Relaxation operators in kinetic theory

Stéphane Brull *, Yann Jobic **, Vincent Pavan ${ }^{* *}$, Jacques Schneider ***

Bordeaux INP *, Aix-Marseille University **, University of Toulon ***
$23^{\text {th }}-26^{\text {th }}$ august 2021

Plan

(1) The Boltzmann equation
(2) Entropic approximation and first models
(3) Method of moment relaxation
(4) Shape of the set $\mathcal{R}_{\mathrm{m}}^{+}$
(5) Variational problem

6 ϕ divergence
(7) Examples
(8) Stationary shock wave
(9) Existing results and opened problems

Return to the 90^{s}

- Find deterministic methods for the Boltzmann equation
- Discrete velocity models have good properties but computation of $Q(f, f)$ for " N " velocities in $O\left(N^{2} \log N\right)$.
- Look for simpler model rather than for numerical method.
- Find a compromise between the numerical cost and the accuracy of the model.

The Boltzmann equation

Boltzmann equation

The Boltzmann equation

$$
\partial_{t} f+v \cdot \nabla_{x} f=Q(f, f)=Q^{+}(f, f)-v(f) f, \quad(t, x, v) \in \mathbb{R}^{+} \times \mathbb{R}^{3} \times \mathbb{R}^{3}
$$

Notations

$$
\begin{array}{ll}
f(t, x, v) & : \text { distribution function } \\
n=\int f d v & : \text { number of molecules } \\
n u=\int v f d v & : \text { momentum }(\mathrm{m}=1) \\
E=\frac{n u^{2}}{2}+\frac{3}{2} n T=\frac{1}{2} \int v^{2} d v & : \text { total energy }
\end{array}
$$

Main properties I

1) Preservation of positivity: under suitable assumptions the solution exists and $f(t, x, v)$ remains a density function i.e. $f(t, x, v) \geq 0$
2) Collision invariants (mass, momentum and energy are conserved during a collision)

$$
\int Q(f, f)\left(1, v, v^{2}\right) d v=0
$$

3) $\exists \eta$ entropy density and

$$
H(f)=\int \eta(f) d v \text { s.t. } \quad \int \eta^{\prime}(f) Q(f, f) d v \leq 0 .
$$

3^{\prime}) For the Boltzmann equation $\eta(x)=x \ln (x)-x$,

$$
\partial_{t} H(f)+\operatorname{div} \int v \eta(f) d v \leq 0
$$

Main properties II

4) Extended H theorem

$$
\begin{gathered}
\int_{\mathbb{R}^{3}} \eta^{\prime}(f) Q(f, f) d v=0 \Leftrightarrow Q(f, f)=0 \Leftrightarrow \eta^{\prime}(f) \in \operatorname{Span}\left\{1, v, v^{2}\right\} \\
\Rightarrow f=\mathcal{M}=\frac{n}{(2 \pi T)^{\frac{3}{2}}} \exp \left(-\frac{(v-u)^{2}}{2 T}\right)
\end{gathered}
$$

5) Galilean invariance
6) Correctness of the hydrodynamic limit : Right properties on the linearized operator (Fredholm, kernel $=\mathbb{K}$
Chapmann-Engskog expansion : $f=\mathcal{M}(1+\varepsilon g)+O\left(\varepsilon^{2}\right)$ into

$$
\partial_{t} f+v \cdot \nabla_{\chi} f=\frac{1}{\varepsilon} Q(f, f)
$$

\Rightarrow Euler and Navier-Stokes

Entropic approximation and first models

A hierarchy of models

Main idea :E. M. Shakhov,MEKHIANIKA ZHIDKOSTI I GAZA, 1968
Replace $Q(f, f)=Q^{+}(f, f)-v f$ with $R(f)=v(G-f)$ where $G \approx Q^{+}(f, f) / v$.

Constraints for Maxwell molecules :

$$
\int G \mathbf{m}(v)=v^{-1} \int Q^{+}(f, f) \mathbf{m}(v)
$$

where $\mathbf{m}(v)=\left(m_{0}, \ldots, m_{N}\right)$ is a generating vector of a (suitable) polynomial space \mathbb{P}
"Closure" : $G=\mathcal{M} * p(v)$ where $p(v) \in \mathbb{P}$
Problem : G is not nonnegative everywhere and the solution might become negative!

Entropic Approximation 1

[Levermore, JSP, 1996]

- Replace $f \longrightarrow G=\exp (\boldsymbol{\alpha} \cdot \mathbf{m}(v))$ solution of

$$
H(G)=\min _{g \in C_{f}} H(g)
$$

with

$$
C_{f}=\left\{g \geq 0, \int g \mathbf{m}(v)=\int f \mathbf{m}(v) d v\right\}
$$

Entropic Approximation 1

[Levermore, JSP, 1996]

- Replace $f \longrightarrow G=\exp (\boldsymbol{\alpha} \cdot \mathbf{m}(v))$ solution of

$$
H(G)=\min _{g \in C_{f}} H(g)
$$

with

$$
C_{f}=\left\{g \geq 0, \int g \mathbf{m}(v)=\int f \mathbf{m}(v) d v\right\}
$$

Question : $f \longrightarrow G$ well-defined?

Entropic Approximation 2

Junk says not always! M3AS, 2000.
But it is possible if the constraint of highest degree is relaxed J.S., M2AN, 2004.
(1) Example : $\mathbb{P}=\mathbb{P}_{N-1} \oplus \mathbb{R} \cdot|v|^{N}$, just ask $\int g|v|^{N} \leq \int f|v|^{N}$
(2) The entropic "approximation" $f \longrightarrow G(f)$ is well defined.
(3) New closure in Shakhov model : $G=$ entropic approximation $Q^{+}(f, f) / v$. The model satisfies all properties!
\Longrightarrow model restricted to Maxwellian molecules.

Method of moment relaxation

Relaxation operator

Aim : Construct relaxation operator

$$
R(f)=v(G-f)
$$

that « behaves as » linear operator while pertaining positivity

Definition

If $R(f)$ satisfies properties $1-6, R(f)$ is a well defined operator.

Remark

We do not ask $H(f)=\int \eta(f) d v$ to be a Lyapounov Functional.

