A mean-field limit of the Cucker-Smale model on complete Riemannian manifolds

Woojoo Shim (Joint work with Seung-Yeal Ha et al.) Virtual Summer school on Kinetic and fluid equations for collective dynamics August 26, 2021

Research Institute of Basic Sciences, Seoul National University

- 1. Cucker-Smale model on Riemannian manifolds
- 2. Formal derivation of kinetic Cucker-Smale model
- 3. Flocking estimate and Existence of measure-valued solution

Cucker-Smale model on Riemannian manifolds

A collective behavior that can be observed in birds flying in group.

https://www.naturettl.com/photograph-flocks-birds

Cucker-Smale model

Cucker-Smale model (IEEE Automatic Control 2007): Each bird adjusts its velocity by a weighted sum of relative velocities:

$$\begin{cases} \dot{x}_i = v_i, \quad i = 1, \cdots, N, \\ \dot{v}_i = \sum_{j=1}^N \phi(\|x_i - x_j\|)(v_j - v_i), \\ (x_i^{in}, v_i^{in}) \in \mathbb{R}^d \times \mathbb{R}^d, \quad i = 1, \cdots, N. \end{cases}$$
(1)

Cucker-Smale model on Riemannian Manifolds

We assume (\mathcal{G}): for given (complete) Riemannian manifold (\mathcal{M}, g) , there are smooth maps ϕ, G such that

- $(x, v, y, w) \mapsto (x, G(x, v, y, w))$ is a smooth map from $T\mathcal{M} \times T\mathcal{M}$ to $T\mathcal{M}$,
- $\phi(\cdot, \cdot)$ is symmetric, nonnegative, bounded and smooth,
- G(x, v, y, w) = φ(x, y)(P_{xy}w − v) whenever there is a unique length minimizing geodesic between x and y,
- Otherwise, G(x, v, y, w) = 0 and $\phi(x, y) = 0$,

 \Rightarrow Cucker-Smale model on (\mathcal{M}, g) :

$$\begin{cases} \dot{x}_{i} = v_{i}, & i = 1, \cdots, N, \\ \nabla_{\dot{x}_{i}} v_{i} = \sum_{j=1}^{N} a_{ij} G(x_{i}, v_{i}, x_{j}, v_{j}), \\ (x_{i}^{in}, v_{i}^{in}) \in T\mathcal{M}, & i = 1, \cdots, N. \end{cases}$$
(2)

4

Example

For the unit *d*-sphere $\mathbb{S}^d = \{\mathbf{x} \in \mathbb{R}^{d+1} : \|\mathbf{x}\|_2^2 = 1\}$ isometrically embedded in \mathbb{R}^{d+1} , the parallel transport operator $P_{\mathbf{xy}}$ along the length minimizing geodesic

$$t \mapsto \mathbf{x} \cos t + \frac{\mathbf{y} - (\mathbf{x} \cdot \mathbf{y})\mathbf{x}}{\|\mathbf{y} - (\mathbf{x} \cdot \mathbf{y})\mathbf{x}\|_2} \sin t, \quad \mathbf{x} \neq -\mathbf{y}$$

is given by

$$P_{\mathbf{x}\mathbf{y}}\mathbf{w} = \mathbf{w} - rac{\mathbf{w}\cdot\mathbf{x}}{1+\mathbf{x}\cdot\mathbf{y}}(\mathbf{x}+\mathbf{y}), \quad \forall \ \mathbf{w} \in T_{\mathbf{y}}\mathcal{M}.$$

In this case, we can consider $\phi(\mathbf{x},\mathbf{y})=(1+\mathbf{x}\cdot\mathbf{y})^{p+1}\psi(\mathbf{x},\mathbf{y})$ to get

$$G(\mathbf{x},\mathbf{v},\mathbf{y},\mathbf{w}) := (1+\mathbf{x}\cdot\mathbf{y})^p \psi(\mathbf{x},\mathbf{y}) \Big[(1+\mathbf{x}\cdot\mathbf{y})(\mathbf{w}-\mathbf{v}) - (\mathbf{w}\cdot\mathbf{x})(\mathbf{x}+\mathbf{y}) \Big],$$

where p is a nonnegative integer and ψ is a smooth function.

Basic properties

• Dissipation of kinetic energy: if $a_{ij} = a_{ji}$ and $a_{ij} \ge 0$,

$$\frac{d}{dt}\left(\sum_{i=1}^{N} \|v_i\|_{x_i}^2\right) = -\sum_{i,j} a_{ij} \frac{\|G(x_i, v_i, x_j, v_j)\|_{x_i}^2}{\phi(x_i, x_j)} \leq 0.$$

• Monotone decrease of maximal speed: if $a_{ij} \ge 0$,

$$\max_{1 \le i \le N} \|v_i(t)\|_{x_i(t)} \le \max_{1 \le i \le N} \|v_i^{in}\|, \quad t > 0.$$

