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Lecture plan

e |ecture 1: Aggregation of numbers, vectors and
matrices

e Lecture 2: Aggregation of tensors

Some jargons to be used in this lecture:

Consensus in position: aggregation,
Consensus in velocity: flocking,
Consensus in frequency: synchronization

As long as there is no confusion, we still use "aggregation” to
denote consensus of state.



Outline of Lecture 1

e A master aggregation model
e A hierarchy of (finite-dimensional) aggregation models

e Aggregation of tensors



A MASTER AGGREGATION MODEL
©000000000000000

NSIONAL AGGREGATION MODELS

The first story: A master aggregation model

N
é]i =Vji+ Z Qk - CI/
k:

gi € M : state for the i-th particle, W : coupling function.
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Collective behaviors of biological systems

e Aggregation of bacteria Flocking of birds, Synchronization of fireflies
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PDE models for collective dynamics
e The Keller-Segel model :Patlak (1953), Keller-Segel (1970s)

o+ V- (pVe)=oclp, —Ac=p,
e The hydrodynamic Cucker-Smale model H-Tadmor '08

8;p+ Vix - (pU) =0,
O(pu) + V- (pu@ U) = —5 /Rd D(Ix =y (uly) = u(x))p(x)p(y)dy-

e The kinetic Kuramoto model Kuramoto ‘75
OtF + 0y(w[F]F) = 0,
21 p
w[F1(0,v,t) :=v — /<;/ / sin(6, — 0)F (0., v, t)dv,.do.
0 R

At PDE level, three PDE models look different.
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Particle models

e The deterministic Keller-Segel model in R3
Xk — Xj

% "N Z | Xk — Xl|3

e The Cucker-Smale model: Cucker-Smale '07

Xi=Vi, V= chs )(Vk - V/)-

o The Kuramoto model: Kuramoto ’75

N
. K .
0 =v+ N ,;_1 sin(0k

AGGREGATION OF TENSORS
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First-order formulation of the C-S model on a line

e The C-S model in 1D: H-Kim-Park-Zhang '19 ARMA
. . KR N
=V, V=g > (X — Xi)(vk — vi).
k=1
Idea

ad [X% d
w(xx — Xi)(vk — Vi) = dt/o P(s)ds =: a\Ilcs(xk — Xj).
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Then, C-S flocking becomes a first-order aggregation model:
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Particle Pictures

gi : generalized position of the i-th particle.

e The deterministic Keller-Segel model in 3d

N
. K q
gi=vi+ Nkz:: a(Gk — qi), Va(q) = EEh
e The Cucker-Smale model in 1d
. ‘q
qi = V Z \ch QI Wcs(Q) = wcs(}/)d}/-

e The Kuramoto model

N

g =vi+ Z; V(g — q1), Vk(q) =sing.
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Summary of the first story

Many collective behaviors of many-body systems can be
described by the first-order master aggregation model:

N
a=vt Vo) aeM

In other words, there exists a kind of triality relation:

Keller-Segel aggregation <= 1d CS flocking
<= Kuramoto synchronization.
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A three-minute tour with the Kuramoto model
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AGGREGATION O

Kuramoto’s seminal paper (1975)

Lecture Notes
in Physics

Edtod by J. Eers, Minshen, K Hepp, Zurich, and
H. A Waidsnller, Heiaelbsrg
Managing Editor: W. Baiglbtck, Heidelberg

39

International Symposium
on Mathematical Problems

in Theoretical Physics
January 2329, 1875, Kyoto University, Kyoto/Japan

Edited by H. Araki

y |
t]

-4

Springer-Verlag

Berlin - Heidelberg - New York 1976

SELF-ENTRAINMENT OF A POPULATION QF
COUPLED NON-LINEAR OSCILLATORS
Yoshiki Kuramoto

Department of Physics, Kyushu University, Fukuoka, Japan

Temporal organization of matter is a widespread phenomenon over a
macroscopic world in far from thermodynamic equilibrium. A previous
study on chemical instability!) implies that a simplest nontrivial
model for a temporally organized system may be represented by a macro-
scopic self-sustained oscillator Q obeying the equation of motion

Q= G+ 00 - sl
o,6 > 0.

