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The Lohe tensor model

Two reductions from the LT model

From low-rank to high-rank
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O-th story: From Lecture 1
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Aggregation models for low-rank tensors

e The Lohe matrix model for complex-valued rank-2 tensors:

N

iU = H + Z U .
k:
e The swarm sphere model for real-valued rank-1 tensors:

N

K
X = Quixi + NZ Xiy Xi) Xk — (Xic, Xi) Xi).
k=1

e The Kuramoto model for real-valued rank-0 tensors:

N
9,‘ =vi+ % ;sin(@k — 19,').
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Gradient flow formulation

e The Kuramoto model on R": van Hemmen-Wreszinski (1993), Dong-Xue
('13), H-Kim-Ryoo ('16)

1 N
i i0;
Rk = ’N;e 4

The Kuramoto model <= © = —Ve Vk(©).

. Vk(®)=—v-©—kNR:.

e The SS model on S®™: H-Ko-Ryoo ('18)

| Ve = —SNRE.

The SS model with Qi = Q <= X = =V, Vs(X) - o

cf. For a heterogeneous ensemble, the SS model is not a gradient flow on
SN,
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e The LM model on IU(d)N: H-Ko-Ryoo ('18)

= ——NRZ

Fim = HN

The LM model with Hi = 0 «— U, = =V yVmTy,(d)-

cf. For a heterogeneous ensemble, the LM model is not a
gradient flow on U(d)N.
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Lesson from previous models

Consider an ensemble {T,-}j’i1 of rank-m tensors over complex
field C, and for notational simplicity, we set

Oé*:(Ol-],"',am), /8*:(/817”'7/6m)’

Then, we begin with following structure:

d . .
E[Tj]“* = free flow + cubic interactions among components.

¢ (Modeling of free flow)

Contraction of rank-2m tensor A; and rank-m tensor T;:

free flow part = [Ajla. 5. [Tilg. -



¢ (Modeling of cubic interactions): for a dummy variable 3,

[Teli [T1s T — [Tii [ Tel s Tl

o Definition:

We define the inner product of size dy xdox - - - xdy, as follows.

<7-i7 Tj>F = [7-/]136*[7_-/']()6*’ Iaj:17aN
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1st story: The Lohe tensor model

Tensor
?

Matrix(U(d))

Lohe-Matrix model

Vector(S")
Lohe-Sphere model

Scalar(R)
Kuramoto model
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The Lohe Tensor(LT) Model

e Handy notation:

Qx0 = Q10Q20 *~ Om0,  Qix1 = Q11021 * * Omts

Qxjy, = OHjj Q24 * ** Ay Cx(1—iy) = Q1(1—i)OX2(1—hp) " " Om(1—ip)»

Bx = B1B2- - Pm, fe = ftip - - im.

d
gilTlao = [Allaos. [Tils.
—_————
Free Flow
+ Z Ki, ([TC]a*i* [7_—"]04*1 [Tf]a*mfu) - [Tf]a*i* [7_-0]&*1 [7—/]‘1*(1—i*))

i €{0,1}™

Cubic coupling Terms

cf. 2™ cubic -coupling terms
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We set

1TillF = /[Tila.[Tila.-

e Lemma: (Conservation law)

ITiOllF = 1Tl t>0.

FROM LOW-RANK TO HIGH-RANK
000000000000000000
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Emergent dynamics
We set

D(T):=max|| Ty~ Tillr,  D(A) = max||A— Allr, fo:=2 ni.
| ’ i 7#0

e Theorem: (Complete aggregation) H-Park 20, JSP

Suppose that the coupling strength and the initial data satisfy

A Ko

Ko — 27| T2
A =0 < - — .
10 RS TR

2/&0

T e =1, 0<D(T") <

Then, there exist positive constants Co and C; depending on «;, and T" such
that
Coe~ (Ro+28lITIIF)t < D(T(f)) < Cre~(Ro—2%lITENIE) > g,

Proof: By direct estimates, one has Gronwall differential inequality:

%D(T) + koD(T)| < 260D(T)? + #ol| T [FD(T), ae. t > 0.
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Let n be the largest root of the quadratic equation:
2k0X% + (1 — 2#0|| T||2)x = D(A).
Then, the root n satisfies

Ko — 2k || T2
2H0 ’

O0<n<

e Theorem: (Practical aggregation) H-Park °20, JSP
Suppose that coupling strength, initial data and frequency matrices satisfy

_ Ino— 2ol T

Ko >0, 0<D(T(0)<1 and D(A) -
0

)

Then practical synchronization emerges:
lim  limsup D(T(t)) =0.