Relaxation constraints

Let $\boldsymbol{m}(v)=\left(m_{1}(v), \ldots, m_{N}(v)\right)$ be a set of tensors.

$$
\int R(f) m_{i}(v) d v=-v_{i} \int_{\mathbb{R}^{3}} f m_{i}(v) d v
$$

$\left(v_{i}\right)_{i=1, \ldots, N}$ are nonnegative relaxation coefficients (frequency)
First example
Set of tensors : $\mathbb{P}=\mathbb{K} \oplus^{\perp} \mathbb{A}$, where

$$
\mathbb{A}(v)=(v-u) \otimes(v-u)-\frac{1}{3}\|v-u\|^{2} I_{d}
$$

\Rightarrow Rigorous derivation of the ESBGK model [S. Brull, J.S., 2008]

Main example

Set of tensors : $\mathbb{P}=\mathbb{K} \oplus^{\perp} \mathbb{A} \oplus^{\perp} b$, where

$$
\boldsymbol{b}(v)=(v-u)\left(\frac{1}{2}(v-u)^{2}-\frac{5}{2} T\right)
$$

Constraints

$$
\begin{aligned}
\int_{\mathbb{R}^{3}} G\left(1, v, v^{2}\right) d v & =\int_{\mathbb{R}^{3}} f\left(1, v, v^{2}\right) d v \\
\int_{\mathbb{R}^{3}} G \mathbb{A}(v-u) d v & =\left(1-\frac{v_{\mathbb{A}}}{v}\right) \int_{\mathbb{R}^{3}} f \mathbb{A}(v-u) d v \\
\int_{\mathbb{R}^{3}} G \mathbf{b}(v-u) d v & =\left(1-\frac{v_{b}}{v}\right) \int_{\mathbb{R}^{3}} f \boldsymbol{b}(v-u) d v
\end{aligned}
$$

Conservation laws $\Rightarrow v_{i}=0$ on \mathbb{K}
How to define $v, G, v_{\mathbb{A}}$ and v_{b} ?

Variational principle

Choose a strictly convex function η with domain in \mathbb{R}_{+}and set

$$
H(g)=\int \eta(g) d v
$$

For $\boldsymbol{\rho}_{f}=\int f \boldsymbol{m}(v) d v$, define $L\left(\boldsymbol{\rho}_{f}\right)$, with the relaxation constraints

$$
\left(L\left(\boldsymbol{\rho}_{f}\right)\right)_{i}=\left(1-\frac{v_{i}}{v}\right) \int_{\mathbb{R}^{3}} f m_{i}(v) d v
$$

Problem

For $\boldsymbol{\rho}_{f} \in \mathbb{R}^{q}\left(q:\right.$ dimension of span $\left.\left\{m_{i}\right\}\right)$, find if possible a function G such that
(1) $\int G \mathbf{m}(v) d v=L\left(\rho_{f}\right)$
(2) $H(G)=\min _{\int g m(v) d v=L\left(\rho_{f}\right)} H(g)$.

Definition of v_{A} and ν_{b}

If $f \mapsto G$ is sufficiently smooth and $R(f)$ is well-posed (H theorem)

$$
\partial_{t} f^{\varepsilon}+v \cdot \nabla f^{\varepsilon}=\frac{1}{\varepsilon} R\left(f^{\varepsilon}\right)
$$

Order $-1: \mathrm{H}$ theorem $\Rightarrow f_{0}=\mathcal{M} \Rightarrow$ Euler equation in $O(\varepsilon)$
Setting $f_{1}=\mathcal{M} g_{1}$
Equation at order 0 :

$$
\mathcal{L}_{R}\left(g_{1}\right)=\mathbb{A}(v-u): \mathbb{D}(u)+\mathbf{b}(v-u) \cdot \nabla_{x}\left(-\frac{1}{T}\right)
$$

where $\mathbb{D}(u)$ is the Reynolds tensor and

$$
\mathcal{L}_{R}(g)=\frac{1}{\mathcal{M}} \lim _{\varepsilon \rightarrow 0} \frac{R(\mathcal{M}(1+\varepsilon g))}{\varepsilon}
$$

Definition of ν_{A} and ν_{b}

Compute

$$
\begin{aligned}
& \mathcal{L}_{R}(g)=v\left(\sum\left(1-\frac{v_{i}}{v}\right) \mathbb{P}_{m_{i}}+\mathbb{P}_{\mathbb{K}}-I d\right)(g) \\
& \mu_{R}=\frac{T}{10}\left\langle\mathcal{L}_{R}^{-1}(\mathbb{A}), \mathbb{A}\right\rangle=\frac{n T}{v_{\mathbb{A}}}, \quad \kappa_{R}=\frac{5 n T}{2 v_{\mathbf{b}}}
\end{aligned}
$$

where $\langle\cdot, \cdot\rangle$ is the $L^{2}(\mathcal{M})$ dot product with the full contraction for tensor. Definition of $v_{\mathbb{A}}$ and $v_{\mathbf{b}}$

$$
v_{\mathbb{A}}=\frac{n T}{\mu}, \quad v_{\mathbf{b}}=\frac{5}{2} \frac{n T}{\kappa} \Longrightarrow \operatorname{Pr}=\frac{5}{2} \frac{\mu}{\kappa}=\frac{v_{\mathbf{b}}}{v_{\mathbb{A}}}
$$

R is designed such that $\mathcal{L}_{R}^{-1} \sim \mathcal{L}_{B}^{-1}$ and not $\mathcal{L}_{R} \sim \mathcal{L}_{B}$

Problems to be solved

We assume that $f \geq 0$ and

$$
\int_{\mathbb{R}^{3}} f\left|m_{i}(v)\right| d v<+\infty, \quad \forall i=1, \ldots, N .
$$

G must satisfy $G \geq 0$ and $\int G m(v)=L\left(\rho_{f}\right)$

Condition

$$
C_{f}=\left\{g \geq 0 / \int_{\mathbb{R}^{3}} g m_{i}(v) d v=\left(1-\frac{v_{i}}{v}\right) \int_{\mathbb{R}^{3}} f m_{i}(v) d v\right\} \neq \emptyset
$$

Questions

(1) What is the shape of the set of realizable moments

$$
\mathcal{R}_{\mathbf{m}}^{+}=\left\{\int_{\mathbb{R}^{3}} f \mathbf{m}(v) d v, f \geq 0, \int_{\mathbb{R}^{3}} f\left|m_{i}(v)\right| d v<+\infty\right\}
$$

(2) Optimization problem :

Solve

$$
\min _{g \in C_{f}} \int_{\mathbb{R}^{3}} \eta(g) d v
$$

for some entropy density η.
The choice of η is crucial for

- The existence of a (unique) minimizer
- The H theorem

Remark

No solution (in general) when $\eta(x)=x \ln (x)$ under the constraints

$$
\begin{aligned}
\int_{\mathbb{R}^{3}} g\left(1, \mathbf{v}, \mathbf{v}^{2}\right) d v & =\int_{\mathbb{R}^{3}} f\left(1, \mathbf{v}, \mathbf{v}^{2}\right) d v \\
\int_{\mathbb{R}^{3}} g \mathbb{A}(v-u) d v & =\left(1-\frac{\lambda_{\mathbb{A}}}{v}\right) \int_{\mathbb{R}^{3}} f \mathbb{A}(v-u) d v \\
\int_{\mathbb{R}^{3}} g \boldsymbol{b}(v-u) d v & =\left(1-\frac{\lambda_{\mathbf{b}}}{v}\right) \int_{\mathbb{R}^{3}} f \boldsymbol{b}(v-u) d v
\end{aligned}
$$