Formal derivation of kinetic Cucker-Smale model

For given smooth manifold \mathcal{M} , consider

- ξ : smooth vector field on \mathcal{M} .
- ρ_t: time-dependent *d*-form on *M* such that the fraction of
 representative particles *F*_t(*R*) contained in any phase space
 region *R* ⊂ *M* at time *t* moving by the equation of motion

$$\dot{x} = \xi(x),$$

can be written as an integral of ρ_t in R:

$$\mathcal{F}_t(R) := ext{ fraction of particles contained in } R ext{ at time } t$$

= $\int_R
ho_t, \quad \forall \ R: ext{ space region}, \quad t \ge 0.$ (3)

Liouville's Equation on manifolds

Continuity equation for ρ_t :

$$\frac{\partial \rho_t}{\partial t} + \mathcal{L}_{\xi} \rho_t = 0.$$
 (4)

If ρ_t can be expressed by the product of distribution function f and a non-vanishing time-independent d-form ω ,

$$\rho_t(x) = f(t, x)\omega(x),$$

we can further simplify the continuity equation (4) to

$$\left[\frac{\partial f}{\partial t} + \mathcal{L}_{\xi}f + f \operatorname{div}_{\omega}(\xi)\right]\omega = \left[\frac{\partial f}{\partial t} + \operatorname{div}_{\omega}(f\xi)\right]\omega = 0,$$

which yields the Liouville equation on \mathcal{M} :

$$\frac{\partial f}{\partial t} + \operatorname{div}_{\omega}(f\xi) = 0.$$

Then, we rewrite the Cucker-Smale model on (\mathcal{M},g) ,

$$\begin{cases} \dot{x}_i = v_i, \quad i = 1, \cdots, N, \\ \nabla_{\dot{x}_i} v_i = \frac{1}{N} \sum_{j=1}^N G(x_i, v_i, x_j, v_j), \\ (x_i^{in}, v_i^{in}) \in T\mathcal{M}, \quad i = 1, \cdots, N, \end{cases}$$

as a first-order ODE:

$$\dot{z} = \xi(z), \quad z^{in} \in (T\mathcal{M})^N = \underbrace{T\mathcal{M} \times \cdots \times T\mathcal{M}}_{N \text{ times}}.$$

Curves on $\mathcal{T}\mathcal{M}$

For $\mathcal{M} = \mathbb{R}^d$, equation

$$\begin{cases} \dot{x} = v, \\ \dot{v} = F(x, v). \end{cases}$$

can be written as

$$\frac{d}{dt}\binom{x}{v} = \binom{v}{F(x,v)},$$

where we used the canonical identification of tangent spaces and Euclidean spaces:

$$v, F(x, v) \in \mathbb{R}^d \simeq T_x \mathbb{R}^d, \quad inom{v}{F(x, v)} \in \mathbb{R}^{2d} \simeq T_{(x, v)} T \mathbb{R}^d.$$

Therefore, we are looking for two linear homomorphisms $L_1, L_2: T_x \mathcal{M} \to T_{(x,v)} T \mathcal{M}$ which correspond to

$$L_1: u \mapsto \begin{pmatrix} u \\ 0 \end{pmatrix}, \quad L_2: w \mapsto \begin{pmatrix} 0 \\ w \end{pmatrix}.$$

Note: push-foward map π_* sends $\frac{d}{dt}(x, v)$ to \dot{x} , and

$$L_2(T_x\mathcal{M}) = \left\{ \frac{d}{dt}(x,v) \middle| \dot{x} = 0 \right\} = \operatorname{Ker}(\pi_*).$$

 \Rightarrow What is a linear map $\frac{d}{dt}(x,v) \mapsto \nabla_{\dot{x}}v$?

Connection map

Definition (Sasaki '1958, Dombroski '1962)

For given $(x, v) \in T\mathcal{M}$, let V be a totally normal neighborhood of x, and V' be a neighborhood of 0 such that $\exp_x : V' \to V$ is a diffeomorphism. Moreover, let $\tau : \pi^{-1}(V) \to T_x\mathcal{M}$ be a smooth map satisfying

$$\tau(y,u)=P_{xy}u\quad\forall\ (y,u)\in\pi^{-1}(V).$$

Then, a connection map $K_{(x,v)}$: $T_{(x,v)}T\mathcal{M} \to T_x\mathcal{M}$ is defined as

$$\mathcal{K}_{(x,\nu)}(A) := (\exp_x \circ R_{-\nu} \circ \tau)_*(A),$$

where $R_{-v}: T_x\mathcal{M} \to T_x\mathcal{M}$ is a translation map $X \mapsto X - v$.

Proposition (Dombroski '1962)

Let (\mathcal{M}, g) be a smooth Riemannian manifold, and z(t) = (x(t), u(t)) be a smooth curve in $T\mathcal{M}$ through (x_0, u_0) at t = 0. Then, the connection map K satisfies

$$\mathcal{K}_{(\mathrm{x}_0,u_0)}(\dot{z}(0))=
abla_{\dot{x}}u(0).$$

Definition (Horizontal and Vertical subspaces) Let z = (x, v) be a point on TM.

