# Equivariant BSD conjecture over global function fields

joint with David Burns and Mahesh Kakde

Wansu Kim France-Korea IRL webinar in Number Theory, 8<sup>th</sup> Nov 2021

Korea Advanced Institute for Science and Technology (KAIST)

[C]elui qui m'a fasciné plus que tout autre et continue à me fasciner, c'est la **structure** cachée dans les choses mathématiques.

(A. Grothendieck)



#### **Review of BSD over global function fields**

Artin-Hasse-Weil *L*-function

**Equivariant BSD conjecture** 

Selmer complexes and the equivariant BSD formula

# Review of BSD over global function fields

- *K* finite extension of  $\mathbb{F}_{p}(T)$ .
- X smooth projective curve with function field K.
- $\forall v \in |X|$  (places of K),  $K_v$  completion of K at v,  $\mathscr{O}_v, \mathfrak{m}_v, k_v := \mathscr{O}_v/\mathfrak{m}_v, q_v := |k_v|.$
- A abelian variety over K
- $U \subset X$ : open contained in good reduction locus.

## **Examples**

#### Example I (cf. Milne): Constant abelian varieties

- i.e., those ab var's A/K defined over  $\mathbb{F}_q \subset K$ .
- Then A/K has good reduction everywhere, so any U is allowed (including U = X).

#### Example II: Some explicit equations (Ulmer)

- Let  $K = \mathbb{F}_q(t)$  of characteristic p, so  $X = \mathbb{P}_{\mathbb{F}_q}^1$ .
- $A: y^2 + xy = x^3 t^d$  (with  $d = p^n + 1$ ),

*U* away from zeros & poles of  $\Delta = t^d (1 - 2^4 3^3 t^d)$ .

## Geometric analogue of the BSD conjecture

Definition: (partial) Hasse-Weil *L*-function of *A*/*K* 

$$L_U(A;s) := \prod_{v \in |U|} \det\left(1 - q_v^{1-s}\varphi_v | V_\ell(A)\right)^{-1} \in \mathbb{Q}(p^{-s}).$$

Rank part of the BSD conjecture

$$(\mathbf{r}_{an} :=) \operatorname{ord}_{s=1} L_U(A, s) = \operatorname{rank}_{\mathbb{Z}} A(K)(=: \mathbf{r}_{MW}).$$

#### Theorem (Néron, Lang)

A(K) is a finitely generated abelian group.

## Geometric analogue of the BSD conjecture, cont'd

## Conjectural BSD formula of the leading term

$$L^*_U(A, 1) = \frac{|\mathrm{III}(A/K)| \cdot \mathsf{discr}(h_{NT})}{|A(K)_{tor}| \cdot |A^t(K)_{tor}|} \cdot \mathsf{vol}(\prod_{v \notin U} A(K_v)),$$

#### where

- III(A/K) Tate-Shafarevich group, conj'd to be finite.
- $h_{NT}: A(K)_{\mathbb{Q}} \times A^{t}(K)_{\mathbb{Q}} \to \mathbb{R}$  Néron-Tate ht pairing.
- vol(∏<sub>V∉U</sub> A(K<sub>ν</sub>)) = c<sup>-1</sup> ∏<sub>V∉U</sub> µ<sub>ν</sub>(A(K<sub>ν</sub>)) "vol term" (missing Euler factors, Tamagawa numbers,...).

## Known results (in characteristic p > 0)

```
Theorem (Tate,..., Schneider,..., Kato-Trihan)
```

 $\operatorname{ord}_{s=1} L_U(A; s) \ge \operatorname{rank}_{\mathbb{Z}} A(K).$ 

Furthermore, TFAE:

- **1.**  $\operatorname{III}(A/K)[\ell^{\infty}]$  is finite for some prime  $\ell$ ,
- **2.** III(A/K) is finite.

**3.** 
$$\operatorname{ord}_{s=1} L_U(A; s) = \operatorname{rank}_{\mathbb{Z}} A(K).$$

If these conditions hold, then the BSD formula for the leading term also holds.

## Finiteness of $\operatorname{III}$

- (Artin–Tate) If A is a jacobian, then finiteness of III(A/K) is implied by the Tate conjecture for a certain surface over a finite field.
- (Milne) If A is a constant abelian variety then III(A/K) is finite.
- There are some explicit examples of elliptic curves over rational function fields where BSD can be explicitly verified. (Ulmer, Griffon, ...)

