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Introduction



Physical motivation

Paz (F2)

Physical phenomena induced from the interaction between particle and gauge
field. Fractional quantum Hall effect (Left) High-temperature superconductivity

(Right)
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Gague potentials

e The famous Maxwell equations read as
HE-—PVxB=-1 v.E=L,
€0 o

hB+V XE=0, V-B=0,

e Noticing the divergence-free condition, consider the vector field A
(magnetic potential) such that B =V x A.

e Then, equation for magnetic field becomes
V x (0:A+ E) =0,
which inspire the scalar field Ay (electric potential) such that

E - 781'/4 + VAO



Gauge potentials

e Substituting the gauge potential to the Maxwell equations, we obtain

Be(—8, A+ VAg) — A(VV - A — AA) = —gi,
0
V. (—0:A+VA) =2,
€0

which can be written in as
1 [ 1
M- SBPA) =—— 4V (V- A= S84 ),
c? goc? c?

1 1
(AAO - Qaon) ) (v A- 2atAo) .
@ €0 G



Particle in the electromagnetic fields

e Considering the Lorentz force F = q(E + v x B), the (classical)
equation of motion is

d’x

m@:q(E—i—va),

which can be written in terms of the gauge potential:

d’x

md? = q(—atA + VA() + v X (V X A))

e After using several vector calculus identity, one can show that this is
equivalent to
2

mae dt

which can be considered as an Euler-Lagrange equation for the

—q<V(Ao—|—v-A)—dVv(Ao-i‘V'A))’

Lagrangian
1
L= §m|v|2 +q(Ac+A-v).



Hamiltonian formalism

e Since the canonical momentum is
p=0,L=mv+ gA,
corresponding Hamiltonian H becomes

1
H=p-v—L=—|p= A~ gA,
m

1
E+qAo= o —|p— AP

e Canonical quantization implies the following Schrodinger-type
equation:
(—ihV — qA)?
2m

(lhat + qu) w = 1/}1

or

. . h2 . 2
i (at - I%AO) Y+ o <v - I;ZA) ¥ = 0.



Gauge-involved Schrodinger equations

e By introducing the differential operator D, := 0, — %Aa,

h2
ihDop + — D% = 0,
2m

which is the Schrédinger equation describing the dynamics of the
particle interacting with the (Maxwell) gauge fields A,.



Chern-Simons-Schrodinger
equations



Chern-Simons-Schrodinger equations

e The Chern-Simons-Schrddinger (CSS) equations describes the
dynamics of two-dimensional electron system.

e The CSS equations is given by

h2
Dy + %(DlDl + DyDo)p — V(|2 =0, (t,x) € Ry x R?,

DAL — 01Ag = —RIm(PDy)),  DpAz — DaAg = Alm(¢Dy1)),
81/42 - 82A1 — —m\q/)\z.

e 0y =0, O; =0k,

e R, x Q— C :Complex scalar field,
o A, Ry xQ — R: Gague field,

e D, =0, + +A,: covariant derivative,

e V: Self-interacting potenital energy density.



Chern-Simons-Schrodinger equations

e The CSS equation is invariant under the gauge transform:
Y —peX, A, — A, — ho,x.
e Therefore, one need to give a gauge condition. Usually, one consider

the Coulomb gauge condition V- A = 0;A; + 0,A, = 0.

e One can also consider the other gauge condition:
-Temporal gauge condition: Ay =0,
-Lorentz gauge condition: 9,A, = 0.



Chern-Simons-Schrodinger equations

e Under the Coulomb gauge condition, the CSS equation becomes
005 — Ao+ 1 (B + 24wy - L14Rw) V(06 = 0
ROy — Aoy + 50 h 12 o
AA; = him(Qu2(, ¥)) + 81(A2lt)?) — Ba(Ar|w),
DAL = mdo|p?,  AAy = —mOy |,

where Qi2(¥, 1) := 01902t) — D21,

e Choosing m =1 and i = ¢, we have the family of the scaled CSS
equations:

_ 2 2 1., -
i0ct — Ay + 5 (80 + ZA- 90— 1) - viiuR)s =0,
DAy = elm(Qu2(v, ¥)) + 1 (A|?) — Da(ALl]?),

DAL = DY, DAy = =01,



Conservation laws

e The CSS system conserves the total charge and the total energy.
Define

o(0):= [ 10 d,
2

e4(e) = [ 5 301D () + V(I (1 0)) b,

where Df := 8; + LAS.
e Then,
dQ  dé° 0
dt ~ dt
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Hydrodynamic formulation : Madelung transformation

e Considering the Madelung transformation
= oo (15,
we introduce the hydrodynamic variables
o= WP P = (VS HA) = (U AT
e Then, the imaginary part of the Schrodinger equation becomes
Oep* + V- (p°uf) =0,

which corresponds to the continuity equation in the classical
mechanics.

