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Lecture plan

• Lecture 1: Aggregation of numbers, vectors and
matrices

• Lecture 2: Aggregation of tensors

Some jargons to be used in this lecture:

Consensus in position: aggregation,
Consensus in velocity: flocking,
Consensus in frequency: synchronization

As long as there is no confusion, we still use "aggregation" to
denote consensus of state.
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Outline of Lecture 1

• A master aggregation model

• A hierarchy of (finite-dimensional) aggregation models

• Aggregation of tensors
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The first story: A master aggregation model

q̇i = νi +
1
N

N∑
k=1

Ψ(qk − qi).

qi ∈M : state for the i-th particle, Ψ : coupling function.



A MASTER AGGREGATION MODEL A HIERARCHY OF FINITE-DIMENSIONAL AGGREGATION MODELS AGGREGATION OF TENSORS

Collective behaviors of biological systems

• Aggregation of bacteria Flocking of birds, Synchronization of fireflies
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PDE models for collective dynamics
• The Keller-Segel model :Patlak (1953), Keller-Segel (1970s)

∂tρ+∇ · (ρ∇c) = σ∆ρ, −∆c = ρ,

• The hydrodynamic Cucker-Smale model H-Tadmor ’08

∂tρ+∇x · (ρu) = 0,

∂t (ρu) +∇x · (ρu ⊗ u) = −κ
∫

Rd
ψ(|x − y |)(u(y)− u(x))ρ(x)ρ(y)dy .

• The kinetic Kuramoto model Kuramoto ’75

∂tF + ∂θ(ω[F ]F ) = 0,

ω[F ](θ, ν, t) := ν − κ
∫ 2π

0

∫
R

sin(θ∗ − θ)F (θ∗, ν∗, t)dν∗dθ.

At PDE level, three PDE models look different.
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Particle models

• The deterministic Keller-Segel model in R3

ẋi =
κ

N

∑
k 6=i

xk − xi

|xk − xi |3
.

• The Cucker-Smale model: Cucker-Smale ’07

ẋi = vi , v̇i =
κ

N

N∑
k=1

ψcs(xk − xi )(vk − vi ).

• The Kuramoto model: Kuramoto ’75

θ̇i = νi +
κ

N

N∑
k=1

sin(θk − θi ).
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First-order formulation of the C-S model on a line

• The C-S model in 1D: H-Kim-Park-Zhang ’19 ARMA

ẋi = vi , v̇i =
κ

N

N∑
k=1

ψ(xk − xi)(vk − vi).

Idea

ψ(xk − xi)(vk − vi) =
d
dt

∫ xk−xi

0
ψ(s)ds =:

d
dt

Ψcs(xk − xi).
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Then, C-S flocking becomes a first-order aggregation model:

ẋi = νi(X 0,V 0) +
κ

N

N∑
k=1

Ψcs(xk − xi),

νi(X 0,V 0) := v0
i −

κ

N

N∑
j=1

ψ(x0
k − x0

i ).
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Particle Pictures
qi : generalized position of the i-th particle.

• The deterministic Keller-Segel model in 3d

q̇i = νi +
κ

N

N∑
k=1

Ψa(qk − qi ), Ψa(q) =
q
|q|3

.

• The Cucker-Smale model in 1d

q̇i = νi (q0,p0) +
κ

N

N∑
k=1

Ψcs(qj − qi ), Ψcs(q) =

∫ q

ψcs(y)dy .

• The Kuramoto model

q̇i = νi +
κ

N

N∑
k=1

Ψk (qk − qi ), Ψk (q) = sin q.
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Summary of the first story

Many collective behaviors of many-body systems can be

described by the first-order master aggregation model:

q̇i = νi +
κ

N

N∑
k=1

Ψ(qk − qi), qi ∈M.