1. (Horizontal subspace of $T_z T \mathcal{M}$): The horizontal subspace $\mathcal{H}_z T \mathcal{M}$ is the kernel of the connection map K_z :

$$\mathcal{H}_z T \mathcal{M} := \operatorname{Ker}(K_z) \ (= L_1(T_x \mathcal{M})).$$

2. (Vertical subspace of $T_z TM$): The vertical subspace $\mathcal{V}_z TM$ is the kernel of the linear map $\pi_* : T_z TM \to T_xM$:

$$\mathcal{V}_z T \mathcal{M} := \operatorname{Ker}(\pi_*) \ (= L_2(T_x \mathcal{M})).$$

 $\implies T_z T \mathcal{M} = \mathcal{H}_z T \mathcal{M} \oplus \mathcal{V}_z T \mathcal{M}!$

Horizontal and Vertical lifts

O. Sarbach and T. Zannias.: *The geometry of the tangent bundle and the relativistic kinetic theory of gases*, Classical and Quantum Gravity **31** (2014), 085013.

Definition (Horizontal and Vertical lifts)

For each tangent vector $u \in T_x \mathcal{M}$ and $z = (x, v) \in T\mathcal{M}$, we define the horizontal lift u_z^{hor} and the vertical lift u_z^{ver} as

$$u_z^{hor} := \pi_*|_{\mathcal{H}_z \mathcal{TM}}^{-1}(u), \quad u_z^{ver} := K_z|_{\mathcal{V}_z \mathcal{TM}}^{-1}(u).$$

Proposition (\mathcal{H} - \mathcal{V} decomposition of \dot{z})

Let $z = (x, v) : I \to TM$ be a smooth curve on TM. Then, the tangent vector \dot{z} in $T_z TM$ can be uniquely written as

$$\dot{z} = \dot{x}_z^{hor} + (\nabla_{\dot{x}}v)_z^{ver}.$$

Cucker-Smale model on manifold: revisited

One can rewrite the Cucker-Smale model (2) as

$$\begin{cases} \dot{z} = \xi(z), \quad z = (z_1, \cdots, z_N), \quad \xi = (\xi_1, \cdots, \xi_N), \\ z_i = (x_i, v_i), \quad \xi_i(z) = (v_i)_{z_i}^{hor} + \left(\frac{1}{N} \sum_{j=1}^N G(z_i, z_j)\right)_{z_i}^{ver}, \quad (5) \\ z_i^{in} \in T\mathcal{M}, \quad i = 1, \cdots, N, \end{cases}$$

and the corresponding mean-field limit model on (\mathcal{M},g) is:

$$\partial_t f + \operatorname{div}_{\hat{g}} \left[f \left\{ v_z^{hor} + (F[f](z,t))_z^{ver} \right\} \right] = 0,$$

$$F[f](z,t) := \int_{\mathcal{TM}} G(z,z_*) f(z_*,t) \operatorname{Vol}_{\hat{g}}(z_*).$$
(6)

Flocking estimate and Existence of measure-valued solution

Propagation of moments

We set two velocity moments, m_0 and m_2 :

$$m_0(t) := \int_{T\mathcal{M}} f(x, v, t) \operatorname{Vol}_{\hat{g}}(x, v),$$
$$m_2(t) := \int_{T\mathcal{M}} \|v\|_x^2 f(x, v, t) \operatorname{Vol}_{\hat{g}}(x, v).$$

Proposition (Propagation of mass and kinetic energy)

Let f = f(x, v, t) be a nonnegative smooth solution to (6), and assume that the support of $f_t(\cdot, \cdot) := f(\cdot, \cdot, t)$ is a compact subset of $T\mathcal{M}$ for all $t \ge 0$. Then, the moments m_0 and m_2 satisfy

(i)
$$\frac{dm_0(t)}{dt} = 0, \quad \forall t > 0.$$

(ii) $\frac{dm_2(t)}{dt} = -\iint_{(T\mathcal{M})^2} \frac{\|G(z, z_*)\|_x^2}{\phi(x, x_*)} ff_* \operatorname{Vol}_{\hat{g}}(z_*) \operatorname{Vol}_{\hat{g}}(z).$
(7)

(15):
$$\partial_t f + \operatorname{div}_{\hat{g}}\left[\left\{v_z^{hor} + (F[f](z, t))_z^{ver}\right\}f\right] = 0.$$

ketch of Proof:

1. For a compactly supported function φ and vector field U,

$$\int_{\mathcal{M}} \left(g(\mathsf{grad}_g arphi, U) + arphi \mathsf{div}_g U
ight) \mathsf{Vol}_g = 0.$$

