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Description of a system of particles

Different scales to describe a system composed by a large
number of indistinguishable components such as gases:

Microscopic
Individual behavior of each component?
Newton’s equations

Mesoscopic
Evolution of the density of particles?
Boltzmann, Landau, Fokker-Planck... equations

Macroscopic
Evolution of observable quantities?
Euler, Navier-Stokes... equations




Kinetic theory

- System described by the evolution of the density of particles
f=f(t,x,v) =0,t€ R* the time, x € Q = 'l]'d or Rd the
position and v € R the velocity.

f(t, x,v)dxdv = quantity of particules in the volume
element dx dv centered in (x,v) € Q X RY

— No external force or interaction: Free transport equation

Otf +v-Vif =0.

— Ifinteraction between particles or with a background medium,

equation of kind

a[f+ v-VXf = G(f)
;Y_/
collision term
- Maxwell (1867), Boltzmann (1872): Boltzmann collision oper-
ator for neutral particles (gaz).
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The Boltzmann equation

Boltzmann equation

af +v-%f =Q(f.f) (B)

o
(vivs) — (v, w)
- — —
before collision after collision
- Conservation of momentum and energy:

Vv =V o+ vy, |v|2+ |v,,<|2 = |v'|2+ |v:,< 2,

~ Parametrization of (v, vi) by an element ¢ € s,

vt = vy vt e v = vy d—1
=— > O, Vi = 3 > , O€ES
- Boltzmann collision operator for hard spheres:
I I
Qe = [ vl (F) g~ f(n)gl))dodu.
RIxS§d-1 S — \ . \ " J
collision kernel ~ “appearing”  “disappearing”
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Basic properties
For ¢ = ¢(v) a test function,

| av.neav-

1 I I
2 fRdedxsd_1 lv—val f fs (¢ + s — - ¢*)dadv* dv.

— Conservation of mass, momentum and energy:
[ Q.0 (1) dv =0
R

— Entropy inequality (H-Theorem):
D)1=~ [, QN logf(v)dv o

D(f) = 0 & f = p = Maxwellian (Gaussian in v) (s.t. Q(p, p) = 0).

5/22



Rescaling and linearization

- Rescaling in time and space: (, x, v) — <l’/62, x/e€, v) where
is the Knudsen number.
- We fix the following centered and normalized Maxwellian:

M(v) := (2) "2 V712,

— Linearization around M of order &: f© = M + ev/Mg".

Rescaled Boltzmann equation

£ 1 5] 1 £ 1 £ E
g +gv-ag =l +glg.g)  (Be)

with
(. 2) 1= = (QU/MA, VRiR) + QUM VATF))

and

Lf := (VM. f).
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Formal convergence
- xszand£—>O:Lg=0.
- We deduce that
g € Ker L = Span {\/M v1m ..... vdm, |v|2m}
1
= gx,v) = VM) (pg(x) + ug(x) - v+ 5 (IvI* = d)8e(x))
with
pg(x) := JRd gx, v)yM(v)dv, ug(x):= JRd vg(x, v)\M(v)dv,

6e(x) = J'Rd(|v|2 — d)g(x, V)Y M(v) dv.

- Local conservation laws (equations satisfied by pge, uge and
0g¢) and then £ — 0.

- For example, the first local conservation law gives:
1
atpg5+gvx‘llg5 =0""~’VX'Ug=O.
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Fluid system - |

Incompressible Navier-Stokes-Fourier system

Jru+u-Vu—viAu=-Vp
0;0+u-VO—-v,AB=0
V-.-u=0
Vip+6)=0

(NSF)

with (p, u, 8, p) = (mass, velocity, temperature, pressure) and v;
the viscosity coefficients fully determined by L.
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Fluid system - Il

Theorem
For (pin, tin, 6in) € H2~'(Q), 3! maximal time T™ > 0,

30 (p,u,0) € ([0, 71, H2 (@) n ([0, 1, H(0))

solution to (NSF) for all times T < T*. It satisfies
1(Vp, Vu, VOl , 2

la

|
=

*

1Co. Ol 10 77,1081y [0.71HE(0))

< (11 Cpin, tin, G119 )
Leray, Fujita-Kato, Chemin, Chemin-Lerner, Bahouri-Chemin-

Danchin etc...
Globally well-posed in 2D, and in 3D for small data for example.
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Well prepared data (WP)

For f = f(x, v), we define
pf(x) = fRdf(x, vIVM(v)dv, uf(x) = JRd vi(x, v)yM(v)dv,

0 (x) = g [ (V17 = e )M dv.

(WPq): f € Ker Li.e.
£xv) = MY () + up(x) - v+ 5 (P = d)f(x)).
(WP3): Vx - uf = 0 and pf + 0¢ = 0.
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Main result - |

- Pin, Uin, Bin € Hg(Q), ¢ > d|[2 satisfying (WP;)
+ Pin Uin, Oin € L'(Q) if Q = R?,

+ Pin, Uin, Bin are mean free if Q = Td.