Artificial condition on $\int g|v|^{4} d v$?
The problem might not be well posed ?
See [Junk, 1998, 2000], [J.S., 2004], [Hauck et all, 2008], [Pavan, 2011]

Shape of the set $\mathcal{R}_{\mathrm{m}}^{+}$

In 1d : Hamburger moment problem

Given $\rho_{0}, \ldots, \rho_{n} \in \mathbb{R}$ and $m_{i}(x)=x^{i}$ is there a measure μ such that

$$
\int_{\mathbb{R}} x^{i} d \mu=\rho_{i}
$$

Theorem (Akhiezer, Krein, 1962)

If $n=2 p$ there exists a measure μ iff the Hankel matrix

$$
H:=\left(\rho_{i+j}\right)_{0 \leq i, j \leq p}
$$

is positive definite.
The measure $d \mu$ can be changed into $f(x) d x$ with $f \in L^{1}$

Generalisation

Definition

Let $\mathbf{m}(\mathbf{v}):=\left(\mathbf{m}_{0}(\mathbf{v}), \cdots, \mathbf{m}_{k}(\mathbf{v}), \cdots, \mathbf{m}_{n}(\mathbf{v})\right)$ be a list of tensors where $v \in \mathbb{R}^{d} .\left(\mathbf{m}_{k}\right)_{k}$ is pseudo-Haar when :

$$
\begin{array}{r}
\forall \boldsymbol{\alpha}=\left(\alpha_{0}, \ldots, \alpha_{n}\right), \quad[\boldsymbol{\alpha} \neq \mathbf{0} \Rightarrow \boldsymbol{\alpha} \cdot \mathbf{m}(\mathbf{v}) \neq 0], \quad \lambda . \operatorname{a.e} \mathbf{v} \in \mathbb{R}^{d} \\
\boldsymbol{\alpha} \cdot \mathbf{m}(\mathbf{v}):=\sum_{k} \alpha_{k}: \mathbf{m}_{k}(\mathbf{v}) \tag{2}
\end{array}
$$

Problem

Let $\boldsymbol{\rho}=\left(\rho_{0}, \ldots, \rho_{n}\right)$ a list of tensor. Is there a nonnegative function f in $L^{1}\left(\mathbb{R}^{d}\right)$ s.t.

$$
\int f m_{i}(v) d v=\rho_{i}
$$

Examples in kinetic theory

Example

One may consider the following Pseudo-Haar basis :
(1) "Euler" $\mathbf{m}(\mathbf{v})=\left(1, \mathbf{v}, \mathbf{v}^{2}\right)$
(2) "Gauss"' : m (v)=(1, v, v $\otimes \mathbf{v})$
(3) Grad : $\mathbf{m}(\mathbf{v})=\left(1, \mathbf{v}, \mathbf{v} \otimes \mathbf{v}, \mathbf{v}^{2} \mathbf{v}\right)$
(4) Levermore : $\mathbf{m}(\mathbf{v})=\left(1, \mathbf{v}, \mathbf{v} \otimes \mathbf{v}, \mathbf{v}^{2} \mathbf{v}, \mathbf{v}^{4}\right)$

Theorem of Junk

Theorem

[Junk, 2000]
(1) $\boldsymbol{\rho} \in \mathcal{R}_{\boldsymbol{m}}^{+} \backslash\{0\} \Leftrightarrow \forall \boldsymbol{\alpha} \neq 0$ such that $\boldsymbol{\alpha} \cdot \boldsymbol{m}(v) \leq 0$ a.e. there is $\boldsymbol{\rho} \cdot \boldsymbol{\alpha}<0$
(2) $\mathcal{R}_{\mathbf{m}}^{+, *}$ is an open convex set
(3) $\left.\forall \rho \in \mathcal{R}_{m}^{+}, \exists \psi \geq 0, \in C_{c}^{\infty}\left(\mathbb{R}^{3}\right)\right)$ such that $\boldsymbol{\rho}=\int_{\mathbb{R}^{3}} \mathbf{m}(v) \psi(v) d v$

Remark

The set of realizable moment $\mathcal{R}_{\mathrm{m}}^{+} \backslash\{0\}$ is characterized by the set of (non positive) nonnegative polynomials : all $\boldsymbol{\alpha} \neq 0$ such that $\boldsymbol{\alpha} \cdot \boldsymbol{m}(v) \geq 0$.

Proof I

Definition (Cone spanned by the pseudo-Haar basis)

Let $\mathbf{m}(\mathbf{v})$ pseudo-Haar on \mathbb{R}^{d} and q dimension of $\operatorname{span}\left(m_{0}(\mathbf{v}), \cdots, m_{N}(\mathbf{v})\right.$). Define C the positive cone spanned by $\mathbf{m}(\mathbf{v})$ in \mathbb{R}^{q} :

$$
\begin{equation*}
C=\left\{\sum_{i} \lambda_{i} \mathbf{m}\left(\mathbf{v}_{i}\right), \lambda_{i} \geq 0, \quad \mathbf{v}_{i} \in \mathbb{R}^{d}\right\} \tag{3}
\end{equation*}
$$

Proof II

First remark

If $m(\mathbf{v})$ is continuous w.r.t \mathbf{v} and $\psi_{\epsilon} \in C_{0}^{\infty}$ such that $\psi_{\epsilon} \rightarrow \delta$ then

$$
\begin{equation*}
\boldsymbol{\rho}_{\epsilon}:=\int m(\mathbf{w}) \psi_{\epsilon}(\mathbf{w}-\mathbf{v}) d \mathbf{v} \in \mathcal{R}_{\mathbf{m}}^{+} \quad \text { et } \quad \boldsymbol{\rho}_{\epsilon} \longrightarrow m(\mathbf{v}) . \tag{4}
\end{equation*}
$$

Same thing for each element of $C \Longrightarrow C \subset \overline{\mathcal{R}}_{\mathrm{m}}^{+}$.
Converse statement?