## Artin-Hasse-Weil *L*-function

- L/K: finite Galois extension with G = Gal(L/K).
- $\pi: X' \to X$  corresponding to L/K.
- A an abelian variety over K (often viewed over L)
- *U* ⊂ *X* open, away from bad reduction locus of *A* and the ramification locus of *π*.
- $U' := \pi^{-1}(U)$  fin étale *G*-cover of *U*.

## Artin-Hasse-Weil L-functions

#### (partial) Artin-Hasse-Weil L-function

Given  $ho\in \widehat{G}$  (nec def'd over some number field),

$$L_U(A,\rho;s) := \prod_{\nu \in |U|} \det(1-q_{\nu}^{1-s}\varphi_{\nu}|V_{\ell}(A) \otimes \rho)^{-1}.$$

## Remarks

- $L_U(A, \rho_{\text{triv}}; s) = L_U(A; s)$
- $L_U(A, \rho; s) \in \mathbb{Q}(p^{-s})$  is independent of  $\ell$ .
- (Artin formalism)

$$L_{U'}(A/L;s) = \prod_{\rho \in \widehat{G}} L_U(A,\rho;s)^{\dim(\rho)}.$$

Arithmetic invariants of A/L are *G*-modules: eg. A(L), III(A/L), Selmer groups, etc.

#### **Question (ver 1)**

How does the *BSD conjecture* 'interact' with the *Galois module structure* of arithmetic invariants?

#### **Question (ver 2)**

How is the leading term of  $L_U(A, \rho; s)$  at s = 1 related to the *Galois module structure*?

## **Equivariant BSD conjecture**

## Leading term formula revisited (sanity check)

$$L_{U}^{*}(A, 1) = \underbrace{\frac{|\operatorname{III}(A/K)| \cdot \operatorname{discr}(h_{NT})}{(|A(K)_{tor}| \cdot |A^{t}(K)_{tor}|}}_{(A)} \cdot \underbrace{\operatorname{vol}(\prod_{V \in S} A(K_{V}))}_{(B)},$$

- $L^*_U(A, 1) \in (\log p)^{r_{an}} \cdot \mathbb{Q}^{\times}_{>0}$  (**NB**:  $L_U(A, s) \in \mathbb{Q}(p^{-s})$ ).
- Since  $(\log p)^{-r_{MW}}h_{NT}$  is rat'l, RHS $\in (\log p)^{r_{MW}} \cdot \mathbb{Q}_{>0}^{\times}$ .
- This formula has a cohomological meaning:
  - LHS: Lefschetz trace formula.
  - (A)&(B): "Euler char." of Selmer gp and coho of vb.

## Equivariant leading term

## *L*-values and $K_1(\mathbb{Q}[G])$

- For any field *F*, we have  $K_1(F) = F^{\times}$ .
- Have  $K_1(\mathbb{Q}[G]) \subset Z(\mathbb{Q}[G])^{\times}$ .
- $\rho: G \to GL_n(F)$  with  $F \supset \mathbb{Q} \rightsquigarrow \chi_{\rho}: K_1(\mathbb{Q}[G]) \to F^{\times}$ .

### Proposition (Burns-Kakde-K)

Given (A; L/K) as before, there exists a natural element  $\mathcal{L}_U(A; L/K) \in \mathcal{K}_1(\mathbb{Q}[G])$  ("leading term in  $\mathbb{Q}[G]$ -coeff.") such that for any  $\rho \in \widehat{G}$  we have

 $\chi_{\rho}: \mathcal{L}_{U}(A; L/K) \longmapsto L^{*}_{U}(A, \rho; 1)/(\log \rho)^{r_{\rho}},$ 

where  $r_{\rho}$  is the multiplicity of  $\rho$  in A(L).

*F* finite extension of  $\mathbb{Q}$  (or  $\mathbb{Q}_{\ell}$ ); and  $\mathscr{O} \subset F$  "ring of int's".

- $K_0(\mathscr{O}, F) = F^{\times}/\mathscr{O}^{\times}$ ; i.e., the set of  $\mathscr{O}$ -lattices in F. **E.g.**,  $K_0(\mathbb{Z}, \mathbb{Q}) = \mathbb{Q}^{\times}/\langle \pm 1 \rangle \cong \mathbb{Q}_{>0}^{\times}$ .
- $\partial: K_1(F) \to K_1(\mathscr{O}, F)$  is just  $F^{\times} \twoheadrightarrow F^{\times}/\mathscr{O}^{\times}$ .

