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Cucker-Smale model on Riemannian
manifolds



What is Flocking?

A collective behavior that can be observed in birds flying in group.

https://www.naturettl.com/photograph-flocks-birds


https://www.youtube.com/watch?v=U-Kb_0yEOjs

Cucker-Smale model

Cucker-Smale model (IEEE Automatic Control 2007): Each bird
adjusts its velocity by a weighted sum of relative velocities:
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Cucker-Smale model on Riemannian Manifolds

We assume (G): for given (complete) Riemannian manifold
(M, g), there are smooth maps ¢, G such that

o (x,v,y,w)— (x,G(x,v,y,w)) is a smooth map from
TMx TMto TM,

e ¢(-,-) is symmetric, nonnegative, bounded and smooth,

o G(x,v,y,w) = ¢(x,y)(Pxyw — v) whenever there is a unique
length minimizing geodesic between x and y,

e Otherwise, G(x,v,y,w) =0 and ¢(x,y) =0,

= Cucker-Smale model on (M, g):
).(I':Vh i:]-a”'7N7
N
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For the unit d-sphere S¥ = {x € RI™! : ||x||3 = 1} isometrically
embedded in R9*t1, the parallel transport operator Pxy along the
length minimizing geodesic

y — (x-y)x

———=2 —sint, XF# —y,
TSR Y

t— xcost +
is given by

Pyw = w — (x+y), Vwe T, M.

1+x-y
In this case, we can consider ¢(x,y) = (1 + x - y)P 1 (x,y) to get
G(x,v,y,w) := (1+x-y)P1h(x, y) | (1+x-y)(w—v) — (w-x)(x+y)|,

where p is a nonnegative integer and 1 is a smooth function.



Cucker-Smale model on Riemannian manifolds

Basic properties

e Dissipation of kinetic energy: if a;; = aj; and a;; > 0,

N 2
d 2 HG(Xh Vi, Xj VJ)HX
— f = — o8 - < 0.
dt (Z |V’”Xf> 2 ¢(xi, x;) =0

i=1 ij

» Monotone decrease of maximal speed: if a;; > 0,

3 (Ol < max 7], £>0.



Formal derivation of kinetic
Cucker-Smale model



Liouville’s Equation on manifolds

For given smooth manifold M, consider

e £ smooth vector field on M.

e p;: time-dependent d-form on M such that the fraction of
representative particles F;(R) contained in any phase space
region R C M at time t moving by the equation of motion

x = §(x),
can be written as an integral of p; in R:
Fi(R) := fraction of particles contained in R at time t

(3)
= / pt, YV R: space region, t>0.
R



Liouville’s Equation on manifolds

Continuity equation for p;:
Ipe

— = 0. 4
L+ Lepr =0 *)

If pr can be expressed by the product of distribution function f and
a non-vanishing time-independent d-form w,

pe(x) = f(t, x)w(x),
we can further simplify the continuity equation (4) to

of : of .
9 + Lef + fdlvw(f)] w= [81_ + dlvw(ff)} w=0,

which vyields the Liouville equation on M:

of .
9t + div,(f§) = 0.



Formal Derivation of Kinetic Equation

Then, we rewrite the Cucker-Smale model on (M, g),
).(i:Via i:17"'7N7
LN
v)'<,-Vi = N Z G(Xia Vi, Xj, Vj)a
(/a/')GTM i=1,--,N,
as a first-order ODE:

:=¢(2), Z"e(TMN=TMx---xTM.

N times




For M =R, equation

can be written as

d (x\ v
dt\v) \F(x,v))’
where we used the canonical identification of tangent spaces and

Euclidean spaces:

v,F(x,v) e RY ~ T,RY, > eR*? ~ T, TR

<F(XV, v)
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Therefore, we are looking for two linear homomorphisms
Ly, Ly : TxM — T,y TM which correspond to

Li:u— (u>, Ly:w— <O>
0 w

Note: push-foward map 7, sends %(X, v) to x, and

Lo(T M) = {jt(x, V)

% = o} = Ker(r,).