Second remark

Let $\boldsymbol{\alpha} \neq 0$ such that $\boldsymbol{\alpha} \cdot \mathbf{m}(v) \leq 0, \forall v$ and $f \geq 0(\neq 0) f \in \mathbb{L}_{\mathbf{m}}^{1}$ then

$$
\begin{equation*}
\boldsymbol{\alpha} \cdot \boldsymbol{\rho}_{f}=\int \boldsymbol{\alpha} \cdot \mathbf{m}(\mathbf{v}) f(\mathbf{v}) d \mathbf{v}<0 \tag{5}
\end{equation*}
$$

Proof III

Definition (Polar cone of C)

$$
\begin{aligned}
C^{\circ} & :=\{\boldsymbol{\alpha}: \boldsymbol{\alpha} \cdot \boldsymbol{\eta} \leq 0 \quad \forall \boldsymbol{\eta} \in C\} \\
& =\left\{\boldsymbol{\alpha}: \boldsymbol{\alpha} \cdot \mathbf{m}(\mathbf{v}) \leq 0 \quad \forall \mathbf{v} \in \mathbb{R}^{d}\right\}
\end{aligned}
$$

Theorem (Interior of a solid convex cone)

If \mathcal{X} is a convex cone with non-empty interior in \mathbb{R}^{q}, then

$$
\begin{equation*}
x \in \operatorname{int}(X) \Leftrightarrow \forall y \in \mathcal{X}^{\circ}, \quad[\boldsymbol{y} \neq \mathbf{0} \Rightarrow \boldsymbol{y} \cdot \mathbf{x}<0] \tag{6}
\end{equation*}
$$

\Rightarrow if $\operatorname{int}(C) \neq \emptyset$ then $\mathcal{R}_{\mathrm{m}}^{*+} \subset \operatorname{int}(C)$

Proof IV

Proposition

Let $\mathbf{m}(\mathbf{v})$ pseudo-Haar basis and C the positive cone associated to it, then
(1) $\operatorname{int}(C) \neq \emptyset \Longrightarrow \mathcal{R}_{\mathrm{m}}^{*+} \subset \operatorname{int}(C)$
(2) $\left.\forall \rho \in \operatorname{int}(C), \exists \psi \geq 0, \in C_{C}^{\infty}\left(\mathbb{R}^{3}\right)\right)$ such that

$$
\begin{equation*}
\boldsymbol{\rho}=\int \mathbf{m}(\mathbf{v}) \psi(\mathbf{v}) d \mathbf{v} \tag{7}
\end{equation*}
$$

$\Longrightarrow \operatorname{int}(C) \subset \mathcal{R}_{\mathrm{m}}^{*+}$

Characterizing nonnegative polynomials

XVIIth Hilbert's problem

Show that every nonnegative polynomial with coefficient in \mathbb{R} is a sum of square rational functions.

One of the important question about this problem :

- If $p(\mathbf{v})=\boldsymbol{\alpha} \cdot \boldsymbol{m}(v)$ is nonnegative, is it a sum of square (S.O.S) polynomials?

Hilbert problem for quadratic structured space

Example (Levermore space)

The Levermore space can be identified as a product of $\left(1, \mathbf{v}, \mathbf{v}^{2}\right) \vee\left(1, \mathbf{v}, \mathbf{v}^{2}\right)=\left(1, \mathbf{v}, \mathbf{v} \otimes \mathbf{v}, \mathbf{v}^{2} \mathbf{v}, \mathbf{v}^{4}\right)$

A square polynomial $P(v)=\left(a+\boldsymbol{b} \cdot \boldsymbol{v}+c \boldsymbol{v}^{2}\right)^{2}$ can be written as

$$
\begin{gathered}
\boldsymbol{\beta}^{T} M \boldsymbol{\beta}, \text { with } \boldsymbol{\beta}=(a, \boldsymbol{b}, c)^{T} \in \mathbb{R} \times \mathbb{R}^{3} \times \mathbb{R} \\
M=\left[\begin{array}{ccc}
1 & \mathbf{v}^{T} & \mathbf{v}^{2} \\
\mathbf{v} & \mathbf{v} \otimes \mathbf{v} & \mathbf{v}^{2} \mathbf{v} \\
\mathbf{v}^{2} & \mathbf{v}^{2} \mathbf{v}^{T} & \mathbf{v}^{4}
\end{array}\right]
\end{gathered}
$$

What about Grad space?

$\mathbf{G} r(\mathbf{v})=\left(1, \mathbf{v}, \mathbf{v} \otimes \mathbf{v}, \mathbf{v}^{2} \mathbf{v}\right)$ has no quadratic structure

Hankel matrix

Definition

Likewise, for $f \geq 0$ in $L_{\text {Lev }}^{1}$ define a Hankel matrix H as

$$
H=\int_{\mathbb{R}^{3}} M f(v) d v
$$

$$
\Rightarrow \int\left(a+\boldsymbol{b} \cdot \boldsymbol{v}+c \boldsymbol{v}^{2}\right)^{2} f d v=\boldsymbol{\beta}^{T} H \boldsymbol{\beta}>0
$$

Necessary condition :

H must be definite positive.

Converse statement?

True if every positive polynomial is a SOS $\left(\Leftarrow \boldsymbol{\beta}^{\top} H \boldsymbol{\beta}=\boldsymbol{\rho}_{f} \cdot \boldsymbol{\alpha}_{\boldsymbol{\beta}}\right)$

Known results

Known results between positive polynomials and S.O.S in \mathbb{R}^{d}
(1) $d=1$: every positive polynomial is a SOS
(2) $d=2$: true for polynomial of degree $n \leq 4$ but not always if $n \geq 6$ (Hilbert 1893)
(3) $d \geq 3$: true for polynomial of degree $n=2$ but not always if $n \geq 4$ The first explicit counterexample for non S.O.S polynomial in dimension 2 was only found in 1966 !

Theorem

Artin (1927) Every nonnegative polynomial is a sum of square rational functions.

The Grad space

Every positive polynomial $\boldsymbol{\alpha} \cdot \boldsymbol{m}(v)$ writes as

$$
(\beta, 0) \cdot\left(1, v, v \otimes v, v^{2} v\right)
$$

with $\boldsymbol{\beta}=\left(\alpha_{0}, \alpha_{1}, \boldsymbol{\alpha}_{2}\right)$ and $\alpha_{0} \in \mathbb{R}, \alpha_{1} \in \mathbb{R}^{3}, \boldsymbol{\alpha}_{2} \in \mathbb{R}^{3} \times \mathbb{R}^{3}$
\Rightarrow Characterization by S.O.S. in the Gauss space and of realizable moment by the Hankel matrix

Proposition

$\rho=(n, n u, \Pi, Q) \in \mathcal{R}_{G r a d}^{+}$iff $n>0, \Pi-u \otimes u>0$.

$$
\Pi=\int \boldsymbol{v} \otimes \boldsymbol{v} f d v, \quad Q=\int \boldsymbol{v}^{2} \boldsymbol{v} f d v
$$