2. From the definition of grad_g , we have

S

$$g(\operatorname{grad}_{g}\varphi, U) = d\varphi(U) = U\varphi.$$

3. We multiply $||v||_x^2$ to (6), integrate by $\operatorname{Vol}_{\hat{g}}(z) = \operatorname{Vol}_{\hat{g}}(x, v)$ and obtain

$$\begin{aligned} \frac{dm_2}{dt} &= \int_{T\mathcal{M}} \hat{g} \left(\operatorname{grad}_{\hat{g}}(\|v\|_x^2), f \left[v_z^{hor} + (F[f](z,t))_z^{ver} \right] \right) \operatorname{Vol}_{\hat{g}}(z) \\ &= \int_{T\mathcal{M}} f \left[v_z^{hor} + (F[f](z,t))_z^{ver} \right] (\|v\|_x^2) \operatorname{Vol}_{\hat{g}}(z). \end{aligned}$$

$$\frac{dm_2}{dt} = \int_{T\mathcal{M}} f\left[\mathbf{v}_z^{hor} + (F[f](z,t))_z^{ver}\right] (\|v\|_x^2) \operatorname{Vol}_{\hat{g}}(z).$$

- v_z^{hor}: tangent vector of the curve z := (x, v) on TM such that ẋ = v, ∇_xv = 0. Therefore, v is a parallel vector field along x and [v_z^{hor}](||v||_x²) = ż(||v||_x²) = 0.
- $(F[f](z,t))_z^{ver}$: tangent vector of the curve z := (x,v) on $T\mathcal{M}$ such that $\dot{x} = 0$, $\nabla_{\dot{x}}v = F[f](z,t)$. Therefore, $[(F[f](z,t))_z^{ver}](||v||_x^2) = \dot{z}(||v||_x^2) = 2g_x(v,F[f](z,t)).$

In fact, in \mathbb{R}^d , the above argument becomes

$$0 = \int_{\mathbb{R}^{2d}} \|v\|^2 \left(\partial_t f + \nabla_x \cdot (vf) + \nabla_v \cdot (F[f]f)\right) dx dv$$
$$= \frac{dm_2}{dt} - 2 \int_{\mathbb{R}^{2d}} v \cdot (F[f]f) dx dv.$$

Propagation of moments

ł

Therefore, by using the relation

$$g(v, G(z, z_*)) + g(v_*, G(z_*, z))$$

= $\phi(x, x_*) (g(P_{xx_*}v_*, v) - ||v||_x^2 + g(P_{x_*x}v, v_*) - ||v_*||_{x_*}^2)$
= $-\phi(x, x_*) ||P_{xx_*}v_* - v||_x^2 = -\frac{||G(z, z_*)||_x^2}{\phi(x, x_*)},$

we have the desired estimate:

$$\begin{aligned} \frac{dm_2}{dt} &= 2 \int_{T\mathcal{M}} g(v, \boldsymbol{F}[f](z, t)) f(z) \operatorname{Vol}_{\hat{g}}(z) \\ &= 2 \int_{T\mathcal{M}} \int_{T\mathcal{M}} g(v, \boldsymbol{G}(z, z_*)) f(z_*, t) f(z, t) \operatorname{Vol}_{\hat{g}}(z_*) \operatorname{Vol}_{\hat{g}}(z) \\ &= - \int_{T\mathcal{M}} \int_{T\mathcal{M}} \frac{\|\boldsymbol{G}(z, z_*)\|_x^2}{\phi(x, x_*)} f(z, t) f(z_*, t) \operatorname{Vol}_{\hat{g}}(z_*) \operatorname{Vol}_{\hat{g}}(z). \end{aligned}$$

If
$$f \in C^{\infty}(T\mathcal{M} \times [0, T))$$
 satisfies (6):
 $\partial_t f + \operatorname{div}_{\hat{g}}\left[\left\{v_z^{hor} + (F[f](z, t))_z^{ver}\right\}f\right] = 0,$

we multiply an arbitrary test function $h \in C_0^1(T\mathcal{M} \times [0, T))$ to (6), integrate by $\operatorname{Vol}_{\hat{g}}$ and obtain

$$\begin{split} & \frac{d}{dt} \int_{\mathcal{TM}} \mathbf{h}(f \operatorname{Vol}_{\hat{g}}) - \int_{\mathcal{TM}} \partial_t \mathbf{h}(f \operatorname{Vol}_{\hat{g}}) \\ &= \int_{\mathcal{TM}} \hat{g} \left(\operatorname{grad}_{\hat{g}} \mathbf{h}, v_z^{hor} + (F[f](z, t))_z^{ver} \right) (f \operatorname{Vol}_{\hat{g}}) \\ &= \int_{\mathcal{TM}} \left[v_z^{hor}(\mathbf{h}) + (F[f](z, t))_z^{ver}(\mathbf{h}) \right] (f \operatorname{Vol}_{\hat{g}}). \end{split}$$

In addition, $F[f](z,t) = \int_{T\mathcal{M}} G(z,z_*)(f \operatorname{Vol}_{\hat{g}}(z_*)).$

For every Hausdorff topological space X, let $\mathfrak{M}(X)$ be the set of nonnegative Radon measures on X. For a Radon measure $\nu \in \mathfrak{M}(T\mathcal{M})$, we use the following standard duality notation:

$$\langle \nu, h \rangle := \int_{\mathcal{TM}} h(z) d\nu(z), \quad h \in C_0(\mathcal{TM}),$$

where $C_0(T\mathcal{M})$ is the set of all continuous function f on $T\mathcal{M}$ such that $\overline{\{f > \varepsilon\}}$ is compact for every positive number ε .

