French–Korean Number Theory Webinar

18th October 2021

Richard GRIFFON

Université Clermont-Auvergne

Isogenies of elliptic curves over function fields

(joint with Fabien Pazuki)

Introduction

Variation of modular height over NF

Let E_1, E_2 be two isogenous elliptic curves over a number field F, and $\varphi: E_1 \to E_2$ be an isogeny between them.

Theorem A (Pazuki - '19)

$$|ht(j(E_1)) - ht(j(E_2))| \le 10 + 12 \log \deg \varphi,$$

where $ht: \overline{\mathbb{Q}} \to \mathbb{R}_{\geq 0}$ is the Weil height.

Remarks

☐ One ingredient:

Theorem (Faltings - '80's)

$$|h_F(E_1/F) - h_F(E_2/F)| \le \frac{1}{2} \log \deg \varphi,$$

where $h_F(.)$ is the Faltings' height.

- ☐ Theorem A is almost optimal (Szpiro-Ullmo).
- \square Application (Habbegger). Given $E/\overline{\mathbb{Q}}$ with no CM, and B>0, $\{j(E')\in\overline{\mathbb{Q}}:E' \text{ is isogenous to } E \text{ and } ht(j(E'))\leq B\}$ is finite.

Isogeny estimate for elliptic curves over NF

Let E_1, E_2 be two isogenous elliptic curves over a number field F.

Theorem B ("Isogeny estimate")

There exists an isogeny $\varphi_0: E_1 \to E_2$ with

$$\deg \varphi_0 \le c_0(F) \max\{1, ht(j(E_1)), ht(j(E_2))\}^2,$$

where $c_0(F)$ is a constant depending at most on (the degree of) F.

- Several successive improvements:
 Masser–Wüstholz (90's), Pellarin ('01), Gaudron–Rémond ('14).
- □ Conjecture: uniform isogeny estimate? (Similar to Uniform torsion bound, Merel - '94)
- □ Theorem B has numerous applications in Diophantine geometry.

Goal

There are versions of Theorem A and Theorem B for isogenous Drinfeld modules (Breuer–Pazuki–Razafinjatovo, and David–Denis). It is natural to wonder:

Question

Can one formulate analogues of Theorems A and B in the context of elliptic curves over function fields?

Yes to both, as I'll explain.

Elliptic curves over function fields

Function field setting

Setting

Let $\mathbb F$ be a perfect field, and $C/\mathbb F$ a smooth projective geometrically irreducible curve. Write $K=\mathbb F(C)$ for the function field of C. We let $p=\operatorname{char}(\mathbb F)\geq 0$.

Arithmetic of K (and finite extensions of K) is analogous to that of a number field.

 \square **Height on** \overline{K} : There is a "Weil height" on \overline{K} ,

$$ht_K: \overline{K} \to \mathbb{Q}_{\geq 0}.$$

For any $f \in K^{\times}$, f may be viewed as a morphism $f : C \to \mathbb{P}^1$ and

$$ht_K(f) = \deg(f).$$

Note: For $f \in \overline{K}$, $ht_K(f) = 0$ if and only if $f \in \overline{\mathbb{F}}$ (f is constant).

Elliptic curves over a function field

Let K'/K be a finite extension. One can write $K' = \mathbb{F}'(C')$. Let E be an elliptic curve over K'. E has a j-invariant $j(E) \in K'$, computed by the usual formulas.

□ **Isotriviality:** We say that *E* is **non-isotrivial** if $j(E) \in \overline{K} \setminus \overline{\mathbb{F}}$.

We focus only on non-isotrivial elliptic curves.

(Isotrivial elliptic curves are better studied as elliptic curves over $\overline{\mathbb{F}}$).

Arithmetic of non-isotrivial elliptic curves over K' is analogous to that of elliptic curves over a number field.

Note: a non-isotrivial elliptic curve E "has no CM", that is: $End(E) \simeq \mathbb{Z}$.

