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Outline

The Lohe tensor model

Two reductions from the LT model

From low-rank to high-rank
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O-th story: From Lecture 1
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Aggregation models for low-rank tensors

• The Lohe matrix model for complex-valued rank-2 tensors:

iU̇iU∗i = Hi +
iκ
2N

N∑
k=1

(
UiU∗j − UjU∗i

)
.

• The swarm sphere model for real-valued rank-1 tensors:

ẋi = Ωixi +
κ

N

N∑
k=1

(〈xi , xi〉xk − 〈xk , xi〉xi ).

• The Kuramoto model for real-valued rank-0 tensors:

θ̇i = νi +
κ

N

N∑
k=1

sin(θk − θi ).
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Gradient flow formulation
• The Kuramoto model on RN : van Hemmen-Wreszinski (1993), Dong-Xue
(’13), H-Kim-Ryoo (’16)

Rk :=
∣∣∣ 1
N

N∑
j=1

eiθj
∣∣∣, Vk (Θ) = −ν ·Θ− κNR2

k .

The Kuramoto model ⇐⇒ Θ̇ = −∇ΘVk (Θ).

• The SS model on SdN : H-Ko-Ryoo (’18)

Rs :=
∥∥∥ 1

N

N∑
j=1

xj

∥∥∥, Vs(X ) = −κ
2

NR2
s .

The SS model with Ωi = Ω ⇐⇒ ẋi = −∇xi Vs(X )
∣∣∣
Txi S

d
.

cf. For a heterogeneous ensemble, the SS model is not a gradient flow on
SdN .
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• The LM model on U(d)N : H-Ko-Ryoo (’18)

Rm :=
∥∥∥ 1

N

N∑
j=1

Uj

∥∥∥
F
, Vm := −κ

2
NR2

m.

The LM model with Hi = O ⇐⇒ U̇i = −∇UiVmTUi
(d).

cf. For a heterogeneous ensemble, the LM model is not a
gradient flow on U(d)N .
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Lesson from previous models

Consider an ensemble {Tj}Nj=1 of rank-m tensors over complex
field C, and for notational simplicity, we set

α∗ = (α1, · · · , αm), β∗ = (β1, · · · , βm).

Then, we begin with following structure:

d
dt

[Tj ]α∗ = free flow + cubic interactions among components.

• (Modeling of free flow)

Contraction of rank-2m tensor Aj and rank-m tensor Tj :

free flow part = [Aj ]α∗β∗ [Tj ]β∗ .
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• (Modeling of cubic interactions): for a dummy variable β,

[Tc]i1 [T̄j ]β[Tj ]i2 − [Tj ]i1 [T̄c]β[Tj ]i2 .

• Definition:

We define the inner product of size d1×d2× · · ·×dm as follows.

〈Ti ,Tj〉F := [T̄i ]α∗ [Tj ]α∗ , i , j = 1, · · · ,N.
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1st story: The Lohe tensor model
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The Lohe Tensor(LT) Model

• Handy notation:

α∗0 = α10α20 · · ·αm0, α∗1 = α11α21 · · ·αm1,

α∗i∗ = α1i1α2i2 · · ·αmim , α∗(1−i∗) = α1(1−i1)α2(1−i2) · · ·αm(1−im),

β∗ = β1β2 · · ·βm, i∗ = i1i2 · · · im.

d
dt

[Ti ]α∗0 = [Ai ]α∗0β∗ [Ti ]β∗︸ ︷︷ ︸
Free Flow

+
∑

i∗∈{0,1}m

κi∗([Tc ]α∗i∗
¯[Ti ]α∗1

[Ti ]α∗(1−i∗)
− [Ti ]α∗i∗

¯[Tc ]α∗1
[Ti ]α∗(1−i∗)

)

︸ ︷︷ ︸
Cubic coupling Terms

cf. 2m cubic -coupling terms
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We set
||Ti ||F :=

√
[T̄i ]α∗ [Ti ]α∗ .

• Lemma: (Conservation law)

||Ti(t)||F = ||T in
i ||F , t ≥ 0.
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Emergent dynamics
We set

D(T ) := max
i,j
||Ti − Tj ||F , D(A) := max

i,j
||Ai − Aj ||F , κ̂0 := 2

∑
i∗ 6=0

κi∗ .

• Theorem: (Complete aggregation) H-Park ’20, JSP

Suppose that the coupling strength and the initial data satisfy

Aj = 0, κ̂0 <
κ0

2||T in
c ||2F

, ||T in
j ||F = 1, 0 < D(T in) <

κ0 − 2κ̂0||T in
c ||2F

2κ0
.