= What is a linear map %(x, v) = Viv?
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Connection map

Definition (Sasaki 1958, Dombroski '1962)

For given (x,v) € TM, let V be a totally normal neighborhood of x, and V’
be a neighborhood of 0 such that exp, : V' — V is a diffeomorphism.
Moreover, let 7 : 77 1(V) — T.M be a smooth map satisfying

T(y,u) = Pyu Y (y,u) € 7 (V).
Then, a connection map K, ) : Tix,v) TM — T M is defined as
K,y (A) = (exp, 0 R, 0 7).(A),

where R_, : TxM — T, M is a translation map X — X — v.

Proposition (Dombroski '1962)

Let (M, g) be a smooth Riemannian manifold, and z(t) = (x(t), u(t)) be a
smooth curve in TM through (xo, up) at t = 0. Then, the connection map K
satisfies

Kixo,u0)(2(0)) = Vu(0). .



Decomposition of T, ,)TM

Definition (Horizontal and Vertical subspaces)

Let z = (x, v) be a point on TM.

1. (Horizontal subspace of T,T.M): The horizontal subspace
H,T M is the kernel of the connection map K,:

H, TM = Ker(K;) (= Li(TM)).

2. (Vertical subspace of T,TM): The vertical subspace V, T M
is the kernel of the linear map my, : T, TM — T, M:

V, TM = Ker () (= Lo TxM)).
= T, TM=H,TM®V, TM!

13



Horizontal and Vertical lifts

™M

(7. p)

O. Sarbach and T. Zannias.: The geometry of the tangent bundle and the
relativistic kinetic theory of gases, Classical and Quantum Gravity 31 (2014), 085013. 14



Horizontal and Vertical lifts

Definition (Horizontal and Vertical lifts)

For each tangent vector u € T, M and z = (x,v) € TM, we

define the horizontal lift u?°" and the vertical lift u’®" as

hor . ver .

u, .:77*|7_{1TM(U), uy .:KZ\;leM(u).

Proposition (7{-V decomposition of z)

Let z = (x,v) : I — TM be a smooth curve on TM. Then, the
tangent vector z in T, T M can be uniquely written as

7 = xhor 4 (Viv)rer

ii5)



Cucker-Smale model on manifold: revisited

One can rewrite the Cucker-Smale model (2) as
ZZf(Z), Z:(Zl7"'7ZN)7 52(517"'7€N)

zi = (6, vi), &i(z) = (V)2 + ( Z ZHZJ) , (5)

=il

Zj

Zne TM, i=1,--- N,
and the corresponding mean-field limit model on (M, g) is:
0 + divy [f{ hor 1 (F[f](z, t))vef}} =0,

(6)
F[fl(z,t) :== /TM G(z,z)f(z, t)Volg(z).
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Flocking estimate and Existence of
measure-valued solution




Propagation of moments

We set two velocity moments, mg and my:
mo(t) := / f(x, v, t)Volg(x, v),
TM
my(t) == / Hv||)2<f(x, v, t)Volg(x, v).
TM

Proposition (Propagation of mass and kinetic energy)

Let f = f(x, v, t) be a nonnegative smooth solution to (6), and
assume that the support of f;(-,-) := f(+,+, t) is a compact subset
of TM for all t > 0. Then, the moments mg and my satisfy

dmo( )

=0, Vt>0.

I16(z, 2.)IIZ
//TM)2 () ff.Volg(z.)Volz(z).

()
(ii

(7)
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(15): O +divg [{ V2 + (FIfl(z, )" } £] =o.
Sketch of Proof:

1. For a compactly supported function ¢ and vector field U,
/M (g(gradggp, U) + ¢divgU) Volg = 0.
2. From the definition of gradg, we have
g(gradgp, U) = dp(U) = Up.

3. We multiply ||v||2 to (6), integrate by Volgz(z) = Volg(x, v)
and obtain

e [ g (erdg V1B [+ Pl 002] ) Vol

- / f[vEer 4 (FIFI(z, )2 ] (IvIE)Volg(2).
M
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dmg

= el A ] (R vele(a)

e v/°": tangent vector of the curve z := (x,v) on T.M such
that x = v, Viv = 0. Therefore, v is a parallel vector field
along x and [v'](||v[%) = z(|Iv[%) = 0.

e (F[f](z,t))s": tangent vector of the curve z := (x, v) on
T M such that x =0, Vv = F[f](z,t). Therefore,
[(FIf1(z, )£ 1(IVIE) = 2(lIvIZ) = 28x(v, FIf](z, t)).