In other words, there exists a kind of triality relation:

Keller-Segel aggregation ⇐⇒ 1d CS flocking
⇐⇒ Kuramoto synchronization.
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A three-minute tour with the Kuramoto model
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Kuramoto’s seminal paper (1975)
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• Kuramoto’s approach: Stewart-Landau oscillator

ż = (1− |z|2 + iν)z ⇐⇒ ṙ = r(1− r2), θ̇ = ν.

where z = reiθ ∈ C : location of oscillator, ν: natural
frequency or intrinsic phase velocity

� Linearly coupled Stewart-Landau oscillators:

żj = (1− |zj |2 + iνj)zj +
κ

N

N∑
i=1

(zi − zj).

We set
zj = eiθj

and compare the imaginary part of the resulting relation
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Kuramoto’s mean-field analysis

θ̇i = νi︸︷︷︸
random

+
κ

N

N∑
i=1

sin(θj − θi)︸ ︷︷ ︸
nonlinear coupling

.

Introduce order parameters R and φ:

Reiφ :=
1
N

N∑
j=1

eiθj , R ∈ [0,1].

This yields

Rei(φ−θi ) =
1
N

N∑
j=1

ei(θj−θi ), i.e., R sin(φ− θi) =
1
N

N∑
i=1

sin(θj − θi).
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Thus
KM ⇔ θ̇i = νi + KR sin(φ− θi).

If |νi | > KR, then i-th oscillator will drift over the circle.

If |νi | ≤ KR, then i-th oscillator will approach to some
equilibrium.

• Asymptotic order parameter

R∞(κ) := lim
t→∞

lim
N→∞

RN(κ, t).
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Phase transitions at the critical coupling strength κc

• Self-consistent analysis

∂t f + ∂θ(ω[f ]f ) = 0,

ω[f ](x ,Ω, t) := Ω− K
∫ 2π

0

∫
R

sin(θ∗ − θ)f (θ∗,Ω∗, t)g(Ω∗)dΩ∗dθ.
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Why aggregation model?

• Decentralized control algorithms from control theory

• Consensus-based optimization(CBO) algorithm

dX i
t = κ

∑
k

ωk (X k
t − X i

t )dt + σ
∑

k

ωk (X k
t − X i

t )� dWt ,

ωk =
e−βL(X k

t )∑N
l=1 e−βL(X l

t )
.

Askari-Sichani–Jalili ’13, Pinnau–Totzeck–Tse–Martin ’17,
Carrillo–Choi–Totzeck–Tse ’18, Carrillo–Jin–Li–Zhu ’19, · · ·
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• Systemic risk in financial market Garnier-Papanicolaou-Yang ’13

dx i
t = −hV ′(x i

t )dt +
κ

N

∑
k

(xk
t − x i

t )dt + σdw i
t .
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The second story: A hierarchy of
(finite-dimensional) aggregation models

a, A =

 a1
...

ad

 , U =

 a11 · · · a1d
... ... ...

ad1 · · · add

 .
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Well-known Lohe type aggregation models
• The Lohe matrix(LM) model: Lohe (’09, ’10)

Ui : d × d unitary matrix, Hi : d × d Hermitian matrix.

iU̇iU∗
i = Hi +

iκ
2N

N∑
k=1

(
UiU∗

j − UjU∗
i
)
.

• The swarm sphere(SS) model: Olfati-Saber ’06, Lohe ’09

xi : a real vector in Rd , Ωi : d × d skew-symmetric matrix.

||xi ||2ẋi = Ωixi +
κ

N

N∑
k=1

(
〈xi , xi〉xk − 〈xk , xi〉xi

)
,

• The Kuramoto model: Kuramoto ’75

θi : real number, νi : real number.

θ̇i = νi +
κ

N

N∑
k=1

sin(θk − θi ).
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A hierarchy of aggregation models

• From LM model to SS model

For d = 2, we set

Ui := i
3∑

k=1

xk
i σk + x4

i I2 =

(
x4

i + ix1
i x2

i + ix3
i

−x2
i + ix3

i x4
i − ix1

i

)
,

Hi =
3∑

k=1

ωk
i σk + νi I2,

where

I2 :=

(
1 0
0 1

)
, σ1 :=

(
1 0
0 −1

)
, σ2 :=

(
0 −i
i 0

)
, σ3 :=

(
0 1
1 0

)
.
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Consider the SS model:

||xi ||2ẋi = Ωixi +
κ

N

N∑
k=1

(||xi ||2xk − 〈xi , xk 〉xi),

where Ωi is a real 4× 4 skew-symmetric matrix:

Ωi :=


0 −ω3

i ω2
i −ω1

i
ω3

i 0 −ω1
i −ω2

i
−ω2

i ω1
i 0 −ω3

i
ω1

i ω2
i ω3

i 0

 .

cf. Special skew-symmetric matrix.



