Relaxation operators in kinetic theory

Stéphane Brull *, Yann Jobic **, Vincent Pavan **, Jacques Schneider ***

Bordeaux INP *, Aix-Marseille University **, University of Toulon ***

23th-26th august 2021

The Boltzmann equation

- 2) Entropic approximation and first models
- 3 Method of moment relaxation
 - Shape of the set $\mathcal{R}^+_{\mathbf{m}}$
 - Variational problem
- ϕ divergence
- 7 Examples
- 8 Stationary shock wave
- Existing results and opened problems

- Find deterministic methods for the Boltzmann equation
- Discrete velocity models have good properties but computation of Q(f, f) for "N" velocities in O(N² log N).
- Look for simpler model rather than for numerical method.
- Find a compromise between the numerical cost and the accuracy of the model.

The Boltzmann equation

The Boltzmann equation

$$\partial_t f + \mathbf{v} \cdot \nabla_{\mathbf{x}} f = Q(f, f) = Q^+(f, f) - v(f)f, \quad (t, \mathbf{x}, \mathbf{v}) \in \mathbb{R}^+ \times \mathbb{R}^3 \times \mathbb{R}^3$$

Notations

f(t, x, v)

$$n = \int f \, dv$$

$$nu = \int v f dv$$

$$E = \frac{nu^2}{2} + \frac{3}{2}nT = \frac{1}{2}\int v^2 dv$$

- : distribution function
- : number of molecules per unit volume
- : momentum (m=1)
- : total energy

Main properties I

1) Preservation of positivity : under suitable assumptions the solution exists and f(t, x, v) remains a density function i.e. $f(t, x, v) \ge 0$ 2) Collision invariants (mass, momentum and energy are conserved during a collision)

$$\int Q(f,f)(1,v,v^2)\,dv=0$$

3) $\exists \eta$ entropy density and

$$H(f) = \int \eta(f) dv$$
 s.t. $\int \eta'(f) Q(f, f) dv \leq 0.$

3') For the Boltzmann equation $\eta(x) = x \ln(x) - x$,

.

$$\partial_t H(f) + div \int v\eta(f) \, dv \leq 0$$

Main properties II

4) Extended H theorem

$$\int_{\mathbb{R}^3} \eta'(f) Q(f,f) dv = 0 \Leftrightarrow Q(f,f) = 0 \Leftrightarrow \eta'(f) \in Span\{1,v,v^2\}$$

$$\Rightarrow f = \mathcal{M} = \frac{n}{(2\pi T)^{\frac{3}{2}}} \exp(-\frac{(v-u)^2}{2T})$$

5) Galilean invariance

6) Correctness of the hydrodynamic limit : Right properties on the linearized operator (Fredholm, kernel = \mathbb{K}

Chapmann-Engskog expansion : $f = \mathcal{M}(1 + \varepsilon g) + O(\varepsilon^2)$ into

$$\partial_t f + \mathbf{v} \cdot \nabla_{\mathbf{x}} f = \frac{1}{\varepsilon} Q(f, f).$$

 \Rightarrow Euler and Navier-Stokes

Entropic approximation and first models

Main idea :E. M. Shakhov,<u>MEKHIANIKA ZHIDKOSTI I GAZA, 1968</u> Replace $Q(f, f) = Q^+(f, f) - vf$ with R(f) = v(G - f) where $G \approx Q^+(f, f)/v$. **Constraints for Maxwell molecules :**

$$\int \mathbf{G} \mathbf{m}(v) = v^{-1} \int Q^+(f, f) \mathbf{m}(v)$$

where $\mathbf{m}(v) = (m_0, ..., m_N)$ is a generating vector of a (suitable) polynomial space \mathbb{P}

"Closure" : $G = \mathcal{M} * p(v)$ where $p(v) \in \mathbb{P}$

 \mathbf{v}

Problem : *G* is not nonnegative everywhere and the solution might become negative !

[Levermore, JSP, 1996]

• Replace $f \longrightarrow G = exp(\boldsymbol{\alpha}.\mathbf{m}(v))$ solution of

$$H(G) = \min_{g \in C_f} H(g)$$

with

$$C_f = \{g \ge 0, \int g\mathbf{m}(v) = \int f \mathbf{m}(v) dv\}.$$

[Levermore, JSP, 1996]

• Replace $f \longrightarrow G = exp(\boldsymbol{\alpha}.\mathbf{m}(v))$ solution of

$$H(G) = \min_{g \in C_f} H(g)$$

with

$$C_f = \{g \ge 0, \int g\mathbf{m}(v) = \int f \mathbf{m}(v) dv\}.$$

Question : $f \rightarrow G$ well-defined?

Junk says not always ! M3AS, 2000.

But it is possible if the constraint of highest degree is relaxed J.S., M2AN, 2004.

- Example : $\mathbb{P} = \mathbb{P}_{N-1} \oplus \mathbb{R} . |v|^N$, just ask $\int g |v|^N \leq \int f |v|^N$
- 2 The entropic "approximation" $f \rightarrow G(f)$ is well defined.
- So New closure in Shakhov model : G = entropic approximation $Q^+(f, f)/\nu$. The model satisfies all properties !

 \implies model restricted to Maxwellian molecules.

Method of moment relaxation

Aim : Construct relaxation operator

$$R(f)=\nu(G-f)$$

that « behaves as » linear operator while pertaining positivity

Definition

If R(f) satisfies properties 1 - 6, R(f) is a well defined operator.

Remark

We do not ask $H(f) = \int \eta(f) dv$ to be a Lyapounov Functional.