Then, there exist positive constants C0 and C1 depending on κi∗ and T in such
that

C0e−(κ0+2κ̂0||T in
c ||F )t ≤ D(T (t)) ≤ C1e−(κ0−2κ̂0||T in

c ||F )t , t ≥ 0.

Proof: By direct estimates, one has Gronwall differential inequality:∣∣∣∣ d
dt
D(T ) + κ0D(T )

∣∣∣∣ ≤ 2κ0D(T )2 + κ̂0||T in
c ||FD(T ), a.e. t > 0.
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Let η be the largest root of the quadratic equation:

2κ0x2 + (κ0 − 2κ̂0||T in
c ||2F )x = D(A).

Then, the root η satisfies

0 < η <
κ0 − 2κ̂0||T in

c ||2F
2κ0

.

• Theorem: (Practical aggregation) H-Park ’20, JSP
Suppose that coupling strength, initial data and frequency matrices satisfy

κ0 > 0, 0 ≤ D(T (0))� 1 and D(A) <
|κ0 − 2κ̂0||T in

c ||2F |2

8κ0
,

Then practical synchronization emerges:

lim
D(A)/κ0→0+

lim sup
t→∞

D(T (t)) = 0.

Proof: By direct estimates, one has Gronwall differential inequality:

d
dt
D(T ) ≤ 2κ0D(T )2 − (κ0 − 2κ̂0||T in

c ||2F )D(T ) +D(A), a.e. t > 0.
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Summary of 1st-story

We have proposed the Lohe tensor model for the set of tensors
with the same rank and size:

Under suitable frameworks, we can also show that the above
very complicated model exhibits emergent dynamics.
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2nd story: Two reductions

• Can we propose an aggregation model on Hermitian
unit sphere HSd−1?

• Are there aggregation models for non square
matrices, for example Cn×m with n 6= m?
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The Lohe hermitian sphere(LHS) model

For rank-1 tensors with size d , the LT model becomes

d
dt

[zi ]α10 =[Ωi ]α10β1 [zi ]β1 + κ0([zc ]α10
¯[zi ]α11

[zi ]α11︸ ︷︷ ︸
Contracted

−[zi ]α10
¯[zc ]α11

[zi ]α11︸ ︷︷ ︸
Contracted

)

+ κ1([zc ]α11
¯[zi ]α11︸ ︷︷ ︸

Contracted

[zi ]α10 − [zi ]α11
¯[zc ]α11︸ ︷︷ ︸

Contracted

[zi ]α10 ).

After contractions, one derive the LHS model:

żi = Ωizi︸︷︷︸
Free Flow

+κ0(〈zi , zi〉zc − 〈zc , zi〉zi )︸ ︷︷ ︸
swarm sphere coupling

+κ1(〈zi , zc〉 − 〈zc , zi〉)zi︸ ︷︷ ︸
new coupling

,

For zj = xj ∈ Rd , one has the SS model:

ẋi = Ωixi +
κ

N

N∑
k=1

(〈xi , xi〉xk − 〈xk , xi〉xi ).
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Solution splitting property

Consider two Cauchy problems:{
żj = Ωzj + κ0

(
〈zj , zj〉zc − 〈zc , zj〉zj

)
+ κ1

(
〈zj , zc〉 − 〈zc , zj〉

)
zj ,

zj (0) = z in
j , j = 1, · · · ,N,

and{
ẇj = κ0

(
wc〈wj ,wj〉 − wj〈wc .wj〉

)
+ κ1

(
〈wj ,wc〉 − 〈wc ,wj〉

)
wj , t > 0,

wj (0) = z in
j , j = 1, · · · ,N.

• Proposition: H-Park ’19

zj = eΩtwj , j = 1, · · · ,N.
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Emergent dynamics of Subsystem A

żj = κ0(〈zj , zj〉zc − 〈zc , zj〉zj)︸ ︷︷ ︸
swarm sphere coupling

.

• Theorem: H-Park ’19

Suppose that the coupling strength and initial data satisfy

κ0 > 0, ||z in
i || = 1, max

i 6=j
|1− 〈z in

i , z
in
j 〉| < 1/2.

Then, ∃ Λ = Λ(Z 0) > 0 such that

D(Z (t)) ≤ D(Z in)e−κ0Λt , t ≥ 0.
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Emergent dynamics of Subsystem B

żj = κ1(〈zj , zc〉 − 〈zc , zj〉)zj , t > 0.
• Theorem: H-Park ’19

1. There exists a time-dependent phase θj such that

zj (t) = eiθj (t)z in
j , j = 1, · · · ,N.

