Ellipsoidal BGK model with the correct Prandtl number

Seok-Bae Yun

Department of Mathematics Sungkyunkwan University (SKKU), Korea

02.08. 2021

Kinetic and fluid equations for collective behavior France-Korea IRL in Mathematics

Joint work with Stephane Brull (IMB Bordeaux), Doheon Kim (KIAS), Myeong-su Lee (SKKU) Boltzmann equation

Velocity distribution function

- Given a particle system: gas, plasma,...
- Maxwell(1860), Boltzmann(1872): How particles are distributed in the phase space?
- $\int_A f(x, v, t) dx dv = \#$ of particles such that $(x, v) \in A$ at time t

The Boltzmann equation

• For non-ionized monatomic rarefied gas (1872):

$$\partial_t f + \mathbf{v} \cdot \nabla_{\mathbf{x}} f = Q(f, f),$$

Transport+collision

Collision Operator

$$Q(f,f)(v) \equiv \int_{\mathbb{R}^3 \times \mathbb{S}_+^2} B(v-v_*,\omega)(f(v')f(v_*')-f(v)f(v_*))d\omega dv_*.$$

$$\mathbf{v}' = \mathbf{v} - [(\mathbf{v} - \mathbf{v}_*) \cdot \omega]\omega, \quad \mathbf{v}'_* = \mathbf{v}_* + [(\mathbf{v} - \mathbf{v}_*) \cdot \omega]\omega.$$

Q satisfies

Q satisfies

$$\int_{\mathbb{R}^3} Q(f,f)(1,v,|v|^2) dv = 0$$

and

$$\int_{\mathbb{R}^3} Q(f,f) \ln f dv \leq 0$$

which respectively lead to

Conservation laws

$$\frac{d}{dt}\int_{\mathbb{R}^3}f(x,v,t)(1,v,|v|^2)dxdv=0.$$

and H-theorem

$$\frac{d}{dt} \int_{\mathbb{R}^6} f \ln f \, dx dv = \int_{\mathbb{R}^3} Q(f, f) \ln f dv \le 0$$

Equilibrium: local Maxwellian

Equilibrium

$$Q(f, f) = 0$$

$$\Leftrightarrow \int_{\mathbb{R}^3} Q(f, f) \ln f dv = 0$$

$$\Leftrightarrow \ln f + \ln f_* - \ln f' - \ln f'_* = 0$$

$$\Leftrightarrow \ln f = \lambda_1 |v|^2 + \lambda_2 \cdot v + \lambda_3.$$

• (local) Maxwellian:

$$f = e^{\lambda_1 |v|^2 + \lambda_2 \cdot v + \lambda_3}.$$

Local Maxwellian

Equilibrium

$$Q(\mathcal{M},\mathcal{M})=0$$

• Due to the conservation laws, we get

$$\mathcal{M}(f)(x,v,t) = \frac{\rho(x,t)}{\sqrt{(2\pi T(x,t))^3}} \exp\Big(-\frac{|v-U(x,t)|^2}{2T(x,t)}\Big).$$

where

$$\rho(x,t) = \int_{\mathbb{R}^3} f(x,v,t) dv$$

$$\rho(x,t)U(x,t) = \int_{\mathbb{R}^3} f(x,v,t) v dv$$

$$\rho(x,t)T(x,t) = \int_{\mathbb{R}^3} f(x,v,t) |v - U(x,t)|^2 dv.$$

BGK model

BE: fundamental but not practical

- hard to develop fast & efficient numerical methods.
- Most difficulties and costs arise in the computation of Q.

BGK model

The Boltzmann-BGK model

• BGK Model (Bhatnagar-Gross-Krook [1954]):

$$\partial_t f + v \cdot \nabla_{\mathsf{x}} f = \frac{1}{\kappa} (\mathcal{M}(f) - f)$$

• $1/\kappa$: collision frequency

M: Local Maxwellian where

$$\mathcal{M}(f)(x,v,t) = \frac{\rho(x,t)}{\sqrt{(2\pi T(x,t))^3}} \exp\Big(-\frac{|v-U(x,t)|^2}{2T(x,t)}\Big).$$

where

$$\rho(x,t) = \int_{\mathbb{R}^3} f(x,v,t) dv$$

$$\rho(x,t)U(x,t) = \int_{\mathbb{R}^3} f(x,v,t) v dv$$

$$\rho(x,t)T(x,t) = \int_{\mathbb{R}^3} f(x,v,t) |v - U(x,t)|^2 dv.$$

Seok-Bae Yun (Department of Mathematics Sungkyu Ellipsoidal BGK model with the correct Prandtl numbe

- Collision process of BE ⇒ Relaxation process
- Much lower computational cost compared to BE
- Still shares important features with BE:
 - Conservation laws
 - H-theorem
 - ► Relaxation to equilibrium.
 - Correct Euler Limit
- Very popular model for numerical experiments in kinetic theory (citation 8800)

- Collision process of BE ⇒ Relaxation process
- Much lower computational cost compared to BE
- Still shares important features with BE:
 - Conservation laws
 - H-theorem
 - ► Relaxation to equilibrium.
 - ► Correct Euler Limit
 - Navier-Stokes Limit ?
- Very popular model for numerical experiments in kinetic theory (citation 8800)

Prandtl number

• Compressible Navier-Stokes equation:

$$\begin{split} &\partial_t \rho + \nabla_x \cdot (\rho U) = 0, \\ &\partial_t (\rho U) + \nabla_x \cdot (\rho U \otimes U + P), = \mu \nabla_x \cdot \sigma \\ &\partial_t E + \nabla_x \cdot (EU + PU + \mu \sigma) = \kappa \triangle T. \end{split}$$

• Prantl number: The ratio between viscosity and heat conductivity:

$$\frac{\mu}{\kappa}$$

Prandtl number

Prandtl number: ratio between diffusivity and viscosity.