11



Hydrodynamic formulation

e On the other hand, the real part of the Schrodinger equation
becomes

1 e2 A/p?
;55 + AS + Z|VS + A2+ V/(p°) = — .

e Taking gradient,

€ 2 =
(V) +(uF V)i + pf (1) - + vas+ L) _ g <W> ,

P 2 v
where p(p) = pV'(p) — V(p). Choosing V = 257, p(p) = 1=2p".
e Using the gauge equation, one can derive
Vo) _ o (AVPT
Oru® - V)u® ==V .
WAV = =5V U

12



Hydrodynamic formulation

e To sum up, we have the following hydrodynamic system:

Oep° + V- (p°uf) =0,

€2 AL/
€, \v o e v sipgv p*

AAS =V x (puf), AAT=—(Vp)*.

e As e — 0, the hydrodynamic equations formally converges to the
Euler-Chern-Simons equations:

dep+ V- (pu) =0,
de(pu) +V - (pu ® u) + Vp(p) = 0,
AAy =V x (pu), AA=—(Vp)t.
e The main concern is to provide a rigorous analysis for this

convergence.

13



Hydrodynamic limit of the CSS system

e Consider the well-prepared initial data condition:

el 2 2 2
[l gy [P g [ (9 R ax = 0,
0 2 o 71 2 Ja

where p(nlp) == 2= (7 — p7 — 771 (n - p)).
Theorem
Suppose v > 1. Let (1%, A5, A°) be the global solution to the CSS
equations. Moreover, let (p, u, Ag, A) be the unique local-in-time smooth
solution to the Euler-Chern-Simons equations for 0 < t < T,.

14



Hydrodynamic limit of the CSS system

Theorem (continued)

Then, for any 0 < t < T,, we have

po(t,-) = p(t,:), in L7(Q),

(P u)(t,) = (pu)(t,-), in L371(Q),
(VPFur)(t, ) = (Vpu)(t,), in L3(Q),

AS Ao, in LP(Q), VA VA, in L(Q),
AS— A in LP(Q), VA= VA, in L7(Q),

as e — 0.
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Relative entropy

e To obtain a hydrodynamic limit (of the classical systems), the
relative entropy method is successful.

e Consider the following general system of conservation laws:

d
0 U; + Z3kAik(U) =0, UeR™ AecR™d,
k=1

e The compressible Euler equation can be written in this form with
U = (p, pu) and

1 PP PPz pu’
_ 2 y=1 ~+1 _
A=\ ik (pu®u+” /ﬂ/)
P>Py Py + =p7

16



Relative entropy

e A usual entropy defined for the compressible Euler equation is
P2 o7 _plu® o7
n(U) = EL 4 £ 2L 2
2p v 2 Y
e Corresponding relative entropy and relative flux is given as

n(V|U) :=n(V) —n(U) — Dn(U) - (V = V),

A(V) = A(U) - DA(U) - (V = U).

Here,

3
[DA(U) - (V = U)]j := > 0y, Ay(U)(Vie — Ug).
k=1

17



Relative entropy method

e The relative entropy method is based on the following key estimate
on the relative entropy:

%/RdH(WU)dX:% Rdn(V)dx—/Rde(Dn(U)):A(V\U)dx

- / Dn(U) - (0:V + Vi - A(V))dx.
Rd
e We note that the energy functional £ can be written in terms of the
hydrodynamic quantities:

1 £\Y 52 52
e = ol + EL 4 Spoyr ey + Sivvar

18



Modulated energy

e On the other hand, the hydrodynamic limit of the quantum system
is based on the modulated energy estimate.

e The natural modulated energy is

v—1

VY — )Y — YL (pE —
_ / 1‘(6D571U)’¢15‘2+ (P ) P P (P P) dx.
Ja?2 Y

M) = /Q %KEDE iy 4 2R

After tedious computation, we find

2
e — / B(UF|U) dx + S|V VPP dx.
Q

e Therefore, the modulated energy and the relative entropy are almost
the same quantity, except for the "quantum term”.

19



Modulated energy estimate

e Using the equivalent relation between modulated energy and the
relative entropy, one can use the celebrated theory of relative
entropy to modulated energy of the CSS equations.

Proposition
Let (¢, A5, A%) be the solution to the CSS equations and (p, u) be the
unique local-in-time smooth solution to the compressible Euler equation.

