Metastability of random processes and solution of resolvent equations

Insuk Seo
Seoul National University

Webminar of French-Korean IRL in Mathematics

March 18th, 2022

Table of contents

- 1 Small random perturbation of dynamical systems
- 2 Markov process description of metastability
- 3 Metastability and resolvent equations

Small random perturbation of dynamical systems

- Dynamical system $dx_t = b(x_t)dt$
- Equilibria: m, s (stable) and σ (unstable, saddle)

Small random perturbation of dynamical system (SRPDS)

Stochastic dynamical system

$$dx_t = b(x_t)dt + \sqrt{2\epsilon} dW_t$$

- \bullet $\epsilon > 0$: small parameter (temperature), W_t : Brownian motion
- Metastability: rare transition from m to s

SRPDS: gradient case

- Dynamical system $dx_t = -\nabla U(x_t)dt$
- *U*: double-well potential (left figure above)

Special case: $b = -\nabla U$

Stochastic dynamical system

$$dx_t = -\nabla U(x_t)dt + \sqrt{2\epsilon} dW_t$$

- \bullet $\epsilon > 0$: small parameter (temperature), W_t : Brownian motion
- Metastability: rare transition from m to s

Metastability of SRPDS: mean transition time

Model: gradient SRPDS

$$dx_t = -\nabla U(x_t)dt + \sqrt{2\epsilon} dW_t$$

Question: How long does it take to go from *m* to *s*?

- $\tau_{m \to S}$: transition time from m to S
- $\mathbb{E}(\tau_{m\to\mathcal{S}})$: mean transition time

Large-deviation type estimate (Freidlin-Wentzell, 60s-70s)

$$\log \mathbb{E}(\tau_{m \to S}) \simeq \frac{U(\sigma) - U(m)}{\epsilon}$$

Remark. Sharp estimate is missing:

$$\mathbb{E}(au_{m o\mathcal{S}})\simeq c_{\epsilon}\,e^{rac{U(\sigma)-U(m)}{\epsilon}}$$

where c_{ϵ} can be any sub-expoential term (e.g. ϵ^k or $e^{1/\sqrt{\epsilon}}$)

Metastability of SRPDS: mean transition time

Model: gradient SRPDS

$$dx_t = -\nabla U(x_t)dt + \sqrt{2\epsilon} dW_t$$

Question: How long does it take to go from *m* to *s*?

- $\tau_{m \to S}$: transition time from m to S
- $\mathbb{E}(\tau_{m\to\mathcal{S}})$: mean transition time

Eyring-Kramers formula (Bovier et. al., 2004)

$$\mathbb{E}(\tau_{m\to\mathcal{S}}) \simeq \frac{-\mu_{\sigma}}{2\pi} \sqrt{\frac{\det(\nabla^2 U)(m)}{-\det(\nabla^2 U)(\sigma)}} e^{\frac{U(\sigma)-U(m)}{\epsilon}}$$

- μ_{σ} : unique negative e.v. of $(\nabla^2 U)(\sigma)$
- The **self-adjointness** of associated generator \mathcal{L}_{ϵ} is crucially used:

$$\mathcal{L}_{\epsilon}f = -\nabla U \cdot \nabla f + \epsilon \Delta f$$

Metastability of SRPDS: spectral gap

Model: gradient SRPDS

$$dx_t = -\nabla U(x_t)dt + \sqrt{2\epsilon} dW_t$$

Eyring-Kramers formula (Bovier et. al., 2004)

$$\mathbb{E}(\tau_{m\to\mathcal{S}}) \simeq \frac{-\mu_{\sigma}}{2\pi} \sqrt{\frac{\det(\nabla^2 U)(m)}{-\det(\nabla^2 U)(\sigma)}} e^{\frac{U(\sigma)-U(m)}{\epsilon}}$$

- μ_{σ} : unique negative e.v. of $(\nabla^2 U)(\sigma)$
- The **self-adjointness** of associated generator \mathcal{L}_{ϵ} is crucially used:

$$\mathcal{L}_{\epsilon}f = -\nabla U \cdot \nabla f + \epsilon \Delta f$$

- ullet λ_{ϵ} : smallest non-zero eigenvalue of $-\mathcal{L}_{\epsilon}$ (spectral gap)
- $\lambda_{\epsilon} \simeq \mathbb{E}(\tau_{m \to \mathcal{S}})^{-1}$ (exponentially small)