• Boltzmann equation: 2/3

• BGK model: 1.

• Therefore, compressible NS limit of the BGK model is not correct.

Ellipsoidal BGK model

The Ellipsoidal-BGK model

• ES-BGK Model [Halway, 1964] :

$$\partial_t f + \mathbf{v} \cdot \nabla_{\mathbf{x}} f = \frac{\rho}{\tau} (\mathcal{M}_{\mathbf{v}}(f) - f),$$

- ν : Knudsen parameter: $(-1/2 \le \nu < 1)$
- \bullet τ denotes

$$\tau = \kappa \left(1 - \frac{\nu}{\nu} \right)$$

• $\mathcal{M}_{\nu}(f)$: Ellipsoidal Gaussian

Ellipsoidal Gaussian parametrized by ν

The local Maxwellian is generalized to the ellipsoidal Gaussian:

$$\mathcal{M}_{\nu}(f) = \frac{
ho}{\sqrt{\det(2\pi\mathcal{T}_{\nu})}} \exp\left(-\frac{1}{2}(v-U)^{\top}(\mathcal{T}_{\nu})^{-1}(v-U)\right)$$

• \mathcal{T}_{ν} :Temperature Tensor:

$$\mathcal{T}_{\boldsymbol{\nu}}(x,t) = (1-\boldsymbol{\nu})T(x,t)Id + \boldsymbol{\nu}\Theta(x,t)$$

where Θ denotes the stress Tensor:

$$\Theta(x,t) = \frac{1}{\rho} \int_{\mathbb{R}^3} f(x,v,t)(v-U) \otimes (v-U) dv.$$

Seok-Bae Yun (Department of Mathematics Sungkyu Ellipsoidal BGK model with the correct Prandtl numbe

- Prantdl number: $\frac{1}{1-\nu}$.
- 2 important cases:
 - $\nu = 0$: Classical BGK model
 - $\nu = -1/2$: ES-BGK with correct Prandtl number.
- Halway (1964)
- H-theorem: Andries-Le Tallec-Perlat-Perthame (2001)
- Systematic derivation: Brull-Schnieder (2008)

21 / 68

Part I: Stationary solutions in a slab

Stationary BGK model in a slab

• Stationary problem in a slab: $(x, v) \in [0, 1] \times \mathbb{R}^3$

$$v_1 \frac{\partial f}{\partial x} = \frac{\rho}{\tau} (\mathcal{M}_{\nu}(f) - f),$$

• Mixed boundary conditions ($\delta_1 + \delta_2 = 1$):

$$\begin{split} f(0,v) &= \delta_1 f_L(v) + \delta_2 \left(\int_{|v_1| < 0} f(0,v) |v_1| dv \right) M_w(0), \quad (v_1 > 0) \\ f(1,v) &= \delta_1 f_R(v) + \delta_2 \left(\int_{|v_1| > 0} f(1,v) |v_1| dv \right) M_w(1). \quad (v_1 < 0) \end{split}$$

• δ_1 : Inflow and δ_2 : Diffusive.

4□ > 4ⓓ > 4≧ > 4≧ > ½ > ½

24 / 68

Literatures

BGK

- Ukai (92): Weak solution with inflow boundary data
- Nouri (08): QBGK: Weak solution with diffusive boundary data
- Y. et al (16.18): ES-BGK, QBGK, RBGK.

Boltzmann

- Arkeryd-Cercignani-Illner (91): Measure-Valued Solutions.
- ► Maslova: Mild Solutions (93)
- Arkeryd-Nouri (98,99,00...): Weak solutions
- ▶ Brull (08): Gas mixture
- ► Guo-Kim-Esposito-Marra (13,18): Near Maxwellian

Norms

Norm:

$$\sup_{x} \|f\|_{L^{1}_{2,}} = \sup_{x} \Big\{ \int_{\mathcal{R}^{3}} |f(x,v)| (1+|v|^{2}) dv \Big\},$$

• Trace norms (n(i)): outward normal):

$$\begin{split} \|f\|_{L^{1}_{\gamma, |v_{1}|}} &= \sum_{i=0,1} \int_{v \cdot n(i) < 0} |f(i, v)| |v_{1}| dv + \int_{v \cdot n(i) > 0} |f(i, v)| |v_{1}| dv, \\ \|f\|_{L^{1}_{\gamma, \langle v \rangle}} &= \sum_{i=0,1} \int_{v \cdot n(i) < 0} |f(i, v)| \langle v \rangle dv + \int_{v \cdot n(i) > 0} |f(i, v)| \langle v \rangle dv, \end{split}$$

where $\langle v \rangle = (1 + |v|^2)$.