2. If we set R in
jk and αji such that

〈z in
j , z

in
k 〉 = R in

jk eiαjk ,

then the phase θj in (1) is a solution to the following Cauchy problem:θ̇j =
2κ1

N

N∑
k=1

R in
jk sin(θk − θj + αjk ), t > 0,

θj (0) = 0,

where R in
jk and αjk satisfy symmetry and anti-symmetry properties:

R in
jk = R in

kj , αjk = −αkj , ∀ k , j = 1, · · · ,N.
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Emergent dynamics of the full system

żj = κ0

(
zc〈zj , zj〉 − zj〈zc .zj〉

)
+ κ1

(
〈zj , zc〉 − 〈zc , zj〉

)
zj .

Following the terminology in literature, we set

ρ = Rs =
∣∣∣ 1
N

N∑
j=1

zj

∣∣∣.
• Proposition: H-Park ’19
Let {zj} be a solution with initial condition ρin > 0. Then,

∃ ρ∞ := lim
t→∞

ρ(t) > 0, lim
t→∞
〈zi , zc〉 ∈ {1,−1}.

where ρ = ‖zc‖.

Proof: The above results are based on

dρ2

dt
=

2κ0

N

N∑
i=1

(
ρ2 − |〈zi , zc〉|2

)
+

4(κ0 + κ1)

N

N∑
i=1

∣∣∣Im(〈zi , zc〉)
∣∣∣2.
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• Remark:
1. Let {zj} be a solution with initial condition ρin > N−2

N . Then
we have

lim
t→∞

ρ(t) = 1.

If each clusters contain l and N − l particles, then we have
ρ = |N−2l|

N . So if ρin > N−2
N , we can obtain l = 0 or l = N.

That means there is only one cluster. i.e. complete
aggregation.

2. Let {zj} be a solution with initial condition ρin > 0. Then, ρ
is increasing along the flow. Thus, they will be no nontrivial
periodic solution.
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• Theorem: H-Park ’19

Suppose that the coupling strengths and initial data satisfy

Ωj = 0, 0 < κ1 <
1
4
κ0, ρin >

N − 2
N

,

Then D(X ) converges to zero exponentially fast.

Proof. We introduce a Lyapunov functional L(Z ):

L(Z ) := max
1≤i,j≤N

|1− 〈zi , zj〉|2,

Then, one has

d
dt
L(Z ) ≤ −κ0L(Z )

(
Re(〈xi0 + xj0 , zc〉)−

4κ1

κ0

)
.
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The generalized Lohe matrix(GLM) model

If we take
m = 2,

then the LT model becomes

Ṫi = AiTi︸︷︷︸
free flow

+κ00(tr(T ∗i Ti )Tc − tr(T ∗c Ti )Ti )︸ ︷︷ ︸
LHS coupling

+ κ01(TcT ∗i Ti − TiT ∗c Ti )︸ ︷︷ ︸
Lohe matrix coupling

+κ10(TiT ∗i Tc − TiT ∗c Ti )︸ ︷︷ ︸
Lohe matrix coupling

+ κ11(tr(T ∗i Tc)− tr(T ∗c Ti ))Ti︸ ︷︷ ︸
LHS coupling

.
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If we set

κ00 = 0, κ01 = κ1, κ10 = κ2, κ11 = 0.

then, we can obtain the GLM model in a mean-field form H-Park
’20 :

Ṫi = AiTi + κ1(TcT ∗i Ti − TiT ∗c Ti) + κ2(TiT ∗i Tc − TiT ∗c Ti),

Ti(0) = T 0
i , ‖T 0

i ‖F = 1, Tc :=
1
N

N∑
k=1

Tk .

cf. Emergent dynamics (DCDS-B (2021): Emergent behaviors of the
generalized Lohe matrix model:

Exponential aggregation: homogeneous ensemble,

Practical aggregation: heterogeneous ensemble.
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Two reductions from GLM

• From the GLM model to the LM model

Let Ti ∈ U(d), i.e.,
TiT ∗i = T ∗i Ti = Id .

Note that interaction terms are the same:

TcT ∗i Ti − TiT ∗c Ti = TiT ∗i Tc − TiT ∗c Ti = Tc − TiT ∗c Ti

= Tc − 〈Tc ,Ti〉F Ti .