A MASTER AGGREGATION MODEL A HIERARCHY OF FINITE-DIMENSIONAL AGGREGATION MODELS AGGREGATION OF TENSORS

• From SS to Kuramoto We set

d = 2, xi =

[
cos θi
sin θi

]
, Ωi =

[
0 −νi
νi 0

]
,

Then, the SS model

‖xi‖2ẋi = Ωixi +
κ

N

N∑
k=1

(〈xi , xi〉xk − 〈xk , xi〉xi),

reduces to the Kuramoto model:

θ̇i = νi +
κ

N

N∑
k=1

sin(θk − θi).

Remark: The SS model and the Lohe matrix model can be regarded
as high-dimensional Kuramoto model.
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Emergent dynamics
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Synchronization of the Kuramoto model

θ̇i = νi +
κ

N

N∑
j=1

sin(θj − θi), i = 1, · · · ,N.

� Desync. and Sync.:

N = 50, νi ∈ [−1, 1], κ = 0.8, κ = 2.2
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Remarks on the complete synchronization
For a phase configuration Θ = (θ1, · · · , θN), we set a phase diameter:

D(Θ) := max
i,j
|θi − θj |.

• Lyapunov functional approach:

1. Chopra-Spong (2009), H-Ha-Kim (2010): D(Θ) < π
2

2. Dorfler-Bullo (2011), Choi-H-Jung-Kim (2012),· · · : D(Θ) < π.

Next, we introduce Kuramoto order parameters (R, φ):

Reiφ :=
1
N

N∑
j=1

eiθj , R sin(φ− θi ) =
1
N

N∑
j=1

sin(θj − θi ).

Hence

Kuramoto model ⇐⇒ θ̇i = νi + κR sin(φ− θi).
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Non-synchronizing Kuramoto flow

Exact Kuramoto flow:

N = 4, ν1 = ν2 6= ν3 = ν4,

θ1 = ν1t , θ2 = ν1t + π, θ3 = ν3t , θ4 = ν3t + π.

In this case, R is identically zero:

R =
1
N

(eiν1t + eiν1t+πi + eiν3t + eiν3t+πi) = 0, t ≥ 0.

So no matter how large the coupling κ is, Kuramoto flow
cannot achieve complete synchronization



A MASTER AGGREGATION MODEL A HIERARCHY OF FINITE-DIMENSIONAL AGGREGATION MODELS AGGREGATION OF TENSORS

Complete Synchronization for generic initial data

• Theorem H-Kim-Ryoo ’16, H-Ryoo ’18

Suppose initial configuration and natural frequencies satisfy

R0 :=
∣∣∣ 1
N

N∑
j=1

eiθj (0)
∣∣∣ > 0

∑
j

νj = 0.

Then, ∃ κ∞ = 1.6D(ν)

R2
0
> 0 and phase-locked state Θ∞ such

that
κ ≥ κ∞ =⇒ lim

t→∞
||Θ(t)−Θ∞||∞ = 0.

cf. Sufficient conditions, a gradient flow formulation and uniform
boundedness of fluctuations for κ� 1.
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Some references on synchronization

• J. A. Acebron, L. L. Bonilla, C. J. P. Pérez Vicente, F. Ritort and R.
Spigler: The Kuramoto model: A simple paradigm for synchronization
phenomena. Rev. Mod. Phys. 77 (2005), 137-185.

• A. Pikovsky, M. Rosenblum and J. Kurths: Synchronization: A universal
concept in nonlinear sciences. Cambridge University Press,
Cambridge, 2001.

• F. Dörfler, and F. Bullo: Synchronization in complex networks of phase
oscillators: A survey. Automatica 50 (2014), 1539-1564.

