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General Relativity (in vacuum)

'Free fall’ follows geodesic curves s € R — x(s) € R*

adx’(s) dx/(s)
ds ds

i.e. critical points of / gii(x(s)) ds

where g is a Lorentzian metric over R*, which reads

dxc;gs) =£(s), di',f) = —Th(x(5))€(s)E" (s),

2gmfrjk + amgjk - 8/'gmk - akgm/' =0.
Einstein equations in vacuum
just means that g has zero Ricci curvature.
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Phase-space formulation of the Ricci curvature

Key idea: view I as a collection of 4 vector fields over
the phase space (x, ¢) € R® which are linear in ¢:
Vi(x,€) = —T (x)¢7, so that the Riemann and the
Ricci curvatures just read as commutators:

()€™ = (O + Vi) VP = (B + V]9 ) Vi) (X.€)
= Oyk an + 8@'( V/;/ V7n) — Oy V/? — 8§k( \/1.7 an),

Rim(X)E™ = 0y V! + 9y (V{ VI) — 0,y V), — 0 (V] VI).
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The main result

Theorem: Let (g, ') be a smooth solution to the
Einstein equations in vacuum. Let us define

Vi(x,€) = T (X)€", (x.€) € R,
CL(X, &) = A (X, &) — DeaAY(x, €) L,

Gap(x)EE”
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The main result

Theorem: Let (g, ') be a smooth solution to the
Einstein equations in vacuum. Let us define

Vi(x,€) = T (X)€", (x.€) € R,
CL(X, &) = A (X, &) — DeaAY(x, €) L,

g(xﬂ(x)gofﬁ)

— 5 )

Then (C, V) is a solution of the following generalized
matrix-valued optimal transport problem:

A(x,€) = ¢ detg(x) cos(
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Find a pair (C, V)(x, &) of 4 x 4 matrix-valued fields
over the 'phase-space’ (x, ¢) € R8 critical point of

/trace(C(x,§)V2(x,§))dxd£
subject to the ’generalized continuity equation’
0, Cl + 05(CV + VCY, = 0

and the linear symmetry constraints ~ d.:V/ = 9, V',
Den G2 &), — 30emCl, = 9ok C) Gy — 30 Chy.

ref: hitps://hal.archives-ouvertes.fr/hal-03311171

YB (CNRS, LMO-Orsay) Kinetic and Fluid Einstein Visio 17 Dec 2021 5/14



Relation with the (quadratic) Monge OT problem

Monge »(po, p1)? = inf/d | T(x) — x|2po(x)dXx,
R

for all Borel maps T for which p1(y)dy is the image by y = T(x) of po(x)dXx.
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Relation with the (quadratic) Monge OT problem

Monge »(po, p1)? = inf/d | T(x) — x|2po(x)dXx,
R

for all Borel maps T for which p1(y)dy is the image by y = T(x) of po(x)dXx.
Then, one can show:

|
Monge »(po, p1)? — inf / dt / ot X)Iv(t X)Pox,
0 R

where (p, v) is subjectto dip+ V - (pv) =0, p(0,) =po p(1,-) = p1.

(Benamou-B. 2000, see also Otto 2001, Ambrosio-Gigli-Savaré 2005.)
N.B. Optimality equations read: v = V¢, & + V(|v|?/2) = 0.
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General Relativity GR and Optimal Transport OT

Recent works linking GR and OT:

A. Mondino, S. Suhr arXiv:1810.13309, 2018,

R. McCann, Camb. J. Math. 2020, based on
Lott-Sturm-Villani OT definition of Ricci curvature.



General Relativity GR and Optimal Transport OT

Recent works linking GR and OT:

A. Mondino, S. Suhr arXiv:1810.13309, 2018,

R. McCann, Camb. J. Math. 2020, based on
Lott-Sturm-Villani OT definition of Ricci curvature.

Our approach is different and related to the
hydrodynamical formulation of OT (Benamou-B. 2000).

ref: Y.B. CRAS 2021 (https://hal.archives-ouvertes.fr/hal-03311171).
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A toy model : the Hamilton-Jacobi equation (1/4)
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A toy model : the Hamilton-Jacobi equation (1/4)