Grad basis

For $f \geq 0$ s.t. $\int_{\mathbb{R}^{3}} f\left(1+|v|^{3}\right)<+\infty$, span $\left(1, \mathbf{v}, \mathbf{v} \otimes \mathbf{v}, \mathbf{v}^{2} \mathbf{v}\right)$ is the space generated by

$$
\begin{gathered}
\mathbf{a}(\mathbf{v}-\mathbf{u}):=\left(1,(\mathbf{v}-\mathbf{u}),(\mathbf{v}-\mathbf{u})^{2}-3 T, \mathbb{A}(\mathbf{v}-\mathbf{u}), \mathbf{b}(\mathbf{v}-\mathbf{u})\right) \\
\boldsymbol{\rho}_{f}=(n, 0,0, \overline{\mathbb{P}}, \mathbf{q})
\end{gathered}
$$

where $\overline{\mathbb{P}}$ is the traceless pressure tensor and \boldsymbol{q} is the heat flux

Proposition

$\left(n, 0,0, \lambda_{\mathbb{A}} \overline{\mathbb{P}}, \lambda_{\mathbf{b}} \mathbf{q}\right) \in \mathcal{R}_{\text {Grad }}^{+, *} \forall 0 \leq \lambda_{\mathbb{A}} \leq 1$ and $\forall \lambda_{\mathbf{b}} \in \mathbb{R}$
$\forall-\frac{1}{2} \leq \lambda_{\mathbb{A}} \leq 1, \lambda_{\mathbf{b}}=0$ (Ellipsoidal)

Remark

The heat flux can take any value

Variational problem

History

Remark

The study of «complex » variational or dual principle in kinetic theorey is quite recent (1990') compared to the study of variational problem in general

- have a look at earlier results
- opens a wide and rich field of research

Rational Extended Thermodynamics and its connection with kinetic and its connections with kinetic theorey (Muller-Ruggeri)
Formulation of duality on a moment closure : [Levermore, JSP, 1996]
Study of the dual expression $\boldsymbol{\rho} \leftrightarrow \boldsymbol{\alpha}$?
[Junk, 1998, 2000], [Schneider, 2004], [Hauck et all, 2008], [Pavan, 2011]

The classical problem

$\boldsymbol{m}(v)=\left(1, v, v^{2}, m_{3}(v) \ldots, m_{N}(v)\right)$ pseudo-Haar basis

$$
\begin{gathered}
f \in L_{m}^{1} \Leftrightarrow \int|f|\left(1+|v|^{2 p}\right) d v<+\infty \\
\eta: x \longmapsto \begin{cases}x \ln (x) & \text { if } x \geq 0 \\
+\infty & \text { else }\end{cases}
\end{gathered}
$$

Entropy

$$
H(g)=\int \eta(g) d v
$$

Primal problem

Definition (Entropy density)

($q:$ dimension of $\operatorname{span}\left\{m_{i}\right\}$), for $\rho \in \mathbb{R}^{q}, h: \mathbb{R}^{q} \rightarrow \overline{\mathbb{R}}$

$$
h(\rho)=\min _{\int g \mathbf{m}(v) d v=\boldsymbol{\rho}} H(g) .
$$

Definition (Primal problem)

For $\boldsymbol{\rho} \in \operatorname{dom}(h)$ find if possible a function G such that

- $\int G \mathbf{m}(v) d v=\rho$
- $H(G)=h(\rho)$

Domain of definition

- If $\rho \in \mathcal{R}_{\mathbf{m}}^{+}$, from Junk's theorem $\exists \Psi \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$ s.t. $\int \boldsymbol{m}(v) \Psi d v=\rho$
$\Rightarrow H(\Psi)<+\infty$
- H is bounded from below (and above) in the set

$$
D(\rho)=\left\{g \geq 0, \int g \mathbf{m}(v) d v=\rho, \int g \ln (g) d v \leq H(\Psi)\right\}
$$

Proposition

$\operatorname{dom}(h)=\mathcal{R}_{\mathrm{m}}^{+}$i.e. the infimum exists $\forall \rho \in \mathcal{R}_{\mathrm{m}}^{+}(=+\infty$ outside) and h is convex l.s.c. in \mathbb{R}^{q}

Solution of the primal problem

Let g_{n} be a minimizing sequence in $D(\rho)$ i.e. $\lim _{n \rightarrow+\infty} H\left(g_{n}\right)=h(\rho)$
Dunford-Pettis in $D(\rho) \Rightarrow g_{n} \rightharpoonup G$ in L^{1} but not in L_{m}^{1}

$$
\Rightarrow \int g_{n} \boldsymbol{m}(v) d v \rightarrow \int G \boldsymbol{m}(v) d v
$$

The infimum may not satisfy $\int G m(v) d v=\rho$

Duality

«Formally »,

$$
\frac{\partial}{\partial g}\left(H(g)-\boldsymbol{\alpha} \cdot\left(\int m g d v-\boldsymbol{\rho}\right)\right)=0
$$

at the infimum, where $\boldsymbol{\alpha}=$ Lagrange multipliers.

$$
\begin{gathered}
\Rightarrow \eta^{\prime}(G)=\boldsymbol{\alpha} \cdot \mathbf{m}(v) \\
G=\left(\eta^{\prime}\right)^{-1}(\boldsymbol{\alpha} \cdot \mathbf{m}(v))=\left(\eta^{*}\right)^{\prime}(\boldsymbol{\alpha} \cdot \boldsymbol{m}(v))
\end{gathered}
$$

Legendre-Fenchel transform : $\eta^{*}\left(x^{*}\right)=\max _{x}\left(x \cdot x^{*}-h(x)\right)=\exp \left(x^{*}\right)$

Duality for h

Fenchel-Legendre transform of h

$$
h^{*}(\boldsymbol{\alpha})=\max _{\boldsymbol{\rho}}(\boldsymbol{\alpha} \cdot \boldsymbol{\rho}-h(\boldsymbol{\rho}))
$$

Computation : $h^{*}(\boldsymbol{\alpha})=\int \exp (\boldsymbol{\alpha} \cdot \boldsymbol{m}(v)) d v$ defined only for $\exp (\boldsymbol{\alpha} \cdot \boldsymbol{m}(v)) \in L^{1}$

Duality : $\forall \boldsymbol{\alpha}, \boldsymbol{\rho}$ s.t. $h^{*}(\boldsymbol{\alpha})+h(\boldsymbol{\rho})=\boldsymbol{\alpha} \cdot \boldsymbol{\rho}$
$\boldsymbol{\rho} \in \partial h^{*}(\boldsymbol{\alpha})=$ "slopes of the lines below h^{*} at $\boldsymbol{\alpha}$ in 1D
and $\boldsymbol{\alpha} \in \partial h(\boldsymbol{\rho})$.
If $\nabla h^{*}(\boldsymbol{\alpha})$ exists, $\boldsymbol{\rho}=\nabla h^{*}(\boldsymbol{\alpha})$
Problem : converse statement i.e if $\boldsymbol{\rho} \in \mathcal{R}_{\mathbf{m}}^{+}, \exists \boldsymbol{\alpha}$ such that $\boldsymbol{\rho}=\nabla h^{*}(\boldsymbol{\alpha})$?

