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Hypocoercivity

The starting point is the kinetic Fokker-Planck equation, set on R+×Rd ×Rd

∂t ft + v · ∇x ft +∇Ψ(x) · ∇v ft = ∇v · (∇v ft + vft) ,

for the initial data f0.
It is the time evolution equation of some Langevin process

dXt = Vtdt

dVt = (−Vt +∇Ψ(Xt))dt +
√

2dBt .

The theory dealing with the convergence to the equilibrium, given in this case
by

f∞(x , v) = Z−1e−Ψ(x)− |v|2

2 , Z =
√

2π
d
∫
Rd

e−Ψ(x)dx ,

of solutions to this hypoelliptic equation is called hypocoercivity.
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Hypocoercivity

H1 Sobolev norms : for b <
√
ac, the new norm, equivalent to the usual

‖ · ‖H1(f∞), is defined as

‖h‖2
H̃ = ‖h‖2

L2(f∞) + a‖∇xh‖2
L2(f∞) + 2b 〈∇xh,∇vh〉L2(f∞) + c‖∇vh‖2

L2(f∞).

Under the assumption that e−Ψ satisfies some Poincaré inequality, we
obtain exponential convergence in this new norm∥∥∥ ft

f∞
− 1
∥∥∥
H̃
≤ e−κt

∥∥∥ f0
f∞
− 1
∥∥∥
H̃
.

L ln L Relative entropy :
Under the assumption that Ψ satisfies a Logarithmic-Sobolev inequality,
one can obtain ∫

ft ln
ft
f∞

= O(e−κt),

and by Talagrand’s inequality

W2(ft , f∞) = O(e−κt).

Can this estimate be obtained as the consequence of the K.F.P. eq
being a contraction in some metric, equivalent to the usual W2?
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Optimal transport and coupling

For a (convex) cost function c, and µ, ν ∈ P(Rd) consider the Kantorovitch
problem

Wc(µ, ν) = inf
π∈Π(µ,ν)

∫
Rd×Rd

c(z1 − z2)π(dz1, dz2),

with

Π(µ, ν) = {π ∈ P(Rd × Rd), ∀A,B ⊂ Rd , π(A× Rd) = µ(A), π(Rd × B) = ν(B)}
= {L((X ,Y )),X ∼ µ,Y ∼ ν}.

Whenever c is strictly convex, and µ, ν are smooth, the Kantorovitch problem
coincides with the Monge problem :

Wc(µ, ν) = inf
T #ν=µ

∫
Rd

c(T (z)− z)ν(dz),

and the infimum is obtained for a unique optimal transport map T (Brenier’s
Theorem).
For instance W 2

2 = Wc for c = | · |2.
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Result

W2 Bolley, Guillin, Malrieu : define the new distance, equivalent to the usual
W2

W 2
A(µ, ν) = inf

π∈Π(µ,ν)

∫
R2d×R2d

(z1 − z2) · A(z1 − z2)π(dz1, dz2), A =

(
aId bId
bId cId

)
= inf

(X ,V )∼µ,(X̃ ,Ṽ )∼ν
E
[
a|X − X̃ |2 + 2b(X − X̃ ) · (V − Ṽ ) + c|V − Ṽ |2

]
.

Under the assumption that Ψ is strictly convex, there is contraction in
this distance

WA(ft , f∞) ≤ e−κtWA(f0, f∞).

Idea of the proof :

dXt = Vtdt

dVt = (−Vt +∇Ψ(Xt))dt +
√

2dBt

dX̃t = Ṽtdt

dṼt = (−Ṽt +∇Ψ(X̃t))dt +
√

2dB̃t .

For instance (Bt)t≥0 = (B̃t)t≥0 (synchronous coupling), and by definition

W 2
A(ft , gt) ≤ E

[
a|Xt − X̃t |2 + 2b(Xt − X̃t) · (Vt − Ṽt) + c|Vt − Ṽt |2

]
.
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Result

By optimal transport, ∀t > 0, ∃Tt : R2d → R2d s.t. Tt#gt = ft and

W 2
A(ft , gt) =

∫
R2d

(Tt(z)− z) · A(Tt(z)− z)gt(z)dz .

The properties of these optimal transport maps, and the diffusion in v , enable
to obtain the

Theorem (S. (2021))

For d = 1, let Ψ ∈ C2(R) s.t. Ψ′′(x) > 0 for |x | ≥ R and | [Ψ′′(x)]− | << 1

otherwise. There is A ∈M2(R) and κ > 0 s.t. ∀f0 ∈ P2(R2), ∀t > 0, there
holds

WA(ft , f∞) ≤ e−κtWA(f0, f∞).
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Many thanks for your attention!
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