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» Quantum synchronization: synchronization in quantum systems
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[Tang et al., PRL '13] [Lipson et al., PRL '15]

» Application to quantum information and quantum computing

[Google image] [Google image]
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Similarity between classical and quantum synchronizations

» Quantum synchronization : synchronization in quantum systems.

o D. Witthaut, S. Wimberger, R. Burioni and M. Timme: Classical
synchronization indicates persistent entanglement in isolated quantum
systems, Nature Communications. (2017).

» Find a link between collective classical and quantum dynamics.

» [solated quantum systems can synchronize in a very similar way to
classical systems.
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Schrodinger-Lohe model

» The Schrédinger-Lohe (S-L) model [Lohe, J. Phys. A (2010)]:

0y = 580+ Vit + g (wiﬁfﬁ";u@) t>0,

wj(oax) - ’(Z)J (X)7 (t7X) € Rd X R-‘m ||wJ")HL2(]Rd) =1, J: 1 7N-

Here, V; represents an external one-body potential acted on j-th

node, and x measures a coupling strength between oscillators. In
addition, the inner product is defined as

(f,g):= f(x)g(x)dx.

Rd

» The S-L model enjoys L2-conservation:

d
sl =0, £>0.

Thus, one has

i ()l erey =1, t>0.
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Relation with well-known models

» (A decoupled system): if kK =0, the S-L system reduces to the
juxtaposition of N-independent linear Schrodinger equations:

. 1 ]
10y = s DY + Vi, j=1,-- N
> (A space homogeneous system): if we write
Vi(x) =v; and 1(x,t) = ¢j(t) = e %),

so that the S-L system does not depend on the space variable
x € RY, then 0;(t) satisfies the Kuramoto model:

N
. K .
9j =v+ N kil sin (0;( - 9j).

» We would say that the S-L model is a generalized Kuramoto model.
> Can we rigorously derive the Kuramoto model (ODE) from the
Schrédinger-Lohe model (PDE)? (Ongoing project)
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Global existence of a unique solution

» There have been some results on global existence of a unique
solution, for instance, [Huh-Ha '17], [Antonelli-Marcati '17],
[Bao-Ha-K.-Tang '19], etc.

Theorem
Suppose that initial data and external potentials satisfy

PP € 2(RY), V; € LP(RY)+L°(RY), p>max{l,d/2}, j=1,---,N.

Then, the S-L system admits a global unique solution
¥j € C(Ry; L2(R?)). In addition, 1) € H*(R?), then the corresponding
global unique solution 1; € C(Ry; HY(R?)).
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Sketch of the proof

» Main ingredient
® Strichartz estimate (for local existence)
® |2 conservation (for extending the local solution to global one)

» Main difficulty

® Lack of the energy conservation

For the decoupled system (x = 0), the (total) energy is conserved:

N
d o 1 2 2
eVl =0, t>0, &y _J;/R <§|ij| + Vil )dx.
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» However for x # 0, the (total) energy would not be conserved:

N
d
EET[\U] = —ﬁzl riE;[V] + k(extra terms), t >0,
=

~ 1
7 2Rty v () &= [ GV Vil ) o

> [s the system dissipative? Is the total energy uniformly bounded?
(Ongoing project)
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(Local existence): for H; = —3A + V;, define U;(t) := e~ as the
Schrodinger group generated by H;. Then, Duhamel’s formula yields

Wi(t) = Ui ()]

i g [ (b, i)
+2NkZ:/O Ui(t —s) <wk @’wj)@z;j)ds, t e [0, T).

=7

(1)

Denote the right-hand side of (1) as S[¢);](t). For the term Z, we use
the Strichartz estimate to find

Ut ) (- 00 Y
| we-a( )

(W), %)
Since the second term in (1) can be also treated by the literature (e.g.,

(7, Yk)

Y

<C HW -
)

L3 (R;L4(RY L2(R)

<2CT.

Cazenave '03), we choose T sufficiently small so that the map S
becomes a strict contraction in X'+ and then standard fixed point theory

yields the local solution.
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(Global existence): it follows from the a priori energy estimate that

N
d
E(‘:T[W] = —/@Z; 1;iEj[W] + k(extra terms)
=

gm(1+’;/> Erv.

Thus, the energy does not blow up in any finite time interval. This
completes the proof.
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Definition of synchronization for the S-L model

Definition (Lohe '10, Choi-Ha '14)
Let 1); = 9;(t, x) be a global smooth solution to the S-L model.

1. (Complete synchronization): all relative distances between
wavefunctions converge to zero:

Jim [li(8) ()] = 0.

2. (Locked states): all relative distances between wavefunctions tend to
positive definite values:

Jim 16:(2) = 45(0)| =

of-[:=]" ||L2(1Rd)-
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Alternative definitions for complete synchronization

» (Huh-Ha '17): We define the two-point correlation function

hkg(t) = <'¢k7 ¢€>(t)

Then, it follows from the mass conservation that

H’(/}k — weH%Z(Rd) = 2Re(1 — hkg) and

t|_|)r20 H(/Jk — ngp(Rd) =0<«= t|—|>r2c ‘1 - hkg(t)| =0.