Metastability of SRPDS: distributions

Model: gradient SRPDS

$$dx_t = -\nabla U(x_t)dt + \sqrt{2\epsilon} \, dW_t$$

Question: $x_0 \in \mathcal{M} \implies \text{Estimate of } \mathbb{P}(x_t \in \mathcal{M}) \text{ and } \mathbb{P}(x_t \in \mathcal{S})$

Observation: something will happen around $\theta_{\epsilon} = e^{\frac{U(\sigma) - U(m)}{\epsilon}}$

Landim-Lee-Seo, forthcoming

- $t_{\epsilon} \ll \theta_{\epsilon} \implies \mathbb{P}(x_{t_{\epsilon}} \in \mathcal{M}) \simeq 1$
- $t_{\epsilon} = t\theta_{\epsilon} \implies \mathbb{P}(x_{t_{\epsilon}} \in \mathcal{M}) \simeq p(t) \text{ and } \mathbb{P}(x_{t_{\epsilon}} \in \mathcal{S}) \simeq 1 p(t)$
- $t_{\epsilon} \gg \theta_{\epsilon} \implies \mathbb{P}(x_{t_{\epsilon}} \in \mathcal{S}) \simeq 1$

Remark. p(t) can be computed explicitly

Connection to parabolic equations

Model: gradient SRPDS

$$dx_t = -\nabla U(x_t)dt + \sqrt{2\epsilon} dW_t$$

with generator $\mathcal{L}_{\epsilon} = -\nabla U \cdot \nabla + \epsilon \Delta$

Parabolic equation: for continuous and bounded g,

$$\begin{cases} u_t = \mathcal{L}_{\epsilon} u & \text{for } (t, x) \in (0, \infty) \times \mathbb{R}^d \\ u(0, x) = g(x) & \text{for } x \in \mathbb{R}^d \end{cases}$$

Probabilistic expression: $u(t, x) = \mathbb{E}[g(x_t) | x_0 = x]$

Landim-Lee-Seo, forthcoming

$$x \in \mathcal{M} \longrightarrow u(t_{\epsilon}, x) \simeq egin{cases} g(m) & \text{if } t_{\epsilon} \ll \theta_{\epsilon} \ p(t)g(m) + 1 - p(t)g(s) & \text{if } t_{\epsilon} = t\theta_{\epsilon} \ g(s) & \text{if } t_{\epsilon} \gg \theta_{\epsilon} \end{cases}$$

Difficulty in complex potential

(Case 1)
$$H < H'$$
: two-scales $\theta_{\epsilon} = e^{H/\epsilon}$ and $\sigma_{\epsilon} = e^{H'/\epsilon}$

- $t_{\epsilon} \ll \theta_{\epsilon} \implies \mathbb{P}(x_{t_{\epsilon}} \in \mathcal{M}_1) \simeq 1$
- $t_{\epsilon} = t\theta_{\epsilon} \implies \mathbb{P}(x_{t_{\epsilon}} \in \mathcal{M}_1) \simeq p(t) \text{ and } \mathbb{P}(x_{t_{\epsilon}} \in \mathcal{M}_2) \simeq 1 p(t)$
- $\theta_{\epsilon} \ll t_{\epsilon} \ll \sigma_{\epsilon} \implies \mathbb{P}(x_{t_{\epsilon}} \in \mathcal{M}_{2}) \simeq 1$
- $t_{\epsilon} = t\sigma_{\epsilon} \implies \mathbb{P}(x_{t_{\epsilon}} \in \mathcal{M}_2) \simeq q(t) \text{ and } \mathbb{P}(x_{t_{\epsilon}} \in \mathcal{M}_3) \simeq 1 q(t)$
- $t_{\epsilon} \gg \sigma_{\epsilon} \implies \mathbb{P}(x_{t_{\epsilon}} \in \mathcal{M}_3) \simeq 1$