Problem on the boundary

If $\operatorname{dom}\left(h^{*}\right)=\Lambda$ and $\Lambda \cap \partial \wedge \neq \emptyset$, then ∇h^{*} is not defined on $\Lambda \cap \partial \Lambda \neq \emptyset$.
Figure - Domain of definition 5 moments [Junk, 1998]

Normalized Gaussian $\overline{\mathcal{M}}=\exp \left(\alpha_{\overline{\mathcal{M}}} \cdot \boldsymbol{m}(v)\right)$,
$\partial h^{*}\left(\boldsymbol{\alpha}_{\overline{\mathcal{M}}}\right)=$ half-line above $\overline{\mathcal{M}}$

Comparison with classical projection

$$
\forall \rho \in \mathcal{R}_{m}^{+, *}, \quad D(\rho)=\left\{f \geq 0, \int f \boldsymbol{m}(v) d v=\boldsymbol{\rho}\right\}
$$

- $\mathcal{M}=$ Maxwellian such that $\int \mathcal{M}\left(1, \boldsymbol{v}, \boldsymbol{v}^{2}\right) d v=\left(\rho_{0}, \rho_{1}, \rho_{2}\right)$
- $\forall f \in D(\rho)$ define the distance $d(f, \mathcal{M})=\int f \ln \left(\frac{f}{\mathcal{M}}\right) d v$ (Csiszar, 1972).
\Longrightarrow I-projection of \mathcal{M} onto $D(\rho)$ (Csiszar, 1975)

$$
d(G, \mathcal{M})=\inf _{f \in D(\rho)} d(f, \mathcal{M})
$$

is not always in $D(\rho)$.
Classical entropy is not compatible with moments approach
ϕ divergence

ϕ divergence

«Renormalisation» map of Abdel-Malik and Van Brummelen [2015, JSP]
One starts from $\left(1+\frac{x}{N}\right)^{N} \rightarrow \exp (x)$ and looks for solutions of the form

$$
G=\overline{\mathcal{M}}\left(1+\frac{g}{N}\right)_{+}^{N}
$$

$g \in \operatorname{span}\left\{m_{0}, \ldots, m_{N}\right\},(x)_{+}=\frac{1}{2}(x+|x|)$
$\overline{\mathcal{M}}$: prescribed Gaussian

Remark

(1) polynomial growth $\left(1+\frac{g}{N}\right)_{+}^{N}$ instead of exponential.
(2) measure $\longrightarrow \overline{\mathcal{M}} d v$

ϕ divergence

Inverse function of $\left(1+\frac{x}{N}\right)_{+}^{N}: \widetilde{\ln }(y)=N y^{1 / N}-N$.
H is replaced by

$$
H_{N}=\int \overline{\mathcal{M}} \phi_{N}(f / \overline{\mathcal{M}}) d v, \quad \text { with } \quad \phi_{N}(x)=x \widetilde{\ln }(x)
$$

Theorem (Csiszar 1995)

Let ϕ strictly convex, differentiable on $\mathbb{R}^{+, *}$,
$\phi(1)=\phi^{\prime}(1)=0, \phi^{\prime}(x) \rightarrow+\infty$,
$\phi^{*}(\boldsymbol{\alpha} \cdot \mathbf{m}(v)) \in L^{1}(\overline{\mathcal{M}} d v)$.
For $\boldsymbol{\rho} \in \mathcal{R}_{\mathbf{m}}^{+}$, there exists a unique solution to the primal problem

$$
\inf _{\int g \mathrm{~m}(v) d v=\rho} \int \overline{\mathcal{M}} \phi(f / \overline{\mathcal{M}}) d v
$$

Moreover, this solution satisfies all constraints.

Comments

(1) $\eta(x)=x \ln (x)$ does not satisfy $\phi^{*}(\boldsymbol{\alpha} \cdot \mathbf{m}(v)) \in L^{1}(\overline{\mathcal{M}} d v)$ for any $\boldsymbol{\alpha}$.
(2) Very general but difficult proof
(3) No strict proof as concerns the shape of the solution
(4) For the above approximation

$$
\int \overline{\mathcal{M}} \phi_{N}(f / \overline{\mathcal{M}}) d v \sim \int \overline{\mathcal{M}}(f / \overline{\mathcal{M}})^{1+\frac{1}{N}} d v
$$

i.e. weighted $L^{1+\frac{1}{N}}$ space.

Hölder inequality for $g_{n} \in D(\rho) \Rightarrow$ minimizing sequence $g_{n} \rightarrow G$ in L_{m}^{1}

General result by convex analysis

Theorem

(1) $\phi: \mathbb{R} \rightarrow \mathbb{R} \cup\{+\infty\}$ stricly convex and differentiable of \mathbb{R}^{+}
(2) $\phi(0)=0, \lim _{p \rightarrow 0} \frac{\phi(p)}{p} \in \mathbb{R}$,
(3) $\forall \boldsymbol{\alpha}, \phi^{*}(\boldsymbol{\alpha} \cdot \mathbf{m}(v)) \in L^{1}(\overline{\mathcal{M}} d v)$

Then
(1) $\forall \boldsymbol{\rho} \in \mathcal{R}_{m}^{+, *}, \exists!\boldsymbol{\alpha}$ such that $\nabla h^{*}(\boldsymbol{\alpha})=\boldsymbol{\rho}, \nabla h(\boldsymbol{\rho})=\boldsymbol{\alpha}$
(2) $G=\overline{\mathcal{M}}\left(\phi^{*}\right)^{\prime}(\boldsymbol{\alpha} \cdot \boldsymbol{m}(v))$ is the unique solution to the primal problem. Moreover $h(\rho)$ is strictly convex on \mathcal{R}_{m}^{+}.