☐ **Inseparability degree:** For a non-isotrivial elliptic curve *E* over *K'*, we let

$$\delta_i(E) := \deg_{\mathsf{ins}}(j(E)) = [K' : \mathbb{F}'(j(E))]_{\mathsf{insep}}.$$

 $(\delta_i(E) = 1 \text{ if } K \text{ has characteristic } 0).$

Height(s) of elliptic curves

Let K'/K be a finite extension, write $K' = \mathbb{F}'(C')$ as before. Let E be an elliptic curve over K'.

 \square Modular height: Define the modular height of E to be

$$h_{mod}(E) := ht_K(j(E)) \in \mathbb{Q}_{\geq 0}.$$

Note: $h_{mod}(E) = 0$ iff E is isotrivial.

□ **Differential height:** Let $\Delta(E/K') \in \text{Div}(C')$ be the minimal discriminant divisor of *E*. The differential height of E/K' is

$$\mathsf{h}_{\mathsf{diff}}(\mathit{E}/\mathit{K}') := \frac{\mathsf{deg}(\Delta(\mathit{E}/\mathit{K}'))}{12 \cdot [\mathit{K}' : \mathit{K}]} \in \mathbb{Q}_{\geq 0}.$$

Analogue of Faltings' height for elliptic curves over a NF. Note: $h_{\text{diff}}(E/K') = 0$ iff E has good reduction everywhere over K'.

Isogenies of elliptic curves

Let E_1, E_2 be two non-isotrivial elliptic curves over K'.

An isogeny $\varphi: E_1 \to E_2$ is a non-constant algebraic group morphism.

 \square **Degrees:** Let $\varphi: E_1 \to E_2$ be an isogeny. Then

$$\deg \varphi = \deg_{\operatorname{sep}}(\varphi) \cdot \deg_{\operatorname{ins}}(\varphi).$$

Then $\deg_{\operatorname{sep}}(\varphi) = |(\ker \varphi)(\overline{K})|$, and $\deg_{\operatorname{ins}}(\varphi) = 1$ or a power of p.

- \square **Dual:** an isogeny $\varphi: E_1 \to E_2$ has a dual $\widehat{\varphi}: E_2 \to E_1$ which has the same degree.
- \square Biseparable isogenies: An isogeny $\varphi: E_1 \to E_2$ is biseparable if both φ and its dual $\widehat{\varphi}$ are separable.
 - \square Automatic if char(K) = 0,
 - \square Equivalent to deg φ coprime to $p = \operatorname{char}(K)$ if p > 0.

Frobenius/Verschiebung isogenies

Assume that *K* has positive characteristic *p*.

Let E be an elliptic curve over \overline{K} . For any power q of p, write $E^{(q)}$ for the q-th Frobenius twist of E.

We have $j(E^{(q)}) = j(E)^q$.

The q-th power Frobenius is the isogeny $F_q: E \to E^{(q)}$. Its dual is called the q-th power Verschiebung isogeny $V_q: E^{(q)} \to E$.

Fact: If E is non-isotrivial, F_q is purely inseparable of degree q, and V_q is separable of degree q.

Variation of modular height

in an isogeny class

Known results

Let E_1, E_2 be two non-isotrivial elliptic curves over a finite extension K' of K. Assume there is an isogeny $\varphi : E_1 \to E_2$.

☐ Variation of differential height

Theorem (? - 80's)

If φ is biseparable (i.e. has degree coprime to p), then

$$h_{diff}(E_1/K') = h_{diff}(E_2/K').$$

☐ Comparison differential/modular heights

Lemma (G. & Pazuki - '21)

There exists a finite extension K_{ss} of K such that

$$h_{mod}(E_i) = 12 h_{diff}(E_i/K_{ss}).$$

If char(K) = 0, we are done (all isogenies are biseparable).

Positive characteristic: Frobenius/Verschiebung

Let E/K' be a non-isotrivial elliptic curve. For any power q of p, there are two isogenies of degree q

$$F_a: E \to E^{(q)}$$
 and $V_a: E^{(q)} \to E$.

which are dual to each other.