Definition (measure-valued solution)

For T > 0, let $\mu : L^{\infty}([0, T); \mathfrak{M}(T\mathcal{M}))$ be a measure-valued solution to (6) with the initial Radon measure $\mu_0 \in \mathfrak{M}(T\mathcal{M})$ if and only if μ satisfies the following conditions:

1. μ is weakly continuous:

 $t \mapsto \langle \mu_t, \mathbf{h} \rangle$ is continuous, $\forall \mathbf{h} \in C_0(T\mathcal{M})$.

2. For any $h \in C_0^1(T\mathcal{M} \times [0, T))$,

where $F[\mu](z,t) := \int_{\mathcal{TM}} G(z,z_*) d\mu_t(z_*) \in T_{\pi(z)}\mathcal{M}.$

Measure-Valued solution

- 1. The function $f \in L^1(T\mathcal{M} \times [0, T))$ is a distributional weak solution to (6) if and only if $\mu_t(z) := f(z, t) |\operatorname{Vol}_{\hat{g}}(z)|$ is a measure-valued solution to (6).
- 2. For any solution $\{(x_i, v_i)\}_{i=1}^N$ to the following ODE system:

$$\begin{cases} \dot{x}_{i} = v_{i}, \quad t > 0, \quad 1 \le i \le N, \\ \nabla_{\dot{x}_{i}}v_{i} = \sum_{j=1}^{N} m_{j}G(x_{i}, v_{i}, x_{j}, v_{j}), \\ (x_{i}(0), v_{i}(0)) = (x_{i}^{in}, v_{i}^{in}) \in \mathcal{TM}, \end{cases}$$

the empirical measure $\mu_t := \sum_{i=1}^{N} m_i \delta_{(x_i(t),v_i(t))}$ is a measure-valued solution to (6).

Measure-Valued solution: propagation of moments

For a measure-valued solution $(\mu_t)_{0 \le t < T}$ to (6), we set

$$m_0(t) := \int_{T\mathcal{M}} d\mu_t(x, v),$$
$$m_2(t) := \int_{T\mathcal{M}} \|v\|_x^2 d\mu_t(x, v)$$

Then, similar to (7), the moments m_0 and m_2 satisfy

(i)
$$\frac{dm_0(t)}{dt} = 0, \quad \forall t > 0.$$

(ii) $\frac{dm_2(t)}{dt} = -\iint_{(T\mathcal{M})^2} \frac{\|G(z, z_*)\|_x^2}{\phi(x, x_*)} d\mu_t(z_*) d\mu_t(z).$

provided that μ_t is compactly supported for each t.

Question: When does the measure-valued solution exists? Ha-Liu (2009): Existence of solution $(\mu_t)_{0 \le t \le T}$ for $\mathcal{M} = \mathbb{R}^d$. 1. For given compactly supported radon probability measure $\mu_0 \in \mathcal{P}(\mathbb{R}^{2d})$, we approximate μ_0 by $\mu_0^h = \sum_{i=1}^N m_i \delta_{(x_i^{in}, v_i^{in})}$, where m_i is the μ_0 -measure of *i*-th cube $R^h(i)$ with width *h* in \mathbb{R}^{2d} .

2. Set $\mu_t^h := \sum_{i=1}^N m_i \delta_{(x_i(t), v_i(t))}$, where $\{(x_i(t), v_i(t))\}$ is the solution of

$$\begin{cases} \dot{x}_i = v_i, \quad t > 0, \quad 1 \le i \le N, \\ \dot{v}_i = \sum_{j=1}^N m_j G(x_i, v_i, x_j, v_j), \\ (x_i(0), v_i(0)) = (x_i^{in}, v_i^{in}) \in \mathbb{R}^{2d} \end{cases}$$

3. For every compactly supported measure valued solutions $(\mu_t)_{0 \le t < T}, (\nu_t)_{0 \le t < T}$, we show

$$W_1(\mu_t, \nu_t) \leq C(T)W_1(\mu_0, \nu_0), \quad 0 \leq t < T.$$

4. As $h \to 0$, the measure μ_0^h approaches to μ_0 in W_1 -distance, and therefore $(\mu_t^h)_{h>0}$ is a Cauchy net in a Polish space $W_1(\mathbb{R}^{2d})$. We denote the limit by μ_t .

5. Since $W_1(\mu_t^h, \mu_t) \to 0$, one can easily verify that $(\mu_t)_{0 \le t < T}$ is the desired measure-valued solution.