(1)

Consider a population of such oscillators Ql’ QZ"“QN with various
frequencies, and introduce interactions between every pair as follows.
= (i 2
Qg = Gog + 0)Q + 1 v, 0 - 8]Q|70 »
¥ @)

1,5 = 1, 2,00¢N

TENSORS

000000000000 0000
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e Kuramoto’s approach: Stewart-Landau oscillator
z=(1—-|zP+iv)z <= Fr=r(1-r?, 6=vr

where z = re'? € C : location of oscillator, v: natural
frequency or intrinsic phase velocity

o Linearly coupled Stewart-Landau oscillators:

N
. . K
Zj = (1 — ’Zj‘z + ll/j)Zj + N Z(Z{ — Zj)

i=1

We set
Zj = e‘ef

and compare the imaginary part of the resulting relation
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Kuramoto’s mean-field analysis

random

nonlinear coupling

Introduce order parameters R and ¢:

2

Re'® = 1N > e Relo1].

This yields

N
‘ 1 .
i(0—0;) _ 0—0)
Re( )—NE e=9)  ie., Rsin(¢—0;) NE sin(
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Thus _
KM < 6= V,'—i-KRSih((ﬁ—Q,’).

If |vj| > KR, then i-th oscillator will drift over the circle.

If |v;| < KR, then i-th oscillator will approach to some
equilibrium.

e Asymptotic order parameter

R*®(k) := lim lim RN(k,1).

- t—o00 N—oo
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Phase transitions at the critical coupling strength k¢

¢ Self-consistent analysis

i + Dp(w[f]F) = O,

W[fl(x, Q. 1) = Q — K/O% /R sin(60, — 0)f(0., Q.. 1)g(Q.)d.. .

e e

ordered phase
ordered phase

4 A

P
Ko K
disordered phase

P A '
1

disordered phase* Ke’
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Why aggregation model?

¢ Decentralized control algorithms from control theory

e Consensus-based optimization(CBO) algorithm
OX{ = kY we( X = X)dt+ 0> we(Xf = X{) © dW,,
k Kk

e—BLIXE)

Wk = <N __a/(xh"
Sy e

Askari-Sichani—Jalili 13, Pinnau—Totzeck—Tse—Martin ’17,
Carrillo-Choi—Totzeck—Tse '18, Carrillo=Jin—Li—Zhu ’19, - - -
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e Systemic risk in financial market Garnier-Papanicolaou-Yang '13

. . H . .
dx! = —hV'(x))dt + N ;(xtk — X;)dt + odw;.



The second story: A hierarchy of
(finite-dimensional) aggregation models

ai ayr - aid

ad dg1 -+ ddd

A MASTER AGGREGATION MODEI A HIERARCHY OF FINITE-DIMENSIONAL AGGREGATION MODELS AGGREGATION O
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Well-known Lohe type aggregation models

e The Lohe matrix(LM) model: Lohe (’09, '10)
Ui : d x dunitary matrix, H;: d x d Hermitian matrix.

=

iUU = H+ 2N (u,-u,-*—u,u,-*).

e The swarm sphere(SS) model: Olfati-Saber ‘06, Lohe '09
X; : a real vector in ]Rd7 Q; : d x d skew-symmetric matrix.

N
. K
111X = Qixi + 3 > ( Xi, Xi) Xk — Xk7X/)X/>7
k=1

e The Kuramoto model: Kuramoto '75
0; : real number, v;: real number.

N
é/ =v+ % ;sin(ﬁk — 9,)
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A hierarchy of aggregation models

e From LM model to SS model

For d = 2, we set

3
U ::iZX,-ka-f—Xf'/g =

( xt+ix! X2 +ix? >
)
k=1

—x2+ix2 xt —ix/

3
H; = Zwlkdk + Vib,
k=1
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Consider the SS model:
o N
||xi| 12X = Qix; + N > (il Px — (%3, xc) x1),
k=1

where Q; is a real 4 x 4 skew-symmetric matrix:

0 fw? w,-z fw;

Q. — w,-3 0 —Ww; —w,-z

e —w,-z w,-1 0 —w?
w; w;? w? 0

cf. Special skew-symmetric matrix.
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e From SS to Kuramoto We set

d=2 x— [cosG,-] Q= {O' —1/,} ’

sin 6;

Then, the SS model

1xi|12X; = Qix; +

2\3

N
Z XIaXI <Xk,Xi>Xi),
reduces to the Kuramoto model:

N
. K i
0 =vi+ N kE_1 Sln(ek -0

Remark: The SS model and the Lohe matrix model can be regarded
as high-dimensional Kuramoto model.
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Emergent dynamics
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Synchronization of the Kuramoto model

N
A K . ,
9/:Uj+NjE1SIn(¢9j—9,'), i=1,--- N.

o Desync. and Sync.:

N = 50,
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Remarks on the complete synchronization
For a phase configuration © = (64, - - , fn), we set a phase diameter:

D(©) := max|0; — §;].
I7J

e Lyapunov functional approach:
1. Chopra-Spong (2009), H-Ha-Kim (2010): D(©) <
2. Dorfler-Bullo (2011), Choi-H-Jung-Kim (2012),---: D(©) < .

