Hydrodynamic limits of the nonlinear Schrödinger equation with the Chern-Simons gauge fields

Virtual Summer school on Kinetic and fluid equations for collective dynamics France-Korea International Research Laboratory in Mathematis

Jeongho Kim collaborate with Dr. Bora Moon

August 26, 2021

Department of Mathematics, Research Institute for Natural Sciences, Hanyang University jeonghokim206@gmail.com

Chern-Simons-Schrödinger equations

The Chern-Simons-Schrödinger (CSS) equations is given by

$$\begin{split} & i\hbar D_0 \psi + \frac{\hbar^2}{2m} (D_1 D_1 + D_2 D_2) \psi - V'(|\psi|^2) \psi = 0, \quad (t,x) \in \mathbb{R}_+ \times \mathbb{R}^2, \\ & \partial_0 A_1 - \partial_1 A_0 = -\hbar \text{Im}(\bar{\psi} D_2 \psi), \quad \partial_0 A_2 - \partial_2 A_0 = \hbar \text{Im}(\bar{\psi} D_1 \psi), \\ & \partial_1 A_2 - \partial_2 A_1 = -m|\psi|^2. \end{split}$$

- $\partial_0 = \partial_t$, $\partial_i = \partial_{x_i}$,
- $\psi: \mathbb{R}_+ \times \Omega \to \mathbb{C}$:Complex scalar field,
- $A_{\mu}: \mathbb{R}_{+} \times \Omega \to \mathbb{R}$: Gague field,
- $D_{\mu} = \partial_{\mu} + \frac{\mathrm{i}}{\hbar} A_{\mu}$: covariant derivative,
- V: Self-interacting potential energy density.

Chern-Simons-Schrödinger equations

• The CSS equation is invariant under the gauge transform:

$$\psi \to \psi e^{i\chi}, \quad A_{\mu} \to A_{\mu} - \hbar \partial_{\mu} \chi.$$

- Therefore, one need to give a gauge condition. Usually, one consider the Coulomb gauge condition $\nabla \cdot A = \partial_1 A_1 + \partial_2 A_2 = 0$.
- One can also consider the other gauge condition:
 - -Temporal gauge condition: $A_0 = 0$,
 - -Lorentz gauge condition: $\partial_{\mu}A_{\mu}=0$.

Chern-Simons-Schrödinger equations

Under the Coulomb gauge condition, the CSS equation becomes

$$\begin{split} & i\hbar\partial_t\psi - A_0\psi + \frac{\hbar^2}{2m}\left(\Delta\psi + \frac{2\mathrm{i}}{\hbar}A\cdot\nabla\psi - \frac{1}{\hbar^2}|A|^2\psi\right) - V'(|\psi|^2)\psi = 0,\\ & \Delta A_0 = \hbar\mathrm{Im}(Q_{12}(\bar{\psi},\psi)) + \partial_1(A_2|\psi|^2) - \partial_2(A_1|\psi|^2),\\ & \Delta A_1 = m\partial_2|\psi|^2, \quad \Delta A_2 = -m\partial_1|\psi|^2,\\ & \text{where } Q_{12}(\bar{\psi},\psi) := \partial_1\bar{\psi}\partial_2\psi - \partial_2\bar{\psi}\partial_1\psi. \end{split}$$

• Choosing m=1 and $\hbar=\varepsilon$, we have the family of the scaled CSS equations:

$$\begin{split} &\mathrm{i}\varepsilon\partial_t\psi-A_0\psi+\frac{\hbar^2}{2}\left(\Delta\psi+\frac{2\mathrm{i}}{\varepsilon}A\cdot\nabla\psi-\frac{1}{\varepsilon^2}|A|^2\psi\right)-V'(|\psi|^2)\psi=0,\\ &\Delta A_0=\varepsilon\mathrm{Im}(Q_{12}(\bar{\psi},\psi))+\partial_1(A_2|\psi|^2)-\partial_2(A_1|\psi|^2),\\ &\Delta A_1=\partial_2|\psi|^2,\quad\Delta A_2=-\partial_1|\psi|^2, \end{split}$$