Seok-Bae Yun (Department of Mathematics Sungkyu Ellipsoidal BGK model with the correct Prandtl numbe

26 / 68

Conditions on f_{LR}

 (P_1) Finite flux + Not too much concentration around $v_1 = 0$:

$$\|f_{LR}\|_{L^1_{\gamma,\langle \mathsf{v}\rangle}} + \left\|\frac{f_{LR}}{|\mathsf{v}_1|}\right\|_{L^1_{\gamma,\langle \mathsf{v}\rangle}} < \infty$$

 (P_2) No vertical inflow at the boundary:

$$\int_{\mathbb{R}^{2}} f_{L} v_{i} dv = \int_{\mathbb{R}^{2}} f_{R} v_{i} dv = 0 \quad (i = 2, 3)$$

Seok-Bae Yun (Department of Mathematics SungkyuiEllipsoidal BGK model with the correct Prandtl numbe

27 / 68

Mild Solution

Definition

$$f \in L^1_2([0,1]_{\scriptscriptstyle X} imes \mathbb{R}^3_{\scriptscriptstyle V})$$
 is a mild solution if

$$\begin{split} f(x,v) &= e^{-\frac{1}{\tau |v_1|} \int_0^x \rho_f(y) dy} f(0,v) \\ &+ \frac{1}{\tau |v_1|} \int_0^x e^{-\frac{1}{\tau |v_1|} \int_y^x \rho_f(z) dz} \rho_f(y) \mathcal{M}(f) dy \quad \text{if } v_1 > 0 \end{split}$$

The mild solution for $v_1 < 0$ is similarly defined.

Seok-Bae Yun (Department of Mathematics Sungkyu Ellipsoidal BGK model with the correct Prandtl numbe

Mild solution

For $v_1 > 0$

$$|v_1|\partial_x f = \frac{
ho}{ au} ig(\mathcal{M}_
u(f) - f ig)$$

$$\partial_{\mathsf{x}} f + rac{
ho}{ au|v_1|} f = rac{
ho}{ au|v_1|} \mathcal{M}_{
u}(f)$$

$$\frac{d}{dx}\left(e^{\frac{\int_0^x \rho(y)dy}{|v_1|\tau}}f(x,v)\right) = \frac{1}{\tau|v_1|}e^{\frac{\int_0^x \rho(y)dy}{|v_1|\tau}}\rho(x)\mathcal{M}_{\nu}(f).$$

The case for $v_1 < 0$ is the same.

Seok-Bae Yun (Department of Mathematics Sungkyu Ellipsoidal BGK model with the correct Prandtl numbe

Main result: Inflow dominant case $\delta_2 \ll 1$

• : Non-critical case: $-1/2 < \nu < 1$:

Theorem (Brull-Y. 20)

Let $-1/2 < \nu < 1$. Suppose f_{LR} satisfies (P_1) , (P_2) . Then, for sufficiently small δ_2 and τ^{-1} , there exists a unique mild solution $f \ge 0$ for BVP.

• : Critical case: $\nu = -1/2$:

Theorem (Brull-Y. 20)

Let $\nu = -1/2$: Suppose f_{LR} satisfies (P_1) , (P_2) . Assume further that

$$\left|\int_{\nu_1>0}f_L|\nu_1|d\nu-\int_{\nu_1<0}f_R|\nu_1|d\nu\right|\ll 1,$$

Then, for sufficiently small δ_2 and τ^{-1} , there exists a unique mild solution $f \geq 0$ for BVP.

Main result: Diffusive dominant case: $\delta_1 \ll 1$

• : Non-critical case: $-1/2 < \nu < 1$:

Theorem (Brull-Y. 20)

Let $-1/2 < \nu < 1$. Suppose f_{LR} satisfies (P_1) , (P_2) . Assume furthe that f satisfies

$$\int_{v_1<0} f(0,v)|v_1|dv + \int_{v_1>0} f(1,v)|v_1|dv = 1.$$
 (3.1)

Then, for sufficiantly small δ_2 and τ^{-1} , then there exists a unique mild solution $f \geq 0$ for BVP.

• : Critical case: $\nu = -1/2$:

Theorem (Brull-Y. 20)

Let $\nu = -1/2$: Suppose f_{LR} satisfies (P_1) , (P_2) . Assume the flux satisfies

$$\int_{v_1<0} f(0,v)|v_1|dv + \int_{v_1>0} f(1,v)|v_1|dv = 1.$$
 (3.2)

Then, for sufficiantly small δ_2 and τ^{-1} , then there exists a unique mild solution $f \geq 0$ for BVP.

Approximate Scheme

We define our approximate scheme by

$$\begin{split} f^{n+1}(x,v) &= e^{-\frac{1}{\tau|v_1|} \int_0^x \rho_n(y) dy} f^{n+1}(0,v) \\ &+ \frac{1}{\tau|v_1|} \int_0^x e^{-\frac{1}{\tau|v_1|} \int_y^x \rho^n(z) dz} \rho_n(y) \mathcal{M}_{\nu}(f^n) dy \quad \text{if } v_1 > 0 \end{split}$$

and

$$f^{n+1}(0,v) = \delta_1 f_L(v) + \delta_2 \left(\int_{|v_1| < 0} f^n(0,v) |v_1| dv \right) M_w(0), \quad (v_1 > 0)$$

The scheme for $v_1 < 0$ similarly defined.