Since
$$j(E^{(q)}) = j(E)^q$$
, we have $h_{mod}(E^{(q)}) = q \cdot h_{mod}(E)$.

Observations

- \square F_q multiplies $h_{mod}(E)$ by $q = \deg F_q = \deg_{ins} F_q$.
- \square V_q divides $h_{mod}(E^{(q)})$ by $q = \deg V_q = \deg_{ins} \widehat{F_q}$.
- \square Biseparable φ 's preserve h_{diff} , which is related to h_{mod} .

Decomposition lemma

To conclude, we prove

Decomposition Lemma (G. & Pazuki - '21)

An isogeny $\varphi: \mathcal{E}_1 \to \mathcal{E}_2$ between non-isotrivial elliptic curves decomposes as

$$E_1 \xrightarrow{\ \ F_q \ \ } E_1^{(q)} \xrightarrow{\ \ \psi \ \ } E_2^{(q')} \xrightarrow{\ \ \ V_{q'} \ \ } E_2,$$

where $q = \deg_{\mathsf{ins}}(\varphi)$, ψ is biseparable, $q' = \deg_{\mathsf{ins}}(\widehat{\varphi})$.

Then note that

$$\frac{h_{\text{mod}}(E_2)}{h_{\text{mod}}(E_1)} = \underbrace{\frac{h_{\text{mod}}(E_1^{(q)})}{h_{\text{mod}}(E_1)}}_{=q} \cdot \underbrace{\frac{h_{\text{mod}}(E_2^{(q')})}{h_{\text{mod}}(E_1^{(q)})}}_{=1} \cdot \underbrace{\frac{h_{\text{mod}}(E_2)}{h_{\text{mod}}(E_2^{(q')})}}_{=1/q'} = \frac{q}{q'}.$$

Where $q/q' = \deg_{ins}(\varphi)/\deg_{ins}(\widehat{\varphi})$.

Our result

Theorem A (G. & Pazuki - '21)

Let $\varphi: E_1 \to E_2$ be an isogeny between two non-isotrivial elliptic curves over \overline{K} . Then

$$h_{mod}(E_2) = \frac{\deg_{ins}(\varphi)}{\deg_{ins}(\widehat{\varphi})} \cdot h_{mod}(E_1).$$

Comments:

- \Box If char(K) = 0: isogenies preserve the modular height!
- □ Differences with Theorem A in the NF case: exact relation between heights (not upper bound on the difference), involves inseparability degrees (not degrees).
- \square An example: Let $K = \mathbb{F}(t)$ with characteristic $\neq 2$,

$$E_1/K : y^2 = x(x+1)(x+t)$$
 and $E_2/K : y^2 = x^3 + tx + 1$.

Then $h_{mod}(E_1) = 6$ and $h_{mod}(E_2) = 3$. Hence E_1 and E_2 are not isogenous.

A surprising consequence

Recall from the first slide:

Number field case (Habegger)

Let E be a non CM elliptic curve over $\overline{\mathbb{Q}}$. Consider the set

$$\{j(E') \in \overline{\mathbb{Q}} : E' \text{ is isogenous to } E \text{ and } ht(j(E')) \leq B\}$$

For any $B \ge 0$, this set is **finite**.

With our result, one can study

Function field case

Let E/\overline{K} be a non-isotrivial elliptic curve. Consider

$$J_{bs}(E,B) = \left\{ j(E') \in \overline{K} : \begin{array}{c} E' \text{ is biseparably isogenous to } E \\ \text{and } h_{mod}(E') \leq B \end{array} \right\}$$

For $B \ge h_{mod}(E)$, the set $J_{bs}(E, B)$ is **infinite**.

An isogeny estimate for elliptic curves

Isogeny estimate

Setting is the same as before: $K = \mathbb{F}(C)$ is a function field. We let g(K) denote the genus of C.

Let E_1, E_2 be non-isotrivial isogenous elliptic curves defined over K.

Question

Can one find a "small" isogeny between E_1 and E_2 ? "Small" = degree controlled in terms of invariants of E_1 , E_2 and K.