Let
$$\boldsymbol{m}(v) = (m_1(v), \dots, m_N(v))$$
 be a set of tensors.

$$\int R(f)m_i(v)dv = -v_i\int_{\mathbb{R}^3} f m_i(v)dv$$

 $(\nu_i)_{i=1,...,N}$ are nonnegative relaxation coefficients (frequency) <u>First example</u> Set of tensors : $\mathbb{P} = \mathbb{K} \oplus^{\perp} \mathbb{A}$, where

$$\mathbb{A}(v) = (v - u) \otimes (v - u) - \frac{1}{3} ||v - u||^2 I_d$$

⇒ Rigorous derivation of the ESBGK model [S. Brull, J.S., 2008]

Main example

Set of tensors : $\mathbb{P} = \mathbb{K} \oplus^{\perp} \mathbb{A} \oplus^{\perp} b$, where

$$b(v) = (v-u)\left(\frac{1}{2}(v-u)^2 - \frac{5}{2}T\right)$$

Constraints

$$\int_{\mathbb{R}^3} G(1, v, v^2) dv = \int_{\mathbb{R}^3} f(1, v, v^2) dv$$

$$\int_{\mathbb{R}^3} G \mathbb{A}(v - u) dv = (1 - \frac{v_{\mathbb{A}}}{v}) \int_{\mathbb{R}^3} f \mathbb{A}(v - u) dv$$

$$\int_{\mathbb{R}^3} G \mathbf{b}(v - u) dv = (1 - \frac{v_{\mathbb{b}}}{v}) \int_{\mathbb{R}^3} f \mathbf{b}(v - u) dv$$

Conservation laws $\Rightarrow v_i = 0$ on \mathbb{K}

How to define v, G, $v_{\mathbb{A}}$ and v_b ?

Variational principle

Choose a strictly convex function η with domain in \mathbb{R}_+ and set

$${\sf H}(g)=\int \eta(g)\,{\sf d} {\sf v}$$

For $\rho_f = \int f \mathbf{m}(v) dv$, define $L(\rho_f)$, with the relaxation constraints

$$(L(\boldsymbol{\rho}_f))_i = (1 - \frac{\nu_i}{\nu}) \int_{\mathbb{R}^3} f \, m_i(\nu) \, d\nu$$

Problem

For $\rho_f \in \mathbb{R}^q$ (q : dimension of span{m_i}), find if possible a function G such that

•
$$\int G\mathbf{m}(v) dv = L(\boldsymbol{\rho}_f)$$

• $H(G) = \min_{\int g\mathbf{m}(v) dv = L(\boldsymbol{\rho}_f)} H(g).$

If $f \mapsto G$ is sufficiently smooth and R(f) is well-posed (H theorem)

$$\partial_t f^{\varepsilon} + \mathbf{v} \cdot \nabla f^{\varepsilon} = \frac{1}{\varepsilon} R(f^{\varepsilon}).$$

Order -1: H theorem $\Rightarrow f_0 = \mathcal{M} \Rightarrow$ Euler equation in $O(\varepsilon)$ Setting $f_1 = \mathcal{M}g_1$ Equation at order 0:

$$\mathcal{L}_R(g_1) = \mathbb{A}(v-u) : \mathbb{D}(u) + \boldsymbol{b}(v-u) \cdot \nabla_x(-\frac{1}{T}),$$

where $\mathbb{D}(u)$ is the Reynolds tensor and

$$\mathcal{L}_R(g) = rac{1}{\mathcal{M}} \lim_{arepsilon o 0} rac{R(\mathcal{M}(1+arepsilon g))}{arepsilon}$$

Definition of $v_{\mathbb{A}}$ and $v_{\boldsymbol{b}}$

Compute

$$\mathcal{L}_{\mathsf{R}}(g) = v \Big(\sum (1 - rac{v_i}{v}) \mathbb{P}_{m_i} + \mathbb{P}_{\mathbb{K}} - \mathsf{Id} \Big)(g)$$

$$\mu_{R} = \frac{T}{10} \langle \mathcal{L}_{R}^{-1}(\mathbb{A}), \mathbb{A} \rangle = \frac{nT}{\nu_{\mathbb{A}}}, \quad \kappa_{R} = \frac{5nT}{2\nu_{b}}$$

where $\langle \cdot, \cdot \rangle$ is the $L^2(\mathcal{M})$ dot product with the full contraction for tensor. **Definition of** $v_{\mathbb{A}}$ **and** $v_{\mathbf{b}}$

$$v_{\mathbb{A}} = \frac{nT}{\mu}, \quad v_{\mathbf{b}} = \frac{5}{2} \frac{nT}{\kappa} \Longrightarrow Pr = \frac{5}{2} \frac{\mu}{\kappa} = \frac{v_{\mathbf{b}}}{v_{\mathbb{A}}}$$

R is designed such that $\mathcal{L}_R^{-1} \sim \mathcal{L}_B^{-1}$ and not $\mathcal{L}_R \sim \mathcal{L}_B$

We assume that $f \ge 0$ and

$$\int_{\mathbb{R}^3} f |m_i(v)| \, dv < +\infty, \quad \forall i = 1, \dots, N.$$

G must satisfy $G \ge 0$ and $\int G\boldsymbol{m}(v) = L(\boldsymbol{\rho}_f)$

Condition

$$C_f = \left\{g \ge 0 \ / \ \int_{\mathbb{R}^3} g \, m_i(v) \, dv = \left(1 - \frac{\nu_i}{\nu}\right) \int_{\mathbb{R}^3} f \, m_i(v) \, dv\right\} \neq \emptyset.$$

Questions

What is the shape of the set of realizable moments

$$\mathcal{R}^+_{\mathbf{m}} = \left\{ \int_{\mathbb{R}^3} f \, \mathbf{m}(v) \, dv, \ f \ge 0, \ \int_{\mathbb{R}^3} f \, |m_i(v)| \, dv < +\infty \right\}$$

Optimization problem : Solve

$$\min_{g\in C_f}\int_{\mathbb{R}^3}\eta(g)\,dv$$

for some entropy density η .