Solution Space

$$\Omega_{
u} = \left\{ f \in L^1_2 \; \middle| \; f \; \mathsf{satisfies} \; (\mathcal{A}), (\mathcal{B}), (\mathcal{C})
ight\}$$

where

• (A) f is non-negative:

$$f(x, v) \geq 0$$
 a.e

• (\mathcal{B}) Lower bounds ($|\kappa| = 1$):

$$\rho \geq C_1. \qquad \kappa^{\top} \left\{ \mathcal{T}_{\nu} \right\} \kappa \geq C_2$$

• (C) Norm bounds

$$||f||_{L_2^1}, \quad ||f||_{L_{\gamma,|\nu_1|}^1}, \ ||f||_{L_{\gamma,\langle\nu\rangle}^1} \le C_3$$

Seok-Bae Yun (Department of Mathematics Sungkyu Ellipsoidal BGK model with the correct Prandtl number

33 / 68

We want $f^n \to f$

• Uniform estimate:

$$f^n \in \Omega_{\nu}$$
 for all n .

Contractivity:

$$||f^{n+1} - f^n|| \le \alpha ||f^{n+1} - f^n||$$

for appropriate norm and $\alpha < 1. \label{eq:alpha}$

4□ > 4ⓓ > 4≧ > 4≧ > ½ 9Q

Difficulties

• Singularities may arise near $v_1 = 0$:

$$\partial_{x}f=\frac{\rho}{\tau V_{1}}(\mathcal{M}_{\nu}-f).$$

• Singularities may arise near $\mathcal{T}_{\nu}=0$:

$$\mathcal{M}_{
u}$$
 contains $\mathcal{T}_{
u}^{-1}$ and $\left(\det\mathcal{T}_{
u}
ight)^{-1}$

Dichotomy:

$$\left(-1/2<\nu<1:\mathcal{T}_{\nu}\sim\textit{T Id}\right)\;\;\text{VS}\quad\left(\nu=-1/2:\mathcal{T}_{-1/2}\nsim\textit{T Id}\right)$$

1st difficulty:
$$\frac{1}{|v_1|}$$

We can control the singularity: $\frac{1}{|v_1|}$, if we integrate in x and v:

Lemma

Let $f \in \Omega_i$ (i = 1, 2). Then we have

$$\int_{v_1>0} \int_0^x \frac{1}{\tau|v_1|} e^{-\frac{\int_y^x \rho_f(z)dz}{\tau|v_1|}} \rho_f(y) \mathcal{M}_{\nu}(f) dy dv \leq C\left(\frac{\ln \tau + 1}{\tau}\right)$$

Seok-Bae Yun (Department of Mathematics Sungkyu Ellipsoidal BGK model with the correct Prandtl number

Proof

For $f \in \Omega_{\nu}$, we can reduce the integral into

$$\int_{v_1>0} \int_0^x \frac{1}{\tau |v_1|} e^{-\frac{a_{\ell,1}(x-y)}{\tau |v_1|}} e^{-Cv_1^2} dy dv$$

and divide

$$\begin{cases} \int_0^x \int_{|v_1| < \frac{1}{\tau}} + \int_0^x \int_{\frac{1}{\tau} \le |v_1| < \tau} + \int_0^x \int_{|v_1| \ge \tau} \right\} \frac{1}{\tau |v_1|} e^{-\frac{3\ell, 1(x-y)}{\tau |v_1|}} e^{-Cv_1^2} dv_1 dy \\ \equiv I_1 + I_2 + I_3. \end{cases}$$

I_1 , I_3 are small

• I_1 and I_3 are small:

$$I_1,I_3=\mathcal{O}(\tau^{-1}).$$

• Estimate of l_2 : We first integrate on x:

$$\textit{I}_2 \leq \frac{1}{\textit{a}_{\ell,1}} \int_{\frac{1}{\tau} \leq |\textit{v}_1| \leq \tau} \left(1 - e^{-\frac{\textit{a}_{\ell,1} x}{\tau |\textit{v}_1|}}\right) \, \textit{d}\textit{v}_1$$

and apply the Tyalor expasion to $1-e^{-\frac{a_{\ell,1}}{\tau|v_1|}}$:

$$\begin{split} I_2 &= \frac{1}{a_{\ell,1}} \int_{\frac{1}{\tau} < |v_1| < \tau} \left\{ \left(\frac{a_{\ell,1}}{\tau |v_1|} \right) - \frac{1}{2!} \left(\frac{a_{\ell,1}}{\tau |v_1|} \right)^2 + \frac{1}{3!} \left(\frac{a_{\ell,1}}{\tau |v_1|} \right)^3 + \cdots \right\} dv_1 \\ &= \frac{1}{\tau} \ln \tau^2 + \frac{1}{2!} \frac{a_{\ell,1}}{\tau^2} \frac{\tau^2 - 1}{\tau} + \frac{1}{2 \cdot 3!} \frac{a_{\ell}^2}{\tau^3} \frac{\tau^4 - 1}{\tau^2} + \frac{1}{3 \cdot 4!} \frac{a_{\ell}^3}{\tau^4} \frac{\tau^6 - 1}{\tau^3} \cdots \\ &\leq \mathcal{O}\left(\frac{\ln \tau + 1}{\tau} \right). \end{split}$$