• S.-Y. Ha and D. Kim: Collective dynamics of Lohe type aggregation
models. To appear in arxiv.
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Aggregation estimate for the SS model

ẋi = Ωixi +
κ

N

N∑
k=1

(xk − 〈xi , xk 〉xi).

• For identical ensemble with:

Ωi = Ω, i = 1, · · · ,N,

aggregation estimates have extensively studied by H-Choi, J.
Markdahl, J. Thunberg, J. Goncalves, V. Jaclmovic, A. Crnkic, J.
Zhu and their collaborators.

• For non-identical ensemble with

Ωi 6= Ωj ,

aggregation estimates are largely open except
practical aggregation

cf. Phase-transition like phenomena: Michelle Girvan and Edward Ott.
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An aggregation model for the LM model

• Aggregation on U(d):

Recall the unitary group U(d):

U(d) := {A ∈ Cd×d : UU∗ = U∗U = Id}

and the Kuramoto model on S1:

θ̇i = νi +
κ

N

N∑
j=1

sin(θj − θi).

cf. U(1): circle group of complex numbers with absolute value 1
under multiplication.
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• The Lohe matrix model (2009):

iU̇iU∗i︸ ︷︷ ︸
generalized frequency

= Hi +
iκ
2N

N∑
j=1

(
UjU∗i − UiU∗j

)
︸ ︷︷ ︸

nonlinear coupling

,

cf. 1. Lohe, M. A.: Non-abelian Kuramoto model and synchronization. J.
Phys. A: Math. Theor. 42, 395101-395126 (2009).

Ui (t) : d × d unitary matrix, Hi : d × d Hermitian matrix.

2. DeVille (’19), Bronski-Carty-Simpson (’20).
3. H-Golse (’19): Mean-field limit
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From Lohe to Kuramoto and Schrödinger

• From Lohe to Kuramoto: For d = 1, we set

Ui = e−iθi , Hi = νi .

Thus, the Lohe matrix model reduces the Kuramoto model:

θ̇i = νi +
κ

N

N∑
j=1

sin(θj − θi).

• From Lohe to Schrödinger: For κ = 0,

iU̇iU∗i = Hi , or U̇i = −iHiUi .

This yields
Ui(t) = e−iHi tUi(0), t > 0.
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Mathematical beauties

iU̇iU∗i = Hi +
iκ
2N

N∑
j=1

(
UjU∗i − UiU∗j

)
,

• Invariance of UiU∗i :

d
dt

(UiU∗i ) = 0, t > 0.

Note that for U ∈ U(d), the LM model can rewritten as

U̇i = −iHiUi +
κ

2N

N∑
j=1

(Uj − UjU∗j Ui )

= −iHiUi +
κ

2
(Uc − 〈Uc ,Ui〉F Ui ).
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• Invariance under the right-multiplication by a unitary matrix: if
L ∈ U(d) and Vi = UiL, then Vi satisfies

iV̇iV ∗i = Hi +
iκ
2N

N∑
j=1

(
VjV ∗i − ViV ∗j

)
, Vi(0) = Ui0L.

• Solution splitting property: For identical hamiltonians Hi = H,
the solution operator of the Lohe matrix model can be split as a
composition of two solution operators of the following two
systems:

iU̇iU∗i = H and iU̇iU∗i =
iκ
2N

N∑
j=1

(
UjU∗i − UiU∗j

)
.
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A Lyapunov functional approach

1. Step A: Introduce an ensemble diameters:

D(U) := max
1≤i,j≤N

‖Ui −Uj‖F , D(H) := max
1≤i,j≤N

‖Hi −Hj‖F .

2. Step B: Derive a Gronwall type differential inequality for
D(U):∣∣∣∣ d
dt

D(U)2 + 2κD(U)2
∣∣∣∣ ≤ 2D(H)D(U)+κD(U)4 a.e. t ∈ (0,∞).