The choice of η is crucial for

- The existence of a (unique) minimizer
- The H theorem

Remark

No solution (in general) when $\eta(x) = x \ln(x)$ under the constraints

$$\int_{\mathbb{R}^3} g(1, \mathbf{v}, \mathbf{v}^2) dv = \int_{\mathbb{R}^3} f(1, \mathbf{v}, \mathbf{v}^2) dv$$

$$\int_{\mathbb{R}^3} g \mathbb{A}(v - u) dv = (1 - \frac{\lambda_{\mathbb{A}}}{v}) \int_{\mathbb{R}^3} f \mathbb{A}(v - u) dv$$

$$\int_{\mathbb{R}^3} g \mathbf{b}(v - u) dv = (1 - \frac{\lambda_{\mathbf{b}}}{v}) \int_{\mathbb{R}^3} f \mathbf{b}(v - u) dv$$

Artificial condition on $\int g |v|^4 dv$?

The problem might not be well posed?

See [Junk, 1998, 2000], [J.S., 2004], [Hauck et all, 2008], [Pavan, 2011]

Shape of the set $\mathcal{R}_{\mathbf{m}}^+$

In 1d : Hamburger moment problem

Given $\rho_0, \ldots, \rho_n \in \mathbb{R}$ and $m_i(x) = x^i$ is there a measure μ such that

$$\int_{\mathbb{R}} x^i d\mu = \rho_i$$

Theorem (Akhiezer, Krein, 1962)

If n = 2p there exists a measure μ iff the Hankel matrix

$$H := (\rho_{i+j})_{0 \le i,j \le p}$$

is positive definite.

The measure $d\mu$ can be changed into f(x) dx with $f \in L^1$

Definition

Let $\mathbf{m}(\mathbf{v}) := (\mathbf{m}_0(\mathbf{v}), \dots, \mathbf{m}_k(\mathbf{v}), \dots, \mathbf{m}_n(\mathbf{v}))$ be a list of tensors where $\mathbf{v} \in \mathbb{R}^d$. $(\mathbf{m}_k)_k$ is pseudo-Haar when :

$$\forall \boldsymbol{\alpha} = (\alpha_0, \dots, \alpha_n), \quad [\boldsymbol{\alpha} \neq \boldsymbol{0} \Rightarrow \boldsymbol{\alpha} \cdot \mathbf{m} (\mathbf{v}) \neq 0], \quad \lambda.a.e \ \mathbf{v} \in \mathbb{R}^d \tag{1}$$
$$\boldsymbol{\alpha} \cdot \mathbf{m} (\mathbf{v}) := \sum \alpha_k : \mathbf{m}_k (\mathbf{v}) \tag{2}$$

k

Problem

Let $\boldsymbol{\rho} = (\rho_0, \dots, \rho_n)$ a list of tensor. Is there a nonnegative function f in $L^1(\mathbb{R}^d)$ s.t.

$$\int f m_i(v) dv = \rho_i$$

Example

One may consider the following Pseudo-Haar basis :

• "Euler"
$$\mathbf{m}(\mathbf{v}) = (1, \mathbf{v}, \mathbf{v}^2)$$

② "Gauss"':
$$\mathbf{m}(\mathbf{v}) = (1, \mathbf{v}, \mathbf{v} \otimes \mathbf{v})$$

3 Grad :
$$\mathbf{m}(\mathbf{v}) = (1, \mathbf{v}, \mathbf{v} \otimes \mathbf{v}, \mathbf{v}^2 \mathbf{v})$$

) Levermore :
$$\mathbf{m}(\mathbf{v}) = (1, \mathbf{v}, \mathbf{v} \otimes \mathbf{v}, \mathbf{v}^2 \mathbf{v}, \mathbf{v}^4)$$

Theorem

[Junk, 2000]

- $\bigcirc \rho \in \mathcal{R}_{\mathbf{m}}^{+} \setminus \{0\} \Leftrightarrow \forall \ \alpha \neq 0 \text{ such that } \alpha \cdot \mathbf{m}(v) \leq 0 \text{ a.e. there is } \rho \cdot \alpha < 0$
- 2 $\mathcal{R}^{+,*}_{\mathbf{m}}$ is an open convex set

3
$$\forall \, \boldsymbol{\rho} \in \mathcal{R}_{\boldsymbol{m}}^+, \, \exists \, \psi \geq 0, \, \in C_c^{\infty}(\mathbb{R}^3)$$
 such that $\boldsymbol{\rho} = \int_{\mathbb{R}^3} \mathbf{m}(v) \, \psi(v) \, dv$

Remark

The set of realizable moment $\mathcal{R}_{\mathbf{m}}^+ \setminus \{0\}$ is characterized by the set of (non positive) nonnegative polynomials : all $\boldsymbol{\alpha} \neq 0$ such that $\boldsymbol{\alpha} \cdot \boldsymbol{m}(v) \ge 0$.

Definition (Cone spanned by the pseudo-Haar basis)

Let $\mathbf{m}(\mathbf{v})$ pseudo-Haar on \mathbb{R}^d and q dimension of $span(m_0(\mathbf{v}), \cdots, m_N(\mathbf{v}))$. Define *C* the positive cone spanned by $\mathbf{m}(\mathbf{v})$ in \mathbb{R}^q :

$$C = \left\{ \sum_{i} \lambda_{i} \mathbf{m} \left(\mathbf{v}_{i} \right), \lambda_{i} \geq 0, \ \mathbf{v}_{i} \in \mathbb{R}^{d} \right\}$$
(3)

Proof II

First remark

If $m(\mathbf{v})$ is continuous w.r.t \mathbf{v} and $\psi_{\epsilon} \in C_0^{\infty}$ such that $\psi_{\epsilon} \to \delta$ then

$$\boldsymbol{\rho}_{\epsilon} := \int m(\mathbf{w}) \psi_{\epsilon} (\mathbf{w} - \mathbf{v}) \, d\mathbf{v} \in \mathcal{R}_{\mathbf{m}}^{+} \quad \text{et} \quad \boldsymbol{\rho}_{\epsilon} \longrightarrow m(\mathbf{v}) \,. \tag{4}$$

Same thing for each element of $C \Longrightarrow C \subset \overline{\mathcal{R}}_{\mathbf{m}}^+$. Converse statement?