In fact, in R9, the above argument becomes

0:/ [V|? (8¢F + Vi - (VF) + V., - (FIF]F)) dxdv
R2d

- dm2
= /dev (F[f]f)dxdv.
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Propagation of moments

Therefore, by using the relation

g(v,G(z,2.)) + g(v«, G(2+, 2))

= p(x, %) (8(Proc, Vi V) = IVIIE + g(Praxv, ve) = IweX.)
16(z, 2|15

||X
= — (X, Xe)|| P, Vs — V )2<———
( ) | d(x, %)

we have the desired estimate:

o 2 /T 8LV FIF1(z, 0)F(2)Volg(2)

= 2/w /TMg(v,G(z,z*))f(z*,t)f(z, t)Volz(z)Voly(2)
/ / HG E HXi“'(z t)f(z., t)Volg(z.)Volz(z).
TMJITM
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Measure-Valued solution

If f € C®°(TM x [0, T)) satisfies (6):
O:f + divg [{V;Of + (FIfl(z, t));ef} f] =0,

we multiply an arbitrary test function h € C}(TM x [0, T)) to
(6), integrate by Volz and obtain

d/ h(FVolg) — [ 8:h(fVoly)
dt J1m M

= [ & (eradgh.vi= 4 (FIA(z. )27) (Yol
= [ [t ey+ (P10 ()] (V).

In addition, F[f](z,t) = [7,, G(2, z.)(fVolg(z)).

21



Measure-Valued solution

For every Hausdorff topological space X, let 9t(X) be the set of
nonnegative Radon measures on X. For a Radon measure
v € M(TM), we use the following standard duality notation:

(v, h) := /TM h(z)dv(z), he Co(TM),

where Co(TM) is the set of all continuous function f on TM

such that {f > ¢} is compact for every positive number «.

22



Measure-Valued solution: Definition

Definition (measure-valued solution)

For T >0, let u: L>°([0, T); M(TM)) be a measure-valued
solution to (6) with the initial Radon measure pg € M(TM) if
and only if u satisfies the following conditions:

1. p is weakly continuous:
— (e, h) is continuous, V h € Co(TM).
2. Forany he CH{TM x [0, T)),
(e, h(-, £)) = (po, h(-, 0))

- /O t <us,ash+ V2 () + (FLul(z. )2 (1)) ds.

where Flu](z,t) := [1,, G(z, z.)dpe(2z:) € TryM. .



Measure-Valued solution

1. The function f € LY(TM x [0, T)) is a distributional weak
solution to (6) if and only if 1:(z) := f(z, t)|Volz(2)| is a
measure-valued solution to (6).

2. For any solution {(x;, v;)}_; to the following ODE system:
xi=v, t>0, 1<i<N,
Vi vi= Z m;G(x;, vi, Xj, vj),
(xi(0), vi(0)) = (x/", v/") € TM,

the empirical measure p; 1= Z,N:l Mid(x(t),vi(t)) 1S 2
measure-valued solution to (6).

24



Measure-Valued solution: propagation of moments

For a measure-valued solution (fit)o<¢<T to (6), we set

mo(t) == /TM dpe(x, v),
ma(t) == /  IvIEdu(e, ).

Then, similar to (7), the moments mg and my satisfy

dmo( )

(1) =0, Vt>0.

dmz HG Z,Zy HX
(i1 / / Pz dpe(2),

provided that p: is compactly supported for each t.

25



Existence of measure-valued solution

Question: When does the measure-valued solution exists?

Ha-Liu (2009): Existence of solution (ji¢)o<¢<T for M = R

26



Existence of measure-valued solution in R?

1. For given compactly supported radon probability measure
po € P(R?9), we approximate pg by b = Z,N:l mM;d(xin ,iny, Where
m; is the po-measure of i-th cube R"(i) with width h in R?9.