Sketch of the proof

(1) $\operatorname{dom}(h)=\mathcal{R}_{\boldsymbol{m}}^{+}$, with $\mathcal{R}_{\boldsymbol{m}}^{+, *}$ convex and open $\Rightarrow h$ is continuous on $\mathcal{R}_{\boldsymbol{m}}^{+, *}$
(2) $h^{*}(\boldsymbol{\alpha})=\int \overline{\mathcal{M}} \phi^{*}(\boldsymbol{\alpha} \cdot \boldsymbol{m}(v)) d v$ is differentiable in \mathbb{R}^{q}
(3) h is continous at $\boldsymbol{\rho} \Rightarrow \exists \boldsymbol{\alpha} \in \partial h(\boldsymbol{\rho}) \neq \emptyset$ (subdifferential at ρ) s.t.

$$
\begin{aligned}
& \Leftrightarrow h(\boldsymbol{\rho})+h^{*}(\boldsymbol{\alpha})=\boldsymbol{\rho} \cdot \boldsymbol{\alpha} \\
& \Leftrightarrow \boldsymbol{\rho} \in \partial h^{*}(\boldsymbol{\alpha}) \text { is reduced to one point } \boldsymbol{\rho}=\nabla h^{*}(\boldsymbol{\alpha})
\end{aligned}
$$

Remark

The highest degree in $\boldsymbol{m}(v)$ is not necessary even

Method of construction

Step 1: For $f \geq 0, f \in L_{G r a d}^{1}$, consider $\boldsymbol{\rho}_{f}=\int f \boldsymbol{a}(v-u) d v$ and the Maxwellian

$$
\mathcal{M}_{f}=\frac{n}{(2 \pi T)^{\frac{3}{2}}} \exp \left(-\frac{(v-u)^{2}}{2 T}\right)
$$

Step 2: Consider a given relaxation on $\boldsymbol{\rho}_{f}: L\left(\boldsymbol{\rho}_{f}\right)=\left(n, 0,0, \lambda_{\mathbb{A}} \overline{\mathbb{P}}, \lambda_{\mathbf{b}} \boldsymbol{q}\right)$
Step 3 : Change $\overline{\mathcal{M}}$ with \mathcal{M}_{f} for some ϕ divergence Theorem $\Rightarrow \exists$! $\boldsymbol{\alpha}$ s.t.

$$
G=\mathcal{M}_{f}\left(\phi^{*}\right)^{\prime}(\boldsymbol{\alpha} \cdot \mathbf{a}(v-u))
$$

with

$$
\int G \boldsymbol{a}(v-u) d v=L\left(\boldsymbol{\rho}_{f}\right), \quad \text { and } \quad H(G)=h\left(L\left(\boldsymbol{\rho}_{f}\right)\right)
$$

Properties

- $L\left(\rho_{f}\right)$ chosen such as mass, momentum and energy are conserved
(2) $G \geq 0$, as soon as ϕ satisfies the assumptions of theorem \Rightarrow $\left(\phi^{*}\right)^{\prime}(x) \geq 0$ on \mathbb{R}.
(3) (Extended) H theorem : h is strictly convex in $\mathcal{R}_{\text {Grad }}^{+}$

$$
\Longrightarrow\left(\lambda_{\mathbb{A}}, \lambda_{b}\right) \in[0,1]^{2} \longrightarrow h\left(n, 0,0, \lambda_{\mathbb{A}} \overline{\mathbb{P}}, \lambda_{q} q\right)
$$

is strictly convex with a unique minimum in

$$
h(n, 0,0,0,0)=H\left(\mathcal{M}_{f}\right)
$$

- $\int \mathcal{M}_{f} \phi\left(f / \mathcal{M}_{f}\right) d v$ is not a Lyapunov functional (in general) in inhomogeneous case

Galilean invariance

In few words, $\mathbb{P}=\left\{1, \boldsymbol{v}, \boldsymbol{v} \otimes \boldsymbol{v},|\boldsymbol{v}|^{2} \boldsymbol{v}\right\}$ is invariant under the action of

$$
T=\left\{\begin{array}{l}
\tau_{u} v=v-u \quad \forall u \mathbb{R}^{3} \\
\Theta v \quad \forall \Theta \text { rotation }
\end{array}\right.
$$

and

$$
\begin{aligned}
H(g(T v))=\int \mathcal{M}_{f}(T(v)) \phi\left(\frac{g(T v)}{\mathcal{M}_{f}(T(v))}\right) d v=\int \mathcal{M}_{f}(v) \phi\left(\frac{g(v)}{\mathcal{M}_{f}(v)}\right) d v \\
\Rightarrow T G(v)=G(T(v))
\end{aligned}
$$

Invariance of the measure in the entropy under Galilean transform

Linearized operator

Theorem

$\mathcal{L}_{\mathcal{M}}(g)=v\left(\sum_{i}\left(1-\frac{v_{i}}{v}\right) \mathbb{P}_{m_{i}}+\mathbb{P}_{\mathbb{K}}-l_{d}\right)(g)$
$\Rightarrow \mathcal{L}_{\mathcal{M}}$ is Fredholm, self-adjoint and negative on \mathbb{K}^{\perp}
Consequences: $\mathcal{L}_{\mathcal{M}}^{-1}$ is defined on \mathbb{K}^{\perp} and $\mu_{K}=\frac{P}{\nu_{A}}, \kappa_{K}=\frac{5}{2} \frac{P}{\nu_{b}}$ Multiple choices for the relaxations (i.e on $v)\left(1-\frac{v_{\mathrm{A}}}{v}\right),\left(1-\frac{v_{\mathrm{b}}}{v}\right)$ as soon as : $\mu_{K}=\mu, \kappa_{K}=\kappa, \frac{v_{b}}{v_{A}}=\operatorname{Pr}$
Also one can prove from the properties of $\mathcal{L}_{\mathcal{M}}$ that

$$
\int_{\mathbb{R}^{3}} K(g) \phi(v) d v=0 \forall g \quad \Rightarrow \phi \in \mathbb{K}
$$

Examples

BGK models

$$
\phi(x)=x \ln (x),
$$

$$
\int_{\mathbb{R}^{3}} \mathcal{M} \phi\left(\frac{f}{\mathcal{M}}\right) d v=\int_{\mathbb{R}^{3}} f \ln \left(\frac{f}{\mathcal{M}}\right) d v
$$

the variational problem well-posed in $\mathbb{P}=\{1, \boldsymbol{v}, \boldsymbol{v} \otimes \boldsymbol{v}\}$ for

$$
L\left(\rho_{f}\right)=\left(n, 0,0, \lambda_{\mathbb{A}} \overline{\mathbb{P}}\right), \quad \text { with } \quad-\frac{1}{2} \leq \lambda_{\mathbb{A}} \leq 1
$$

$\lambda_{\mathbb{A}}=0 \Leftrightarrow v_{\mathbb{A}}=v:$ BGK model (1954)
Else : ESBGK model [Holway, 1966] from $\operatorname{Pr}=\frac{2}{3}$ to $+\infty$
\Rightarrow ESBGK mono and poly [Andries et al, 2000], [Brull, J.S. 2008, 2009]
Possibility to extend the variational principle to $v(c)(c=v-u)$ dependant collision frequency [Bouchut, Perthame, 1993], [Struchtrup, 1997]

