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Chern-Simons-Schrodinger equations

The Chern-Simons-Schrédinger (CSS) equations is given by

h2
ihDot) + (D1 D1 + D D) — V'([4P)y =0, (tx)€R, xR?

80/41 — 81A0 = —hlm(@Dgw), 80A2 — 82/40 = h'm(lzD]_l/}),
81A2 — (92A1 = —m‘¢‘2.

0o = 0, 0 = 0O,
1 Ry x Q — C :Complex scalar field,
Ap Ry xQ — R: Gague field,

_ ia . : -
D, = 0,, + 7 A,: covariant derivative,

V: Self-interacting potenital energy density.



Chern-Simons-Schrodinger equations

e The CSS equation is invariant under the gauge transform:
Y —peX, A, — A, — ho,x.
e Therefore, one need to give a gauge condition. Usually, one consider

the Coulomb gauge condition V- A = 0;A; + 0,A, = 0.

e One can also consider the other gauge condition:
-Temporal gauge condition: Ay =0,
-Lorentz gauge condition: 9,A, = 0.



Chern-Simons-Schrodinger equations

e Under the Coulomb gauge condition, the CSS equation becomes
005 — Ao+ 1 (B + 24wy - L14Rw) — V(06 = 0
ROy — Ao¥ + 50 h 12 o
AA; = him(Qu2(, ¥)) + 81(A2lt)?) — Ba(Ar|w),
DAL = mdo|p?,  AAy = —mOy |,

where Qi2(¥, 1) := 01902t) — D21,

e Choosing m =1 and i = ¢, we have the family of the scaled CSS
equations:

_ 2 2 1., -
i0ct — Ay + 5 (80 + ZA- 90— 1) - viiuR)s =0,
DAy = elm(Qu2(v, ¥)) + 1 (A|?) — Da(ALl]?),

DAL = DY, DAy = =01,



Conservation laws

e The CSS system conserves the total charge and the total energy.
Define

o(0):= [ 10 d,
2

e4(e) = [ 5 301D () + V(I (1 0)) b,

where Df := 8; + LAS.
e Then,
dQ  dé° 0
dt ~ dt




Hydrodynamic formulation : Madelung transformation

e Considering the Madelung transformation
= oo (15,
we introduce the hydrodynamic variables
o= WP P = (VS HA) = (U AT
e Then, the imaginary part of the Schrodinger equation becomes
Oep* + V- (p°uf) =0,

which corresponds to the continuity equation in the classical
mechanics.



Hydrodynamic formulation

e On the other hand, the real part of the Schrodinger equation
becomes

1 e2 A/p?
;55 + AS + Z|VS + AP+ V/(p°) = — .

e Taking gradient,

€ 2 =
(V) +(uF V)i + pf (1) - + vas+ 2P _ g <W> ,

P 2 v
where p(p) = pV'(p) — V(p). Choosing V = 257, p(p) = 1=2p".
e Using the gauge equation, one can derive
Vo) _ o (AVPT
Oru® - V)u® ==V .
WV = =5V U



Hydrodynamic formulation

e To sum up, we have the following hydrodynamic system:

Oep° + V- (p°uf) =0,

€2 AL/
€, \v o e v sipgv p*

AAS =V x (puf), AAT=—(Vp)*.

e As e — 0, the hydrodynamic equations formally converges to the
Euler-Chern-Simons equations:

dep+ V- (pu) =0,
de(pu) +V - (pu® u) + Vp(p) = 0,
AAy =V x (pu), AA=—(Vp)t.

e The main concern is to provide a rigorous analysis for this
convergence.



e Consider the well-prepared initial data condition:

el 2 2 2
[l gy [P g [ (9 R ax = 0,
0 2 o 71 2 Ja

where p(nlp) == 2= (7 — p7 — 771 (n - p)).

Theorem

Suppose v > 2. Let (1%, A5, A°) be the global solution to the CSS
equations. Moreover, let (p, u, Ag, A) be the unique local-in-time smooth
solution to the Euler-Chern-Simons equations for 0 < t < T,.



Theorem (continued)

Then, for any 0 < t < T,, we have

p=(t,7) = p(t;-), in L7(Q),
(P°u)(t,) = (pu)(t, ), in LF1(Q),
(VFur)(t, ) = (Vpu)(t,), in L3(Q),

A — Ay, in [2(Q), VAS VA, in L7(Q),
AS— A in LP(Q), VA= VA, in L7(Q),

as e — 0.