Second remark

Let $\boldsymbol{\alpha} \neq 0$ such that $\boldsymbol{\alpha} \cdot \mathbf{m}(v) \leq 0$, $\forall v$ and $f \geq 0 \ (\neq 0) \ f \in \mathbb{L}_{\mathbf{m}}^{1}$ then

$$\boldsymbol{\alpha} \cdot \boldsymbol{\rho}_{f} = \int \boldsymbol{\alpha} \cdot \mathbf{m} \left(\mathbf{v} \right) f \left(\mathbf{v} \right) \, d\mathbf{v} < 0 \tag{5}$$

Definition (Polar cone of *C*)

$$C^{\circ} := \{ \boldsymbol{\alpha} : \boldsymbol{\alpha} \cdot \boldsymbol{\eta} \leq 0 \quad \forall \boldsymbol{\eta} \in C \}, \\ = \{ \boldsymbol{\alpha} : \boldsymbol{\alpha} \cdot \boldsymbol{m} (\mathbf{v}) \leq 0 \quad \forall \mathbf{v} \in \mathbb{R}^d \}$$

Theorem (Interior of a solid convex cone)

If X is a convex cone with non-empty interior in \mathbb{R}^q , then

$$x \in int(X) \Leftrightarrow \forall \mathbf{y} \in X^{\circ}, \ [\mathbf{y} \neq \mathbf{0} \Rightarrow \mathbf{y} \cdot \mathbf{x} < 0]$$

 \Rightarrow if int $(C) \neq \emptyset$ then $\mathcal{R}_{\mathbf{m}}^{*+} \subset \operatorname{int} (C)$

(6)

Proposition

Let $\mathbf{m}(\mathbf{v})$ pseudo-Haar basis and C the positive cone associated to it, then

●
$$int(C) \neq \emptyset \implies \mathcal{R}_{\mathbf{m}}^{*+} \subset int(C)$$

2 $\forall \rho \in int(C), \exists \psi \ge 0, \in C_c^{\infty}(\mathbb{R}^3)$ such that

$$\boldsymbol{\rho} = \int \mathbf{m} \left(\mathbf{v} \right) \psi \left(\mathbf{v} \right) d\mathbf{v} \tag{7}$$

$$\implies$$
 int $(C) \subset \mathcal{R}_{\mathbf{m}}^{*+}$

XVIIth Hilbert's problem

Show that every nonnegative polynomial with coefficient in \mathbb{R} is a sum of square rational functions.

One of the important question about this problem :

If p(v) = a · m(v) is nonnegative, is it a sum of square (S.O.S) polynomials?

Example (Levermore space)

The Levermore space can be identified as a product of $(1, \mathbf{v}, \mathbf{v}^2) \lor (1, \mathbf{v}, \mathbf{v}^2) = (1, \mathbf{v}, \mathbf{v} \otimes \mathbf{v}, \mathbf{v}^2 \mathbf{v}, \mathbf{v}^4)$

A square polynomial $P(v) = \left(a + m{b} \cdot m{v} + c m{v}^2
ight)^2$ can be written as

$$\boldsymbol{\beta}^T M \boldsymbol{\beta}$$
, with $\boldsymbol{\beta} = (a, \boldsymbol{b}, c)^T \in \mathbb{R} \times \mathbb{R}^3 \times \mathbb{R}$

$$M = \begin{bmatrix} 1 & \mathbf{v}' & \mathbf{v}^2 \\ \mathbf{v} & \mathbf{v} \otimes \mathbf{v} & \mathbf{v}^2 \mathbf{v} \\ \mathbf{v}^2 & \mathbf{v}^2 \mathbf{v}^T & \mathbf{v}^4 \end{bmatrix}$$

What about Grad space?

 $\mathbf{G}r(\mathbf{v}) = (1, \mathbf{v}, \mathbf{v} \otimes \mathbf{v}, \mathbf{v}^2 \mathbf{v})$ has no quadratic structure

Definition

Likewise, for $f \ge 0$ in L_{Lev}^1 define a Hankel matrix *H* as

$$H=\int_{\mathbb{R}^3} Mf(v)\,dv.$$

$$\Rightarrow \int \left(a + \boldsymbol{b} \cdot \boldsymbol{v} + c \boldsymbol{v}^2 \right)^2 f dv = \boldsymbol{\beta}^T H \boldsymbol{\beta} > 0$$

Necessary condition :

H must be definite positive.

Converse statement?

True if every positive polynomial is a SOS ($\leftarrow \boldsymbol{\beta}^T H \boldsymbol{\beta} = \boldsymbol{\rho}_f \cdot \boldsymbol{\alpha}_{\boldsymbol{\beta}}$)

Known results between positive polynomials and S.O.S in \mathbb{R}^d

- d = 1 : every positive polynomial is a SOS
- Q d = 2 : true for polynomial of degree n ≤ 4 but not always if n ≥ 6 (Hilbert 1893)
- 3 $d \ge 3$: true for polynomial of degree n = 2 but not always if $n \ge 4$

The first explicit counterexample for non S.O.S polynomial in dimension 2 was only found in 1966!

Theorem

Artin (1927) Every nonnegative polynomial is a sum of square rational functions.

Every positive polynomial $\boldsymbol{\alpha} \cdot \boldsymbol{m}(v)$ writes as

 $(\boldsymbol{\beta}, 0) \cdot (1, \boldsymbol{\nu}, \boldsymbol{\nu} \otimes \boldsymbol{\nu}, \boldsymbol{\nu}^2 \boldsymbol{\nu})$

with $\boldsymbol{\beta} = (\alpha_0, \alpha_1, \boldsymbol{\alpha}_2)$ and $\alpha_0 \in \mathbb{R}, \alpha_1 \in \mathbb{R}^3, \boldsymbol{\alpha}_2 \in \mathbb{R}^3 \times \mathbb{R}^3$

 \Rightarrow Characterization by S.O.S. in the Gauss space and of realizable moment by the Hankel matrix