Thus, the GLM model reduces to the LM model:

Ṫi = AiTi + (κ1 + κ2)(Tc − 〈Tc ,Ti〉F Ti).
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• From the GLM to the LHS

Let Tj be a rank-2 tensor with size d × 1, i.e.,

d1 = d , d2 = 1, Tj = zj .

Recall the GLM model:

Ṫj = AjTj + κ1(TcT ∗j Tj − TjT ∗c Tj ) + κ2(TjT ∗j Tc − TjT ∗c Tj ).

Note that

T ∗j Tj = 〈Tj ,Tj〉, T ∗c Tj = 〈Tc ,Tj〉,
T ∗j Tc = 〈Tj ,Tc〉, T ∗c Tj = 〈Tc ,Tj〉.

Thus, one has the LHS model:

żj = Ωjzj + κ1(zc〈zj , zj〉 − zj〈zc .zj〉) + κ2(〈zj , zc〉 − 〈zczj〉)zj ,
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Summary of 2nd story

• We provided the LHS model on HSd−1 which generalize the
swarm sphere model:

żj = Ωjzj + κ1(zc〈zj , zj〉 − zj〈zc .zj〉) + κ2(〈zj , zc〉 − 〈zczj〉)zj .

• We also provide the GLM model on Cd1×d2 with d1 6= d2.

Ṫj = AjTj + κ1(TcT ∗j Tj − TjT ∗c Tj ) + κ2(TjT ∗j Tc − TjT ∗c Tj ).

This model reduces to the LM model and LHS model for special
cases.

Emergent dynamics for heterogeneous ensemble is largely open
except weak estimate (practical aggregation).
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3rd story: From low-rank to high-rank

How to introduce a weak coupling between LT models
with the same rank?
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Mixture of tensors

"How to segregate a mixture of tensors into ensembles
with the same rank and size?"
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Weak coupling of two SS models with different sizes

Consider two SS models on Sd1−1 and Sd2−1:

u̇i = Ωiui +
κ

N

N∑
j=1

(uj − 〈ui ,uj〉ui), ui ∈ Sd1−1,

v̇i = Λivi +
κ

N

N∑
j=1

(vj − 〈vi , vj〉vi), vi ∈ Sd2−1.

"How to couple the above SS models weakly?"
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Lohe’s idea on weak coupling

M. A. Lohe: On the double sphere model of synchronization, Physica D
(2020).
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The double sphere model

•Weakly coupled double sphere model:

u̇i = Ωiui +
κ

N

N∑
j=1

〈vi , vj〉(uj − 〈ui ,uj〉ui ), t > 0,

v̇i = Λivi +
κ

N

N∑
j=1

〈ui ,uj〉(vj − 〈vi , vj〉vi ),

(ui , vi )(0) = (u0
i , v

0
i ) ∈ Sd1−1 × Sd2−1,

where Ωi ∈ Rd1×d1 and Λi ∈ Rd2×d2 are real skew-symmetric matrices,
respectively and κ > 0.

The double sphere on Sd1−1 × Sd2−1 is positively invariant under the
DS flow.
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A gradient flow formulation

Define a potential:

E(U,V ) := 1− 1
N2

N∑
i,j=1

〈ui ,uj〉〈vi , vj〉.

• Theorem: (H-Kim-Park ’21, JSP)

The DS model with Ωi = 0 and Λi = 0 is a gradient flow on the
compact state space (Sd1−1 × Sd2−1)N :

u̇i = −Nκ
2

PTui S
d1−1

(
∇uiE(U,V )

)
,

v̇i = −Nκ
2

PTvi S
d2−1

(
∇viE(U,V )

)
,
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• Corollary: ∃ (U∞,V∞) ∈ (Sd1−1)N × (Sd2−1)N such that

lim
t→∞

(U(t),V (t)) = (U∞,V∞).

• Proposition Suppose system parameters and initial data
satisfy

Ωi = Ω, Λi = Λ, min
1≤i,j≤N

〈u0
i ,u

0
j 〉 > 0, min

1≤i,j≤N
〈v0

i , v
0
j 〉 > 0.

Then, one has the complete segregation:

lim
t→∞

max
1≤i,j≤N

|ui(t)−uj(t)| = 0 and lim
t→∞

max
1≤i,j≤N

|vi(t)−vj(t)| = 0.