We prove

Theorem B (G. & Pazuki - '21)

There exists an isogeny $\varphi_0: \mathcal{E}_1 \to \mathcal{E}_2$ with

$$\deg \varphi_0 \leq 49 \max\{1, g(\mathsf{K})\} \cdot \max\left\{\frac{\delta_i(\mathsf{E}_1)}{\delta_i(\mathsf{E}_2)}, \frac{\delta_i(\mathsf{E}_2)}{\delta_i(\mathsf{E}_1)}\right\}.$$

Here $\delta_i(E_k)$ is the inseparability degree of $j(E_k) \in K$.

Comments

Theorem B (G. & Pazuki - '21)

Let E_1, E_2 be isogenous non-isotrivial elliptic curves defined over K. There exists an isogeny $\varphi_0: E_1 \to E_2$ with

$$\deg \varphi_0 \leq \underbrace{49 \max\{1, g(K)\}}_{c_0(K)} \cdot \max \left\{ \frac{\delta_i(E_1)}{\delta_i(E_2)}, \frac{\delta_i(E_2)}{\delta_i(E_1)} \right\}.$$

- \square If char(K) = 0, this is a **uniform isogeny estimate**.
- □ If char(K) > 0, one cannot hope for a uniform statement. (In that setting, the dependence on E_1, E_2 is optimal).
- ☐ The value of the constant can sometimes be improved. For q(K) = 0, one can replace $c_0(K)$ by 25.
- ☐ Proof is different from the NF case.

Sketch of proof: reduction step

Let E_1, E_2 be isogenous non-isotrivial elliptic curves defined over K.

Goal: show that there is a "small" isogeny $\varphi_0: E_1 \to E_2$.

☐ Step 1: Reduction to a "biseparable situation"

Lemma (G. & Pazuki - '21)

There are suitable Frobenius twists E'_1 of E_1 and E'_2 of E_2 such that E'_1 is biseparably isogenous to E'_2 .

Actually,
$$E_1'=E_1^{(q)}$$
 and $E_2'=E_2^{(q')}$ with

$$q, q' \le \max \left\{ \frac{\delta_i(E_1)}{\delta_i(E_2)}, \frac{\delta_i(E_2)}{\delta_i(E_1)} \right\}.$$

New goal: show that there is a "small" biseparable isogeny $E'_1 \to E'_2$. (Then "untwist" E'_1 and E'_2 to get an isogeny $E_1 \to E_2$)

Sketch of proof: minimisation

\square Step 2: Minimise degree of a biseparable isogeny

Among all biseparable isogenies $E_1' \to E_2'$, let $\varphi' : E_1' \to E_2'$ be of minimal degree.

Since E'_1 has no CM, one shows that

- φ' has cyclic kernel $H' = (\ker \varphi')(\overline{K}) \subset E'_1(\overline{K})$,
- $|H'| = \deg \varphi'$ is coprime to p,
- and H' is $Gal(\overline{K}/K)$ -stable.

And $E_2' \simeq E_1'/H'$.

We have a pair (E'_1, H') where

- E'_1 is a non-isotrivial elliptic curve over K,
- H' is a cyclic $Gal(\overline{K}/K)$ -stable subgroup of E'_1 , |H'| coprime to p.

Sketch of proof: the crucial step

\square Step 3: Bound the degree of a cyclic biseparable isogeny We have a pair (E'_1, H') where

- E'_1 is a non-isotrivial elliptic curve over K,
- H' is a cyclic $Gal(\overline{K}/K)$ -stable subgroup of E'_1 , |H'| coprime to p.

Letting N = |H'|, such pairs are parametrised (up to \overline{K} -isomorphism) by non-cuspidal K-rational points on the modular curve $X_0(N)$.

From the data (E'_1, H') , we thus get a K-rational point on $X_0(N)$.