Shakhov model, 1968

ϕ divergence for the Shakhov model

$$
\begin{aligned}
& \phi_{\chi^{2}}(x)=\frac{1}{2}(x-1)^{2}, \quad \forall x \in \mathbb{R} \\
& \left(\phi_{\chi^{2}}^{*}\right)^{\prime}\left(x^{*}\right)=1+x^{*} \quad \forall x^{*} \in \mathbb{R}
\end{aligned}
$$

Minimization « problem» : projection of $\frac{f}{\mathcal{M}}-1$ on Grad space in $\mathcal{L}^{2}(\mathcal{M})$ In the Grad space, the choice

$$
\begin{gathered}
v_{\mathbb{A}}=v=\frac{P}{\mu} \quad \text { and } \quad v_{\boldsymbol{b}}=v P r \\
\Rightarrow G_{S}=\mathcal{M}\left(1+\frac{1-P r}{\rho T}(v-u) \cdot \vec{q}\left(\frac{(v-u)^{2}}{T}-5\right)\right)
\end{gathered}
$$

Remarks on Shakhov model

(1) Contrarily to ESBGK model

$$
\int_{\mathbb{R}^{3}} G_{s} \mathbf{a}(v-u) d v=\frac{1}{v} \int_{\mathbb{R}^{3}} Q^{+}(f, f) \mathbf{a}(v-u) d v
$$

for Maxwellian molecules.
(2) H Theorem $\forall \mathrm{Pr}>0$
(3) $\rho_{G s} \in \mathcal{R}_{G r a d}^{+} \Rightarrow$ this may bring some stability (at least close to a given $\overline{\mathcal{M}})$

Polynomial approximation of exp

$$
\begin{aligned}
& \phi_{N}(x)=N x^{1 / N}-N \\
& \forall \boldsymbol{\rho}_{f} \in \mathcal{R}_{\text {Grad }}^{+}, \exists!\boldsymbol{\alpha} \text { s.t. } G=\mathcal{M}\left(1+\frac{\alpha \cdot \mathbf{a}(v-u)-1}{N}\right)_{+}^{N} \\
& H(G)=H\left(L\left(\rho_{f}\right)\right), \quad \int G \mathbf{a}(v-u) d v=L\left(\rho_{f}\right)
\end{aligned}
$$

Well-posed operator not restricted to polynomial space with even higher order rank

Remark

$\int f \ln f$ is almost a Lyapunov functional for the inhomogeneous equation since

$$
\int R(f) \widetilde{\ln }(f / \mathcal{M}) d v \approx \int R(f) \ln (f / \mathcal{M}) d v
$$

The Levermore operator

$$
\begin{aligned}
& \text { Let } \mathbb{M}=\mathbb{M}_{1} \subset \mathbb{M}_{2} \subset \ldots \subset \mathbb{M}_{N} \text { and } 0<v_{1}<v_{2}<\ldots<v_{N} \text { and } \\
& \qquad \begin{array}{l}
\mathcal{M}_{k}=\operatorname{Argmin}\left\{\int g \ln (g) / \int g m_{i}(v) d v=\int f m_{i}(v) d v, \forall m_{i} \in \mathbb{M}_{k}\right\} \\
\qquad K(f)=v_{1}(\mathcal{M}-f)+\sum_{k=2}^{N}\left(v_{k}-v_{k-1}\right)\left(\mathcal{M}_{k}-f\right)
\end{array}
\end{aligned}
$$

Then

$$
\left(\forall \phi \in \mathbb{M}_{k} \backslash \mathbb{M}_{k-1}\right), \quad \mathcal{L}_{\mathcal{M}}(m)=-v_{k-1} m(v)
$$

\Leftrightarrow Grad's relaxation

Problems and questions

(1) Variational problem may be not well posed
(2) $\mathbb{M}=\mathbb{K}+$ Gauss space : $v_{1}<v_{2}$ does not give the right Prandtl number. (Mieussens Phd Thesis 1999)
(3) If $\phi \in \mathbb{M}_{k} \backslash \mathbb{M}_{k-1},(k \geq 2)$

$$
\int K(f) \phi(v) d v \neq-v_{k-1} \int f \phi d v
$$

$\left(\left(\phi_{i}\right)\right.$ orthogonal in $L^{2}(\mathcal{M})$, not in $\left.L^{2}\left(\mathcal{M}_{k-1}\right)\right)$
(4) however

$$
\mathcal{L}_{\mathcal{M}}(g)=v_{N}\left(\sum_{k=1}^{N}\left(1-\frac{v_{k-1}}{v}\right) \mathbb{P}_{\mathbb{M}_{k} \mid \mathbb{M}_{k-1}}+\mathbb{P}_{\mathbb{K}}-I d\right)(g)
$$

Stationary shock wave

Stationary normal shock wave - 1

Purpose : the 1D domain is divided in 2 regions, with different gas states, and let the gas relaxed to the stationary state.

Domain initialization

Boundary conditions

- Left at $0:\left\{n_{L}, u_{L}, T_{L}\right\}$
- Right at $1:\left\{n_{R}, u_{R}, T_{R}\right\}$

Stationary normal shock wave - 2

Values:

Mach	Boundary	n	u	T
1.4	left	1	1.278	1
	right	1.581	0.808	1.392

Code characteristics

- DVM on top of a Discontinuous Galerkin Advection solver
- 1D physical, 3D molecular velocities
- BGK model : BGK, S-BGK, ES-BGK, phi-div

Stationary normal shock wave - Results

Normalized solutions comparison

Stationary normal shock wave - Results

Temperature profile for various BGK

Existing results and opened problems

Existing results

- Fick matrix gas mixtures : [Brull, Pavan, J.S., 2012]
- ESBGK models for mono and polyatomic gas mixtures : viscosity (and shear viscosity), heat conductivity : [Brull,2015, 2021]
- Polyatomic reacting gases, discrete energy, Fick matrix [S. Brull, J.S., 2014], [J.S. 2015]
- Fick matrix poly (and mono) gas mixtures : 2 viscosities and Fick matrix (see talk of K. Guillon)

Existence theorem

- BGK [Perthame 1989], [Perthame-Pulvirenti 1993], ...
- The many results on ESBGK : Yun et all. $\mathrm{Pb} \operatorname{Pr}=2 / 3$?
- Shakhov near global equilibrium (see talk of Gi-Chan Bae)

Perspectives and open problems

- Numerical comparisons between the different relaxation models Developpement of a code (in progress)
- Relaxation model for multispecies (mono and poly) leading to the full set of transport coefficients (Phenomenological or Onsager matrix)
- Can we construct a single operator based on general Grad's relaxation $L(\rho) \in \mathcal{R}_{m}^{+}$?
- Existence theorem of solutions based on relaxation and variational principles.

THANKS FOR YOUR ATTENTION!