Definition (Sasaki '1958)

Let (\mathcal{M}, g) be a smooth Riemannian manifold without boundary. Then, the Sasaki metric tensor field \hat{g} on $T\mathcal{M}$ is the unique nondegenerate symmetric bilinear form such that for every $h_1, h_2, v_1, v_2 \in T_x\mathcal{M}$ and $z = (x, v) \in T\mathcal{M}$,

$$\hat{g}_{z}\left((h_{1})_{z}^{hor}+(v_{1})_{z}^{ver},(h_{2})_{z}^{hor}+(v_{2})_{z}^{ver}\right)=g_{x}\left(h_{1},h_{2}\right)+g_{x}\left(v_{1},v_{2}\right).$$

Proposition (Sasaki metric distance)

For a given Riemannian manifold (\mathcal{M}, g) , the tangent bundle $T\mathcal{M}$ is also a Riemannian manifold for the Sasaki metric tensor \hat{g} . Moreover, if d and \hat{d} are the geodesic distances on (\mathcal{M}, g) and $(T\mathcal{M}, \hat{g})$, respectively, then for every $(x_1, v_1), (x_2, v_2) \in T\mathcal{M}$, we have

$$d(x_1, x_2) \leq \hat{d}\left((x_1, v_1), (x_2, v_2)\right) \leq \sqrt{d(x_1, x_2)^2 + \|P_{x_1 x_2} v_2 - v_1\|_{x_1}^2}.$$

Here, $P_{x_1x_2}$ is not necessarily unique.

3:
$$W_1(\mu_t, \nu_t) \leq C(T) W_1(\mu_0, \nu_0), \quad 0 \leq t < T,$$

Key estimate in 3: For each measure-valued solution μ , consider a particle trajectory $(X_{\mu}(s), V_{\mu}(s)) := (X_{\mu}(s; t, x, v), V_{\mu}(s; t, x, v))$ satisfying

$$egin{aligned} \dot{X}_{\mu}(s) &= V_{\mu}(s), \ \nabla_{\dot{X}_{\mu}}V_{\mu}(s) &= F[\mu](X_{\mu}(s),V_{\mu}(s),s), \ X_{\mu}(t) &= x, \quad V_{\mu}(t) &= v. \end{aligned}$$

Existence of measure-valued solution

Consider a test function $h \in C_0(TM)$ with Lipschitz constant ≤ 1 :

$$rac{h(z_1)-h(z_2)|}{\hat{d}(z_1,z_2)}\leq 1, \quad orall \ z_1,z_2\in \mathcal{TM}.$$

Then, we have

$$\begin{split} & \left| \int_{\mathcal{T}\mathcal{M}} h(z) d\mu_t(z) - \int_{\mathcal{T}\mathcal{M}} h(z) d\nu_t(z) \right| \\ & = \left| \int_{\mathcal{T}\mathcal{M}} h(X_{\mu}(t;0,z), V_{\mu}(t;0,z)) d\mu_0(z) - \int_{\mathcal{T}\mathcal{M}} h(X_{\nu}(t;0,z), V_{\nu}(t;0,z)) d\nu_0(z) \right| \\ & \leq \int_{\mathcal{T}\mathcal{M}} \left| h(X_{\mu}(t;0,z), V_{\mu}(t;0,z)) - h(X_{\nu}(t;0,z), V_{\nu}(t;0,z)) \right| d\mu_0(z) \\ & + \left| \int_{\mathcal{T}\mathcal{M}} h(X_{\nu}(t;0,z), V_{\nu}(t;0,z)) d(\mu_0 - \nu_0)(z) \right| \\ & \leq \hat{d} \Big((X_{\mu}(t;0,z), V_{\mu}(t;0,z)), (X_{\nu}(t;0,z), V_{\nu}(t;0,z)) \Big) + \operatorname{Lip}(X_{\nu}, V_{\nu}) W_1(\mu_0, \nu_0), \end{split}$$

where $Lip(X_{\nu}, V_{\nu})$ denotes the Lipschitz constant of the map:

$$z\mapsto (X_\nu(t;0,z),V_\nu(t;0,z))$$

for all points z in \in supp μ_0 and $0 \le t \le T$.

32

$$d(x_1, x_2) \leq \hat{d}((x_1, v_1), (x_2, v_2)) \leq \sqrt{d(x_1, x_2)^2 + \|P_{x_1 x_2} v_2 - v_1\|_{x_1}^2}.$$

For a manifold $\mathcal{T}\mathcal{M}$ endowed with Sasaki metric, we estimate

$$\widetilde{d}(x,v,y,w)=\sqrt{d(x,y)^2+\|P_{xy}w-v\|_x^2},\quad orall\,(x,v),(y,w)\in\mathcal{TM}.$$

instead of \hat{d} , and we need the following Grönwall-type inequality:

$$egin{aligned} &rac{d}{ds}\left(ilde{d}(X_\mu(s),V_\mu(s),X_
u(s),V_
u(s))^2
ight)\ &\lesssim W_1(\mu_s,
u_s)+\left(ilde{d}(X_\mu(s),V_\mu(s),X_
u(s),V_
u(s))^2
ight). \end{aligned}$$