Difficulty in complex potential

(Case 2) H = H': complex behavior at scale $\theta_{\epsilon} = e^{H/\epsilon}$

- $t_{\epsilon} \ll \theta_{\epsilon} \implies \mathbb{P}(x_{t_{\epsilon}} \in \mathcal{M}_1) \simeq 1$
- $t_{\epsilon} = t\theta_{\epsilon} \Longrightarrow \mathbb{P}(x_{t_{\epsilon}} \in \mathcal{M}_i) \simeq p_i(t) \text{ for } i = 1, 2, 3$
- $t_{\epsilon} \gg \theta_{\epsilon} \implies \mathbb{P}(x_{t_{\epsilon}} \in \mathcal{M}_3) \simeq 1$

Discussion on general SRPDS

Same questions for the **general** SRPDS

$$dx_t = b(x_t)dt + \sqrt{2\epsilon}dW_t$$

are widely open because of the following difficulties:

- Complexity of the invariant measure
- @ Generator is not self-adjoint

Remarks on invariant measure:

- Gradient model $(b = -\nabla U)$ has Gibbs invariant measure $e^{-U(x)/\epsilon}$
- Friedlin-Wentzell decomposition: $b = -\nabla U + \ell$ with $\nabla U \cdot \ell \equiv 0$
- Gibbs invariant measure if and only if $\nabla \cdot \ell \equiv 0$
- Without condition $\nabla \cdot \ell \equiv 0$, invariant measure is highly complex; Bouchet-Reygner, 2016

Discussion on general SRPDS

Same questions for the **general** SRPDS

$$dx_t = b(x_t)dt + \sqrt{2\epsilon}dW_t$$

are widely open because of the following difficulties:

- Complexity of the invariant measure
- @ Generator is not self-adjoint
- Friedlin-Wentzell decomposition: $b = -\nabla U + \ell$ with $\nabla U \cdot \ell \equiv 0$
- Gibbs invariant measure if and only if $\nabla \cdot \ell \equiv 0$

Metastability under Gibbs invariant measure

- Eyring-Kramers formula: Lee-Seo, 2022
- Spectral gap: Le Peutrec-Michel, 2021
- Distributions: Landim-Lee-See, forthcoming

Table of contents

- 1 Small random perturbation of dynamical systems
- 2 Markov process description of metastability
- 3 Metastability and resolvent equations

Markov process: discrete time

Discrete time Markov chain on finite set

 $X_1, X_2, ...$ is called a **Markov chain** with jump probability p(x, y) if it jumps from x to y with probability p(x, y):

$$\mathbb{P}(X_{t+1} = y \mid X_t = x) = \rho(x, y)$$

$$p(x, y) + p(x, z) + p(x, w) + p(x, u) + p(x, v) = 1$$

Markov process: discrete time

Discrete time Markov chain on finite set

 X_1, X_2, \ldots is called a **Markov chain** with jump probability p(x, y) if it jumps from x to y with probability p(x, y):

$$\mathbb{P}(X_{t+1} = y \mid X_t = x) = \rho(x, y)$$

Jump from \mathcal{M}_1 to \mathcal{M}_2 after waiting a random amount of time

Markov process: continuous time

Continuous time Markov process on finite set

 $(X_t)_{t>0}$ is called a **Markov process** with jump rate r(x, y) if

- ① the process at x waits for random time of mean $\frac{1}{\sum_{u} r(x, u)}$
- 2 and then jumps to y with probability $\frac{r(x,y)}{\sum_{u} r(x,u)}$
- By increasing $r(\cdot, \cdot)$, not only jump probability is increased but also the jump occurs more quickly

Markov process: continuous time

Continuous time Markov process on finite set

 $(X_t)_{t>0}$ is called a **Markov process** with jump rate r(x, y) if

- 1 the process at x waits for random time of mean $\frac{1}{\sum_{u} r(x, u)}$
- 2 and then jumps to y with probability $\frac{r(x,y)}{\sum_{u} r(x,u)}$
- By increasing $r(\cdot, \cdot)$, not only jump probability is increased but also the jump occurs more quickly
- Associated generator *L*:

$$(Lf)(x) = \sum_{u} r(x, u)(f(u) - f(x))$$

ullet The generator L contains all the essential information

Markov process: continuous time

Continuous time Markov process on finite set

 $(X_t)_{t\geq 0}$ is called a **Markov process** with jump rate r(x, y) if

- 1 the process at x waits for random time of mean $\frac{1}{\sum_{u} r(x, u)}$
- 2 and then jumps to y with probability $\frac{r(x,y)}{\sum_{u} r(x,u)}$