Next, we introduce Kuramoto order parameters (R, ¢):

Re'? = Zele/ Rsin(¢ — 6)) NZsm

Hence

Kuramoto model <= 6, = v; + kRsin(¢ — 6)).
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Non-synchronizing Kuramoto flow

Exact Kuramoto flow:

N=4, I/1=I/27£l/3=V4,
01 =w1t, O =vit+m, O3=uwv3t, 04 =v3t+m.

In this case, R is identically zero:
R = N(ell/1t 4 elv1t+7rl + ew3l‘ 4 ell/3t+7r1) —_ O, tZ 0.

So no matter how large the coupling  is, Kuramoto flow
cannot achieve complete synchronization
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Complete Synchronization for generic initial data

e Theorem H-Kim-Ryoo '16, H-Ryoo '18

Suppose initial configuration and natural frequencies satisfy

N
R = ]%Ze"’f”)) >0 Y y=0
= J

Then, 3 koo = 1.621)

2 >0 and phase-locked state ©> such
0
that

K> Koo = lim||O(t) — 0O || =0.
t—o0

cf. Sufficient conditions, a gradient flow formulation and uniform
boundedness of fluctuations for x > 1.
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Some references on synchronization

J. A. Acebron, L. L. Bonilla, C. J. P. Pérez Vicente, F. Ritort and R.
Spigler: The Kuramoto model: A simple paradigm for synchronization
phenomena. Rev. Mod. Phys. 77 (2005), 137-185.

A. Pikovsky, M. Rosenblum and J. Kurths: Synchronization: A universal
concept in nonlinear sciences. Cambridge University Press,
Cambridge, 2001.

F. Dérfler, and F. Bullo: Synchronization in complex networks of phase
oscillators: A survey. Automatica 50 (2014), 1539-1564.

S.-Y. Ha and D. Kim: Collective dynamics of Lohe type aggregation
models. To appear in arxiv.
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Aggregation estimate for the SS model

N
K
Xi = QX+ z_: — (X, XK)X;).

e For identical ensemble with:

Q=9 i=1 N

R R

aggregation estimates have extensively studied by H-Choi, J.
Markdabhl, J. Thunberg, J. Goncalves, V. Jaclmovic, A. Crnkic, J.
Zhu and their collaborators.

¢ For non-identical ensemble with
Q/ 7£ Q//

aggregation estimates are largely open except
practical aggregation

cf. Phase-transition like phenomena: Michelle Girvan_and Edward Ott.
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An aggregation model for the LM model
e Aggregation on U(d):
Recall the unitary group U(d):

U(d):={AecC¥: YU* = U'U= Iy}

and the Kuramoto model on S':
. H N
0 = v+ N ;Sin(gj - 9,‘).

cf. U(1): circle group of complex humbers with absolute value 1
under multiplication.
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e The Lohe matrix model (2009):

o7 * ix * *
iUU = Hi+ 5 (Uju,. ~ U )
generalized frequency =

nonlinear coupling

cf. 1. Lohe, M. A.: Non-abelian Kuramoto model and synchronization. J.
Phys. A: Math. Theor. 42, 395101-395126 (2009).

Ui(t) : d x d unitary matrix, H;: d x d Hermitian matrix.

2. DeVille ('19), Bronski-Carty-Simpson ('20).
3. H-Golse ('19): Mean-field limit
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From Lohe to Kuramoto and Schridinger
e From Lohe to Kuramoto: For d = 1, we set
U=e" H=u.

Thus, the Lohe matrix model reduces the Kuramoto model:
0 =vi+ N ;Sin(ej — ;).

e From Lohe to Schrédinger: For x = 0,
I'U,'U;k = H,‘, or U,' = —iH,'U,'.