For the Lipschitz constant of the map

$$z\mapsto (X_{\mu}(s;t,z),V_{\mu}(s;t,z)),$$

we need the following Grönwall-type inequality: for two characteristic curves (X_{μ}^1, V_{μ}^1) and (X_{μ}^2, V_{μ}^2) given by the relations

$$egin{aligned} X^1_\mu(s) &:= X_\mu(s;0,x,v), & V^1_\mu = \dot{X}^1_\mu \ X^2_\mu(s) &:= X_\mu(s;0,y,u), & V^2_\mu = \dot{X}^2_\mu \end{aligned}$$

we have

$$rac{d}{ds} ilde{d}(X^1_{\mu},V^1_{\mu},X^2_{\mu},V^2_{\mu}) \lesssim ilde{d}(X^1_{\mu},V^1_{\mu},X^2_{\mu},V^2_{\mu}).$$

Standing assumptions

\diamond Standing Assumptions (A):

- (A1): The mappings ϕ and G satisfy (\mathcal{G}) .
- (A2): $\phi(x,x) > 0$ for every $x \in \mathcal{M}$.
- (A3): For every compact set $\mathcal{K} \subset \mathcal{M}$ and $x, y, z \in \mathcal{K}$, we have

$$\|id - P_{xz}P_{zy}P_{yx}\| \leq C(\mathcal{K})d(y,z),$$

where $\|\cdot\|$ is the operator norm.

• (A4): If x₁ and x₂ are smooth curves on M, whose speeds are uniformly bounded by a constant c, then we have

$$\begin{split} & \frac{d}{dt} \left(\tilde{d}(x_1, \dot{x}_1, x_2, \dot{x}_2)^2 \right) \\ & \leq C(c) \Biggl(\tilde{d}(x_1, \dot{x}_1, x_2, \dot{x}_2)^2 + g \Bigl(P_{x_1 x_2} \dot{x}_2 - \dot{x}_1, P_{x_1 x_2} \nabla_{\dot{x}_2} \dot{x}_2 - \nabla_{\dot{x}_1} \dot{x}_1 \Bigr) \Biggr) \end{split}$$

If $\mathcal{M} = \mathbb{R}^d$, we have

$$P_{xy} = \mathrm{id}, \quad \nabla_{\dot{x}} \dot{x} = \ddot{x}, \quad \tilde{d}(x_1, \dot{x}_1, x_2, \dot{x}_2)^2 = \|x_1 - x_2\|^2 + \|\dot{x}_1 - \dot{x}_2\|^2,$$

which imply

$$\|id - P_{xz}P_{zy}P_{yx}\| = 0, \quad \forall x, y, z \in \mathbb{R}^d,$$

 and

$$\begin{aligned} &\frac{d}{dt} \left(\tilde{d}(x_1, \dot{x}_1, x_2, \dot{x}_2)^2 \right) \\ &= 2(x_1 - x_2) \cdot (\dot{x}_1 - \dot{x}_2) + 2(\dot{x}_1 - \dot{x}_2) \cdot (\ddot{x}_1 - \ddot{x}_2) \\ &\leq \tilde{d}(x_1, \dot{x}_1, x_2, \dot{x}_2)^2 + 2(\dot{x}_1 - \dot{x}_2) \cdot (\ddot{x}_1 - \ddot{x}_2). \end{aligned}$$

Standing assumptions

If $\mathcal{M} = \mathbb{H}^d$, one can show:

$$\|P_{xz}P_{zy}P_{yx}v-v\|_x\leq 2\|v\|_x\tanh\frac{d(z,x)}{2}\tanh\frac{d(x,y)}{2},\quad\forall\ v\in T_x\mathbb{H}^d,$$

and

$$\begin{split} & \frac{d}{dt} \left(\tilde{d}(x_1, \dot{x}_1, x_2, \dot{x}_2)^2 \right) \\ & \leq (2c^2 + 1) \Bigg(\tilde{d}(x_1, \dot{x}_1, x_2, \dot{x}_2)^2 + g \Big(P_{x_1 x_2} \dot{x}_2 - \dot{x}_1, P_{x_1 x_2} \nabla_{\dot{x}_2} \dot{x}_2 - \nabla_{\dot{x}_1} \dot{x}_1 \Big) \Bigg). \end{split}$$

Moreover, P_{xy} uniquely exists for all $x, y \in \mathbb{H}^d$, and therefore ϕ, G satisfying $(\mathcal{A}1) - (\mathcal{A}2)$ can be found easily, for instance $\phi \equiv 1$.

