < N}$ orthonormal basis of \mathbb{C} , while $w_N \in \mathbb{K}$.

Remark :
$$\sigma(L^*[\mathcal{R}]) - (0) = \sigma(\mathcal{L}[\mathcal{R}]^{-1}_{|\mathbb{C}})$$

 \Rightarrow Required properties on $\mathcal{L}[\mathcal{R}]$

Contents

Polyatomic framework and first requirements

Expression of the phenomenological coefficients

3 Construction of the BGK operator

Setting the correct relaxation constraints

Alternative expressions for fluxes and $\mathcal{L}[\mathcal{R}]$:

$$\mathcal{L}[\mathcal{R}](g) = \sum_{j=1}^{N} \Phi_{j} \cdot \frac{\nabla p_{j}}{p_{j}} + kTA(V) : \sigma(u) + B'(v, I) \cdot \nabla(-\frac{1}{kT}) - \alpha(V, I)\nabla \cdot u,$$

with $A, B', \alpha \in \mathbb{C}^{\perp}$ and :

$$J_i = \sum_{i=1}^N k L_{ij}[\mathcal{R}] \frac{\nabla p_j}{p_j} + \theta_i[\mathcal{R}] T \nabla (-\frac{1}{kT}), \quad \theta_i T = \frac{1}{3} \left\langle \Phi_i, \mathcal{L}[\mathcal{R}]^{-1}(\mathcal{B}') \right\rangle_{\mathcal{M}}.$$

Right constraints for the inverse problem:

$$\frac{\langle \mathcal{R}(f), \phi_i \rangle = 0, 1 \leq i \leq N}{\langle \mathcal{R}(f), w_r \rangle = -\lambda_r \langle f, w_r \rangle, \frac{\lambda_{r < N}}{\lambda_{r < N}} = -d_{r < N}^{-1},} \\
\langle \mathcal{R}(f), \alpha \rangle = -\lambda \langle f, \alpha \rangle, \frac{kT \|\alpha\|^2}{\eta_{r < N}^{exp}}$$

 $\mathcal{L}[\mathcal{R}]^{-1}(B') \in \mathbb{C}^{\perp}$ \Rightarrow right Fick coefficients.

$$\lambda = \frac{kT \|\alpha\|^2}{\eta_V^{\text{exp}}} \Rightarrow \text{right second viscosity.}$$

Construction of the relaxation operator

$$\mathcal{R}(f) = \nu(f)(G(f) - f)$$

Constraint set K(f):

$$h \in \mathcal{K}(f) \Leftrightarrow \begin{cases} \left\langle h, \phi_i \right\rangle = \left\langle f, \phi_i \right\rangle, 1 \leq i \leq N \\ \left\langle h, w_r \right\rangle = -\lambda_r \left\langle f, w_r \right\rangle \\ \left\langle h, \alpha \right\rangle = -\lambda \left\langle f, \alpha \right\rangle \end{cases},$$

$$\mathcal{H}(f) = \langle f, \log f - 1 \rangle = \sum_{i} \iint f_i(\log f_i - 1) dv dl_i.$$

Extended phenomenological constraints set : $\tilde{\mathbb{C}} := \mathbb{C} \oplus \mathbb{R}\alpha$. Entropy minimisation under constraints :

$$\exists ! G(f) = \operatorname{argmin}_{g \in K(f)} \mathcal{H}(f) \text{ for } \nu \geq \max\{\lambda_r, r \leq N\} \cup \{\lambda\},$$

$$G_{i}(f) = n_{i} \left(\frac{m_{i}}{(2\pi k T_{tr}^{*})}\right)^{\frac{3}{2}} \left(\frac{1}{k T_{int}^{*}}\right)^{\frac{\delta_{i}}{2}} \Lambda_{i}^{-1} \exp\left(-\frac{m_{i}(v - u_{i}^{*})^{2}}{2k T_{tr}^{*}} - \frac{I_{i}^{\frac{2}{\delta_{i}}}}{k T_{int}^{*}}\right)$$

Computations with the Fick relaxation operator

$$\boxed{ \mathcal{L}[\mathcal{R}] = \nu(R \circ P_{\tilde{\mathbb{C}}} - P_{\mathbb{K}^{\perp}}), \ R(w_r) = (1 - \frac{\lambda_r}{\nu})w_r, R(\alpha) = (1 - \frac{\lambda}{\nu})\alpha,}$$

$$\boxed{ \mathcal{L}^{-1}[\mathcal{R}] = \frac{1}{\nu}((R - Id)^{-1} \circ P_{\tilde{\mathbb{C}}} - P_{\tilde{\mathbb{C}}^{\perp}})}$$

- ullet R is a well-defined operator,
- $L_{ij}[\mathcal{R}] = L_{ij}^{emp}$,
- $\bullet \ \eta = \frac{5\mathit{nk}^2\mathit{T}^2}{3\nu} = \eta^{\mathit{emp}} \text{, for } \nu := \frac{5\mathit{nk}^2\mathit{T}^2}{3\eta_{\mathit{emp}}} \text{,}$
- $\eta_V = \frac{2\delta nkT}{3\lambda(\delta+3)} = \eta_V^{emp}$.

$$\mathsf{NSC}: \left| \eta^{\mathit{emp}} \leq \min\{\frac{5\mathit{nk}^2\mathit{T}^2}{3\max_{r}\lambda_r}, \frac{5}{6}(1+\frac{3}{\delta})\mathit{k}\mathit{T}\eta^{\mathit{V}}_{\mathit{emp}} \} \right|.$$

Conclusions and perspectives

Conclusions:

- BGK model fulfilling satisfying physics laws, recovering Fick law and both viscosities.
- Possibility to adapt required quantities (from empirical values or any other operator's),
- Minimization obstacle while trying to recover extra coefficients,
- Generalization of monoatomic case.

Some perspectives:

- Include chemical reactions, conciliated with continuous model,
- Investigate possibility and modalities of containing mere monoatomic case (definition? $[\delta \to 0]$?),
- More realistic model, with $\delta = \delta(T)$.