D(A)/ko—0+ t—soco
Proof: By direct estimates, one has Gronwall differential inequality:

d

&DUjgszUY—(m—z%Hﬂm%DU7+DML ae. t>0.
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Summary of 1st-story

We have proposed the Lohe tensor model for the set of tensors
with the same rank and size:

The
Lohe-Tensor model

The
Lohe-Matrix model

The
Lohe-Sphere model

The Kuramoto model

Under suitable frameworks, we can also show that the above
very complicated model exhibits emergent dynamics.
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2nd story: Two reductions

e Can we propose an aggregation model on Hermitian
unit sphere HS'?

¢ Are there aggregation models for non square
matrices, for example C"™™ with n # m?
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The Lohe hermitian sphere(LHS) model

For rank-1 tensors with size d, the LT model becomes

%[Zi]mo :[Qi]a1051 [Zi]51 + HO([ZC]OHO [z_f]a11 [zi]ﬂn 7[21']0410 [Z_C]Oq1 [Zf]aﬂ)
[ | —

Contracted Contracted
+ K1 ([Ze]ays [zi]aﬂ (Zilayo — [2i]ayy [Zc]aﬂ [Zi]avio)-
— —
Contracted Contracted

After contractions, one derive the LHS model:

Z,' = Qizi —|—l€0(<Z,',Z,‘>Zc — <ZC,Z,'>Z,') +/~€1(<Z/,Zc> — <Zc,Zi>)ZI7
Free Flow  swarm sphere coupling new coupling

For z; = x; € R, one has the SS model:

N

K
Xi = Qixi + N ; Xiy Xi) Xk — (Xk, Xi)Xi).
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Solution splitting property

Consider two Cauchy problems:

Z=Qz+ no((Zj,ZﬁZc - <zc,z,->z,-> + K1 (<Zf’z‘>> B <ZC’Zj>>zj’
z(0) =2z, j=1.".N,
and
iy = o (e, ) — Wy (W) ) -+ st (), we) — (o, ) ) w, - £>0,
w(0) =2 j=1..N.

e Proposition: H-Park '19

Qt ;
zi=e"w, j=1,---,N.
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Emergent dynamics of Subsystem A

Zi = ro((2, Zj)2c — (20, 2Z))Z)) -

swarm sphere coupling

e Theorem: H-Park '19

Suppose that the coupling strength and initial data satisfy

ro >0, |12l =1, max|1—(z.2")| < 1/2

Then, 3 A = A(Z°) > 0 such that

D(Z(1)) < D(ZM)e "M > 0.
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Emergent dynamics of Subsystem B

2j=r1((z, 20) — (2c,2)))z;, t>0.
e Theorem: H-Park '19
1. There exists a time-dependent phase 6; such that
Zi(ty=€%Mz" j=1,--. N.
2. If we set Ry and ; such that
(& 2f) = Rje™,
then the phase 6; in (1) is a solution to the following Cauchy problem:
L Dpy o
0 = #Zﬁﬁgsin(ek—ej-ﬁ-ajk)? t>0,
k=1
0;(0) =0,
where R},Q’ and ayx satisfy symmetry and anti-symmetry properties:

in in ‘
ik = R, aj = —ak, YV Kj=1,--- N.
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Emergent dynamics of the full system

5 = ro(2:(2.2) ~ z(z0.2)) + 11 (2. 20) ~ (2. 2)) 7

Following the terminology in literature, we set

e Proposition: H-Park 19 .
Let {z} be a solution with initial condition p" > 0. Then,

3p> = tl_i)rgop(t) >0, tin;@(z,,z& e{1,-1}

where p = ||z¢||.

Proof: The above results are based on

U 205" (4 ) + LD S iz
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e Remark:
1. Let {z;} be a solution with initial condition p™ > N=2. Then
we have
lim p(t) =1.
t—o0

If each clusters contain / and N — / particles, then we have
p="N21 Soif pin > N2 e can obtain / = 0 or | = N.
That means there is only one cluster. i.e. complete
aggregation.

2. Let {z;} be a solution with initial condition p™ > 0. Then, p
is increasing along the flow. Thus, they will be no nontrivial
periodic solution.
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e Theorem: H-Park ’19

Suppose that the coupling strengths and initial data satisfy

N-2
N )

1 .
Q =0, 0<H1<ZI€0, P>

Then D(X) converges to zero exponentially fast.