2nd difficulty:
$$\mathcal{T}_{\nu}=0$$
, or $(\det\mathcal{T}_{\nu})=0$

We show that this never happens under our assumptions:

Lemma

(1) Let $-1/2 \le \nu < 1$. Assume $f^n \in \Omega$. Then, for sufficiently large τ , we have $\kappa^\top \left\{ \mathcal{T}_{\nu}^{n+1} \right\} \kappa \ge C.$

for some C > 0 indepdent of n.

ullet We divide the proof into -1/2 <
u < 1 and u = -1/2 (3rd difficulty) .

< ロ > ← □

The Proof for
$$-1/2 < \nu < 1$$

• In this case, \mathcal{T}_{ν} and T are equivalent:

Lemma

Let $-1/2 \leq \nu < 1$. Then we have

$$\min\{1-\textcolor{red}{\nu},1+2\textcolor{red}{\nu}\}\textit{TId} \leq \mathcal{T}_{\textcolor{red}{\nu}} \leq \max\{1-\textcolor{red}{\nu},1+2\textcolor{red}{\nu}\}\textit{TId},$$

• Therefore, it is enough to estimate *T*.

Estimate of T

Therefore, it is enough to estimate T:

$$3\{\rho^{n+1}\}^{2} T^{n+1} = \left(\int_{\mathbb{R}^{3}} f^{n+1} dv \right) \left(\int_{\mathbb{R}^{3}} f^{n+1} |v|^{2} dv \right) - \left| \int_{\mathbb{R}^{3}} f^{n+1} v dv \right|^{2}$$

$$\geq \left(\int_{\mathbb{R}^{3}} f^{n+1} |v_{1}| dv \right)^{2} - \left(\int_{\mathbb{R}^{3}} f^{n+1} v_{1} dv \right)^{2} \quad (\equiv I)$$

$$- \sum_{(i,j)\neq(1,1)} \left| \int_{\mathbb{R}^{3}} f^{n+1} v_{i} dv \right| \left| \int_{\mathbb{R}^{3}} f^{n+1} v_{j} dv \right| \quad (\equiv R)$$

$$\equiv I - R.$$

I bounded below, and R small

I is bounded below:

$$I \geq 4\delta_1^2 \gamma_{\ell,1}$$

where

$$\gamma_{\ell,1} = \left(\int_{v_1 > 0} e^{-\frac{a_{u,1}}{\tau |v_1|}} f_L |v_1| dv \right) \left(\int_{v_1 < 0} e^{-\frac{a_{u,1}}{\tau |v_1|}} f_R |v_1| dv \right).$$

• by the smallness of vertical flow, R is small:

$$R \leq C_{\ell,u} \left(\frac{\ln \tau + 1}{\tau} \right).$$

4□ > 4□ > 4 = > 4 = > = 90

Estimate of I and R

Therefore, for sufficiently large τ , we can get

$$T^{n+1} \ge \frac{1}{3\{\rho^{n+1}\}^2} \left\{ 4\delta_1^2 \gamma_{\ell,1} - C_{\ell,u} \left(\frac{\ln \tau + 1}{\tau} \right) \right\} \ge C_1 \tag{3.3}$$

where

Critical Case: $\nu = -1/2$ (3rd difficulty)

• In the critical case, we don't have such equivalence type estimate.

$$\mathcal{T}_{-1/2} \sim T \, Id.$$

ullet Therefore, we have to estimate $\mathcal{T}_{-1/2}$ directly.

Computation of $\mathcal{T}_{-1/2}$

For this, we observe that

$$\rho^{n+1} \left(\kappa^{\top} \left\{ \mathcal{T}_{-1/2}^{n+1} \right\} \kappa \right)
= \int_{\mathbb{R}^3} f^{n+1} \left\{ |v|^2 - (v \cdot \kappa)^2 \right\} dv - \left\{ \rho^{n+1} |U^{n+1}|^2 - \rho^{n+1} (U^{n+1} \cdot \kappa)^2 \right\}
\equiv I - II,$$

for $|\kappa|=1$.

- 1: Total energy minus directional total energy.
- II: Kinetic energy minus directional kinetic energy.
- We will show that I is bounded below and II is small.

Lower bound of I

• which can be bounded below:

$$I = \int_{\mathbb{R}^3} f^{n+1} \left\{ |v|^2 - \left(v \cdot \kappa\right)^2 dv \right\} \ge \delta_1 a_{-1/2,1}.$$

where

$$a_{-1/2,1} = \inf_{|\kappa|=1} \int_{\mathbb{R}^3} e^{-\frac{2}{|v_1|} \|f_{LR}\|_{L^1_{\gamma,\langle v\rangle}} \|M_w\|_{L^1_{\gamma,\langle v\rangle}}} f_{LR} \left\{ |v|^2 - (v \cdot \kappa)^2 \right\} dv.$$

Seok-Bae Yun (Department of Mathematics Sungkyu Ellipsoidal BGK model with the correct Prandtl numbe

Control of II

• We first need some control on bulk velocity:

Lemma

Let $f^n \in \Omega_{\nu}$.