Then,
HE(t) < Cemimid2h,

e The proof is based on the previous proposition on the relative
entropy, and an appropriate estimate for the quantum correction
term.

e Therefore, one can conclude that the modulated energy vanishes as

e — 0.

20



Proof of Proposition

o We estimate ? as

dHe d . . .
i af /Q V. (Dn(U)) : A(U|U) dx

-/mwy@W+wAwww
JQ
04t b

e Using the definition of Dn and A(U?|U), we have

wsc ([ - upact [plnex) < [awuox
Q Q Q

e On the other hand, using the governing equation of U¢,

T

)dx<iCeL/VVf2dx%—Ce

21



Proof of Proposition

e Combining the estimates, we have
dH*
dt
e Gronwall’s inequality and the assumption of well-prepared initial
data imply the desired estimate.
e With the modulated energy estimate in hand, one can obtain the

< CHE + Ce2.

desired convergence.

Lemma
Let v > 1 be a constant. Then,

p(p°lp) = Cmin{(p°) =2, 072} (p° — p)?,

and
(p°—p)?, if 5 <p*<2p,
W

(1 +()"), o

p(p°lp) = C{

22



Proof of Theorem

e Convergence of the density:

/ lp* = ol dXZ/ 10" = pl” dX+/ |p* — p|” dx
R3 {5 <pe<2p} {5 <pe<2p}e

=1 +1,.
o If1<y<2,

2y
T, < (/min{(pa)”‘zm”*}lps _p|2>7/2 (/ max{(pf)”-,p”}) 2
< C(HE)? =0,
and if v > 2,
ni< [ 15— ol - ph < € [ 17 - o < cHe >0
e Moreover 7, can be estimated as

T, < / lollT

7<C/(1+(p5)7)<C'HE—>O.

e
S|
p

23



Proof of Theorem

e Convergence of the momentum:

lp*u® = pull 22 < Nlp™(0" =)l 220 + (6" = P)ul] 2
< H\/Fllm\lx/fTIU = ulllez +1p" = pllrllull 2,
< ClIVeflu® = ulllz + Cllp® = pllv < CHT — 0,

and

IVoFu® = y/pullz < [VElu® — ullliz + [(VFF — VB)lulll.z
< IVeF|uF = ufll 2 + || ull %nrpe — Vol
1 2
<HE+ Cllo — ol

24



Proof of Theorem

e To prove the convergence of the gauge fields, we recall that
A(AG — Ao) = 01(p"u3 — pu) — Ba(puf — pun).

e Using HLS inequality and CZ inequality,

145 — Aolls < Nl — pul] =, =0,

+
and
IV(A5 = Aol 2, < llp"u® = pul| 22 — 0.

y+I

25



Proof of Theorem

e Similarly, the gauge difference A® — A satisfies
A(A° = A) = (V(p—p))"
which implies

145 = All iz < lp° = pll 22 < (VP2 + IVPI )1V = Volliz

< Cllp* = pllv =0,

and
V(A = A)||v < [lp° = pllv — 0.

26



e A global-in-time well-posedness of the nonlinear CSS system is
recently guaranteed.

e For the case of Lorenz gauge condition, the hydrodynamic
formulation is the same as the case of Coulomb gauge condition.
However, since the gauge equation becomes time-dependent
equation for the Lorenz gauge condition, one might need an extra
well-prepared assumption on the initial gauge fields.

27



Maxwell-Schrodinger equations




Maxwell-Schrodinger equations

e Unlike the CSS equations, Maxwell-Schrodinger (MS) equations
describe the dynamics of the particle in three-dimensional space
interacting with the electromagnetic fields.

e The MS equations is given by

77,2
ihDgt) + ?D% — V([P =0, (t,x)eR,y xR3

DAO - 8t(8t/40 - V M A) = —|1/}|2,
OA — V(9,A) — V - A) = him(¢Dy)),

where [0 = 92 — A is d'Alembertian and D, = 0, — %Aa.
e MS system is also gauge invariant and therefore, one need to provide
an appropriate gauge condition.

28



Maxwell-Schrodinger equations

e Under the Coulomb gauge condition V- A= 0 and i = ¢ and
m = 1, one again obtains the following family of system:

. e? . 1
80" + AGY" + 5 AYT —ieAT - VYT — SIAPYE = V/([9?)y =0,

AAS = [v°]2, DA° — VO, AS = elm(¥DyF).

e As in the introduction, we may define the electromagnetic fields E€
and B® as
Ef = —0;A°* + VA;, B =V xA".