Proof. We introduce a Lyapunov functional £(Z):

o _ (> #\|2
L(Z) = 12%,\,\1 (i, Zj)|°,

Then, one has

%ﬁ(Z) < —roL(Z) <Re(<x,-o 20— % > |
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The generalized Lohe matrix(GLM) model

If we take
m=2

)

then the LT model becomes
Ti= AT+ roo(u(T7 T Te — (TS T) T))

free flow LHS coupling
+ rkot(Te T Ti = TiTETi) + kao(Ti 17 Te — Ti T i)

Lohe matrix coupling  Lohe matrix coupling
+ ki1 (T To) —we(TE TH)) T

LHS coupling



TWO REDUCTIONS FROM THE LT MODEL
0000000008000

If we set
koo =0, Kot =K1, Kio=ka, k11 =0.

then, we can obtain the GLM model in a mean-field form H-Park
'20 :

Ti= AT+ 51(TeTr T = TiTeT) + ko(Ti T To — TiTETH),
N

T(0) =T, ITPlr=1, Te: Z

cf. Emergent dynamics (DCDS-B (2021): Emergent behaviors of the
generalized Lohe matrix model:

Exponential aggregation: homogeneous ensemble,
Practical aggregation: heterogeneous ensemble.



THE LOHE TENSOR MODEIL TWO REDUCTIONS FROM THE LT MODEL FROM LOW-RANK TO HIGH-RANK
000000 0000000000800 000000000000000000

Two reductions from GLM

e From the GLM model to the LM model

Let T; € U(d), i.e.,
LT =TT = la.

Note that interaction terms are the same:

Tl Ti= TiTeTi= TiTi To = TiTgTi= Te = TiT¢T;
=Tc—(Te, THFTi.

Thus, the GLM model reduces to the LM model:

Ti= AT+ (k1 + ro)(Te — (Te, THET,).
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e From the GLM to the LHS

Let T; be a rank-2 tensor with size d x 1, i.e.,
d=d, =1, T =2z
Recall the GLM model:
Ti= AT+ si(TeT) T = TTTET) + wa(TiT; To = TS T)).
Note that

TiT={T,Tp), ToTj=(Te, Tj),
TiTe=(Tj Te), ToTj=(Te, Tp)-

Thus, one has the LHS model:

Zj = Qzj + r1(2e(2}, 1) — 2i(Ze-2)) + K2((2), Ze) — (262)))Z),
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Summary of 2nd story
e We provided the LHS model on HS?~" which generalize the
swarm sphere model:

2j = Qzj+ 71(20(2), Z)) — 2j(2e-2))) + r2((2): Z6) = (2e2))2;.

e We also provide the GLM model on C%*% with dy # db.
Ti= AT+ (T Ty T = TTET) + ra(TT) Te = TiTST)).

This model reduces to the LM model and LHS model for special
cases.

Emergent dynamics for heterogeneous ensembile is largely open
except weak estimate (practical aggregation).
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3rd story: From low-rank to high-rank

How to introduce a weak coupling between LT models
with the same rank?
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Mixture of tensors

L_,\\\j e

¢ g A

Gy r—? /

yoe g

(ed) \ S IR ;/,
3
U‘A‘%\ i /("l‘;’

/ A ) k” i‘}'
% 4 &—'D vﬂm Y4 : :
% g Ea R
A —9 \“" 3
B % ¥ ,»:L} (9‘»4)
o .
n "
k3

"How to segregate a mixture of tensors into ensembles
with the same rank and size?"
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Weak coupling of two SS models with different sizes

Consider two SS models on S%~1 and S%—1:

K dy—1
= Qu; + NZ —(ui, uuy), ujeSHT,
N
K do—1
V':AIVI+NZ (i, v)v)), vieS% T
J=1

"How to couple the above SS models weakly?"
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Lohe’s idea on weak coupling

r g, )

/H\”: Sl

(V5 v)

u;

M. A. Lohe: On the double sphere model of synchronization, Physica D
(2020).
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The double sphere model

o Weakly coupled double sphere model:
N
U = QiU + %Z(v;, v)(uj — (Ui, uhuy), t>0,
;1
=NV + %Z ui, U (v; — (i, vj)vi),
(ui, vi)(0) = ( ,0 ) € SHTT x 8%,

where Q; € R%*% and A; € R%2*% gre real skew-symmetric matrices,
respectively and x > 0.

The double sphere on S%~1 x S%~1 is positively invariant under the
DS flow.
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A gradient flow formulation

Define a potential:
;N
E(U, V) = 1= 55 > (Ui 4 {vi, v).
ij=1
e Theorem: (H-Kim-Park '21, JSP)

The DS model with Q; = 0 and A; = 0 is a gradient flow on the
compact state space (S% 1 x s%-1)N:

) Nk
Ui = _?PTUIS"1—1 (Vufg(Ua V)),
. Nk
Vi = _?PTVI.S%” <Vv,-5(U7 V))7
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e Corollary: 3 (U>, V) € (S~ )N x (S%~")N such that

lim (U(1), V(1)) = (U, V™).