3. Step C: Establish the existence of PLSs. For example, for
identical oscillators with D(H) = 0,

lim
t→∞

D(U(t)) = 0.
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• Theorem: (H-Ryoo ’16, J. Stat. Phys.) Suppose that κ and U0

satisfy

κ >
54
17

D(H), max
i,j
‖U0

i − U0
j ‖F < α for some α > 0

Then, we have

1. {Ui} achieves asymptotic phase-locking:

lim
t→∞

UiU∗j

converges exponentially fast, with exponential rate bounded
above by −κ(1− 3α1).

2. There exists a phase-locked state {Vi} and L ∈ U(d) such that

lim
t→∞

‖Ui − ViL‖F = 0

converges exponentially fast.
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Summary of the second story

• The Kuramoto model, the swarm sphere model and the
Lohe matrix model for real numbers, real vectors and
unitary matrices.

• Sufficient frameworks for the complete aggregation of the
Lohe matrix model for restricted initial data.
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Some open problems

• The Kuramoto model: Complete synchronization for
generic data has been verified using the gradient flow
formulation for κ� 1, so the remaining open issue is to
identify a minimal coupling strength for generic data.

• The SS and LM models: Complete aggregation for
restricted initial data has been verified using a Lyapunov
functional approach for κ� 1. As in the Kuramoto model,
is the complete aggregation true for generic data?
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Third story: An aggregation model for tensors

• Can we construct an aggregation model on the space
of non square matrices, for example Rn×m with
n 6= m?

• Can we propose an aggregation model on Hermitian
unit sphere HSd−1?
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General strategy: A bird view approach

We first design a master consensus model incorporating
aforementioned aggregation models with emergent dynamics,
possibly on the space of tensors, and then derive aggregation

models on Rn×m and HSd−1.
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What is a tensor?

� Physicist’s Definition: Tensor is a multi-dimensional array of
complex numbers, and the rank of a tensor is the number of
indices.

complex number: rank-0 tensor, Cd -vector: rank-1tensor, m × n
complex matrix: rank-2 tensor
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� Remark: 1. We denote the set of all rank-m tensors with size
d1 × · · · × dm by Tm(C; d1 × · · · dm). Then, the set Tm(C) is a
vector space. For a given tensor T ∈ Tm(C; d1 × · · · dm) and
α ∈ Πm

i=1{1, · · · ,di}, we denote [T ]α to be the α-th component
of T .

2. Einstein summation convention: For rank-1 tensor u and v ,

〈u, v〉 =
∑
α

[ū]α[v ]α =: [ū]α[v ]α.
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Question

Design a generalized aggregation model which can include
previous models
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Learning from the SS and LM models

• The swarm sphere model in vector form

ẋi = Ωixi︸︷︷︸
free flow

+
κ

N

N∑
k=1

(〈xi , xi〉xk − 〈xk , xi〉xi )︸ ︷︷ ︸
cubic interactions

= Ωixi + κ(〈xi , xi〉xc − 〈xc , xi〉xi ).

� The swarm sphere model in component form

d
dt

[xi ]α = [Ωixi ]α + κ([xi ]β[xi ]β[xc ]α − [xi ]β[xc ]β[xi ]α)

= [Ωi ]αβ[xi ]β + κ([xi ]β[xi ]β[xc ]α − [xi ]β[xc ]β[xi ]α)

where xc = 1
N
∑N

k=1 xk .
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• The Lohe matrix model in matrix form

iU̇jU∗j = Hj +
iκ
2N

N∑
k=1

(Uk U∗j − UjU∗k ).

or equivalently

U̇j = −iHjUj +
κ

2
(UcU∗j Uj − UjU∗c Uj ).

or
U̇j = −iHjUj︸ ︷︷ ︸

free flow

+
κ

2
(UjU∗j Uc − UjU∗c Uj )︸ ︷︷ ︸
cubic couplings

.
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� The Lohe matrix model in component form

d
dt

[Uj ]αβ = [−iHiUj ]αβ+
κ

2
([Uj ]αγ ¯[Uj ]δγ [Uc]δβ−[Uj ]αγ ¯[Uc]δγ [Uj ]δβ)

Next, we interpret the free flow term [−iHjUj ]αβ as a contraction of
rank-4 tensor Aj and rank-2 tensor Uj . For this, we define rank-4
tensor Aj as follows:

[Aj ]αβγδ := [−iHj ]αγδβδ and δβδ :=

{
1, β = δ,

0, β 6= δ.