Metastable behavior of x_t is described by a MP on $\{1, 2, 3\}$

Description of metastable behavior

- x_t : metastable process
- Y_t : continuous time Markov process on $\{1, 2, 3, 4\}$

Description of metastable behavior

Metastable behavior of x_t is described by MP Y_t at time scale θ :

$$\mathbb{P}(x_{\theta t} \in \mathcal{M}_i) \simeq \mathbb{P}(Y_t = i)$$

(Case 1)
$$H < H'$$
: two-scales $\theta_{\epsilon} = e^{H/\epsilon}$ and $\sigma_{\epsilon} = e^{H'/\epsilon}$

- $t_{\epsilon} \ll \theta_{\epsilon} \implies \mathbb{P}(x_{t_{\epsilon}} \in \mathcal{M}_1) \simeq 1$
- $t_{\epsilon} = t\theta_{\epsilon} \implies \mathbb{P}(x_{t_{\epsilon}} \in \mathcal{M}_1) \simeq p(t) \text{ and } \mathbb{P}(x_{t_{\epsilon}} \in \mathcal{M}_2) \simeq 1 p(t)$
- $\theta_{\epsilon} \ll t_{\epsilon} \ll \sigma_{\epsilon} \implies \mathbb{P}(x_{t_{\epsilon}} \in \mathcal{M}_{2}) \simeq 1$

(Case 1)
$$H < H'$$
: two-scales $\theta_{\epsilon} = e^{H/\epsilon}$ and $\sigma_{\epsilon} = e^{H'/\epsilon}$

- $t_{\epsilon} \ll \theta_{\epsilon} \implies \mathbb{P}(x_{t_{\epsilon}} \in \mathcal{M}_1) \simeq 1$
- $t_{\epsilon} = t\theta_{\epsilon} \implies \mathbb{P}(x_{t_{\epsilon}} \in \mathcal{M}_1) \simeq p(t) \text{ and } \mathbb{P}(x_{t_{\epsilon}} \in \mathcal{M}_2) \simeq 1 p(t)$
- $\theta_{\epsilon} \ll t_{\epsilon} \ll \sigma_{\epsilon} \implies \mathbb{P}(x_{t_{\epsilon}} \in \mathcal{M}_{2}) \simeq 1$
- $t_{\epsilon} = t\sigma_{\epsilon} \implies \mathbb{P}(x_{t_{\epsilon}} \in \mathcal{M}_2) \simeq q(t) \text{ and } \mathbb{P}(x_{t_{\epsilon}} \in \mathcal{M}_3) \simeq 1 q(t)$
- $t_{\epsilon} \gg \sigma_{\epsilon} \implies \mathbb{P}(x_{t_{\epsilon}} \in \mathcal{M}_3) \simeq 1$

(Case 2) H = H': complex behavior at scale $\theta_{\epsilon} = e^{H/\epsilon}$

- $t_{\epsilon} \ll \theta_{\epsilon} \implies \mathbb{P}(x_{t_{\epsilon}} \in \mathcal{M}_1) \simeq 1$
- $t_{\epsilon} = t\theta_{\epsilon} \longrightarrow \mathbb{P}(x_{t_{\epsilon}} \in \mathcal{M}_i) \simeq p_i(t)$ for i = 1, 2, 3
- $t_{\epsilon} \gg \theta_{\epsilon} \implies \mathbb{P}(x_{t_{\epsilon}} \in \mathcal{M}_3) \simeq 1$

Remark. Jump rate of Y_t can be inferred from Eyring-Kramers formula

Table of contents

- 1 Small random perturbation of dynamical systems
- 2 Markov process description of metastability
- 3 Metastability and resolvent equations

Negligibility of excursions

• Condition (N): if the process x_t starts at a metastable set,

$$\mathbb{E}\left[\int_0^T \mathbf{1}\left(x_{\theta t} \notin \bigcup \mathcal{M}_i\right)\right] \simeq 0$$

Meaning: speeded-up process spends negligible amount of time outside of metastable sets

