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Small random perturbation of dynamical systems
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e Dynamical system dx; = b(x;)dt

e Equilibria: m, s (stable) and o (unstable, saddle)

Small random perturbation of dynamical system (SRPDS)

@ Stochastic dynamical system

dx; = b(x¢)dt+v/2e dW,

@ ¢ > 0: small parameter (temperature), W;: Brownian motion

@ Metastability: rare transition from m to s




SRPDS: gradient case

e Dynamical system dx; = —V U(x;)dt

@ U: double-well potential (left figure above)

Special case: b=—-VU

@ Stochastic dynamical system

dx; = —V U(x¢)dt++/2e dW,

@ ¢ > 0: small parameter (temperature), W;: Brownian motion

@ Metastability: rare transition from m to s




Metastability of SRPDS: mean transition time

Model: gradient SRPDS
dx; = =V U(x;)dt+v/2e dW,;

Question: How long does it take to go from m to s?
@ Tj—s: transition time from mto S

@ E(7m—s): mean transition time

Large-deviation type estimate (Freidlin-Wentzell, 60s-70s)
U(o) — U(m)

log E(Tm—s) ~ .

Remark. Sharp estimate is missing:
U(o)—U(m)
E(Tmss) 2 ce™ ¢

where ¢, can be any sub-expoential term (e.g. €X or el/V¥€)



Metastability of SRPDS: mean transition time

Model: gradient SRPDS
dx; = =V U(x;)dt+v/2e dW,;

Question: How long does it take to go from m to s?
@ Tj—s: transition time from mto S

@ E(7m—s): mean transition time

Eyring-Kramers formula (Bovier et. al., 2004)

ug\/det(sz)(m) U(o)—U(m)

E(Tm—>8) =~ o

—det(V2U)(0)

® /i;: unique negative e.v. of (V2U)(0)

@ The self-adjointness of associated generator L. is crucially used:

Lt =—N U =N F +elAf



Metastability of SRPDS: spectral gap

Model: gradient SRPDS
dx; = =V U(x;)dt+v/2e dW,;

Eyring-Kramers formula (Bovier et. al., 2004)

—py | det(V2U)(m) L U)=u(m
27\ —det(V2U)(0)

E(Tm—>8) =~

® /i, unique negative e.v. of (V2U)(o)
@ The self-adjointness of associated generator L. is crucially used:

Lef =—NU-NF4+eAf

@ \.: smallest non-zero eigenvalue of —L. (spectral gap)

o A\ ~E(7m_s)! (exponentially small)



Metastability of SRPDS: distributions

Model: gradient SRPDS
dx; = =V U(x;)dt+v/2e dW,;

Question: xgp € M = Estimate of P(x; € M) and P(x; € S)

. : . U(o)—U(m)
Observation: something will happen around 6, = e €

Landim-Lee-Seo, forthcoming

o t. <. wp P(x, € M)~1
o t.=tl, mb P(x, € M) =~p(t) and P(x,. € S) ~1—p(t)
@ t.>0. ™» P(x;, € S)~1

Remark. p(t) can be computed explicitly



Connection to parabolic equations

Model: gradient SRPDS
dx; = =V U(x;)dt+v/2e dW,;
with generator L, = —VU -V +€A

Parabolic equation: for continuous and bounded g,
ur = Leu for (t, x) € (0, c0) x RY
{u(O, x) =g(x) for x e RY

Probabilistic expression: u(t, x) =E[g(x;)|x0 = x]

Landim-Lee-Seo, forthcoming

g(m) if t. < 0,
)g(m)+1—p(t)g(s) if te=t0,
L g(s) if t.>> 0,

x €M wp u(te, x)~3 p(t




Difficulty in complex potential

(Case 1) H < H': two-scales #. = /€ and o, = etl'/e
0 t. <. w P(x;, € Mp)~1
o t.=th. b P(x; € Mj)~p(t) and P(x;, € M2)~1—p(t)
0 . <t <o, mp P(x;, € My)~1
° t.=to. w P(x;, € My)=~q(t) and P(x;, € M3)~1—q(t)
o t. >0, mp P(x, € M3)~1