Then, the gauge equations become the Maxwell equation:
O:E =V x B* —p°u®, V.E°=)p°
0:B°+V x Ef =0, V-B®=0,

where pf := |¢¢|? and p*uf = elm (%DW)E).

29



Conservation laws

e MS equations also have the conservation laws for the total charge
and the total energy.

e Define O° and £° as

Q0 (t) = / e 2 dx,
R3

1 1
£4(e) = [ SIeD R + V() + S(IE°F + 18P éx.

30



Hydrodynamic formulation: Direct computation

e Although one can derive the hydrodynamic equations for the MS
equations via Madelung transform as in the case of CSS equations,
one also can derive from the system equations itself.

e For example, multiplying 1/¢ to the Schrodinger equation and taking
the imaginary part yields

Oe|v®|? + elm (VeAyY®) — A° - V|y©|> = 0,
which is equivalent to

Op° + V- (p°uf) =0.

31



Hydrodynamic formualtion

e Also, after tedius computation, we obtain the equation for the
momentum as

2
Be(p°uF) + %v - (2(D*yF @ D=4 + DFgF @ DEyF) — V2[y° )
+ Vp(p®) = p°(E° + v° x B®).

e Direct computation yields

2
%V - (2(D*Y° ® Doye + Deye ® Dy°) — V2 [y°|?)

2 ¢ A €

e Therefore, the momenutum equation becomes

Or(p°uf)+V-(p°ut@u®)+Vp(p°) = p*(ES+u*xB%)+

2 ¢ A €
E;V( ﬁ)

32



Hydrodynamic formulation

e In conclusion, the MS equations can be written as the following
form:

Op +V - (p°uf) =0,
Oe(p°u)+ V- (p°u® @ u¥) + Vp(p®) = p°(E° + u° x BY)

e\aF (A,//f)
+ v ,
2 \Vpe

atEg =V x B —pEUE, 81586 =-Vx Es7
V-E°=p°, V-B°=0.

e Therefore, in a formal limit, the system converges to the
Euler-Maxwell equations:

Oep+V - (pu) =0,
9e(pu) + V- (pu ® u) + Vp(p) = p(E + u x B),
OE=VxB—-pu, 0B=-VxE,

V-E=p, V-B=0. 33



A priori assumptions

e We assume the following assumptions:
e (H1): The initial data is well-prepared:

HE(0) = O().
e (H2): The local charge is positive:
[°(t, x)]> >0, (t,x) € [0,00) x R%.
e (H3): The local charge is uniformly bounded:

sup [|9°(¢)]l= < C.
t>0

e Note that the third assumption can be deleted once one can show
that e-independent estimate for |[1)¢||ys/2+5.

34



Hydrodynamic limit of the MS system

Theorem

Suppose 1 < 7 < 2. Let (0%, A5, A°) be the global solution to the MS
equations. Moreover, let (p, u, E, B) be the unique local-in-time smooth
solution to the Euler-Maxwell equations for 0 < t < T,. Suppose that
the a priori assumptions (#1)—(73) holds. Then, for any 0 <t < T, we
have

pg(tv') —>p(t,-), in Lz(R3)7

(\/Eus)(tv ) - (\/ﬁu)(tv ')7 in LZ(R3)7

E*— E, in [*(R®),

B* — B, in L*(R3),
as e — 0. |
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Modulated energy

e Again, we use the modulated energy to obtain a desired convergence.

e The natural modulated energy is

HE () = /R %\(EDE i)t + ”7(”8? dx

1
+f/ (|E — E|* 4+ |B° — B|?)dx
2 Jps

1,6 _ 412
_/Rap"z‘”dxju/w (p_‘ﬁl' dx +—/ IV/pE|? dx

1
+—/ (|ES — E|> 4+ |B° — B|?)dx
2 Jgs

36



Modulated energy estimate

e Then, the main proposition is to estimate the modulated energy.

Proposition

Under the same assumption with the main theorem, we have,

HE(t) < Cemnid2},

e Unlike the CSS system, we may not use the relative entropy method,
since the limit system (Euler-Maxwell system) is not a conservative
form, due to the presence of the electromagnetic equations.

e Instead, we directly compute the time derivative of the modulated

energy to derive the desired estimate.