For group rings of G, we have

- a notion of  $K_0(\mathbb{Z}[G], \mathbb{Q}[G])$ , equipped with the boundary map  $\partial : K_1(\mathbb{Q}[G]) \to K_0(\mathbb{Z}[G], \mathbb{Q}[G])$ .
- For  $\rho \in \widehat{G}$  we have  $\chi_{\rho} : K_0(\mathbb{Z}[G], \mathbb{Q}[G]) \to K_0(\mathscr{O}, F)$ .

Let  $C^{\bullet}$  be a perfect complex of  $\mathbb{Z}$ -modules. If all  $H^{i}(C^{\bullet})$  are torsion, then

$$\chi^{\textit{ref}}(\mathcal{C}^{\bullet}) := \prod |\mathrm{H}^{i}(\mathcal{C}^{\bullet})|^{(-1)^{i}} \in \mathbb{Q}_{>0} \cong \mathcal{K}_{0}(\mathbb{Z}, \mathbb{Q})$$

Can generalise  $\chi^{ref}$  for  $C^{\bullet}$  with "height pairing" *h*.

Equivariant refined Euler char (Burns, et al.)

Defined  $\chi^{ref}(C^{\bullet}, h) \in K_0(\mathbb{Z}[G], \mathbb{Q}[G])$  for perfect  $\mathbb{Z}[G]$ -complex with *G*-equiv "height pairing" *h*.

## Equivariant BSD conjecture: statement

### Recap

- *L*<sub>U</sub>(A; L/K) ∈ K<sub>1</sub>(Q[G]) interpolating the leading terms of Artin-Hasse-Weil L-functions.
- $\partial: K_1(\mathbb{Q}[G]) \to K_0(\mathbb{Z}[G], \mathbb{Q}[G])$  boundary map.

**Geometric equiv BSD conj (Burns-Kakde-K)**  $\partial(\mathcal{L}_U(A; L/K)) \in K_0(\mathbb{Z}[G], \mathbb{Q}[G])$  can be expressed in terms of the **refined Euler characteristics** of

- · "arithmetic cohomology" and
- · coherent cohomology of some vector bundle,

interpolating the BSD formula for  $L_{II}^*(A, \rho; 1)$ .

## **Main Result**

## Theorem (Burns-Kakde-K)

The geometric equivariant BSD holds for (A; L/K) if

- $\operatorname{III}(A/L)[\ell^{\infty}]$  is finite for some  $\ell$ ,
- A has semi-stable reduction at all place of K, and
- L/K is tame at all places.

## Remarks on the conditions

- Finiteness of III is equivalent to BSD for *A*/*L*, and known for *constant abelian varieties*, etc.
- Without semistable reduction, we cannot define suitable integral *p*-adic cohomology.
- Tameness of *L/K*: Galois descent.

## More Remarks on Main Result

## Theorem (Burns-Kakde-K)

The geometric equivariant BSD holds for (A; L/K) if

- $\operatorname{III}(A/L)[\ell^{\infty}]$  is finite for some  $\ell$ ,
- A has semi-stable reduction at all place of K, and
- L/K is tame at all places.

## Previous and other results

- (Trihan–Vauclair) conditional result when *L/K* is unramified everywhere.
- (Lai–Longhi–Tan–Trihan) when A is constant ordinary (and L/K is abelian).

Our proof is by "refining" the argument of Kato-Trihan.

# Selmer complexes and the equivariant BSD formula

- The "equivariant BSD formula" is roughly of the form  $\partial(\mathcal{L}_U(A; L/K)) = \chi^{ref}(\text{Selmer cplx}) (\text{geom term}).$
- · This formula is a consequence of

(Selmer complex)  $\otimes_{\mathbb{Z}} \mathbb{Z}_{\ell}$ = "ker"(1 -  $\varphi$ | integral  $\ell$ -adic geom coho)

and (!)  $\mathbb{Z}_{\ell}[G]$ -perfectness of  $\ell$ -adic geom. coho. cplx. (The key difficulty is to handle  $\ell = p$ .)

## Selmer Complex in the "Toy Case"

Given (A; L/K), assume the following (as a "toy case"):

- *A*/*K* has good reduction everywhere, and *L*/*K* is unramified everywhere.
- U = X, and A/K extends to an ab var A/X (and similarly, A/L extends to A'/X').

#### Theorem (Kato-Trihan, Burns-Kakde-K.)

If III(A/L) finite then  $\exists \mathbb{Z}[G]$ -perfect complex SC := SC(A; L/K) ("Selmer complex") satisfying:

•  $H^{i}(SC) = 0$  if  $i \notin \{0, 1, 2\}$ .