This yields .
Ui(t) = e ™'y (0), t>0.
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Mathematical beauties

N
iU =H+ o> (U0 - UG,
j=1

o Invariance of U;U;":

d
4i
Note that for U € U(d), the LM model can rewritten as

UU) =0, t>0.

N

. . K «
U= —iHU;+ 55 ;(U, -y uru)

= —iHU; + 5(Us — (Uo, U U).

AGGREGATION OF TENSORS
000000000000 0000
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e Invariance under the right-multiplication by a unitary matrix: if
L € U(d) and V; = UL, then V; satisfies

. N
Y * 1K * *
Vi = Hit gy > (Vi = ViVi), Vi(0) = UplL.

e Solution splitting property: For identical hamiltonians H; = H,
the solution operator of the Lohe matrix model can be split as a
composition of two solution operators of the following two
systems:
. N
iU =H and iUU =% (U,-U,-* - U,-Uj*).

2N ¢4
J=1
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A Lyapunov functional approach
1. Step A: Introduce an ensemble diameters:

D(U):= max |Ui—Ullr,  D(H):= max |Hi— HiF.

1<ij<N 1<ij<N

2. Step B: Derive a Gronwall type differential inequality for
D(U):

;D(U)2+2HD(U)2 < 2D(H)D(U)+rD(U)* a.e.t e (0,00).

3. Step C: Establish the existence of PLSs. For example, for
identical oscillators with D(H) = 0,

lim D(U(t)) = 0.

t—o00
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e Theorem: (H-Ryoo '16, J. Stat. Phys.) Suppose that x and U°
satisfy

4
K> %D(H), max ||U) — U||[F < a for some o> 0
ij
Then, we have

1. {U;} achieves asymptotic phase-locking:

lim UiUy

t— o0

converges exponentially fast, with exponential rate bounded
above by —x(1 — 3ay).

2. There exists a phase-locked state {V;} and L € U(d) such that

Jim [[Uj = ViL|l¢ = 0

converges exponentially fast.
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Summary of the second story

e The Kuramoto model, the swarm sphere model and the
Lohe matrix model for real numbers, real vectors and
unitary matrices.

¢ Sufficient frameworks for the complete aggregation of the
Lohe matrix model for restricted initial data.
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Some open problems

¢ The Kuramoto model: Complete synchronization for
generic data has been verified using the gradient flow
formulation for x > 1, so the remaining open issue is to
identify a minimal coupling strength for generic data.

e The SS and LM models: Complete aggregation for
restricted initial data has been verified using a Lyapunov
functional approach for x > 1. As in the Kuramoto model,
is the complete aggregation true for generic data?
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Third story: An aggregation model for tensors

e Can we construct an aggregation model on the space
of non square matrices, for example R™" with
n=+#m?

e Can we propose an aggregation model on Hermitian
unit sphere HS?1?
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General strategy: A bird view approach

We first design a master consensus model incorporating
aforementioned aggregation models with emergent dynamics,
possibly on the space of tensors, and then derive aggregation

models on R™™ and HS?".



A MASTER AGGREGATION MODEI

A HIERARCHY OF FINITE-DIMENSIONAL AGGREGATION MODELS AGGREGATION OF TENSORS
0000000000000 000 0000000000 00O00O0000000

0000000000000 00

What is a tensor?

o Physicist’s Definition: Tensor is a multi-dimensional array of
complex numbers, and the rank of a tensor is the number of

indices.
Tensors Represented by a Matrix
scalar [a1] triad a3 a2z a1
vector lai] &5 a3 a3 A3
as ~ % as13 as; __c'!a_as'
as X,{ a2 aiz a8
Zk az12 azaz H232|
1st Q312 asy asz!
dyad a1 a2 a13 — 3‘: Sk Al
1 21 1131
a1 az Az az11 az2z21 a2 3rd
asq az2 as3 az11 asz1 asz
2nd

complex nhumber: rank-0 tensor, CY-vector: rank-1tensor, m x n
complex matrix: rank-2 tensor



A MASTER AGGREGATION MODEI A HIERARCHY OF FINITE-DIMENSIONAL AGGREGATION MODELS AGGREGATION OF TENSORS

000000000000 000C YOO0O0O00 000@000000000000

o Remark: 1. We denote the set of all rank-m tensors with size
di x -+ x dmby Tm(C; dy x ---dp). Then, the set 7,(C) is a
vector space. For a given tensor T € 7p(C; dy x ---dpm) and
aecn™ {1,---,d}, we denote [T], to be the a-th component
of T.