37



Proof of Proposition

e The modulated energy can be split as

He(t) = £5(1) + 2 / u - (DY<gF — DEgeye) dx
2 Jas

1
+*/ pEIU\de+/ P (p— —L=p7) dx
2 R3 R3 ’7—1

—/ (EE-E+BE-B)dx+1/ (|E* + |BJ?) dx
R3 2 R3

5)
= Ss(t)-O-ij

i=1

e Thanks to the energy conservation law, we only need to estimate the
last 5 terms.
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Proof of Proposition

e Since §(D=yp=1)° — D*9)=)°) = p°uf, Ji can be estimated as

d
J=—— [ puf-udx=— 8t(p5u5)-udx—/ p U - Orudx.
dt R3 R3 R3

e Using the governing equations and several vector calculus identities,
we derive

T :/ (v @ (u—u)) Vudx+ — V(p"™) - pPuf dx
R3 vy — 1 R3

—/ (pE)V(V-u)dX—/ p5u5~de—/ pSu- Efdx
R3 R3 R3

Jr/ﬂ;ps(u6 —u)-(ux (B — B))dxfé R3p€V (%}25) - udx.
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Proof of Proposition

e Similarly, using the governing equations,

_ldy
~2dt R3

= / (p5u®(u57u)):Vudxf’y/ p°p" 2u - Vudx
JR3 JR3

+/ pSu- Edx
R3

1
T p°|ul?dx = 5/ (3tp5)|u\2dx+/ pou - updx
R3 JR3

and

d [ v
= — -1 — ' 34q
I3 dt/Rsp (p ’y—l) x
=—(7—1)/3/)”V-udX+7/3p7‘2(pEu-Vp+ppEV-U)dX
R R

Y ~1
- Y - pfu® dx.
1 R3V(p ) - pu®dx
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Proof of Proposition

e Using the Maxwell equations to derive

Fi=—sp [(E B8 B = [ Bt [ pu-Eox
dt Jps R3 R3
and
1d
— E|? + |BJ?
Is = 54¢ R3(| * + |B|*) dx

/ E-(VXB—pu)dx—/ B -V x Edx
R3

R?)
:—/ pu - Edx.
R3
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Proof of Proposition

e Therefore, we close the estimate for the modulated energy as

d &
i :—/ po (v —u) @ (u° —u): Vudx
dt R3

= L) =7 - 070" = p)I(V - u)dx

+/Ra(pfp5)u.(EE—E)dXJr/H%pE(uE—u).(ux(BEfB))dX

£2 (A«ﬁpf) >
—— | p°V —— | - udx =: K.

e Since u is smooth, we have

Klﬁ/ p°|u — uf? dx, KzS/ p(p°1p) dx
R3 R3

and
Ks S llp— o°ll3e + I1EF — El|%2-

42



Proof of Proposition

e Using the a priori bound for 1%, we control /C4 as

Ko < VPl lull= [ /7lu — ul|B° — B dx
Rfi

~

S [ pflu = uf dx+ B - B
R3
e Finally, as in the CSS system, we estimate the last term as
Ks S 52/ |Vv/pE|? dx + €2
]R3

e To sum up, we have the following estimates on the modulated
energy:
dH*® '
S [ p7lu — P+ plp7le) e
dt R3
+1lp° = pllfz + 11E° = Ellf + ||B° - Bl

+52/ Ve | dx + €2,
R3
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Proof of Proposition

e To close the estimate, we note that the Taylor expansion implies

-1 e\y—2
p(p°1p) = (p°) = p" =" (" = p) = Ay = D ;(C ) (b° — ),
where min{p®, p} < (¢ < max{p®, p}.

e Since we assume that the local charge density is bounded, and
v < 2, we have

p(p°lp) > C(p° — p)*.
e Therefore, we conclude that
dHe <

HE + €2,
dt ~ +

which, together with the well-prepared initial data implies

HE(t) < CemniM

a4



Proof of Theorem

e The proof of convergence of the macroscopic variables directly
follows from the estimate of modulated energy:

I ol < € [ (rFlp)éx < () 0

IVpeu® = /pullz < IVeE|u® — ulllz + I(VeF — v/p)lulll 2
< CHE+ Cllp* — pll % — 0
|ES — E||2, < CHE(t) — 0,

18° — Bl < CHE(1) -0,

as e — 0.
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e It is easy to observe (indeed, physically obvious) that the same
hydrodynamic formulation holds for the case of Lorenz gauge
condition. Therefore, the same hydrodynamic limit estimates also
hold for the case of Lorenz gauge condition.

e The (global-in-time) well-posedness of the non-linear MS system is
recently known, under the condition on 1 <« < 2. Therefore, the
assumption on the adiabatic constant is needed not only for the
technical estimate on the modulated energy, but also for the
existence of the system.
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Thank you very much for attention.

a7



	Introduction
	Chern-Simons-Schrödinger equations
	Maxwell-Schrödinger equations