Difficulty in complex potential

(Case 2) H = H’: complex behavior at scale f, = e"/¢

o t. <0l mh P(x; € M;p)~1
o t. =tl. m P(x; € M;)~p;(t) fori=1,2,3

o t.> 0. w P(x; € Msz)~=1




Discussion on general SRPDS

Same questions for the general SRPDS
dx: = b(x¢)dt +/2edW;
are widely open because of the following difficulties:
@ Complexity of the invariant measure

© Generator is not self-adjoint

Remarks on invariant measure:
o Gradient model (b= —VU) has Gibbs invariant measure e~ Y(x)/¢
@ Friedlin-Wentzell decomposition: b=—-V U+ /¢ with VU -/ =0
@ Gibbs invariant measure if and only if V- /=0

@ Without condition V -£ =0, invariant measure is highly complex;
Bouchet-Reygner, 2016



Discussion on general SRPDS

Same questions for the general SRPDS
dx: = b(x¢)dt +/2edW;
are widely open because of the following difficulties:
Q@ Complexity of the invariant measure

@ Generator is not self-adjoint

@ Friedlin-Wentzell decomposition: b= -V U+ /¢ with VU -/ =0

@ Gibbs invariant measure if and only if V -/ =0

Metastability under Gibbs invariant measure

@ Eyring-Kramers formula: Lee-Seo, 2022
@ Spectral gap: Le Peutrec-Michel, 2021

@ Distributions: Landim-Lee-See, forthcoming
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Markov process: discrete time

Discrete time Markov chain on finite set

X1, Xo, ... is called a Markov chain with jump probability p(x, y) if
it jumps from x to y with probability p(x, y):

IPD(Xt+1 :,V’Xt :X) — P(Xa)/)

p(x, y)+p(x, z) + p(x, w) +p(x, u) + p(x, v) =1




Markov process: discrete time

Discrete time Markov chain on finite set

X1, X2, ... is called a Markov chain with jump probability p(x, y) if

it jumps from x to y with probability p(x, y):

IPD(Xt+1 :,V’Xt :X) — P(Xa)/)

Jump from M to M, after waiting a random amount of time




Markov process: continuous time

Continuous time Markov process on finite set

(Xt)t>0 is called a Markov process with jump rate r(x, y) if

1
, F(x;u)

© the process at x waits for random time of mean S

© and then jumps to y with probability zr(’;’(i)u)

@ By increasing r(-, -), not only jump probability is increased but also

the jump occurs more quickly



Markov process: continuous time

Continuous time Markov process on finite set

(Xt)t>0 is called a Markov process with jump rate r(x, y) if

1
, F(x;u)

© the process at x waits for random time of mean S

© and then jumps to y with probability zr(’;’(i)u)

@ By increasing r(-, -), not only jump probability is increased but also

the jump occurs more quickly

@ Associated generator L:

(LA)(x) = r(x, u)(f(u) = f(x))

u

@ The generator L contains all the essential information



Markov process: continuous time

Continuous time Markov process on finite set

(Xt)t>0 is called a Markov process with jump rate r(x, y) if

1
, F(x;u)

© the process at x waits for random time of mean S

© and then jumps to y with probability zr(’;’(i)u)

Metastable behavior of x; is described by a MP on {1, 2, 3}




Description of metastable behavior

Process x; Process Y;

L e

M; Mo factor 6

I

) L e

W

® 4

@ Xx:: metastable process

@ Y;: continuous time Markov process on {1, 2, 3, 4}

Description of metastable behavior

Metastable behavior of x; is described by MP Y; at time scale 6:
P(th = M,) =~ P( Yt = l)




Concluding remarks

Markov process Y%

M

My

Scale 6, 1 2 3

I *—>0o ®

p(t)=P(Y:=1)

(Case 1) H < H': two-scales #. = /€ and o, = etl'/e
0 t. <. w P(x;, € Mp)~1
o t.=tl, wb P(x; € M1)~p(t)and P(x;, € M2)~1—p(t)
0 . <t <o, mp P(x;, € My)~1




Concluding remarks

Scale o,

>

Markov process Y%

{1,2} 3
@ o —>o

q(t) — [P)( Yi= {17 2})