Then, one can see

¯[Aj ]γδαβ = −[Aj ]αβγδ and [Aj ]αβγδ[Uj ]γδ = [−iHjUj ]αβ.
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Lessons from the SS and LM models

Consider an ensemble {Tj}N
j=1 of complex rank-m tensors, and for

notational simplicity, we set

α∗ = (α1, · · · , αm), β∗ = (β1, · · · , βm).

Then, we begin with following structure:

d
dt

[Tj ]α∗ = free flow + cubic interactions.

• (Modeling of free flow)

Contraction of rank-2m tensor Aj and rank-m tensor Tj :

free flow part = [Aj ]α∗β∗ [Tj ]β∗ .
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• (Modeling of cubic interactions): for a dummy variable β,

[Tc ]i1 [Tj ]β[Tj ]i2 − [Tj ]i1 [Tc ]β[Tj ]i2 .

• Definition:

We define the Frobenius inner product on Tm(C; d1×d2× · · ·×dm) as
follows.

〈Ti ,Tj〉F := [Ti ]α∗ [Tj ]α∗ , i , j = 1, · · · ,N.
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Summary of the third Story

• The SS model in component form:

d
dt

[xi ]α = [Ωi ]αβ [xi ]β + κ([xi ]β [xi ]β [xc ]α − [xi ]β [xc ]β [xi ]α)

• The LM model in component form:

d
dt

[Uj ]αβ = [Aj ]αβγδ[Uj ]γδ +
κ

2
(
[Uc ]αγ [U∗

j ]γδ[Uj ]δβ − [Uj ]αγ [U∗
c ]γδ[Uj ]δβ

)
.

• Lesson from above models

d
dt

[Tj ]α∗ = free flow + cubic interactions.



A MASTER AGGREGATION MODEL A HIERARCHY OF FINITE-DIMENSIONAL AGGREGATION MODELS AGGREGATION OF TENSORS

Summary of Lecture 1

We have reviewed the emergent dynamics of a hierarchy of
Lohe type aggregation models:

U̇i = −iHiUi +
κ

2N

N∑
k=1

(
Uk − 〈Uk ,Ui〉F Ui

)
,

ẋi = Ωixi +
κ

N

N∑
k=1

(
xk − 〈xk , xi〉xi

)
,

θ̇i = νi +
κ

N

N∑
k=1

sin(θk − θi).
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Gradient flow formulation
• The Kuramoto model on RN : van Hemmen-Wreszinski (1993), Dong-Xue
(’13), H-Kim-Ryoo (’16)

Rk :=
∣∣∣ 1
N

N∑
j=1

eiθj
∣∣∣, Vk (Θ) = −ν ·Θ− κNR2

k .

The Kuramoto model ⇐⇒ Θ̇ = −∇ΘVk (Θ).

• The SS model on SdN : H-Ko-Ryoo (’18)

Rs :=
∥∥∥ 1

N

N∑
j=1

xj

∥∥∥, Vs(X ) = −κ
2

NR2
s .

The SS model with Ωi = Ω ⇐⇒ ẋi = −∇xi Vs(X )
∣∣∣
Txi S

d
.

cf. For a heterogeneous ensemble, the SS model is not a gradient flow on
SdN .
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• The LM model on U(d)N : H-Ko-Ryoo (’18)

Rm :=
∥∥∥ 1

N

N∑
j=1

Uj

∥∥∥
F
, Vm := −κ

2
NR2

m.

The LM model with Hi = O ⇐⇒ U̇i = −∇UiVmTUi
(d).

cf. For a heterogeneous ensemble, the LM model is not a
gradient flow on U(d)N .
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Preview for Lecture 2

Tomorrow, we will continue the derivation of "the Lohe
tensor model" and study its emergent dynamics.

Questions and Comments
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Thank you for your attention !!!
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