t—oo

¢ Proposition Suppose system parameters and initial data
satisfy

Q=09 A=A min (u?,u%) >0 min (v2,v%) > 0.
I ) I ) 1§i,j§N< I /> ) 1§I',jSN< | />

Then, one has the complete segregation:

l (—ui(t)] = l (H)—vi(t)| = 0.
tLTo@,?;(N‘“'(t) uyi(t)) =0 and A%Q,?;(N’V’(t) vi(t)[ =0
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Connection between DS model and LT model

e Proposition: (H-Kim-Park 21, JSP)

1. Let {(u;, vi;)} be a solution to DS model with initial data
{(uP,v?)}. Then, rank-2 tensor T; := u; ® v; € R%*% s a

completely separable solution to the GLM model with
AT =QTi+ TN, ki=ro=r T =l

2. For a solution T; to the LGM model with completely separable
initial data TP =: u? ® v?, there exist two unit vectors u; = u;(t)
and v = v;(t) such that

Ti(t) = ui(t) @ vi(t), t>0,

where (u;, v;) is a solution to the SDS model with

(ui, vi)(0) = (L, V7).
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The multi-sphere(MS) model

Using a gradient flow approach with the potential:

one can derive

N
K, k NI,
Ul = Qkuk + = E [T ufy | (uf = (uf, ufyuf), t>o0,
NS L2k

uk(0) = ufPesdh! 1<i<N, 1<k<m

cf. (H-Kim-Park 21, JSP)
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e Theorem (H-Kim-Park "21, JSP) Suppose the initial data satisfy

min <u;<’07 u’."0> >0, k=1,---,m,
1<ij<N 1
then one has
lim max |u()7u;‘(t)|:0, k=1,---,m.

t—oo 1<ij<N

e Theorem: (H-Kim-Park ‘21, JSP) Under suitable assumptions
on the coupling strengths and natural frequency tensors, if the initial
data {T?} is completely separable

1,0 2.0 ,0
P=uv'eou’2 -au™,

then a solution T; = T;(t) is uniquely determined by the following
relation:
T()=u ()@ u(t)®---@ult), t>0.

where {u;} is a solution to the MS model.
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The double matrix model

e Weak coupling of two LM models (H-Kim-Park '21):

| =

N
NZ (Vi Vi r UkUSU; — (Vie, Vi) e UiU U))
K

N
Vi =—iGV;+ = > (U, U r ViV Vi — (U, Upe Vi V).
k=1

U= iU +

BN

2

Gradient flow formulation, emergent dynamics, extension to the
multiple matrix model. Algebraic method for coupling of LT models is
under way.
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Weak coupling of SS model and LM model

N
K
QX] Nz_: leuuk <Xk7Xj>Xj),

. /ﬂ'/ %
U=AU+ 55 ;W/,Xk)(Uk = UiUy;),

(4, U)(0) = (0, U9) € 591 x T(d).
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Summary of 3rd story

We have discussed a part of story for the systematic weak
couplings of multiple LT models. As byproducts of our
generalized approach, we can derive Lohe hermitian sphere
model and generalized Lohe matrix model.
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Summary of two lectures

* In these two lectures, we have provided a picture on "Hierarchy
of finite-dimensional counterpart of the Lohe type aggregation
models"

The
Lohe-Tensor model

The
Lohe-Matrix model

The
Lohe-Sphere model

The Kuramoto model

¢ Via weak coupling of LT type models, we can derive a systematic
algebraic methodology to combine multiple LT models weakly.



[m LOHE TENSOR MODEI 1\\«11\1;\« TIONS FROM THE LT MODEI FROM LOW-RANK TO HIGH-RANK
0000 )000000 00000000000000e000

The Schrodinger-Lohe model

M. Lohe, J. Phys. A ('10)

<7/)k77/]l>1/l)

0y = Awl"‘ Vi + 2N <1/J - 0

Here, V; = Vj(x) represents an external one-body potential acted on
j-th node, and « measures a coupling strength between oscillators.

e The S-L model enjoys L2-conservation:

19 (Ol 2@y =1, t>0.
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Quantum lifting

Complex Lohe sphere —> Generalized Lohe Matrix Lohe Tensor
lQuamum lifting {Quamum lifting Quantum lifting

Schrodinger Lohe —— Schrodinger Lohe Matrix — Schrodinger Lohe Tensor

"On the Schrodinger-Lohe hierarchy for aggregation and its emergent
dynamics" by Ha, S.-Y and Park, H. appeared in JSP (2020).

The END



THE LOHE TENSOR MODEL TWO REDUCTIONS FROM THE LT MODEL FROM LOW-RANK TO HIGH-RANK
000000 0000000000000 0000000000000000e0

Questions and Comments
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Thank you for your attention !!!
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