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Hilbert’s 6th Problem

N-body Problems −→ Boltzmann Equations −→ Fluid PDEs

“Boltzmann’s work on the principles of mechanics suggests the
problem of developing mathematically the limiting processes, there
merely indicated, which lead from the atomistic view to the laws of
motion of continua”- David Hilbert 1900



Classical N-body Problem

I N identical particles, elastic collision

I Liouville equation in punctured phase space, specular
reflection BC at the boundary

I Chaos property, Grad-Boltzmann limit



Boltzmann equation

∂tF + v · ∇xF = Q(F ,F )

where

Q(F ,F )(v) =

∫
R3

∫
S2

|(v − u) · ω|[F (v ′)F (u′)− F (v)F (u)]dωdu

with v ′ = v − [(v − u) · ω]ω, u′ = u + [(v − u) · ω]ω.

I Equilibrium solutions: Maxwellian

MR,U,T (v) =
R

(2πT )3/2
exp

{
−|v − U|2

T

}



Scales
I rescale variables (t, x , v) and collision kernel |(v − u) · ω|:

t̂ =
t

T
, x̂ =

x

L
, v̂ =

v

c
, |(v̂ − û) · ω̂| =

1

πr2c
|(v − u) · ω|

where the speed of sound c =
√

5
3
kΘ
m .

I Mean free path∼ 1
(N/V )×A = 1

(N/L3)×πr2 : average distance

between two successive collisions for one gas molecule picked
at random

I dimensionless distribution: F̂ (t̂, x̂ , v̂) = L3c3

N3 F (t, x , v)
I dimensionless Boltzmann equation

L

cT
∂t̂ F̂ + v̂ · ∇x̂ F̂ =

L

Mean free path
Q̂(F̂ , F̂ )

I

St∂t̂ F̂ + v̂ · ∇x̂ F̂ =
1

Kn
Q̂(F̂ , F̂ )



I Mach number (Ma): F ∼ M1,0,1 + O(Ma)

I St = L
cT → c × St = L

T ≥ Ma: Ma . St

I St ↓ 0 (incompressible) vs St ∼ 1 (compressible) as Kn ↓ 0

I von Karman relation: Re (Reynolds numbers) = Ma
Kn

I incomp. Navier-Stokes: St ∼ Kn ∼ Ma (biggest Ma plus
Re ∼ 1)

I incomp. Euler: St ∼ Ma and Kn = κ×Ma with κ = O(Ma)
(biggest Ma plus Re ↑ ∞)

I incomp. Euler limit: Consider solutions |Fε −M1,0,1| = O(ε)
solves

ε∂tFε + v · ∇xFε =
1

κε
Q(Fε,Fε).

Goal: Fε ∼ M1,εu(t,x),1 as ε ↓ 0 and

∂tu + u · ∇xu +∇xp = 0

∇x · u = 0



Key features of incompressible Euler limit

I “more” Singular limit problem, cf. Navier-Stokes limit (e.g.
Golse–Saint-Raymond 2004, Esposito-Guo-K-Marra 2018)

I Need to know Euler solutions, e.g. Lipschitz smoothness
(Saint-Raymond 2003)

I “As long as the target solutions are smooth then well-prepared
solutions of Boltzmann may have convergence”, e.g. , Nishida
1978, Caflisch 1980, De Masi-Esposito-Lebowitz 1989, Guo
2006, etc



2D Incompressible Euler equations
In 2D, ω = ∇⊥ · u = ∂1u2 − ∂2u1

∂tω + div (ωu) = 0, u = −∇⊥(−∆)−1ω (1)

I Existence and Uniqueness for ω ∈ L∞ by Yudovich (1963) and
now-called Yudovich space by Yudovich (1995)

‖ω‖Y Θ
ul(Ω) := sup

1≤p<∞

‖ω‖Lp(Ω)

Θ(p)
, Θ(p) =

m∏
k=1

logk p (2)

for large p > 1, where logk p = log ◦ · · · ◦ log p with log0 p = 1.

I Osgood continuity of u implies uniqueness:
|u(t, x)− u(t, y)| ≤ C (t)ρ(|x − y |) with C (t) ∈ L1(0,T ) and∫ 1

0
1
ρ(s)ds =∞

I Existence of ω ∈ Lp for 1 < p <∞ by DiPerna-Majda (1987)

I Uniqueness for ω ∈ Lp for p <∞: Major open problem



Lagrangian solution

I For u ∈ L1
t,x , a regular Lagrangian flow of

d

ds
X (s; t, x) = u(s,X (s; t, x)), X (s; t, x)|s=t = x . (3)

I s ∈ [0, t] 7→ X (s; t, x) is a absolutely continuous integral
solution for a.e. x and any t.

I X (s; t, x) = x for a.e. x .
I There exists C > 0 such that

∫
φ(X (s; t, x))dx ≤ C

∫
φ(x)dx

for any measurable function φ ≥ 0.