Proposition

$$\boldsymbol{\rho} = (n, nu, \Pi, Q) \in \mathcal{R}^+_{Grad} \text{ iff } n > 0, \Pi - u \otimes u > 0.$$

$$\Pi = \int \boldsymbol{v} \otimes \boldsymbol{v} f \, dv, \quad \boldsymbol{Q} = \int \boldsymbol{v}^2 \boldsymbol{v} f \, dv.$$

Grad basis

For $f \ge 0$ s.t. $\int_{\mathbb{R}^3} f(1 + |v|^3) < +\infty$, span $(1, \mathbf{v}, \mathbf{v} \otimes \mathbf{v}, \mathbf{v}^2 \mathbf{v})$ is the space generated by

$$a\left(v-u\right):=\left(1,\left(v-u\right),\left(v-u\right)^{2}-3\mathcal{T},\mathbb{A}\left(v-u\right),b\left(v-u\right)\right)$$

$$\boldsymbol{\rho}_{f}=(n,\,0,\,0,\,\overline{\mathbb{P}},\,\boldsymbol{q})$$

where $\overline{\mathbb{P}}$ is the traceless pressure tensor and \boldsymbol{q} is the heat flux

Proposition

$$(n, 0, 0, \lambda_{\mathbb{A}} \overline{\mathbb{P}}, \lambda_{\boldsymbol{b}} \boldsymbol{q}) \in \mathcal{R}^{+,*}_{Grad} \ \forall 0 \leq \lambda_{\mathbb{A}} \leq 1 \text{ and } \forall \lambda_{\boldsymbol{b}} \in \mathbb{R}$$

 $\forall -\frac{1}{2} \leq \lambda_{\mathbb{A}} \leq 1, \lambda_{\boldsymbol{b}} = 0 \text{ (Ellipsoidal)}$

Remark

The heat flux can take any value

Jacques Schneider (Toulon)

Variational problem

Remark

The study of « complex » variational or dual principle in kinetic theorey is quite recent (1990') compared to the study of variational problem in general

- have a look at earlier results
- opens a wide and rich field of research

Rational Extended Thermodynamics and its connection with kinetic and its connections with kinetic theorey (Muller-Ruggeri)

Formulation of duality on a moment closure : [Levermore, JSP, 1996]

Study of the dual expression $\rho \leftrightarrow \alpha$?

[Junk, 1998, 2000], [Schneider, 2004], [Hauck et all, 2008], [Pavan, 2011]

The classical problem

$$m{m}(v) = (1, v, v^2, m_3(v) \dots, m_N(v))$$
 pseudo-Haar basis $f \in L^1_{m{m}} \Leftrightarrow \int |f|(1+|v|^{2p}) \, dv < +\infty$

$$\eta: x \longmapsto \begin{cases} x \ln(x) & \text{if } x \ge 0 \\ +\infty & \text{else} \end{cases}$$

Entropy

$$H(g) = \int \eta(g) dv$$

Definition (Entropy density)

(*q* : dimension of $span\{m_i\}$), for $\rho \in \mathbb{R}^q$, $h : \mathbb{R}^q \to \overline{\mathbb{R}}$

$$h(oldsymbol{
ho}) = \min_{\int g \mathbf{m}(v) \, dv = oldsymbol{
ho}} H(g).$$

Definition (Primal problem)

For $\rho \in dom(h)$ find if possible a function G such that

•
$$\int G \mathbf{m}(v) dv = \boldsymbol{\rho}$$

•
$$H(G) = h(\rho)$$

40/72

• If $\rho \in \mathcal{R}_{\mathbf{m}}^+$, from Junk's theorem $\exists \Psi \in C_c^{\infty}(\mathbb{R}^d)$ s.t. $\int \mathbf{m}(v) \Psi dv = \rho$ $\Rightarrow H(\Psi) < +\infty$

• H is bounded from below (and above) in the set

$$D(oldsymbol{
ho}) = \{g \ge 0, \ \int g \mathbf{m}(v) \, dv = oldsymbol{
ho}, \ \int g \, \ln(g) \, dv \le H(\Psi)\}$$

Proposition

dom(h) = \mathcal{R}_m^+ i.e. the infimum exists $\forall \rho \in \mathcal{R}_m^+$ (= + ∞ outside) and h is convex l.s.c. in \mathbb{R}^q

Let g_n be a minimizing sequence in $D(\rho)$ i.e. $\lim_{n \to +\infty} H(g_n) = h(\rho)$

Dunford-Pettis in $D(\rho) \Rightarrow g_n \rightarrow G$ in L^1 but not in L^1_m

$$\Rightarrow \int g_n \boldsymbol{m}(v) \, dv \rightarrow \int G \boldsymbol{m}(v) \, dv$$

The infimum may not satisfy $\int G\mathbf{m}(v) dv = \rho$

« Formally »,

$$rac{\partial}{\partial g}\Big(H(g)-oldsymbol{lpha}\cdot\Big(\int oldsymbol{m} g\,dv-oldsymbol{
ho}\Big)\Big)=0$$

at the infimum, where α = Lagrange multipliers.

$$\Rightarrow \eta'(G) = \boldsymbol{\alpha} \cdot \mathbf{m}(v)$$

$$G = (\eta')^{-1} (\boldsymbol{\alpha} \cdot \mathbf{m}(v)) = (\eta^*)' (\boldsymbol{\alpha} \cdot \boldsymbol{m}(v))$$

Legendre-Fenchel transform : $\eta^*(x^*) = \max_x (x \cdot x^* - h(x)) = \exp(x^*)$

Fenchel-Legendre transform of h

$$h^*(oldsymbol{lpha}) = \max_{oldsymbol{
ho}}(oldsymbol{lpha} \cdot oldsymbol{
ho} - h(oldsymbol{
ho}))$$

Computation : $h^*(\boldsymbol{\alpha}) = \int \exp(\boldsymbol{\alpha} \cdot \boldsymbol{m}(v)) dv$ defined only for $\exp(\boldsymbol{\alpha} \cdot \boldsymbol{m}(v)) \in L^1$

Duality: $\forall \alpha, \rho$ s.t. $h^*(\alpha) + h(\rho) = \alpha \cdot \rho$ $\rho \in \partial h^*(\alpha)$ = "slopes of the lines below h*" at α in 1D and $\alpha \in \partial h(\rho)$. If $\nabla h^*(\alpha)$ exists, $\rho = \nabla h^*(\alpha)$

Problem : converse statement i.e if $\rho \in \mathcal{R}_{\mathbf{m}}^+$, $\exists \alpha$ such that $\rho = \nabla h^*(\alpha)$?