Conservation laws

The CSS system conserves the total charge and the total energy.
 Define

$$\begin{split} \mathcal{Q}(t) &:= \int_{\Omega} |\psi^{\varepsilon}|^2 \, \mathrm{d} x, \\ \mathcal{E}^{\varepsilon}(t) &:= \int_{\Omega} \frac{\varepsilon^2}{2} \sum_{j=1}^2 |D_j^{\varepsilon} \psi^{\varepsilon}(t,x)|^2 + V(|\psi^{\varepsilon}(t,x)|^2) \, \mathrm{d} x, \end{split}$$

where $D_j^{\varepsilon} := \partial_j + \frac{\mathrm{i}}{\varepsilon} A_j^{\varepsilon}$.

• Then,

$$\frac{\mathrm{d}\mathcal{Q}}{\mathrm{d}t} = \frac{\mathrm{d}\mathcal{E}^{\varepsilon}}{\mathrm{d}t} = 0.$$

Hydrodynamic formulation : Madelung transformation

Considering the Madelung transformation

$$\psi^{arepsilon} = \sqrt{
ho^{arepsilon}} \exp\left(rac{\mathrm{i}}{arepsilon} S^{arepsilon}
ight),$$

we introduce the hydrodynamic variables

$$\rho^{\varepsilon} = |\psi^{\varepsilon}|^{2}, \quad \rho^{\varepsilon} u^{\varepsilon} := \rho^{\varepsilon} (\nabla S^{\varepsilon} + A^{\varepsilon}) = \frac{\mathrm{i}\varepsilon}{2} (\psi^{\varepsilon} \nabla \bar{\psi^{\varepsilon}} - \bar{\psi^{\varepsilon}} \nabla \psi^{\varepsilon}) + |\psi^{\varepsilon}|^{2} A^{\varepsilon}.$$

Then, the imaginary part of the Schrödinger equation becomes

$$\partial_t \rho^{\varepsilon} + \nabla \cdot (\rho^{\varepsilon} u^{\varepsilon}) = 0,$$

which corresponds to the continuity equation in the classical mechanics.

Hydrodynamic formulation

 On the other hand, the real part of the Schrödinger equation becomes

$$\partial_t S^{\varepsilon} + A_0^{\varepsilon} + \frac{1}{2} |\nabla S^{\varepsilon} + A^{\varepsilon}|^2 + V'(\rho^{\varepsilon}) = \frac{\varepsilon^2}{2} \frac{\Delta \sqrt{\rho^{\varepsilon}}}{\sqrt{\rho^{\varepsilon}}}.$$

Taking gradient,

$$\partial_t (\nabla S^{\varepsilon}) + (u^{\varepsilon} \cdot \nabla) u^{\varepsilon} + \rho^{\varepsilon} (u^{\varepsilon})^{\perp} + \nabla A_0^{\varepsilon} + \frac{\nabla p(\rho^{\varepsilon})}{\rho^{\varepsilon}} = \frac{\varepsilon^2}{2} \nabla \left(\frac{\Delta \sqrt{\rho^{\varepsilon}}}{\sqrt{\rho^{\varepsilon}}} \right),$$
 where $p(\rho) = \rho V'(\rho) - V(\rho)$. Choosing $V = \frac{1}{2} \rho^{\gamma}$, $p(\rho) = \frac{\gamma - 1}{2} \rho^{\gamma}$.