9+ 3[VoP =0, 6=a(tx), xeT
written as a ‘conservation law’ for V = V¢,
145
2
Ilgnoring BC, let us look for critical points (A, V) of

) 2
/ <—8tA- V- w> dxdt, A= A(t,x) e RY

XV +V(—=)=0, V=V(tx)eR? xeT
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A toy model : the Hamilton-Jacobi equation (2/4)
Critical points (A, V) of
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oaZ(AV)=0 = (1) 8N+V(%) =0
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A toy model : the Hamilton-Jacobi equation (2/4)
Critical points (A, V) of

I(A, V) = / (—&A- V- w> dxat.

2
oaZ(AV)=0 = (1) 8N+V(%) =0
(as expected),

ovI(AV)=0= (2) 0/ A+V(V-A) =0

(additional information that we are now going to use).
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A toy model : the Hamilton-Jacobi equation (3/4)
Weuse (2) 0/A+ V(V-A)=0 torewrite Z(A, V)

as.:
_ 2
To(A V) = / dedt.

Claim: whenever (A, V) is critical for Z(A, V), then

(A, V) is also critical for Z,(A, V), but subject to (2).
Proof: Let us introduce Lagrangian £(A, V, B) = Tx(A, V) — [ B- (0{A+ V(V - A)).
The corresponding optimality equations read:
0BL(A,V,B) =0 = (2) (of course), 0vL(A,V,B)=0 = (V-AV-B(V-A)=0,
OaL(A,V,B) =0 = —V(|V[?/2)+aB+V(B-V)=0.
Assuming that (A, V) is critical for Z(A, V), we have
WA+ V(V-A) =0and &V + V(|V|?/2) = 0. Setting B = V, we are just in business!
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A toy model : the Hamilton-Jacobi equation (4/4)
Let us now write everything in terms of (p =V - A, V):
(2) A+ V(V-A) =0 = 0ip+V-(pV)=0,
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A toy model : the Hamilton-Jacobi equation (4/4)
Let us now write everything in terms of (p =V - A, V):
(2) A+ V(V-A) =0 = 0ip+V-(pV)=0,

. 2
(A V):/wcfxdt N /p| VE oot

So, we just find the usual quadratic optimal problem in
its BB formulation (up to BC which are ignored here)!
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BB formulation of General Relativity in vacuum
We now treat the zero-Ricci ‘phase-space’ equation
O V] + 0g(VIVI) — 0y V], — 0a(VI V1) = 0
just as the HJ equation with the following dictionary
Ci(x,6) = p(t.x)
0ClL+04(CV+VCY, =0 < p+V-(pV)=0,

/trace(C(X,f)Vz(X,g))dng = /p]V\dedt

and subjectto 9. VK = 0, VI, 0emC ), — 80emCl, = Dk CI 8y — 30k Chy.
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Finally, we check that, whenever (g, I') is a smooth
solution to the Einstein equations in vacuum, then

Vi(x,&) = =T (X)€",
CL(x,&) = DA (X, &) — DeaAY(X, ) b1,

g(xﬂ(x)gagﬁ

2 )
defines a solution (C, V) to the BB-OT formulation.
ref: hitps://hal.archives-ouvertes.fr/hal-03311171

A(x,€) = ¢ detg(x) cos(

YB (CNRS, LMO-Orsay) Kinetic and Fluid Einstein Visio 17 Dec 2021 13/14



Finally, we check that, whenever (g, I') is a smooth
solution to the Einstein equations in vacuum, then

Vi(x,&) = =T (X)€",
CL(x,&) = DA (X, &) — DeaAY(X, ) b1,

g(xﬂ(x)gagﬁ

2 )
defines a solution (C, V) to the BB-OT formulation.
ref: hitps://hal.archives-ouvertes.fr/hal-03311171

A(x,€) = ¢ detg(x) cos(

END OF PROOF!
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THANKS FOR YOUR ATTENTION!

Thanks to Bernard Julia
and Francois-Xavier Vialart for their help!

YB (CNRS, LMO-Orsay) Kinetic and Fluid Einstein Visio 17 Dec 2021 14/14