THE LOHE TENSOR MODEL TWO REDUCTIONS FROM THE LT MODEL FROM LOW-RANK TO HIGH-RANK

Connection between DS model and LT model

• Proposition: (H-Kim-Park ’21, JSP)

1. Let {(ui , vi )} be a solution to DS model with initial data
{(u0

i , v
0
i )}. Then, rank-2 tensor Ti := ui ⊗ vi ∈ Rd1×d2 is a

completely separable solution to the GLM model with

AiTi := ΩiTi + Ti Λ
>
i , κ1 = κ2 = κ, T 0

i =: u0
i ⊗ v0

i .

2. For a solution Ti to the LGM model with completely separable
initial data T 0

i =: u0
i ⊗ v0

i , there exist two unit vectors ui = ui (t)
and v = vi (t) such that

Ti (t) = ui (t)⊗ vi (t), t > 0,

where (ui , vi ) is a solution to the SDS model with
(ui , vi )(0) = (u0

i , v
0
i ).
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The multi-sphere(MS) model

Using a gradient flow approach with the potential:

E := 1− 1
N2

N∑
i,j=1

m∏
k=1

〈uk
i ,u

k
j 〉,

one can derive
u̇k

i = Ωk
i uk

i +
κ

N

N∑
j=1

 N∏
6̀=k
`=1

〈u`i ,u`j 〉

(uk
j − 〈uk

i ,u
k
j 〉uk

i ), t > 0,

uk
i (0) = uk ,0

i ∈ Sdk−1, 1 ≤ i ≤ N, 1 ≤ k ≤ m.

cf. (H-Kim-Park ’21, JSP)
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• Theorem (H-Kim-Park ’21, JSP) Suppose the initial data satisfy

min
1≤i,j≤N

〈uk,0
i ,uk,0

j 〉 > 0, k = 1, · · · ,m,

then one has

lim
t→∞

max
1≤i,j≤N

|uk
i (t)− uk

j (t)| = 0, k = 1, · · · ,m.

• Theorem: (H-Kim-Park ’21, JSP) Under suitable assumptions
on the coupling strengths and natural frequency tensors, if the initial
data {T 0

i } is completely separable

T 0
i = u1,0

i ⊗ u2,0
i ⊗ · · · ⊗ um,0

i ,

then a solution Ti = Ti (t) is uniquely determined by the following
relation:

Ti (t) = u1
i (t)⊗ u2

i (t)⊗ · · · ⊗ um
i (t), t > 0.

where {ui} is a solution to the MS model.
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The double matrix model

•Weak coupling of two LM models (H-Kim-Park ’21):


U̇j = −iHjUj +

κ

N

N∑
k=1

(〈Vj ,Vk 〉F Uk U∗j Uj − 〈Vk ,Vj〉F UjU∗k Uj )

V̇j = −iGjVj +
κ

N

N∑
k=1

(〈Uj ,Uk 〉F Vk V ∗j Vj − 〈Uk ,Uj〉F VjV ∗k Vj ).

Gradient flow formulation, emergent dynamics, extension to the
multiple matrix model. Algebraic method for coupling of LT models is

under way.
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Weak coupling of SS model and LM model



ẋj = Ωjxj +
κ

N

N∑
k=1

〈Uj ,Uk 〉F (xk − 〈xk , xj〉xj),

U̇j = AjUj +
κ

2N

N∑
k=1

〈xj , xk 〉(Uk − UjU∗k Uj),

(xj ,Uj)(0) = (x0
j ,U

0
j ) ∈ Sd−1 × U(d).
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Summary of 3rd story

We have discussed a part of story for the systematic weak
couplings of multiple LT models. As byproducts of our

generalized approach, we can derive Lohe hermitian sphere
model and generalized Lohe matrix model.
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Summary of two lectures

• In these two lectures, we have provided a picture on "Hierarchy
of finite-dimensional counterpart of the Lohe type aggregation
models"

• Via weak coupling of LT type models, we can derive a systematic
algebraic methodology to combine multiple LT models weakly.
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The Schrödinger-Lohe model

M. Lohe, J. Phys. A (’10)

i∂tψj = −1
2

∆ψj + Vjψj +
iκ
2N

N∑
k=1

(
ψk −

〈ψk , ψj〉
〈ψj , ψj〉

ψj

)
.

Here, Vj = Vj (x) represents an external one-body potential acted on
j-th node, and κ measures a coupling strength between oscillators.

• The S-L model enjoys L2-conservation:

‖ψj (t)‖L2(d ) = 1, t > 0.
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Quantum lifting

"On the Schrodinger-Lohe hierarchy for aggregation and its emergent
dynamics" by Ha, S.-Y and Park, H. appeared in JSP (2020).

The END
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Questions and Comments
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Thank you for your attention !!!
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