- Consider
(p,u.0) € 1([0, T, H'(@)) n ([0, T, K" ()

the unique solution to (NSF) associated with initial data
(pin, Uin, Bin) on a time interval [0, T].

- Set
gin(x, V) 1= M) (pin(x) + tin(x) - v + 51V = d)61n(x)),

and define on [0, T] X Q x R
gt x,v) 1= /MO (L, x) + u(tx) - v + %(|v|2 - d)0(t,x)).
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Main result - 11

Theorem (WP data in the whole space or the torus)

ey > 05t Ve < g, Alg° € L% ([0, T], X) solution to (B)
with initial data g, and it satisfies

. 3
lim |18 = gl o= g0, 77,%) = 0-

Moreover, if the solution (p, u, 0) to (NSF) is defined on RY,
then gy depends only on the initial data and not on T and there

holds . €
J:'_rf}) g —g||L°°(R+,X) =0.

X := L HY((W¥), k> d/2 + 1 defined by
IFllx := sup ( WG e

veRY
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Known results

- Framework of weak solutions (DiPerna-Lions for Boltzmann
equation and Leray for Navier-Stokes): Bardos-Golse-Levermore
(90s), Lions, Masmoudi, Saint-Raymond etc...

“Obtain a theorem that only requires a priori estimates
given by the physics: Mass, energy and entropy.”

— Framework of strong solutions :
+ De Masi-Esposito-Lebowitz (90°), Bardos-Ukai (971’),
+ Guo (06°), Briant (15°), Briant-Merino-Mouhot (18’) etc...
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Rewriting the problem - Duhamel formula

2

— US(t) semigroup associated with —&™ v - Vx+e L
group

— We rewrite the rescaled Boltzmann equation
1 1 1
0rg" +gv- Vg = 5Llg"+ Mg g")  (Be)
€
with Duhamel formula:

(3 & 1 ! & & &
g(0==U(Ogn+gJ;U(t—gr@,g)@wn.

J

Y

We(t)(g®.g)

— In some sense, U°(t) — U(t) and W*(t) — W(t) so that the
limit g writes

g(t) = U(t)gin + ¥(1)(g 8).
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Rewriting the problem - Fixed point argument
~ Introduction of h° := g — g.
~ h° satisfies:
h(t) = (U°(8) = U(8)gin + (V7 (1) = W(1))(g. &)
Dg(t)=soljrce terms
+ gWC(t)(g,hg)l +\LIJ€(t)(h€,h6)l

LE(t)h*=linear part quadratic part

— Fixed point argument?

E Banach space, £L € Z(E,E) and B € %(Ez, E).
If ||£]] < 1, for any xo € E small enough, the equation
x = xp + Lx + B(x, x)

has a unique solution in the ball B (0, 12_””;”” ) and there exists

a constant Cy > 0 such that ||x|| < Col|xo]|.
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Ellis and Pinsky decomposition - estimates in H,€L|2,

Fourier transform in x of —v -V + L: Lg:= L —iv-&.

Decomposition of the semigroup U'(t):

d+2
Ut =y &pa) + Ut(r,9)
j=1

with Taylor expansion of the eigenvalues A;(<).
- US(t, &) = ok (C_Zt, s{) ~~ decomposition of U®(t).

Decay estimates on U (t):

1, e
SO0 <00
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Estimate on the linear part - contraction?

Depending on the norm of g, there is no reason
for £5(t) to be a contraction!

= Introduction of a “filter”: For some fixed and well-chosen r,
(D) 1= (1) exp - j gl dr). >0
so that
hy(t) = Dy (t) + L5(t)hy + W) (t)(hj, by)

with

t t
VOG5 = ¢ [ U =) e (= [Tl )T (s) ds
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Estimate on the linear part - stability?

- The nonlinear collision operator I induces a loss of weight:
TG 2 e ey < Wfalleooyery 2l oo gy
- Splitting of L = I'(vV/M, -):
Lh=Kh-v(v)h with v(v) :=[ |v — v [M(vy) dvy
RIxs4~"
K:l251% and K:L® ((v>f) - ((v)jH), j=zo0.

— Duhamel formula ~~ the problem boils down to perform es-
. . 4,2
timates in HyL).
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Source terms - |

DI (t) := (US(t) — U(t))gin.

Ellis and Pinsky decomposition gives:
US(Dgin = U(B)gin + V(g + Ulisp(Dgin + U (Dgin
> em L eme . , 2 em
independent of € “nice terms” 0if (WPy) small if (WP,)

ICUS()) = U)ginll i) — 0 if gin is WP.

For ill-prepared data, we introduce g°(t) := (Uiisp(t)+U€ﬂ(t))gin
and write the equation satisfied by RE := gf-g-g.
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Source terms - |l

D3 (1) == (Vo (1) = W(1)(g &)-

Requires estimates on (p, u, 0) and on their derivatives of type

Z?o H,{ (Chemin-Lerner spaces), L%H,{+1 etc... as well as point-

wise decay estimates (Wiegner and Schonbek).

105 ()]l 120 (x)y — 0.

=0
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Thank you for your attention!
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