• Using the gauge equation, one can derive

$$\partial_t u^{\varepsilon} + (u^{\varepsilon} \cdot \nabla) u^{\varepsilon} + \frac{\nabla p(\rho^{\varepsilon})}{\rho^{\varepsilon}} = \frac{\varepsilon^2}{2} \nabla \left(\frac{\Delta \sqrt{\rho^{\varepsilon}}}{\sqrt{\rho^{\varepsilon}}} \right).$$

Hydrodynamic formulation

To sum up, we have the following hydrodynamic system:

$$\begin{split} &\partial_t \rho^{\varepsilon} + \nabla \cdot \left(\rho^{\varepsilon} u^{\varepsilon} \right) = 0, \\ &\partial_t (\rho^{\varepsilon} u^{\varepsilon}) + \nabla \cdot \left(\rho^{\varepsilon} u^{\varepsilon} \otimes u^{\varepsilon} \right) + \nabla p(\rho^{\varepsilon}) = \frac{\rho^{\varepsilon} \varepsilon^2}{2} \nabla \left(\frac{\Delta \sqrt{\rho^{\varepsilon}}}{\sqrt{\rho^{\varepsilon}}} \right), \\ &\Delta A_0^{\varepsilon} = \nabla \times \left(\rho^{\varepsilon} u^{\varepsilon} \right), \quad \Delta A^{\varepsilon} = -(\nabla \rho^{\varepsilon})^{\perp}. \end{split}$$

• As $\varepsilon \to 0$, the hydrodynamic equations formally converges to the Euler-Chern-Simons equations:

$$\begin{split} &\partial_t \rho + \nabla \cdot (\rho u) = 0, \\ &\partial_t (\rho u) + \nabla \cdot (\rho u \otimes u) + \nabla p(\rho) = 0, \\ &\Delta A_0 = \nabla \times (\rho u), \quad \Delta A = -(\nabla \rho)^{\perp}. \end{split}$$

 The main concern is to provide a rigorous analysis for this convergence.

Main theorem

• Consider the well-prepared initial data condition:

$$\begin{split} &\int_{\Omega} \frac{\rho_0^{\varepsilon} |u_0^{\varepsilon} - u_0|^2}{2} \, \mathrm{d}x + \int_{\Omega} \frac{p(\rho_0^{\varepsilon} | \rho_0)}{\gamma - 1} \, \mathrm{d}x + \frac{\varepsilon^2}{2} \int_{\Omega} |\nabla \sqrt{\rho_0^{\varepsilon}}|^2 \, \mathrm{d}x = \mathcal{O}(\varepsilon^{\lambda}), \\ &\text{where } p(\mathbf{n} | \rho) := \frac{\gamma - 1}{\gamma} (\mathbf{n}^{\gamma} - \rho^{\gamma} - \gamma \rho^{\gamma - 1} (\mathbf{n} - \rho)). \end{split}$$

Theorem

Suppose $\gamma \geq 2$. Let $(\psi^{\varepsilon}, A_0^{\varepsilon}, A^{\varepsilon})$ be the global solution to the CSS equations. Moreover, let (ρ, u, A_0, A) be the unique local-in-time smooth solution to the Euler-Chern-Simons equations for $0 \leq t \leq T_*$.

Main theorem

Theorem (continued)

Then, for any $0 \le t \le T_*$, we have

$$\begin{split} & \rho^{\varepsilon}(t,\cdot) \to \rho(t,\cdot), \quad \text{in} \quad L^{\gamma}(\Omega), \\ & (\rho^{\varepsilon}u^{\varepsilon})(t,\cdot) \to (\rho u)(t,\cdot), \quad \text{in} \quad L^{\frac{2\gamma}{\gamma+1}}(\Omega), \\ & (\sqrt{\rho^{\varepsilon}}u^{\varepsilon})(t,\cdot) \to (\sqrt{\rho}u)(t,\cdot), \quad \text{in} \quad L^{2}(\Omega), \\ & A_{0}^{\varepsilon} \to A_{0}, \quad \text{in} \quad L^{2\gamma}(\Omega), \quad \nabla A_{0}^{\varepsilon} \to \nabla A_{0} \quad \text{in} \quad L^{\frac{2\gamma}{\gamma+1}}(\Omega), \\ & A^{\varepsilon} \to A, \quad \text{in} \quad L^{2\gamma}(\Omega), \quad \nabla A^{\varepsilon} \to \nabla A, \quad \text{in} \quad L^{\gamma}(\Omega), \end{split}$$

as arepsilon o 0.