(1) For i = 1, we have

$$\Big| \int_{\mathbb{R}^3} f^{n+1} v_1 dv \Big| \leq \left| \int_{v_1 > 0} f_L |v_1| dv - \int_{v_1 < 0} f_R |v_1| dv \right| + O(\delta_2, 1/\tau).$$

(2) For i = 2, 3, we have

$$\Big|\int_{\mathbb{R}^3} f^{n+1} v_i dv\Big| \leq C_{\ell,u} \left(\frac{\ln \tau + 1}{\tau}\right).$$

- ullet Slab flow: $U_1\sim$: Depends on the discrepance of the boundary flux
- Vertical flow: U_2, U_3 : Small

Seok-Bae Yun (Department of Mathematics Sungkyu Ellipsoidal BGK model with the correct Prandtl numbe

Control of II

The discrepance of the boundary flux, together with the no vertical flows assumptions control II:

$$II \approx \left| \int_{\mathbb{R}^3} f^{n+1} v_1 dv \right|^2 + \sum_{i=2,3}^3 \left| \int_{\mathbb{R}^3} f^{n+1} v_i dv \right|^2$$

$$\leq C \left| \int_{v_1 > 0} f_L |v_1| dv - \int_{v_1 < 0} f_R |v_1| dv \right|^2 + O(\delta_2, \tau^{-1}).$$

Seok-Bae Yun (Department of Mathematics Sungkyu/Ellipsoidal BGK model with the correct Prandtl numbe

Therefore,

$$\kappa^{\top} \left\{ \mathcal{T}_{-1/2}^{n+1} \right\} \kappa \geq \delta_1 a_{-1/2} - \left| \int_{v_1 > 0} f_L |v_1| dv - \int_{v_1 < 0} f_R |v_1| dv \right|^2 + O(\delta_2, \tau^{-1}).$$

Seok-Bae Yun (Department of Mathematics Sungkyu Ellipsoidal BGK model with the correct Prandtl numbe

Lip Continuity of \mathcal{M}_{ν}

Lemma

Let f, g be elements of Ω_i . Then \mathcal{M}_{ν} satisfies

$$|\mathcal{M}_{\nu}(f) - \mathcal{M}_{\nu}(g)| \leq C_{\ell,u} \sup_{x} \|f - g\|_{L^{1}_{2}} e^{-C_{\ell,u}|v|^{2}}.$$

We expand $\mathcal{M}_{
u}(f) - \mathcal{M}_{
u}(g)$ as

$$\mathcal{M}_{\nu}(f) - \mathcal{M}_{\nu}(g) = (\rho_{f} - \rho_{g}) \int_{0}^{1} \frac{\partial \mathcal{M}_{\nu}(\theta)}{\partial \rho} d\theta + (U_{f} - U_{g}) \int_{0}^{1} \frac{\partial \mathcal{M}_{\nu}(\theta)}{\partial U} d\theta + (\mathcal{T}_{f} - \mathcal{T}_{g}) \int_{0}^{1} \frac{\partial \mathcal{M}_{\nu}(\theta)}{\partial \mathcal{T}_{\nu}} d\theta.$$
(3.4)

Roughly,

$$|\mathcal{M}_{
u}(f) - \mathcal{M}_{
u}(g)| \leq C \left(\frac{1}{
ho} + \frac{1}{T^{5/2}}\right) \|f - g\|$$

Contraction

Lemma

Suppose $f^{n+1}, f^n \in \Omega$. Then, under the assumption of Theorem 2.2, we have

$$\sup_{x} \|f^{n+1} - f^{n}\|_{L_{2}^{1}} + \|f^{n+1} - f^{n}\|_{L_{\gamma, |\nu_{1}|}^{1}} + \|f^{n+1} - f^{n}\|_{L_{\gamma, |\nu_{1}|}^{1}} \\
\leq K(\delta_{1}, \tau, f_{LR}) \sup_{x} \|f_{n} - f_{n-1}\|_{L_{2}^{1}} + \delta_{2}C\|f^{n} - f^{n-1}\|_{L_{\gamma, |\nu_{1}|}^{1}} + \delta_{3}C\|f^{n} - f^{n-1}\|_{L_{\gamma, |\nu_{1}|}^{1}} \\
\leq K(\delta_{1}, \tau, f_{LR}) \sup_{x} \|f_{n} - f_{n-1}\|_{L_{2}^{1}} + \delta_{2}C\|f^{n} - f^{n-1}\|_{L_{\gamma, |\nu_{1}|}^{1}} + \delta_{3}C\|f^{n} - f^{n}\|_{L_{\gamma, |\nu_{1}|}^{1}} + \delta_{3}C\|f^{n} - f^{n}\|_{L_{\gamma, |\nu_{1}|}^{1}} + \delta_{3}C\|f^{n} - f^{n}\|$$

where $K(\delta_1, \tau, f_{LR})$ denotes

$$K(\delta_1, \tau, f_{LR}) = \frac{\delta_1}{\tau} \left(\left\| f_{LR} \right\|_{L^1_{\gamma, \langle \nu \rangle}} + \left\| f_{LR} | v_1 \right|^{-1} \right\|_{L^1_{\gamma, \langle \nu \rangle}} \right) + \frac{\ln t + 1}{\tau \delta_1^3}.$$