If (X^1_μ, V^1_μ) and (X^2_μ, V^2_μ) are two characteristic curves with same measure-valued solution μ and different initial data,

$$\begin{split} & P_{X_{\mu}^{1}X_{\mu}^{2}} \nabla_{\dot{X}_{\mu}^{2}} V_{\mu}^{2} - \nabla_{\dot{X}_{\mu}^{1}} V_{\mu}^{1} \\ &= P_{X_{\mu}^{1}X_{\mu}^{2}} F[\mu](X_{\mu}^{2}, V_{\mu}^{2}, s) - F[\mu](X_{\mu}^{1}, V_{\mu}^{1}, s) \\ &= \int_{\mathcal{TM}} \left(P_{X_{\mu}^{1}X_{\mu}^{2}} G(X_{\mu}^{2}, V_{\mu}^{2}, z_{*}) - G(X_{\mu}^{1}, V_{\mu}^{1}, z_{*}) \right) d\mu_{s}(z_{*}). \end{split}$$

Then, the condition (A3),

$$\|P_{xy}P_{yz_*}v_* - P_{xz_*}v_*\| = \|P_{z_*x}P_{xy}P_{yz_*}v_* - v_*\| = O(\|v_*\|d(x,y)),$$

can be used to show

$$\begin{split} \left\| P_{X_{\mu}^{1}X_{\mu}^{2}}(P_{X_{\mu}^{2}x_{*}}v_{*}-V_{\mu}^{2})-(P_{X_{\mu}^{1}x_{*}}v_{*}-V_{\mu}^{1})\right\|_{X_{\mu}^{1}} \\ &\leq \|P_{X_{\mu}^{1}X_{\mu}^{2}}V_{\mu}^{2}-V_{\mu}^{1}\|_{X_{\mu}^{1}}+O(\|v_{*}\|d(x,y)) \\ &\leq O(\tilde{d}(X_{\mu}^{1},V_{\mu}^{1},X_{\mu}^{2},V_{\mu}^{2})). \end{split}$$

Existence of measure-valued solution

If (X_{μ}, V_{μ}) and (X_{ν}, V_{ν}) are two characteristic curves with same initial data, $P_{X_{\mu}X_{\nu}} \nabla_{\dot{X}_{\nu}} V_{\nu} - \nabla_{\dot{X}_{\mu}} V_{\mu}$ $= P_{X_{\mu}X_{\nu}} F[\nu](X_{\nu}, V_{\nu}, s) - F[\mu](X_{\mu}, V_{\mu}, s)$ $= \int_{T\mathcal{M}} P_{X_{\mu}X_{\nu}} G(X_{\nu}, V_{\nu}, z_{*}) d\nu_{s}(z_{*}) - \int_{T\mathcal{M}} G(X_{\mu}, V_{\mu}, z_{*}) d\mu_{s}(z_{*})$ $= \int_{T\mathcal{M}} (P_{X_{\mu}X_{\nu}} G(X_{\nu}, V_{\nu}, z_{*}) - G(X_{\mu}, V_{\mu}, z_{*})) d\nu_{s}(z_{*})$ $+ \int_{T\mathcal{M}} G(X_{\mu}, V_{\mu}, z_{*}) d(\nu_{s} - \mu_{s})(z_{*}).$

Then, the condition (A3),

$$\|P_{xy}P_{yz_*}v_* - P_{xz_*}v_*\| = \|P_{z_*x}P_{xy}P_{yz_*}v_* - v_*\| = O(\|v_*\|d(x,y)),$$

and the (local) Lipschitz continuity of

$$z\mapsto (X_{\mu},V_{\mu})(s;t,z),\quad z\mapsto G(z,z_{*})$$

can be used to obtain

$$rac{d}{ds}\left(ilde{d}(Z_{\mu}(s),Z_{
u}(s))^2
ight)\lesssim W_1(\mu_s,
u_s)+\left(ilde{d}(Z_{\mu}(s),Z_{
u}(s))^2
ight).$$

Theorem (Ahn-Ha-Kim-Schlöder-S, Submitted)

Suppose that the conditions (\mathcal{A}) hold, and let μ_0 be a Radon probability measure with compact support in $T\mathcal{M}$. Then, there exists a unique probability measure-valued solution $(\mu_t)_{0 \le t < T}$ in $L^{\infty}([0, T); \mathcal{P}(T\mathcal{M}))$ with the initial data μ_0 such that μ is weakly Lipschitz continuous and has compact support for each time slice.

- Sasaki (1958, 1962, Tohoku Math. J.)
- Dombrowski (1962, J. Reine Angew. Math.)
- Cucker-Smale (2007, IEEE TAC)
- Ha-Tadmor (2008, Kinet. Relat. Models)
- Ha-Liu (2009, Commun. Math. Sci.)
- Carrillo-Fornasier-Rosado-Toscani (2010, SIAM J. Math. Anal.)
- Golse-Ha (2019, Arch. Ration. Mech. Anal.)
- Ha-Kim-Schlöder (2021, IEEE Trans. Automat. Control)
- Ahn-Ha-S. (2021, Kinet. Relat. Models)

Thank you!