2. Einstein summation convention: For rank-1 tensor u and v,

(u,v) = Z[D]a[v]a =: [U]a[V]a-
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Question

Design a generalized aggregation model which can include
previous models
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Learning from the SS and LM models

e The swarm sphere model in vector form

N
. K
= Qix NZ Xi, Xi)Xk — (Xie, X1 X;)
v k=1
free flow

cubic interactions
= Qix; + £((Xi, Xi) Xe — (Xc, Xi) X;)-

o The swarm sphere model in component form

%[Xi]a = [Qixi]a + £([Xi]5[Xi]g[Xc]a — [Xi] g Xc] g Xi]a)

= [Qilaglxi]s + w([Xi]s[xi]s[Xclo — [Xi]s[Xc]5[Xi]a)

where x; = 4 S04 .
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e The Lohe matrix model in matrix form

2

iyUr = (UkU uuy).

2N
or equivalently
3 . K * *
U= —-iH U + E(UCUj U - YU b).

or
U= —iHU +5(UU e - YU U).
N——

free flow cubic couplings

AGGREGATION OF TENSORS
000000 @000000000
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© The Lohe matrix model in component form

[lJ/]aa—[ iHUlag+5 5 ([Ullon (U5, [Uelss—[Uay [Uels, [Ulss)

Next, we interpret the free flow term [—iH;Uj].s as a contraction of
rank-4 tensor A; and rank-2 tensor U;. For this, we define rank-4
tensor A; as follows:

. 1,
[Aj]aﬁ'yé = [—1Hj]a7555 and 555 = {0’ B4

Then, one can see

[A]

Misos = WAlesns and [AlusralUls = [FiHUlas.
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Lessons from the SS and LM models

Consider an ensemble {T,-}j’\i1 of complex rank-m tensors, and for
notational simplicity, we set

a*:(a17"'aam)a 6*:(517"'56m)~

Then, we begin with following structure:

%[Tj]a* = free flow + cubic interactions.

e (Modeling of free flow)
Contraction of rank-2m tensor A; and rank-m tensor T;:

free flow part = [Ala. 5. [Tils. -
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¢ (Modeling of cubic interactions): for a dummy variable S,

[Telii[TilslTili — [Tili [ Tel s Tl

e Definition:

We define the Frobenius inner product on T,(C; dy xdbx - - - xdp) as
follows. o
<Tia T]'>F::[Tl']a*[Tj]aw iaj:17"' ,N.
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Summary of the third Story
e The SS model in component form:

%[Xi]a = [Qi]aslxils + w([Xils[xi]s[xc]a — [Xils[Xc]s[Xi]a)

e The LM model in component form:

%[U/]aﬁ = [Alaprs[Ulys + g ([Uelan[UT451Uilss — [Ullav[Us]4s1Ujlss) -

e Lesson from above models

ﬂ Ti].. = free flow + cubic interactions.
att’
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Summary of Lecture 1

We have reviewed the emergent dynamics of a hierarchy of
Lohe type aggregation models:

N
Uy = =iHUi + 55 >~ (Uc = (U, U)e ).
k=1

2N
N
Xi = Qix; + % Z ( (XK, X; X/)
k=

—_
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Gradient flow formulation

e The Kuramoto model on R": van Hemmen-Wreszinski (1993), Dong-Xue
('13), H-Kim-Ryoo ('16)

1 N
— 72 i6;
Rk. ’Nj:1e

The Kuramoto model <= © = —Ve Vk(©).

. Vk(®)=—v-©—kNR:.

e The SS model on S®™: H-Ko-Ryoo ('18)

| Ve = —SNRE.

The SS model with Qi = Q <= X = =V, Vs(X) - o

cf. For a heterogeneous ensemble, the SS model is not a gradient flow on
SN,
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e The LM model on U(d)"N: H-Ko-Ryoo ('18)
;N
SR

The LM model with Hi = 0 «— U, = =V yVmTy,(d)-

K
o V= —ENR,";,.

cf. For a heterogeneous ensemble, the LM model is not a
gradient flow on U(d)N.
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Preview for Lecture 2

Tomorrow, we will continue the derivation of "the Lohe
tensor model" and study its emergent dynamics.

Questions and Comments
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Thank you for your attention !!!
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