Theorem on SC(A; L/K) (con'd)

If III(A/L) finite then  $\exists \mathbb{Z}[G]$ -perfect complex *SC* ("Selmer complex") satisfying:

- $\mathrm{H}^{i}(SC) = 0$  if  $i \notin \{0, 1, 2\}$ .
- $\mathrm{H}^{2}(SC) = A(L)_{\mathrm{tor}}^{\vee}, \mathrm{H}^{0}(SC) = A^{t}(L)$  and  $\mathrm{H}^{1}(SC) \otimes_{\mathbb{Z}} \widehat{\mathbb{Z}} = \mathrm{Sel}_{\mathbb{Q}/\mathbb{Z}}(A/L)^{\vee}$
- $\mathit{SC} \otimes \mathbb{Z}_\ell =$  "ker $(1-\varphi)$ " of some geometric coho
  - If  $\ell \neq p$  then  $R\Gamma_{\text{\'et},c}(\overline{X}', T_{\ell}(\mathcal{A}')(-1))$ .
  - If  $\ell = p$  then some integral crystalline cohomology.

## Remarks on Selmer complex SC(A; L/K)

- Constr of  $SC(A; L/K) \otimes \widehat{\mathbb{Z}}$  is due to Kato-Trihan.
- We show it is Z
   [G]-perfect if Ⅲ(A/L)[ℓ<sup>∞</sup>] is finite, and extract a Z[G]-lattice.
- If G is triv and A has good red'n everywhere,

$$\chi^{ref}(SC,h) = \frac{|\mathrm{III}(A/K)| \cdot \mathrm{discr}(h)}{|A(K)_{tor}| \cdot |A^t(K)_{tor}|} \in \mathbb{Q}_{>0}^{\times} \cong K_0(\mathbb{Z},\mathbb{Q}).$$

In general, need to modify the constr of SC(A; L/K) to ensure Z[G]-perfectness (cf. Kato-Trihan).

## Equiariant BSD formula: "Toy Case"

#### Main Result in the "Toy Case"

If U = X (in part, A good red'n and L/K unram), then

$$\begin{split} \partial(\mathcal{L}_X(A;L/K)) &= \chi^{\mathrm{ref}}(\mathit{SC}(A;L/K),h) \\ &- \chi^{\mathrm{ref}}(\mathit{R}\Gamma(X',\mathrm{Lie}(\mathcal{A}')) + (\mathrm{sign\ correction\ term}). \end{split}$$

## Main ingredients: Etale descent

- $\mathbb{Z}_{\ell}[G]$ -perfectness of  $R\Gamma_{\text{\'et},c}(\overline{X}', T_{\ell}(\mathcal{A}')(-1))$   $(\ell \neq p)$ .
- ℤ<sub>p</sub>[G]-perfectness of the crystalline and coherent cohomology complexes.

(Consequence of étale descent as L/K unramified.)

## Equivariant BSD formula: semi-stable tame case

#### Theorem (Burns-Kakde-K.)

If  $\operatorname{III}(A/L)$  is finite, A/K is semi-stable and L/K is tame, then in  $K_0(\mathbb{Z}[G], \mathbb{Q}[G])$  we have

$$\begin{split} \partial(\mathcal{L}_{U}(A; L/K)) &= \chi^{\mathrm{ref}}(SC_{U}(A; L/K), h) \\ &- \chi^{\mathrm{ref}}(R\Gamma(X', \mathrm{Lie}(\mathcal{A}')(-E')) + (\mathrm{sign\ correction\ term}). \end{split}$$

#### Remarks

- $SC_U(A; L/K) : SC(A, L/K)$  modified at  $X \setminus U$ .
- (Easy)  $R\Gamma_{\text{\'et},c}(\overline{X}', V_{\ell}(\mathcal{A}'))$  is  $\mathbb{Z}_{\ell}[G]$ -perfect  $\forall \ell \neq p$ .
- (Main technical result) Z<sub>p</sub>[G]-perf of some int log crys coho if A/K semistable & L/K is tame(!).

#### Work in progress

If A/K is ordinary (but possibly admitting non-ord reduction) and L/K arbitrary, what can we say about equiv BSD for (A; L/K) from unit-root L-functions?

#### **Further wild questions**

Assume A/K has semi-stable reduction everywhere, and L/K is arbitrary (possibly with wild ramification). How can one to extract  $\mathbb{Z}_p[G]$ -perfect complex from integral p-adic cohomology?

## Thank you for your attention!