Problem on the boundary

If $dom(h^*) = \Lambda$ and $\Lambda \cap \partial \Lambda \neq \emptyset$, then ∇h^* is not defined on $\Lambda \cap \partial \Lambda \neq \emptyset$.

Figure – Domain of definition 5 moments [Junk, 1998]

Normalized Gaussian $\overline{\mathcal{M}} = exp(\alpha_{\overline{\mathcal{M}}} \cdot \boldsymbol{m}(v)),$ $\partial h^*(\boldsymbol{\alpha}_{\overline{\mathcal{M}}}) = half-line above \overline{\mathcal{M}}$

Jacques Schneider (Toulon)

Comparison with classical projection

$$\forall \boldsymbol{\rho} \in \mathcal{R}_{\boldsymbol{m}}^{+,*}, \quad D(\boldsymbol{\rho}) = \left\{ f \geq 0, \int f \, \boldsymbol{m}(v) \, dv = \boldsymbol{\rho} \right\}$$

- \mathcal{M} = Maxwellian such that $\int \mathcal{M}(1, \mathbf{v}, \mathbf{v}^2) d\mathbf{v} = (\rho_0, \rho_1, \rho_2)$
- $\forall f \in D(\rho)$ define the distance $d(f, \mathcal{M}) = \int f \ln(\frac{f}{\mathcal{M}}) dv$ (Csiszar, 1972).

 \implies I-projection of \mathcal{M} onto $D(\rho)$ (Csiszar, 1975)

$$d(G,\mathcal{M}) = \inf_{f\in D(oldsymbol{
ho})} d(f,\mathcal{M})$$

is not always in $D(\rho)$.

Classical entropy is not compatible with moments approach

Jacques Schneider (Toulon)

Relaxation operators in kinetic theory

ϕ divergence

« Renormalisation » map of Abdel-Malik and Van Brummelen [2015, *JSP*] One starts from $(1 + \frac{x}{N})^N \rightarrow \exp(x)$ and looks for solutions of the form

$$G=\overline{\mathcal{M}}(1+\frac{g}{N})_{+}^{N},$$

$$g \in span\{m_0, ..., m_N\}, (x)_+ = \frac{1}{2}(x + |x|)$$

 $\overline{\mathcal{M}}$: prescribed Gaussian

Remark

• polynomial growth $(1 + \frac{g}{N})^{N}_{+}$ instead of exponential.

2 measure $\longrightarrow \overline{\mathcal{M}} dv$

ϕ divergence

Inverse function of $(1 + \frac{x}{N})_{+}^{N}$: $\widetilde{\ln}(y) = Ny^{1/N} - N$. *H* is replaced by

$$H_N = \int \overline{\mathcal{M}} \phi_N(f/\overline{\mathcal{M}}) dv$$
, with $\phi_N(x) = x \widetilde{\ln}(x)$

Theorem (Csiszar 1995)

Let ϕ strictly convex, differentiable on $\mathbb{R}^{+,*}$, $\phi(1) = \phi'(1) = 0, \phi'(x) \to +\infty,$ $\phi^*(\boldsymbol{\alpha} \cdot \mathbf{m}(v)) \in L^1(\overline{\mathcal{M}} dv).$

For $\rho \in \mathcal{R}_{m}^{+}$, there exists a unique solution to the primal problem

$$\inf_{\int g\mathbf{m}(v)\,dv=\boldsymbol{\rho}}\int \overline{\mathcal{M}}\phi(f/\overline{\mathcal{M}})dv$$

Moreover, this solution satisfies all constraints.

Jacques Schneider (Toulon)

49/72

• $\eta(x) = x \ln(x)$ does not satisfy $\phi^*(\boldsymbol{\alpha} \cdot \mathbf{m}(v)) \in L^1(\overline{\mathcal{M}} dv)$ for any $\boldsymbol{\alpha}$.

- Very general but difficult proof
- In the solution No strict proof as concerns the shape of the solution
- For the above approximation

$$\int \overline{\mathcal{M}}\phi_N(f/\overline{\mathcal{M}})dv \sim \int \overline{\mathcal{M}}(f/\overline{\mathcal{M}})^{1+\frac{1}{N}}dv$$

i.e. weighted $L^{1+\frac{1}{N}}$ space.

Hölder inequality for $g_n \in D(\rho) \Rightarrow$ minimizing sequence $g_n \rightarrow G$ in L^1_m

Theorem

• $\phi : \mathbb{R} \to \mathbb{R} \cup \{+\infty\}$ stricly convex and differentiable of \mathbb{R}^+

Then

- $\forall \boldsymbol{\rho} \in \mathcal{R}_{\boldsymbol{m}}^{+,*}, \exists \, \boldsymbol{!} \, \boldsymbol{\alpha} \text{ such that } \nabla h^{*}(\boldsymbol{\alpha}) = \boldsymbol{\rho}, \, \nabla h(\boldsymbol{\rho}) = \boldsymbol{\alpha}$
- **2** $G = \overline{\mathcal{M}}(\phi^*)'(\boldsymbol{\alpha} \cdot \boldsymbol{m}(v))$ is the unique solution to the primal problem. Moreover $h(\rho)$ is strictly convex on $\mathcal{R}^+_{\boldsymbol{m}}$.