Relative entropy

- To obtain a hydrodynamic limit (of the classical systems), the relative entropy method is successful.
- Consider the following general system of conservation laws:

$$\partial_t U_i + \sum_{k=1}^d \partial_k A_{ik}(U) = 0, \quad U \in \mathbb{R}^m, \quad A \in \mathbb{R}^{m \times d}.$$

• The compressible Euler equation can be written in this form with $U=(\rho,\rho u)$ and

$$A(U) = \frac{1}{\rho} \begin{pmatrix} \rho P_1 & \rho P_2 \\ P_1^2 + \frac{\gamma - 1}{\gamma} \rho^{\gamma + 1} & P_1 P_2 \\ P_2 P_1 & P_2^2 + \frac{\gamma - 1}{\gamma} \rho^{\gamma + 1} \end{pmatrix} = \begin{pmatrix} \rho u^\top \\ \rho u \otimes u + \frac{\gamma - 1}{\gamma} \rho^{\gamma} I_2 \end{pmatrix}.$$

Relative entropy

A usual entropy defined for the compressible Euler equation is

$$\eta(U) := \frac{|P|^2}{2\rho} + \frac{\rho^{\gamma}}{\gamma} = \frac{\rho|u|^2}{2} + \frac{\rho^{\gamma}}{\gamma}.$$

Corresponding relative entropy and relative flux is given as

$$\eta(V|U) := \eta(V) - \eta(U) - D\eta(U) \cdot (V - U),
A(V|U) := A(V) - A(U) - DA(U) \cdot (V - U).$$

Here,

$$[DA(U)\cdot(V-U)]_{ij}:=\sum_{k=1}^3\partial_{U_k}A_{ij}(U)(V_k-U_k).$$

Relative entropy method

 The relative entropy method is based on the following key estimate on the relative entropy:

$$\frac{d}{dt} \int_{\mathbb{R}^d} \eta(V|U) dx = \frac{d}{dt} \int_{\mathbb{R}^d} \eta(V) dx - \int_{\mathbb{R}^d} \nabla_x (D\eta(U)) : A(V|U) dx - \int_{\mathbb{R}^d} D\eta(U) \cdot (\partial_t V + \nabla_x \cdot A(V)) dx.$$

ullet We note that the energy functional ${\cal E}$ can be written in terms of the hydrodynamic quantities:

$$\mathcal{E}^{\varepsilon} = \frac{1}{2} \rho^{\varepsilon} |u^{\varepsilon}|^2 + \frac{(\rho^{\varepsilon})^{\gamma}}{\gamma} + \frac{\varepsilon^2}{2} |\nabla \sqrt{\rho^{\varepsilon}}|^2 = \eta(U^{\varepsilon}) + \frac{\varepsilon^2}{2} |\nabla \sqrt{\rho^{\varepsilon}}|^2.$$

Modulated energy

- On the other hand, the hydrodynamic limit of the quantum system is based on the modulated energy estimate.
- The natural modulated energy is

$$\mathcal{H}^{\varepsilon}(t) := \int_{\Omega} \frac{1}{2} |(\varepsilon D^{\varepsilon} - iu)\psi^{\varepsilon}|^{2} + \frac{p(\rho^{\varepsilon}|\rho)}{\gamma - 1} dx$$

$$= \int_{\Omega} \frac{1}{2} |(\varepsilon D^{\varepsilon} - iu)\psi^{\varepsilon}|^{2} + \frac{(\rho^{\varepsilon})^{\gamma} - \rho^{\gamma} - \gamma \rho^{\gamma - 1}(\rho^{\varepsilon} - \rho)}{\gamma} dx.$$

After tedious computation, we find

$$\mathcal{H}^{arepsilon} = \int_{\Omega} \eta(U^{arepsilon}|U) \, \mathrm{d}x + rac{arepsilon^2}{2} |
abla \sqrt{
ho^{arepsilon}}|^2 \, \mathrm{d}x.$$

• Therefore, the modulated energy and the relative entropy are almost the same quantity, except for the "quantum term".