Seok-Bae Yun (Department of Mathematics Sungkyu Ellipsoidal BGK model with the correct Prandtl numbe

Part II: Entropy Production Estimates

Relative entropy

We define

$$H(f)=\int f\ln f\ dxdv$$
 : Entropy
$$H(f|g)=H(f)-H(g)$$
 : Relative entropy
$$D_{\nu}(f)=\int \left(\mathcal{M}_{\nu}(f)-f\right)\ln f\ dxdv$$
 : Entropy Production

Multiplying In f on ES-BGK and taking integration, we get

$$\frac{d}{dt}\left\{H(f)-H(\mathcal{M}_0)\right\}=D_{\nu}(f).$$

Seok-Bae Yun (Department of Mathematics SungkyuiEllipsoidal BGK model with the correct Prandtl numbe

Theorem (Kim, Lee, and Y. 2020)

For each $-1/2 \le \nu < 1$, define C_{ν} by

$$C_{\nu} = \sup_{x>0} \frac{3 \ln \left(1+\frac{1}{3}x\right) - \ln \left(1+\frac{1+2\nu}{3}x\right) - 2 \ln \left(1+\frac{1-\nu}{3}x\right)}{3 \ln \left(1+\frac{1}{3}x\right) - \ln \left(1+x\right)}$$

Then, we have

• C_{ν} is non-negative and strictly less than 1:

$$0 \le C_{\nu} \le \frac{1}{3} \nu^2 (5 - 2\nu) < 1, \qquad (-1/2 \le \nu < 1)$$

• The following entropy-entropy production estimates holds:

$$D_{\nu}(f) \leq -(1-C_{\nu})\{H(f)-H(\mathcal{M}_{0})\}$$

Previous results

Non-critical case [Y. 2017]

$$D_{\nu}(f) \leq -\min\{1+2\frac{\nu}{\nu},1-\frac{\nu}{\nu}\}\{H(f)-H(\mathcal{M}_0)\}.$$

Linearized version: [Y. 2018]

$$\langle L_{\boldsymbol{\nu}}f,f\rangle \leq -\left(1-|\boldsymbol{\nu}|\right)\|(I-P)f\|^2.$$

Boltzmann equation: [Villani 2004]

$$D_{BE}(f) \leq -C_{\epsilon}H(f|\mathcal{M}_0)^{1+\epsilon}.$$

Why?

• From ES-BGK model:

$$\frac{d}{dt}\left\{H(f)-H(\mathcal{M}_0)\right\}=D_{\nu}(f)\leq -C\left\{H(f)-H(\mathcal{M}_0)\right\}.$$

Gronwall inequality:

$$\left\{H(f)-H(\mathcal{M}_{\mathbf{0}})\right\} \leq e^{-Ct} \left\{H(f)-H(\mathcal{M}_{\mathbf{0}})\right\}.$$

Kullback inequality:

$$\frac{1}{2}\|f - \mathcal{M}_{\mathbf{0}}\|_{L^{1}}^{2} \leq H(f) - H(\mathcal{M}_{\mathbf{0}})$$

Asymptotic Behavior (Homogeneous case)

$$||f(t) - \mathcal{M}_0||_{L^1} \le \sqrt{2}e^{-\frac{1}{2}(1-C_{\nu})t}\sqrt{H(f)-H(\mathcal{M}_0)}.$$

Seok-Bae Yun (Department of Mathematics SungkyuiEllipsoidal BGK model with the correct Prandtl numbe

Familiar Analny

• Heat equation on Torus with $\int u = 0$.

$$\partial_t u - \triangle_x u = 0.$$

Energy estimate:

$$\partial_t \|u\|_{L^2}^2 = -\|\nabla_x u\|_{L^2}^2.$$

Poincare inequality

$$\partial_t \|u\|_{L^2}^2 \leq -C \|u\|_{L^2}^2.$$

Asymptotic behavior

$$\|u(t)\|_{L^2}^2 \leq e^{-Ct} \|u_0\|_{L^2}^2.$$

Seok-Bae Yun (Department of Mathematics SungkyuiEllipsoidal BGK model with the correct Prandtl numbe

Key: Difference between various Maxwellians

Lemma

For
$$-1/2 \le \nu < 1$$
, we have

$$H(\mathcal{M}_{\nu}) - H(\mathcal{M}_{0}) \leq C_{\nu} \{H(\mathcal{M}_{1}) - H(\mathcal{M}_{\nu})\}.$$

Proof of the Main Result

• By convexity of H(f),

$$D_{\nu}(f) = \int H'(f)(\mathcal{M}_{\nu} - f) \leq H(\mathcal{M}_{\nu}) - H(f).$$