Since $K = \mathbb{F}(C)$, we deduce a morphism $s : C \to X_0(N)_{/\mathbb{F}}$. Fits in the commutative diagram

$$\begin{array}{ccc}
C & \stackrel{\mathsf{S}}{\longrightarrow} & X_0(N)_{/\mathbb{F}} \\
\downarrow^{j(E_1')} \downarrow & & \downarrow \\
\mathbb{P}^1_{/\mathbb{F}} & \stackrel{\simeq}{\longrightarrow} & X_0(1)_{/\mathbb{F}}
\end{array}$$

In particular, $s: C \to X_0(N)_{/\mathbb{F}}$ is not constant.

Sketch of proof: the crucial step (II)

- \square Step 3: Bound the degree of a cyclic biseparable isogeny We have a pair (E'_1, H') where
 - E'_1 is a non-isotrivial elliptic curve over K,
 - H' is a cyclic $Gal(\overline{K}/K)$ -stable subgroup of E'_1 , |H'| coprime to p.

Writing N = |H'|, we obtained a non-constant morphism

$$s: C \to X_0(N)_{/\mathbb{F}}.$$

By Riemann–Hurwitz, we thus have $g(X_0(N)_{/\mathbb{F}}) \leq g(C) = g(K)$.

But $g(X_0(N)_{/\mathbb{F}}) = g(X_0(N)_{/\mathbb{C}})$ grows linearly with N (Shimura).

Hence N = |H'| is bounded! Precisely,

Proposition

Let E_1' be a non-isotrivial elliptic curve over K. If E_1' admits a subgroup H' as above. Then $|H'| \le 49 \max\{1, g(K)\}$.

Sketch of proof: conclusion

☐ Step 4: Conclusion

Starting from isogenous elliptic curves E_1 , E_2 over K, Step 1 yields Frobenius twists E'_1 , E'_2 which are biseparably isogenous.

By **Steps 2&3**, there exists a biseparable isogeny $\varphi': E_1' \to E_2'$ with

$$\deg \varphi' \leq 49 \max\{1, g(\mathsf{K})\} = c_0(\mathsf{K}).$$

Now compose φ' with the suitable $V_q: E_1' \to E_1$ or $V_{q'}: E_2' \to E_2$ to get an isogeny $\varphi_0: E_1 \to E_2$.

Recall from Step 1 that $q, q' \leq \max\left\{\frac{\delta_i(E_1)}{\delta_i(E_2)}, \frac{\delta_i(E_2)}{\delta_i(E_1)}\right\}$.

Finally, there exists an isogeny $arphi_0: E_1
ightarrow E_2$ with

$$\begin{split} \deg \varphi_0 & \leq \deg \varphi' \cdot \max\{q,q'\} \\ & \leq 49 \max\{1,g(\mathit{K})\} \cdot \max\left\{\frac{\delta_i(\mathit{E}_1)}{\delta_i(\mathit{E}_2)},\frac{\delta_i(\mathit{E}_2)}{\delta_i(\mathit{E}_1)}\right\}. \end{split}$$

A corollary

We go back to the situation studied before:

Let E/\overline{K} be a non-isotrivial elliptic curve. Consider

$$J_{bs}(E,B) = \left\{ j(E') \in \overline{K} : \begin{array}{c} E' \text{ is biseparably isogenous to } E \\ \text{and } h_{mod}(E') \leq B \end{array} \right\}$$

For $B \ge h_{mod}(E)$, the set $J_{bs}(E, B)$ is **infinite**.

With the help of Theorem B, we can prove

Proposition (G. & Pazuki '21)

Let E/\overline{K} be a non-isotrivial elliptic curve. For any $B \ge 0$ and $D \ge 1$, let

$$J_{bs}(E,B,D) = \left\{ j(E') \in \overline{K}: \begin{array}{c} E' \text{ is biseparably isogenous to } E \\ \text{with } h_{\text{mod}}(E') \leq B \text{ and } [K(j(E')):K] \leq D \end{array} \right\}.$$

This set is **finite**. Moreover $|J_{bs}(E, B, D)| \leq D^2 h_{mod}(E)^2$.

Thank you for your attention!