• $dom(h) = \mathcal{R}_{m}^{+}$, with $\mathcal{R}_{m}^{+,*}$ convex and open $\Rightarrow h$ is continuous on $\mathcal{R}_{m}^{+,*}$

2 $h^*(\boldsymbol{\alpha}) = \int \overline{\mathcal{M}} \phi^*(\boldsymbol{\alpha} \cdot \boldsymbol{m}(v)) \, dv$ is differentiable in \mathbb{R}^q

③ *h* is continous at $\rho \Rightarrow \exists \alpha \in \partial h(\rho) \neq \emptyset$ (subdifferential at ρ) s.t.

$$\Leftrightarrow h(\boldsymbol{\rho}) + h^*(\boldsymbol{\alpha}) = \boldsymbol{\rho} \cdot \boldsymbol{\alpha}$$
$$\Leftrightarrow \boldsymbol{\rho} \in \partial h^*(\boldsymbol{\alpha}) \text{ is reduced to one point } \boldsymbol{\rho} = \nabla h^*(\boldsymbol{\alpha})$$

Remark

The highest degree in $\mathbf{m}(\mathbf{v})$ is not necessary even

Method of construction

Step 1 : For $f \ge 0$, $f \in L^1_{Grad}$, consider $\rho_f = \int f \mathbf{a}(v - u) dv$ and the Maxwellian

$$\mathcal{M}_{\rm f} = rac{n}{(2\pi T)^{rac{3}{2}}} \exp(-rac{(v-u)^2}{2T})$$

<u>Step 2</u> : Consider a given relaxation on ρ_f : $L(\rho_f) = (n, 0, 0, \lambda_{\mathbb{A}}\overline{\mathbb{P}}, \lambda_b q)$

Step 3 : Change $\overline{\mathcal{M}}$ with \mathcal{M}_f for some ϕ divergence Theorem $\Rightarrow \exists ! \alpha$ s.t.

$$G = \mathcal{M}_f(\phi^*)'(\boldsymbol{\alpha} \cdot \boldsymbol{a}(v-u)),$$

with

$$\int G \boldsymbol{a}(v-u) \, dv = L(\boldsymbol{\rho}_f), \text{ and } H(G) = h(L(\boldsymbol{\rho}_f))$$

Properties

- **(**) $L(\rho_f)$ chosen such as mass, momentum and energy are conserved
- ② *G* ≥ 0, as soon as ϕ satisfies the assumptions of theorem ⇒ $(\phi^*)'(x) \ge 0$ on \mathbb{R} .
- (Extended) H theorem : h is strictly convex in \mathcal{R}^+_{Grad}

$$\implies (\lambda_{\mathbb{A}}, \lambda_b) \in [0, 1]^2 \longrightarrow h(n, 0, 0, \lambda_{\mathbb{A}} \overline{\mathbb{P}}, \lambda_q q)$$

is strictly convex with a unique minimum in

$$h(n, 0, 0, 0, 0) = H(\mathcal{M}_f)$$

• $\int \mathcal{M}_f \phi(f/\mathcal{M}_f) dv$ is not a Lyapunov functional (in general) in inhomogeneous case

In few words, $\mathbb{P} = \{1, v, v \otimes v, |v|^2 v\}$ is invariant under the action of

$$T = \begin{cases} \tau_u v = v - u & \forall u \mathbb{R}^3 \\ \Theta v & \forall \Theta \text{ rotation} \end{cases}$$

and

$$H(g(Tv)) = \int \mathcal{M}_{f}(T(v))\phi(\frac{g(Tv)}{\mathcal{M}_{f}(T(v))}) dv = \int \mathcal{M}_{f}(v)\phi(\frac{g(v)}{\mathcal{M}_{f}(v)}) dv$$
$$\Rightarrow TG(v) = G(T(v))$$

Invariance of the measure in the entropy under Galilean transform

Theorem

$$\mathcal{L}_{\mathcal{M}}(g) =
u(\sum_{i}(1-rac{
u_{i}}{
u})\mathbb{P}_{m_{i}}+\mathbb{P}_{\mathbb{K}}-I_{d})(g)$$

 $\Rightarrow \mathcal{L}_{\mathcal{M}}$ is Fredholm, self-adjoint and negative on \mathbb{K}^{\perp}

Consequences :
$$\mathcal{L}_{\mathcal{M}}^{-1}$$
 is defined on \mathbb{K}^{\perp} and $\mu_{K} = rac{P}{v_{\mathbb{A}}}, \kappa_{K} = rac{5}{2} rac{P}{v_{b}}$

Multiple choices for the relaxations (i.e on ν) $(1 - \frac{\nu_A}{\nu})$, $(1 - \frac{\nu_b}{\nu})$ as soon as : $\mu_K = \mu$, $\kappa_K = \kappa$, $\frac{\nu_b}{\nu_A} = Pr$

Also one can prove from the properties of $\mathcal{L}_{\mathcal{M}}$ that

$$\int_{\mathbb{R}^3} \mathsf{K}(g) \phi(\mathsf{v}) d\mathsf{v} = 0 \; orall g \;\; \Rightarrow \phi \in \mathbb{K}$$

Examples

BGK models

 $\phi(x) = x \ln(x),$

$$\int_{\mathbb{R}^3} \mathcal{M}\phi(\frac{f}{\mathcal{M}}) dv = \int_{\mathbb{R}^3} f \ln(\frac{f}{\mathcal{M}}) dv$$

the variational problem well-posed in $\mathbb{P} = \{1, \textbf{\textit{v}}, \textbf{\textit{v}} \otimes \textbf{\textit{v}}\}$ for

$$L(\boldsymbol{\rho}_f) = (n, 0, 0, \lambda_{\mathbb{A}}\overline{\mathbb{P}}), \text{ with } -\frac{1}{2} \leq \lambda_{\mathbb{A}} \leq 1$$

 $\lambda_{\mathbb{A}} = 0 \Leftrightarrow \nu_{\mathbb{A}} = \nu$: BGK model (1954)

Else : ESBGK model [Holway, 1966] from $Pr = \frac{2}{3}$ to $+\infty$ \Rightarrow ESBGK mono and poly [Andries et al, 2000], [Brull, J.S. 2008, 2009]

Possibility to extend the variational principle to v(c) (c = v - u) dependant collision frequency [Bouchut, Perthame, 1993], [Struchtrup, 1997]