> (Antonelli-Marcati '17): We define the centroid of wave functions
and the order parameter as its norm:

2

Then, we observe

N
1
’ 2N2 Z Hwk - wZH%Z(Rd) =1- p2,
L2(R) k=1

p(t) =

lim D(V) =0 <= lim p(t) =1.

t—0o0 t—o0
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Emergent dynamics for identical
potentials

-based on [Huh-Ha-K. '18]



Identical potentials

» Consider the case of V; =V for j =1,--- | N.

> Since the (Schrodinger) operator t + e {(=A+V)t denoted as
S = 5(t) is unitary, it suffices to consider the following simplified
model: for x € R¥,

dt 2/\/2 — (W, Yi)), t>0,
¥i(0,x) = ¥P(x),

where the space variable x can be regarded as a parameter. If we

(2)

define the solution operator L = L(t) for (2), then one has
W(t) = L(E)V°, o equivalently, v;(t) = (L(t)\llo)..
J

Consequently, the solution can be represented as the composition of
S(t) and L(t):
W(t,x) = S(t) o L(t)WO.
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Previous results

Theorem (Choi-Ha '14)

Suppose that initial data and external potentials satisfy

1
_ 0_ 0
k>0, V=V, 19,?%/\/”1/}’ RS >

and let {1;} be a global solution to the S-L model. Then, the system
achieves complete synchronization with an exponential convergence rate:

. . ) < —Kt
Jmax [i(t) ~Uy(t)] S e >0,

(Sketch of the proof) Define the maximal diameter D(V(t)):

D(W(t)) = max |4i(t) — (e,

1<ij<N
and derive a differential inequality for D(V).
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Dynamics of the order parameter

» Our goal is to extend the initial data leading to complete
synchronization.

» Define the centroid and its norm:

Nzwk, pl1) = GO

» The order parameter p satisfies

dp? 1Y
— = 2 R )] >o.
= <p D Rel(c ) ) 20
» Then, p is non-decreasing and bounded (p(t) < 1). Hence, there
exists poo € [0, 1] such that
tl;n;o P(t) = poc-

> After careful analysis of the possible values p.,, we can classify all

possible asymptotic states.
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Classification of asymptotic states

Theorem (Huh-Ha-K. '18)

Suppose that initial data and external potentials satisfy
T
k>0, V=V, (0#y® fori#j and po:= HN;@’H >0,
and let {1;} be a global smooth solution to the S-L system. Then, one

of the following assertion holds:

1. Complete synchronization: the order parameter p = p(t) tends to 1:

tll@o o) =1
2. Bi-polar synchronization: there exists a single index ¢y € {1,--- , N}

such that

(1hey, i) = =1 for i # o.

Jim (i, 4y) =1 fori,j# o and  lim |
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Bi-polar state is unstable

(Idea) From the previous dichotomy, N — 1 oscillators aggregate.
Without loss of generality, we would assume that

Yo =13 =" =1Yp.
Then, S-L system reduces to the system of two oscillators (1, 12):
ik

2N(1/12 — (b1, 102)¢1),
ik

i0php = —%sz + Vihp + 2N(¢1 — (2, Y1)1)2),

and the two-point correlation function h := (11, 1,) satisfies:
dh &k
dt N
which can be explicitly solved as

. 1
101 = —§A¢1 + Vo +

(1—h?), t>0, h(0)=ho,

0 — (1— HO — -1, h=-1
R ,

(1—hO)+ (14 m)e™ |1, A0+ —1.
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Emergent dynamics for non-identical
potentials

-based on [Ha-Hwang-K. In preparation]



Non-identical potentials

» Our main ingredient is two-point correlations hjj = (¥;, ¥;):
- H N
hij:i/Rd(Vj(X) Vi(x))tiydx + 7\/; hix 4 hig) (1 = hy).

» For a simple case, we consider the case of V;(x) — Vj(x) : constant
realized when

Vi(x) = V(x) + w;, wj: constant.

In this case, the dynamics above becomes

N
. . K
hy = i(w; —wi)hy + =5 ;(h;k + hig)(1 = hy),

which is a closed system with respect to {hj;}.

> Recall the relation |[1); — ;|| — dj <= Reh; — 1 — ?”
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Two oscillators

> Consider the case of N = 2 as the simplest one in [Huh-Ha '17].
» |If we denote h := hyp and w := w1 — wy, then h satisfies
- K

h= —iwh+§(1—h2), t>0, h(0)= ho. (3)

» Then depending on the relation between x and w, solutions are
classified into three types.
» Case A (k > w): In this case, (3) admits two equilibria: hs, — and

hoo,+

2 2
o= G\ () he= i1 (2
K K K K

The following explicit formula for h is obtained by straightforward
calculation:

ho = hoo,) + hoo,— (o — hoo, eV~

ho — hoo,— — (ho — heo 4 )e= VP =07t '

h(t) _ hoo,+(
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» Then for any initial datum hg # ho,—, one has

tILngc h(t) = heo +-
» Case B (k = w): In this case, two equilibria hs, — and hs 4 collapse

to —i. Thus,
ho —i(ho + i)kt

>0
1+ (ho + i)kt ’ '

h(t) =

which yields
lim h(t) = hoo.

t—o0

» Case C (kK < w): In this case, h = h(t) becomes a periodic orbit
with period

21
2

Var—r2

ho cos(Vw? — K2t) — \/%(1% — 1)sin(vw? — k?t)
t — we—K
cos(vVw? — Kk2t) + \/(%(ho +19)sin(vw? — k2t)
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» Thus for N = 2, the system undergoes a bifurcation at x = w from
the periodic orbit to the convergence toward equilibrium.

