An optimal transport approach of hypocoercivity for the 1d kinetic Fokker-Planck equation

Samir Salem

CMLS, École Polytechnique

Virtual Summer school on Kinetic and fluid equations for collective dynamics, August 23rd 2021

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The starting point is the **kinetic Fokker-Planck** equation, set on $\mathbb{R}^+ \times \mathbb{R}^d \times \mathbb{R}^d$

$$\partial_t f_t + \mathbf{v} \cdot \nabla_{\mathbf{x}} f_t + \nabla \Psi(\mathbf{x}) \cdot \nabla_{\mathbf{v}} f_t = \nabla_{\mathbf{v}} \cdot (\nabla_{\mathbf{v}} f_t + \mathbf{v} f_t),$$

for the initial data f_0 .

It is the time evolution equation of some Langevin process

$$dX_t = V_t dt$$

 $dV_t = (-V_t + \nabla \Psi(X_t))dt + \sqrt{2}dB_t.$

The theory dealing with the convergence to the equilibrium, given in this case by

$$f_{\infty}(x,v) = Z^{-1}e^{-\Psi(x)-\frac{|v|^2}{2}}, \quad Z = \sqrt{2\pi}^d \int_{\mathbb{R}^d} e^{-\Psi(x)} dx,$$

・ロト ・ 目 ・ ・ ヨト ・ ヨト ・ シック

of solutions to this hypoelliptic equation is called hypocoercivity.

 H^1 Sobolev norms : for $b < \sqrt{ac},$ the new norm, equivalent to the usual $\|\cdot\|_{H^1(f_\infty)},$ is defined as

$$\|h\|_{\tilde{H}}^{2} = \|h\|_{L^{2}(f_{\infty})}^{2} + a\|\nabla_{x}h\|_{L^{2}(f_{\infty})}^{2} + 2b\langle\nabla_{x}h,\nabla_{v}h\rangle_{L^{2}(f_{\infty})} + c\|\nabla_{v}h\|_{L^{2}(f_{\infty})}^{2}.$$

Under the assumption that $e^{-\Psi}$ satisfies some Poincaré inequality, we obtain exponential convergence in this new norm

$$\left\|\frac{f_t}{f_{\infty}}-1\right\|_{\tilde{H}} \leq e^{-\kappa t} \left\|\frac{f_0}{f_{\infty}}-1\right\|_{\tilde{H}}$$

L ln L Relative entropy :

Under the assumption that $\boldsymbol{\Psi}$ satisfies a Logarithmic-Sobolev inequality, one can obtain

$$\int f_t \ln \frac{f_t}{f_\infty} = O(e^{-\kappa t}),$$

and by Talagrand's inequality

$$W_2(f_t, f_\infty) = O(e^{-\kappa t}).$$

Can this estimate be obtained as the consequence of the K.F.P. eq being a contraction in some metric, equivalent to the usual W_2 ?

・ロト・西・・田・・田・・日・

For a (convex) cost function c, and $\mu, \nu \in \mathcal{P}(\mathbb{R}^d)$ consider the Kantorovitch problem

$$W_c(\mu,\nu) = \inf_{\pi \in \Pi(\mu,\nu)} \int_{\mathbb{R}^d \times \mathbb{R}^d} c(z_1 - z_2) \pi(dz_1, dz_2),$$

with

$$\begin{aligned} \mathsf{\Pi}(\mu,\nu) &= \{ \pi \in \mathcal{P}(\mathbb{R}^d \times \mathbb{R}^d), \ \forall A, B \subset \mathbb{R}^d, \ \pi(A \times \mathbb{R}^d) = \mu(A), \ \pi(\mathbb{R}^d \times B) = \nu(B) \} \\ &= \{ \mathcal{L}((X,Y)), X \sim \mu, Y \sim \nu \}. \end{aligned}$$

Whenever c is strictly convex, and μ,ν are smooth, the Kantorovitch problem coincides with the Monge problem :

$$W_c(\mu,\nu) = \inf_{\mathcal{T} \# \nu = \mu} \int_{\mathbb{R}^d} c(\mathcal{T}(z) - z) \nu(dz),$$

and the infimum is obtained for a unique optimal transport map ${\cal T}$ (Brenier's Theorem).

・ロト ・ 目 ・ ・ ヨト ・ ヨト ・ シック

For instance $W_2^2 = W_c$ for $c = |\cdot|^2$.

Optimal transport and coupling

 $\mathcal{W}_2\,$ Bolley, Guillin, Malrieu : define the new distance, equivalent to the usual $\mathcal{W}_2\,$

$$\begin{split} W_A^2(\mu,\nu) &= \inf_{\pi \in \Pi(\mu,\nu)} \int_{\mathbb{R}^{2d} \times \mathbb{R}^{2d}} (z_1 - z_2) \cdot A(z_1 - z_2) \pi(dz_1, dz_2), \quad A = \begin{pmatrix} a I_d & b I_d \\ b I_d & c I_d \end{pmatrix} \\ &= \inf_{(X,V) \sim \mu, (\tilde{X}, \tilde{V}) \sim \nu} \mathbb{E} \left[a | X - \tilde{X} |^2 + 2b(X - \tilde{X}) \cdot (V - \tilde{V}) + c | V - \tilde{V} |^2 \right]. \end{split}$$

Under the assumption that $\boldsymbol{\Psi}$ is strictly convex, there is contraction in this distance

$$W_A(f_t, f_\infty) \leq e^{-\kappa t} W_A(f_0, f_\infty).$$

Idea of the proof :

 $\begin{aligned} dX_t &= V_t dt & d\tilde{X}_t = \tilde{V}_t dt \\ dV_t &= (-V_t + \nabla \Psi(X_t)) dt + \sqrt{2} dB_t & d\tilde{V}_t = (-\tilde{V}_t + \nabla \Psi(\tilde{X}_t)) dt + \sqrt{2} d\tilde{B}_t. \end{aligned}$

For instance $(B_t)_{t\geq 0} = (\tilde{B}_t)_{t\geq 0}$ (synchronous coupling), and by definition

$$W^2_A(f_t,g_t) \leq \mathbb{E}\left[a|X_t - ilde{X}_t|^2 + 2b(X_t - ilde{X}_t) \cdot (V_t - ilde{V}_t) + c|V_t - ilde{V}_t|^2
ight].$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

By optimal transport, $\forall t > 0$, $\exists T_t : \mathbb{R}^{2d} \to \mathbb{R}^{2d}$ s.t. $T_t # g_t = f_t$ and

$$W_A^2(f_t,g_t) = \int_{\mathbb{R}^{2d}} (T_t(z)-z) \cdot A(T_t(z)-z)g_t(z)dz.$$

The properties of these optimal transport maps, and the diffusion in v, enable to obtain the

Theorem (S. (2021))

For d = 1, let $\Psi \in C^2(\mathbb{R})$ s.t. $\Psi''(x) > 0$ for $|x| \ge R$ and $|[\Psi''(x)]_-| << 1$ otherwise. There is $A \in \mathcal{M}_2(\mathbb{R})$ and $\kappa > 0$ s.t. $\forall f_0 \in \mathcal{P}_2(\mathbb{R}^2)$, $\forall t > 0$, there holds

$$W_A(f_t, f_\infty) \leq e^{-\kappa t} W_A(f_0, f_\infty).$$

Many thanks for your attention!