2. Set pfl = SN | Mid((e)vi(ey). Where {(xi(t), vi(t))} is the
solution of

xi=v, t>0 1<i<N,
N

‘./i = ijG(Xiv Vi, Xj, VJ)7
Jj=1

(xi(0), vi(0)) = (x", vim) € R?.

27



Existence of measure-valued solution in R?

3. For every compactly supported measure valued solutions

(Nt)0§t<T; (Vt)o§t<7', we show
Wi(pe,ve) < C(T)Wi(po,v0), 0<t<T.

4. As h — 0, the measure ;Lg approaches to g in Wi-distance,

and therefore (14/)p~0 is a Cauchy net in a Polish space W;(R?9).
We denote the limit by p.

5. Since Wy (ul, 1r) — 0, one can easily verify that (p¢)o<e<T is
the desired measure-valued solution.

28



Definition (Sasaki '1958)

Let (M, g) be a smooth Riemannian manifold without boundary.
Then, the Sasaki metric tensor field & on T M is the unique
nondegenerate symmetric bilinear form such that for every

hi, ha,vi,vo € TuM and z = (x,v) € TM,

8- ((hl)ﬁor + (va)¥®, (ho)hor + (V2)Zer) = g« (h1, h2) + gx (v1, v2) .

29



Proposition (Sasaki metric distance)

For a given Riemannian manifold (M, g), the tangent bundle T M
is also a Riemannian manifold for the Sasaki metric tensor g.
Moreover, if d and d are the geodesic distances on (M, g) and
(TM, g), respectively, then for every (x1,v1), (x2, v2) € TM, we
have

d(x1,x2) < d((x1,v1), (x2, ) < \/d(xl,x2)2 + || Pagxo V2 — V1|2,

Here, Py, x, is not necessarily unique.

30



Existence of measure-valued solution

3 Wi(pe,ve) < C(T)Wi(mo,0), 0<t<T,

Key estimate in 3: For each measure-valued solution p, consider a
particle trajectory (X, (s), Vi.(s)) :== (Xu(s; t,x,v), Vu(s; t, x, v))
satisfying _

Xu(s) = Viu(s),

Vi, Viu(s) = Flul(Xu(s), Vu(s), s),

X (1) =x, V() =v.

31



Existence of measure-valued solution

Consider a test function h € Co( T M) with Lipschitz constant < 1:
w <1, Vaz,nneTM.
d(zi, z)

Then, we have

/TM h(z)dp:(z) f/ h(z)dv:(z)

™™

= ‘/ h(X,.(t;0,z), Vu(t;0,z))dpo(z) —/ h(X.(t;0,z), Vi.(t;0,2))dwvo(2)
TM ™™
< / ‘h(XM(t; 0,2), Vu(£:0, 7)) — h(X,(£:0, 2), Vi(£: O,z))‘d,uo(z)
JTM

+ / h(X.(t;0,2z), Vo.(t;0,2))d(po — 0)(2)
™

< ﬁ((Xu(t; 0,z), V.(t; 0, 2)), (Xu(¢; 0, z), Vu(t;O,z))) + Lip(Xy, Vo) WA (o, o),

where Lip(X,, Vi) denotes the Lipschitz constant of the map:

z+— (Xu(t;0,2), Vo, (t; 0, 2))

32
for all points z in € supp o and 0 <t < T.



Existence of measure-valued solution

d(x1, %) < d((x1,v1), (x2, v2)) < \/d(><1,><2)2 + 1Paxove — val% -

For a manifold T.M endowed with Sasaki metric, we estimate

d(x, v,y, w) = \Jd(x, )2 + [|Pyw = VIZ, ¥ (x,v), (v, w) € TM.

instead of d, and we need the following Gronwall-type inequality:

% <C7(Xu(s), Vi(s), X (s), V”(S))z)

< Waps,vs) + ((Xu(5), Vi), Xo(s), Vil9))?)
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Existence of measure-valued solution

For the Lipschitz constant of the map
z = (Xu(si t, 2), Viu(si t, 2)),

we need the following Gronwall-type inequality: for two
characteristic curves (X;, V) and (XZ, V;7) given by the relations