» In particular, slow relaxation is obtained for a critical case k = w.

» Our goal is to extend the result for N = 2 to the one for N > 2.
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Many oscillators

» Due to the dissimilarity of nonidentical potentials, one may not
expect emergence of complete synchronization where all relative
distances converge to zero.

> However, we can make relative distances small as we wish by
controlling the coupling strength «.

» Define the maximal diameter for non-identical potentials {V;}:

DY) = max, (Vi = V).
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Lemma
Suppose that initial data and external potentials satisfy
K+ /K2 — 4xD(V)

k> 4D(V) >0, D(W)? < - :

and let {1;} be a global solution to the S-L model. Then, there exists a
finite entrance time T, > 0 such that

2D(V) B 1
D(V(t)) < T eE—4rD0)) =0 <K> , t> T,
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For the convergence of hj; towards some definite values, we adopt
the strategy developed in [Ha-Ryoo, '16].

Let {¢;} and {);} be any two global solutions and denote

hy(t) = (i, ) (2), hy(e) = (i) ().

Define the diameter measuring the dissimilarity of two correlation
functions:

d(H, H)(t) = | max |hy(t) — hy(t)], t>0.

As a first step, we show that the diameter d(#,H) converges to
zero.
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> As assumed for N = 2, we need to impose the condition on {V;}:
Vi(x) = V(x) +wj, wjeR,

so that Vj is a (small) perturbation of a common potential V.
Denote
D(w) == max |wj— wjl|.
(@)= max i —

Lemma

Let {1;} and {1);} be any two global solutions. Then, d(H,H) satisfies

d

(. H) < —k(1 = DWP)d(H, ), t>0.

» Then if we find a sufficient condition leading to D(W(t)) < 1, then
zero convergence of d('H,'}:l) is obtained together with an
exponential rate.
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» Once zero convergence of d(H,H) is derived, since our system is
autonomous, we can choose hj; as for any T >0,

hij(t) = hy(t + T).

> By discretizing the time t € R} as n € Z, and setting
T =m € Z, we deduce that {hjj(n)},cz. becomes a Cauchy
sequence in the complete space B;(0) :={z € C:|z| < 1}.

» Hence for each i/, j, there exists a complex number h® such that

lim hy(£) = b,
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Theorem

Suppose that initial data and external potentials satisfy

K+ /K% — 4k D(w)

)

k> 4D(w) >0, D(WV)? < -

and let {1;} be a global solution to the S-L model. Then, one has

lim d(H,H) =0.

t—o00

In addition, there exists a complex number hfj’.o with |th>°| < 1 such that

lim hy(t) = hie.

t—o0
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Numerical simulations

-based on [Bao-Ha-K.-Tang '19]



Time splitting method to discretize the S-L system

Choose At > 0 as the time step size and denote time steps t, := nA for
n>0. From t = t, to t = t,y1, the S-L system can be solved in splitting
steps.

» One solves first

1
iati/Jj = _Eija (4)

» and then solves

N
i = Vit gy > (e ) @

(4) will be discretized in space by the Fourier pseudospectral method and
integrated in time analytically in the phase space, and (5) with x = 0 can
be explicitly integrated in time, since |1k (-, t)| is conserved.
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Main difficulty

> However, due to the presence of the communication term involving
k # 0, (5) cannot be explicitly (or analytically) integrated.

» Thus, the Crank-Nicolson method is adopted to discretize (5) and
our method is called the Time Splitting Crank-Nicolson Fourier
Pseudospectral (TSCN-FP) method.

» In addition, TSCN-FP is of spectral accuracy in space and of
second-order accuracy in time.
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Numerical simulation

Contour plots of |41 (¢, x)|? at different times t for N = 6 with different initial data
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Summary and Future projects



» The Schrodinger-Lohe system would be classified into two types
depending on the dissimilarity of external potentials:

(i) Identical (ii) Non-identical.

» For the identical system, complete synchronization occurs for generic
initial data.

» On the other hand for the non-identical system, we may not expect
the emergence of complete synchronization.

» Instead, one can find a sufficient framework with a large coupling
regime under which a solution to the system tends to the locked
state.
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Future projects

» Theoretical aspect: find a (suitable) structure of the convergent

values {h5°} for the non-identical system.

» Numerical aspect: propose an improved asymptotic preserving

numerical scheme:

‘—Hx/»lu ‘ ‘—uw]lﬁ
= = -llv=ll - = - ll=]?
1
0.99
o a 3 8 o 5 v 10
200 [—zm]
W 100
—_—(
@) °
o 4 t 8 o 5 ¢ 10
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Thanks for your attention!