Shakhov model, 1968

 ϕ divergence for the Shakhov model

$$\phi_{\chi^2}(x) = \frac{1}{2}(x-1)^2, \ \forall x \in \mathbb{R}$$

$$(\phi_{\chi^2}^*)'(x^*) = 1 + x^* \quad \forall x^* \in \mathbb{R}$$

Minimization « problem » : projection of $\frac{f}{M}$ – 1 on Grad space in $\mathcal{L}^{2}(\mathcal{M})$ In the Grad space, the choice

$$v_{\mathbb{A}} = v = rac{P}{\mu}$$
 and $v_{b} = v P r$

$$\Rightarrow G_{S} = \mathcal{M}\left(1 + \frac{1 - Pr}{\rho T}(v - u) \cdot \overrightarrow{q} \left(\frac{(v - u)^{2}}{T} - 5\right)\right)$$

Contrarily to ESBGK model

$$\int_{\mathbb{R}^3} G_s \mathbf{a}(v-u) \, dv = \frac{1}{v} \int_{\mathbb{R}^3} Q^+(f,f) \mathbf{a}(v-u) \, dv$$

for Maxwellian molecules.

- **2** H Theorem $\forall Pr > 0$
- $\rho_{Gs} \in \mathcal{R}^+_{Grad}$ ⇒ this may bring some stability (at least close to a given $\overline{\mathcal{M}}$)

Polynomial approximation of exp

$$\phi_N(x) = N x^{1/N} - N$$

$$\forall \boldsymbol{\rho}_{f} \in \mathcal{R}^{+}_{Grad}, \exists ! \boldsymbol{\alpha} \text{ s.t. } G = \mathcal{M}(1 + \frac{\boldsymbol{\alpha} \cdot \boldsymbol{a}(v-u) - 1}{N})^{N}_{+} \\ H(G) = H(L(\boldsymbol{\rho}_{f})), \quad \int G \boldsymbol{a}(v-u) \, dv = L(\boldsymbol{\rho}_{f})$$

Well-posed operator not restricted to polynomial space with even higher order rank

Remark

 $\int f \ln f$ is almost a Lyapunov functional for the inhomogeneous equation since

$$\int R(f) \, \widetilde{\ln}(f/\mathcal{M}) dv \approx \int R(f) \, \ln(f/\mathcal{M}) dv$$

The Levermore operator

Let $\mathbb{M} = \mathbb{M}_1 \subset \mathbb{M}_2 \subset \ldots \subset \mathbb{M}_N$ and $0 < \nu_1 < \nu_2 < \ldots < \nu_N$ and

$$\mathcal{M}_k = \operatorname{Argmin}\left\{\int g \ln(g) \ / \ \int g m_i(v) \, dv = \int f m_i(v) \, dv, \ \forall m_i \in \mathbb{M}_k
ight\}$$

$$K(f) = v_1(M-f) + \sum_{k=2}^{N} (v_k - v_{k-1})(M_k - f)$$

Then

$$(\forall \phi \in \mathbb{M}_k \setminus \mathbb{M}_{k-1}), \quad \mathcal{L}_{\mathcal{M}}(m) = -v_{k-1}m(v)$$

⇔ Grad's relaxation

62/72

Problems and questions

- Variational problem may be not well posed
- ② M = K+ Gauss space : v₁ < v₂ does not give the right Prandtl number. (Mieussens Phd Thesis 1999)

$$If \phi \in \mathbb{M}_k \setminus \mathbb{M}_{k-1}, (k \ge 2)$$

$$\int K(f)\phi(v)dv\neq -\nu_{k-1}\int f\phi dv$$

 $((\phi_i) \text{ orthogonal in } L^2(\mathcal{M}), \text{ not in } L^2(\mathcal{M}_{k-1}))$

however

$$\mathcal{L}_{\mathcal{M}}(g) = \nu_{N}(\sum_{k=1}^{N}(1-rac{
u_{k-1}}{
u})\mathbb{P}_{\mathbb{M}_{k}\setminus\mathbb{M}_{k-1}} + \mathbb{P}_{\mathbb{K}} - Id)(g)$$

Stationary shock wave

Purpose : the 1D domain is divided in 2 regions, with different gas states, and let the gas relaxed to the stationary state.

Boundary conditions

- Left at 0 : {n_L, u_L, T_L}
- Right at 1 : {*n*_R, *u*_R, *T*_R}

Values :

Mach	Boundary	n	u	Т
1.4	left	1	1.278	1
	right	1.581	0.808	1.392

Code characteristics

- DVM on top of a Discontinuous Galerkin Advection solver
- 1D physical, 3D molecular velocities
- BGK model : BGK, S-BGK, ES-BGK, phi-div

66/72

Stationary normal shock wave - Results

Jacques Schneider (Toulon)

Stationary normal shock wave - Results

Temperature profile for various BGK

Existing results and opened problems

- Fick matrix gas mixtures : [Brull, Pavan, J.S., 2012]
- ESBGK models for mono and polyatomic gas mixtures : viscosity (and shear viscosity), heat conductivity : [Brull,2015, 2021]
- Polyatomic reacting gases, discrete energy, Fick matrix [S. Brull, J.S., 2014], [J.S. 2015]
- Fick matrix poly (and mono) gas mixtures : 2 viscosities and Fick matrix (see talk of K. Guillon)

Existence theorem

- BGK [Perthame 1989], [Perthame-Pulvirenti 1993], ...
- The many results on ESBGK : Yun et all. Pb Pr = 2/3?
- Shakhov near global equilibrium (see talk of Gi-Chan Bae)

70/72

- Numerical comparisons between the different relaxation models Developpement of a code (in progress)
- Relaxation model for multispecies (mono and poly) leading to the full set of transport coefficients (Phenomenological or Onsager matrix)
- Can we construct a single operator based on general Grad's relaxation $L(\rho) \in \mathcal{R}_m^+$?
- Existence theorem of solutions based on relaxation and variational principles.

THANKS FOR YOUR ATTENTION !