Apply the lemma to r.h.s:

$$\begin{split} H\big(\mathcal{M}_{\nu}\big) - H(f) &= -\{H(f) - H(\mathcal{M}_{0})\} + \underbrace{\{H(\mathcal{M}_{\nu}) - H(\mathcal{M}_{0}))\}}_{\leq -\{H(f) - H(\mathcal{M}_{0})\} + \underbrace{C_{\nu}\{H(\mathcal{M}_{1}) - H(\mathcal{M}_{0})\}}_{\leq -\{H(f) - H(\mathcal{M}_{0})\} + C_{\nu}\{H(f) - H(\mathcal{M}_{0})\}}_{\leq -(1 - C_{\nu})\{H(f) - H(\mathcal{M}_{0})\}, \end{split}$$

where we used:

$$H(\mathcal{M}_0) \leq H(\mathcal{M}_1) \leq H(f).$$

Proof of Key Lemma

We show that

$$\frac{\textit{H}(\mathcal{M}_{\nu})-\textit{H}(\mathcal{M}_{0})}{\textit{H}(\mathcal{M}_{1})-\textit{H}(\mathcal{M}_{\nu})}.$$

is uniformly bounded in $-1/2 \le \nu < 1$.

Proof of Key Lemma

• By an explicit computation using conservation laws and diagonalization,

$$H(\mathcal{M}_0) - H(\mathcal{M}_{\nu}) = \frac{1}{2}\rho \ln \frac{\prod_{i=1}^3 \{(1-\frac{\nu}{\nu})\left(\frac{\theta_1+\theta_2+\theta_3}{3}\right) + \nu\theta_i\}}{\left(\frac{\theta_1+\theta_2+\theta_3}{3}\right)^3}.$$

and

$$H(\mathcal{M}_{\mathbf{0}}) - H(\mathcal{M}_{\mathbf{1}}) = \frac{1}{2}\rho \ln \frac{\theta_1\theta_2\theta_3}{\left(\frac{\theta_1+\theta_2+\theta_3}{3}\right)^3}.$$

where θ_i (i = 1, 2, 3) denotes the eigenfunctions of Θ .

Reduction

Then, the key Lemma turns into

$$\underbrace{\frac{3\ln\left(\frac{\theta_1+\theta_2+\theta_3}{3}\right)-\ln\left[\prod_{i=1}^3\left\{\left(1-\frac{\nu}{\nu}\right)\left(\frac{\theta_1+\theta_2+\theta_3}{3}\right)+\frac{\nu}{\theta_i}\right\}\right]}{3\ln\left(\frac{\theta_1+\theta_2+\theta_3}{3}\right)-\ln\theta_1\theta_2\theta_3}}_{\equiv F(\theta_1,\theta_2,\theta_3)} \leq C_{\nu}$$

Therefore, optimal C_{ν} is

$$C_{m{
u}} = \sup_{egin{array}{c} heta_1, heta_2, heta_3 > 0 \ \exists \ i,j: \ heta_i
eq heta_j} F(heta_1, heta_2, heta_3). \end{array}$$

Key observation

• Enough to consider only two variables.

$$\sup_{\substack{\theta_1,\theta_2,\theta_3>0\\ \exists\ i,j:\ \theta_i\neq\theta_j}} F(\theta_1,\theta_2,\theta_3) = \sup_{\theta_1>\theta_2=\theta_3} F(\theta_1,\theta_2,\theta_3)$$

related to the elementary question:

Fix
$$X = x + y + z$$
, $P = xyz$, what is the range of $xy + yz + zx$?

Ans:
$$\frac{1}{4}S^2(4\alpha - 3\alpha^2) \le xy + yz + zx \le \frac{1}{4}S^2(4\beta - 3\beta^2),$$

where α and β are solutions of $x^2 - x^3 = S/(27P^3)$.

Seok-Bae Yun (Department of Mathematics Sungkyu Ellipsoidal BGK model with the correct Prandtl numbe

This, together with the scalability

$$F(\theta_1, \theta_2, \theta_3) = F(k\theta_1, k\theta_2, k\theta_3)$$

enable us to reduce the problem further to

$$\begin{split} \sup_{\substack{\theta_1,\theta_2,\theta_3>0\\\exists i,j:\ \theta_i\neq\theta_j}} &F(\theta_1,\theta_2,\theta_3)\\ &=\sup_{x>0} \frac{3\ln\left(1+\frac{1}{3}x\right)-\ln\left(1+\frac{1+2\nu}{3}x\right)-2\ln\left(1+\frac{1-\nu}{3}x\right)}{3\ln\left(1+\frac{1}{3}x\right)-\ln\left(1+x\right)}\\ &\equiv C_{\nu}. \end{split}$$

Seok-Bae Yun (Department of Mathematics Sungkyu Ellipsoidal BGK model with the correct Prandtl numbe

 C_{ν}

$$C_0 = 0$$
, and $C_{-1/2} = 1/2$

and

$$0 \le C_{\nu} \le \frac{1}{3}\nu^2(5-2\nu) < 1$$

on ${\color{red} \nu} \in [-1/2,\,1)$

Seok-Bae Yun (Department of Mathematics Sungkyu Ellipsoidal BGK model with the correct Prandtl numbe

Thank You Very Much!

Thank you for your attention!