Description of metastable behavior

• Condition **(C)**: For all $t_1 < \dots < t_k$ and i_1, \dots, i_k , $\mathbb{P}(x_{\theta t_1} \in \mathcal{M}_{i_1}, \dots, x_{\theta t_k} \in \mathcal{M}_{i_k}) \simeq \mathbb{P}(Y_{t_1} = i_1, \dots, Y_{t_k} = i_k)$

Meaning: the MP Y_t describes metastable behavior of the process x_t at time scale θ

Resolvent equation

• Condition (R): For any $f: S \to \mathbb{R}$, the solution F of

$$\lambda F(x) - \theta(\mathcal{L}F)(x) = \sum_{i \in S} (\lambda f - Lf)(i) \mathbf{1}_{\mathcal{M}_i}(x)$$

satisfies $F(x) \simeq f(i)$ on each \mathcal{M}_i

 Γ S: state space of Y_t (e.g., $S = \{1, 2, 3, 4\}$ for example above)

 \mathcal{L} : generator of x_t \mathcal{L} : generator of Y_t

Main results

Landim-Marcondes-Seo, 2021

Under the condition (N), the conditions (C) and (R) are equivalent

- Condition **(C)**: For all $t_1 < \dots < t_k$ and i_1, \dots, i_k , $\mathbb{P}(x_{\theta t_1} \in \mathcal{M}_{i_1}, \dots, x_{\theta t_k} \in \mathcal{M}_{i_k}) \simeq \mathbb{P}(Y_{t_1} = i_1, \dots, Y_{t_k} = i_k)$
- Condition (R): For any $f: S \to \mathbb{R}$, the solution F of

$$\lambda F(x) - \theta(\mathcal{L}F)(x) = \sum_{i \in S} (\lambda f - Lf)(i) \mathbf{1}_{\mathcal{M}_i}(x)$$

satisfies $F(x) \simeq f(i)$ on each \mathcal{M}_i

Remarks.

- \bigcirc Condition (N) is a technical one and can be proven independently
- Condition (R) implies condition (N)

Application to SRPDS

- Generator of $x_t \longrightarrow \mathcal{L}_{\epsilon}F = -\nabla U \cdot \nabla F + \epsilon \Delta F$
- Generator of $Y_t \longrightarrow Lf(i) = \sum_j r(i,j)(f(j) f(i))$
- Y_t decribes the metastable behavior of x_t at scale $\theta_\epsilon = e^{H/\epsilon}$ iff Condition (R) holds

The solution
$$F$$
 of

$$(\lambda - \theta_{\epsilon} \mathcal{L}_{\epsilon}) F(x) = \sum_{i=1}^{3} (\lambda f - Lf)(i) \mathbf{1}_{\mathcal{M}_{i}}(x)$$
 satisfies $\|F(x) - f(i)\|_{L^{\infty}(\mathcal{M}_{i})} \to 0$ as $\epsilon \to 0$

Flatness of solutions

Condition (R): For any $f: S \to \mathbb{R}$, the solution F of

$$\lambda F(x) - \theta(\mathcal{L}F)(x) = \sum_{i \in S} (\lambda f - Lf)(i) \mathbf{1}_{\mathcal{M}_i}(x)$$

satisfies $F(x) \simeq f(i)$ on each \mathcal{M}_i

General flatness: Landim-Marcondes-Seo, 2021

There exists $c(i) \in \mathbb{R}$ such that $F(x) \simeq c(i)$ on \mathcal{M}_i if

(1.1) mixing time \ll escape time

- Self-adjoint case: mixing time can be replaced with spectral gap $^{-1}$
- (1.1) has been verified for SRPDS
- Proving $c(i) \simeq f(i)$ is model dependent part

- We developed several robust methods to prove $c(i) \simeq f(i)$
- This method is also applied to
 - (Landim-Lee-Seo, forthcoming) SRPDS

$$dx_t = b(x_t) + \sqrt{2\epsilon}W_t \tag{1.2}$$

with Gibbs invariant measure, i.e. $b = -\nabla U + \ell$ with

$$\nabla U \cdot \ell \equiv \nabla \cdot \ell \equiv 0$$

- (Landim-Marcondes-Seo, 2021) Condensing interacting particle system with weak mixing property
- \odot We believe that the methodology is robust and can be applied to general SRPDS (1.2) as well

END OF PRESENTATION