Modulated energy estimate

 Using the equivalent relation between modulated energy and the relative entropy, one can use the celebrated theory of relative entropy to modulated energy of the CSS equations.

Proposition

Let $(\psi^{\varepsilon}, A_0^{\varepsilon}, A^{\varepsilon})$ be the solution to the CSS equations and (ρ, u) be the unique local-in-time smooth solution to the compressible Euler equation. Then,

$$\mathcal{H}^{\varepsilon}(t) \leq C \varepsilon^{\min\{\lambda,2\}}.$$

- The proof is based on the previous proposition on the relative entropy, and an appropriate estimate for the quantum correction term.
- Therefore, one can conclude that the modulated energy vanishes as $\varepsilon \to 0.$

Proof of Proposition

ullet We estimate $\frac{\mathrm{d}\mathcal{H}^{arepsilon}}{\mathrm{d}t}$ as

$$\frac{d\mathcal{H}^{\varepsilon}}{dt} = \frac{d}{dt} \mathcal{E}^{\varepsilon} - \int_{\Omega} \nabla_{x} (D\eta(U)) : A(U^{\varepsilon}|U) dx$$
$$- \int_{\Omega} D\eta(U) \cdot (\partial_{t} U^{\varepsilon} + \nabla_{x} \cdot A(U^{\varepsilon})) dx$$
$$= 0 + I_{1} + I_{2}.$$

• Using the definition of $D\eta$ and $A(U^{\varepsilon}|U)$, we have

$$I_1 \leq C \left(\int_{\Omega} \rho^{\varepsilon} |u^{\varepsilon} - u|^2 dx + \int_{\Omega} p(\rho^{\varepsilon} | \rho) dx \right) \leq \int_{\Omega} \eta(U^{\varepsilon} | U) dx.$$

ullet On the other hand, using the governing equation of $U^arepsilon$,

$$I_2 = -\frac{\varepsilon^2}{2} \int_{\Omega} \rho^{\varepsilon} u \cdot \nabla \left(\frac{\Delta \sqrt{\rho^{\varepsilon}}}{\sqrt{\rho^{\varepsilon}}} \right) dx \le C \varepsilon^2 \int_{\Omega} |\nabla \sqrt{\rho^{\varepsilon}}|^2 dx + C \varepsilon^2.$$

Proof of Proposition

Combining the estimates, we have

$$\frac{\mathsf{d}\mathcal{H}^{\varepsilon}}{\mathsf{d}t} \leq C\mathcal{H}^{\varepsilon} + C\varepsilon^{2}.$$

- Gronwall's inequality and the assumption of well-prepared initial data imply the desired estimate.
- With the modulated energy estimate in hand, one can obtain the desired convergence.

Lemma

Let $\gamma \geq 2$ be a constant. Then,

$$|\rho^{\varepsilon} - \rho|^{\gamma} \le (\rho^{\varepsilon})^{\gamma} - \rho^{\gamma} - \gamma \rho^{\gamma - 1} (\rho^{\varepsilon} - \rho) = \frac{\gamma}{\gamma - 1} p(\rho^{\varepsilon} | \rho).$$

Proof of Theorem

• Convergence of the density:

$$\|\rho^{\varepsilon}-\rho\|_{L^{\gamma}}^{\gamma}\leq C\int_{\mathbb{R}^{2}}p(\rho^{\varepsilon}|\rho)\,\mathrm{d}x\leq\mathcal{H}^{\varepsilon}\rightarrow0,\quad\text{as}\quad\varepsilon\rightarrow0.$$