Xﬁ(s) = X,(s:0,x,v), Vj = Xj
X3(s) = Xu(s:0,y,u), V2 =X}

we have

d - 1 1 2 2 J(yl 1 y2 2
22 AX0, Vi X5 V) S d(X, Vi, X2, V2).
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Standing assumptions

o Standing Assumptions (A):

e (Al): The mappings ¢ and G satisfy (G).
e (A2): ¢(x,x) > 0 for every x € M.
e (A3): For every compact set K C M and x,y, z € K, we have

lid = Pz P2y Pys|| < C(K)d(y, 2),

where || - || is the operator norm.
o (A4): If x; and xp are smooth curves on M, whose speeds are
uniformly bounded by a constant ¢, then we have

% (J(Xl,)'q,xz,)'(g)2>

< C(c) (J(Xlﬂ'q, X2, %)% + g(leszz — X1, Pxo Vio X2 — Vx'lX1>)-
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Standing assumptions

If M =R9, we have
Py =id, Vix=%, d(x1,%1,x,%)>=|xi—x|?+|* — x|
which imply

lid — PxzPzy Pl =0, V¥ x,y,z € RY,

and

/N

dN(Xl,)'(LXQ,)'Q)z)
= 2(X1 = X2) . (Xl = Xz) + 2(5(1 = Xg) . ()'61 = )'<'2)

< d(x1, %1, x2, %)% + 2(%1 — x2) - (K1 — %2).

]
dt
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Standing assumptions

If M = H9, one can show:

d
PPy Pyt = vl < 2l tanh SE2D ang L0y ¢ 7

d(z,x)
2

and

% (d(xl,)'q,XQ,)'Q)2)

S (262 + 1) <J(Xl7 )-<17X27)-<2)2 + g(PXp(zXZ - ).(17 lexzvX2X2 - VX1X1)> .

Moreover, Py, uniquely exists for all x,y € HY, and therefore ¢, G
satisfying (A1) — (A2) can be found easily, for instance ¢ = 1.
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Existence of measure-valued solution

If (X2, V1) and (X2, V?) are two characteristic curves with same
ws Vi ws Vi

measure-valued solution x and different initial data,
PX}LXEL VXﬁ Vi - VX},, V;
= Paasa FIul(XG, V2, 5) — FIul(XE, V2, s)
= /TM (PXELX,E G(X3, V3, z.) — G(X, Vi.z*)> dus(z.).
Then, the condition (.A3),
[Py Pyzn Ve = Pra Vill = || PeaxPry Pz vie — v || = O([lvelld(x, ),

can be used to show

“Pxixﬁ(Pxﬁx* Vi — Vi) - (PX}LX* Vi — Vi)

XL
< 1Pxaxz Vi = Villxa, + O(llv«lld(x, )
< O(d(X:, Vi, X3, V2)).
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Existence of measure-valued solution

If (Xu, Vi) and (X., V.,) are two characteristic curves with same initial data,
Px.x,Vx, Vo = Vx Vi

= PX[JXVF[V](XU7 Vi, s) — Flul(Xu, Viuy s)

= / Prox, G(Xo, Vo 2 )dva(z.) — | G(Xe, Visy 2)dpia(2.)
TM TM

- / (PX;LXU G(XIM VIMZ*) - G(X/u \/“.,Z*)) st(Z*)
M

[ 6K, Vi 2)d (s — pie)(2.).

™

Then, the condition (.A3),

[1Pry Pyz, Ve = Prg, V|| = || Paox Py Pz vic — v || = O([[v[ld(x, ¥)),
and the (local) Lipschitz continuity of

z— (Xu, Vu)(sit,z), z+— G(z,z)
can be used to obtain
% (3(2u(), Z5)) § Walpss, ) + (d(Zu(5), Zu(5))?) -
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Main Theorem: Existence of measure-valued solution

Theorem (Ahn-Ha-Kim-Schléder-S, Submitted)

Suppose that the conditions (.A) hold, and let 1o be a Radon
probability measure with compact support in TM. Then, there
exists a unique probability measure-valued solution (jut)o<¢<7 in
L ([0, T); P(TM)) with the initial data g such that p is weakly
Lipschitz continuous and has compact support for each time slice.
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Thank you!
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