Relative entropy

e To obtain a hydrodynamic limit (of the classical systems), the
relative entropy method is successful.

e Consider the following general system of conservation laws:

d
0 U; + Z3kAik(U) =0, UeR™ AecR™d,
k=1

e The compressible Euler equation can be written in this form with
U = (p, pu) and

1 PP PPz pu’
_ 2 y=1 ~+1 _
A=\ ik (pu®u+” /ﬂ/)
P>Py Py + =p7
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Relative entropy

e A usual entropy defined for the compressible Euler equation is
P2 o7 _plu® o7
n(U) = EL 4 £ 2L 2
2p v 2 Y
e Corresponding relative entropy and relative flux is given as

n(V|U) :=n(V) —n(U) — Dn(U) - (V = V),

A(V) = A(U) - DA(U) - (V = U).

Here,

3
[DA(U) - (V = U)]j := > 0y, Ay(U)(Vie — Ug).
k=1
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Relative entropy method

e The relative entropy method is based on the following key estimate
on the relative entropy:

%/RdH(WU)dX:% Rdn(V)dx—/Rde(Dn(U)):A(V\U)dx

- / Dn(U) - (0:V + Vi - A(V))dx.
Rd
e We note that the energy functional £ can be written in terms of the
hydrodynamic quantities:

1 £\Y 52 52
e = ol + EL 4 Spoyr ey + Sivvar
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Modulated energy

e On the other hand, the hydrodynamic limit of the quantum system
is based on the modulated energy estimate.

e The natural modulated energy is

v—1

VY — )Y — YL (pE —
_ / 1‘(6D571U)’¢15‘2+ (P ) P P (P P) dx.
Ja?2 Y

M) = /Q %KEDE iy 4 2R

After tedious computation, we find

2
e — / B(UF|U) dx + S|V VPP dx.
Q

e Therefore, the modulated energy and the relative entropy are almost
the same quantity, except for the "quantum term”.
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Modulated energy estimate

e Using the equivalent relation between modulated energy and the
relative entropy, one can use the celebrated theory of relative
entropy to modulated energy of the CSS equations.

Proposition
Let (¢°, A5, A%) be the solution to the CSS equations and (p, u) be the
unique local-in-time smooth solution to the compressible Euler equation.

Then,
HE(t) < Ceminid2h,

e The proof is based on the previous proposition on the relative
entropy, and an appropriate estimate for the quantum correction
term.

e Therefore, one can conclude that the modulated energy vanishes as

e — 0.
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Proof of Proposition

o We estimate ? as

dHe d . . .
i af /Q V. (Dn(U)) : A(U|U) dx

-/mwy@W+wAwww
JQ
04t b

e Using the definition of Dn and A(U?|U), we have

wec ([ - upact [plnex) < [awuos
Q Q Q

e On the other hand, using the governing equation of U¢,

T

)dx<iCeL/VVf2dx%—Ce
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Proof of Proposition

e Combining the estimates, we have
dH*®
dt

e Gronwall's inequality and the assumption of well-prepared initial

data imply the desired estimate.

< CHE + Ce2.

e With the modulated energy estimate in hand, one can obtain the

desired convergence.

Lemma
Let v > 2 be a constant. Then,

B v
10" = p|” < () = p" ="M —p) = ﬁp(palp)
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Proof of Theorem

e Convergence of the density:
16 = pl7, < c/ p(of|p)dx < HE =0, as & 0.
R2

e Convergence of the momentum:

lp*u® = pull 22 < Nlp*(v" = u)ll 22 +1I(p° ~ p)
< VPNl lIveele® = ullliz + 1lp° = plle lull 2
< CIVEI — dlllz + Clip* - pllir < CHE = 0,
and
IVeEu® — Vpulliz < [Vef|u® = ullliz + |(Vp* = v/p)lulll 2
< IVeele® = ulllz + Nl 2 Ve = Vol

<HE+ Cllp = pll L7 =
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Proof of Theorem

e To prove the convergence of the gauge fields, we recall that
A(AG — Ao) = 01(p"u3 — pu) — Ba(puf — pun).

e Using HLS inequality and CZ inequality,

145 — Aolls < Nl — pul] =, =0,

+
and
IV(A5 = Aol 2, < llp"u® = pul| 22 — 0.

y+I
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Proof of Theorem

e Similarly, the gauge difference A® — A satisfies
A(A° = A) = (V(p—p))"
which implies

145 = All iz < lp° = pll 22 < (VP2 + IVPI )1V = Volliz

< Cllp* = pllv =0,

and
V(A = A)||v < [lp° = pllv — 0.

19



Thank you very much for attention.
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