0 t. <l mp P(x; € My)~1

0 . <t Ko, mp P(x;, € Mp)~1

o t. >0, mp P(x, € M3)~1

(Case 1) H < H': two-scales 0, = e"/¢ and o, = etl'/e

o t.=1t0. mp P(x; € M7)~p(t) and P(x;. € M) ~1—p(t)

o t.=to. mp P(x; € Mjy)~q(t) and P(x;, € M3) ~1—q(t)




Concluding remarks

Markov process Y%

Scale 6, 1 2 3

— *—> —>0

pi(t) =P(Yr =)

(Case 2) H = H’: complex behavior at scale f, = e"/¢

0 t. < 0. wp P(x; € Mq)~1
o t. =tl. m P(x; € M;)~p;(t) fori=1,2,3

o t.> 0. w P(x; € Msz)~=1

Remark. Jump rate of Y; can be inferred from Eyring-Kramers formula
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Negligibility of excursions

Process x; Process Y;

speed-up by l e 5
factor 6

I

3@ >0 4

e Condition (N): if the process x; starts at a metastable set,

/OTI (xoe ¢ U/\/l,-)] ~0

Meaning: speeded-up process spends negligible amount of time

E

outside of metastable sets



Description of metastable behavior

Process x; Process Y;

speed-up by l e 5
factor 6

I

3@ >0 4

e Condition (C): For all t; <--- <ty and iy, ..., i,

]P)(Xﬁ’tl S Mfla ooy X0t € Mik) ZP(YH — il’ Tt Ytk — "k)

Meaning: the MP Y; describes metastable behavior of the process

x¢ at time scale 6



Resolvent equation

Process x; Process Y;
speed-up by L~ 9
factor 6
3@ >® 4

e Condition (R): For any f: S — R, the solution F of
AF(x) = O(LF)(x) =) (Af = LF)(i) 1p,(x)

I€ES
satisfies F(x) =~ (/) on each M;

S: state space of Y; (e.g., S={1, 2, 3,4} for example above)
{ L: generator of x;

L: generator of Y;



Main results

Landim-Marcondes-Seo, 2021
Under the condition (N), the conditions (C) and (R) are equivalent

e Condition (C): For all t; <--- <ty and i1, ..., i,

]P)(Xﬁ)tl S Mf17 ey X0ty < Mik) 2IP)(\'/I'-LI =1, .., Ytk — "k)

e Condition (R): For any f : S — R, the solution F of

AF(x) = O(LF)(x) =Y (Af = LF)(i) 1ag,(x)
ieS
satisfies F(x) ~ f (/) on each M;
Remarks.

@ Condition (N) is a technical one and can be proven independently

@ Condition (R) implies condition (N)



Application to SRPDS

dx; = —V U(x)dt ++/2e dW,
Scale 6.

ffffff

M3

Markov process Y%

@ Generator of x; mp L.F =—VU-VF+eAF
o Generator of Yy m Lf(i)=)_.r(i,j)(f(j)—7(i))

@ Y; decribes the metastable behavior of x; at scale

Condition (R) holds
*

0 = el/< iff

The solution F of
3

i=1
satisfies ||F(x) — (/)| oc(ar;) 70 ase—0

(A=0cLF(x) =) (A= LF)(i) 1ag;(x)




Flatness of solutions

Condition (R): For any f : S — R, the solution F of
AF(x) = O(LF)(x) =) (A —LF)(i) 1o, (x)
i€eS
satisfies F(x) ~ (i) on each M;

General flatness: Landim-Marcondes-Seo, 2021

There exists ¢(i) € R such that F(x) ~ c(i) on M; if \ //
\

(1.1) mixing time < escape time M/\/

1

@ Self-adjoint case: mixing time can be replaced with spectral gap~?!

@ (1.1) has been verified for SRPDS

@ Proving c(i) ~ f(i) is model dependent part



Concluding remarks

@ We developed several robust methods to prove c(i) =~ (i)

@ This method is also applied to
o (Landim-Lee-Seo, forthcoming) SRPDS
dxt = b(xt) +V2eW; (1.2)
with Gibbs invariant measure, i.e. b= —V U + ¢ with

VU /=V - /=0

o (Landim-Marcondes-Seo, 2021) Condensing interacting particle

system with weak mixing property

© We believe that the methodology is robust and can be applied to
general SRPDS (1.2) as well
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