Convergence of the momentum:

$$\begin{split} \|\rho^{\varepsilon}u^{\varepsilon} - \rho u\|_{L^{\frac{2\gamma}{\gamma+1}}} &\leq \|\rho^{\varepsilon}(u^{\varepsilon} - u)\|_{L^{\frac{2\gamma}{\gamma+1}}} + \|(\rho^{\varepsilon} - \rho)u\|_{L^{\frac{2\gamma}{\gamma+1}}} \\ &\leq \|\sqrt{\rho^{\varepsilon}}\|_{L^{2\gamma}}\|\sqrt{\rho^{\varepsilon}}|u^{\varepsilon} - u|\|_{L^{2}} + \|\rho^{\varepsilon} - \rho\|_{L^{\gamma}}\|u\|_{L^{\frac{2\gamma}{\gamma-1}}} \\ &\leq C\|\sqrt{\rho^{\varepsilon}}|u^{\varepsilon} - u|\|_{L^{2}} + C\|\rho^{\varepsilon} - \rho\|_{L^{\gamma}} \leq C\mathcal{H}^{\varepsilon} \to 0, \end{split}$$

and

$$\begin{split} \|\sqrt{\rho^{\varepsilon}}u^{\varepsilon} - \sqrt{\rho}u\|_{L^{2}} &\leq \|\sqrt{\rho^{\varepsilon}}|u^{\varepsilon} - u|\|_{L^{2}} + \|(\sqrt{\rho^{\varepsilon}} - \sqrt{\rho})|u|\|_{L^{2}} \\ &\leq \|\sqrt{\rho^{\varepsilon}}|u^{\varepsilon} - u|\|_{L^{2}} + \|u\|_{L^{\frac{2\gamma}{\gamma-1}}} \|\sqrt{\rho^{\varepsilon}} - \sqrt{\rho}\|_{L^{2\gamma}} \\ &\leq \mathcal{H}^{\varepsilon} + C\|\rho^{\varepsilon} - \rho\|_{L^{\gamma}}^{1/2} \to 0. \end{split}$$

Proof of Theorem

• To prove the convergence of the gauge fields, we recall that

$$\Delta(A_0^{\varepsilon} - A_0) = \partial_1(\rho^{\varepsilon} u_2^{\varepsilon} - \rho u_2) - \partial_2(\rho^{\varepsilon} u_1^{\varepsilon} - \rho u_1).$$

Using HLS inequality and CZ inequality,

$$||A_0^{\varepsilon} - A_0||_{L^{2\gamma}} \le ||\rho^{\varepsilon} u^{\varepsilon} - \rho u||_{L^{\frac{2\gamma}{\gamma+1}}} \to 0,$$

and

$$\|\nabla (A_0^{\varepsilon} - A_0)\|_{L^{\frac{2\gamma}{\gamma+1}}} \leq \|\rho^{\varepsilon} u^{\varepsilon} - \rho u\|_{L^{\frac{2\gamma}{\gamma+1}}} \to 0.$$

Proof of Theorem

• Similarly, the gauge difference $A^{\varepsilon}-A$ satisfies

$$\Delta(A^{\varepsilon} - A) = (\nabla(\rho - \rho^{\varepsilon}))^{\perp},$$

which implies

$$\begin{split} \|A^{\varepsilon} - A\|_{L^{2\gamma}} &\leq \|\rho^{\varepsilon} - \rho\|_{L^{\frac{2\gamma}{\gamma+1}}} \leq (\|\sqrt{\rho^{\varepsilon}}\|_{L^{2}} + \|\sqrt{\rho}\|_{L^{2}})\|\sqrt{\rho^{\varepsilon}} - \sqrt{\rho}\|_{L^{2\gamma}} \\ &\leq C\|\rho^{\varepsilon} - \rho\|_{L^{\gamma}} \to 0, \end{split}$$

and

$$\|\nabla(A^{\varepsilon}-A)\|_{L^{\gamma}}\leq \|\rho^{\varepsilon}-\rho\|_{L^{\gamma}}\to 0.$$

Thank you very much for attention.