I ω ∈ Lp for p ∈ [1,∞]: Existence and uniqueness of regular
Lagrangian flow (DiPerna-Lions (1989))

I Lagrangian solution: ω(t, x) = ω0(X (0; t, x))



Main Theorem
We define the Boltzmann (macroscopic) velocity and Boltzmann
vorticity:

uεB(t, x) =
1

ε

∫
R3

v(F ε(t, x , v)−M1,0,1(v))dv ,

ωεB(t, x) = ∇⊥ · uεB(t, x).

(4)

Theorem (Joonhyun La-K)

For an arbitrary T ∈ (0,∞), suppose (u0, ω0) ∈ L2(Ω)× Lp(Ω) for
p ∈ [1,∞) and (u, ω) be a Lagrangian solution of (E) in [0,T ].
There exists a family of Boltzmann solutions F ε(t, x , v) such that

sup
t∈[0,T ]

∥∥∥∥∥F ε(t)−M1,εu(t),1

ε
√
M1,0,1

∥∥∥∥∥
L2(T2×R3)

→ 0 (5)

Moreover the Boltzmann vorticity converges to ω:

ωεB → ω. (6)



Theorem (Joonhyun La-K)

Choose an arbitrary T ∈ (0,∞). Suppose ω0 ∈ Y Θ
ul (T2), and let

(u, ω) be a unique solution of (E). Then there exists a family of
Boltzmann solutions F ε(t, x , v) such that

sup
t∈[0,T ]

∥∥∥∥∥F ε(t)−M1,εu(t),1

ε
√
M1,0,1

∥∥∥∥∥
L2(T2×R3)

→ 0. (7)

Moreover, with an explicit rate,

sup
0≤t≤T

‖uεB(t, ·)− u(t, ·)‖L2(T2) . Rate(β),

sup
0≤t≤T

‖ωεB(t, ·)− ω(t, ·)‖Lp(T2) . Rateω(β).
(8)



Highlights

I Selection Principle when ω ∈ Lp with p <∞.

I Vorticity Convergence: capture the singularity (e.g. Vortex
patch), beyond the relative Entropy method

I Convergence rate when ω ∈ Y Θ
ul (T2)

I The proof does not rely on inviscid limit of Navier-Stokes, cf.
Jang-K 2021



Difficulties

I Global Maxwellian vs Local Maxwellian: Hilbert expansion
around the global Maxwellian does not work:
M1,0,1 + εf1

√
M1,0,1 + · · · produces an et/κ growth for the

remainder.

I Without using inviscid limit of Navier-Stokes, we cannot go
beyond the Lipschitz regularity of u.

I velocity mixing is weak (e.g. velocity average/elliptic
regularity).

I Commutator makes higher derivatives estimate worse.



Key Ideas

1. Set µ = M1,εuβ ,1 (global Maxwellian is not working!) where

uβ = ϕβ ∗ u
F ε = µ+ ε2f2

√
µ+ εfR

√
µ (9)

Then

∂t fR +
v

ε
· ∇x fR +

(
(∂t + v

ε · ∇x)
√
µ

√
µ

)
fR +

1

ε2κ
Lf (10)

=
1

εκ
Γ(fR , fR)− {∂tu + u · ∇xu +∇xp︸ ︷︷ ︸

=0(Euler)

−κ∆u}+ · · · (11)



2. At best an Energy fR ∼ κ; Dissipation (I− P)fR ∼ εκ3/2;
elliptic regularity/velocity average PfR ∼ κ1/2

v · ∇x fR ∼
1

εκ
L(I− P)fR ∼ κ1/2 (12)

But nonlinear estimate:∫
1

ε
Γ(

fR
κ
,
fR
κ

)
fR
κ
∼ ‖κ1/2Γ(

fR
κ
,
fR
κ

)‖L2‖ε−1κ
−3
2 (I− P)fR‖L2

. κ−1/2‖PfR‖L∞
√
E
√
D



3. Higher order estimate. Commutator [[P,∇x ]]: ∇x ∼ κ−1/2,
Energy and Dissipation

E(t) =
∑
s≤2

‖κ−1+ s
2∂s fR‖2

L∞t L2
x,v

(13)

D(t) =
∑
s≤2

‖ε−1κ−
3
2

+ s
2 ν1/2(I− P)∂s fR‖2

L∞t L2
x,v

(14)

Recall the Agmon: ‖PfR‖L∞x . ‖PfR‖
1/2
L2
x
‖∇2

xPfR‖
1/2
L2
x
∼ κ1/211/2



5. Cancel the diffusion term:

F ε = µ+ ε2pβµ− ε2κ(∇xu
β) : A

√
µ

+ εκũβ · (v − εuβ)µ+ ε2κp̃βµ+ εfR
√
µ,

(15)

I A pressure −∆pβ = div(div(uβ ⊗ uβ)) with
∫

Ω pβ = 0.

(∂t + uβ · ∇x)uβ +∇xp
β = 0, (t, x) ∈ (0,T )× T2

∇x · uβ = 0, (t, x) ∈ (0,T )× T2

uβ(x , 0) = uβ0 (x), x ∈ T2

(16)

I LA = v ⊗ v − |v |
2

3 id

I Also, we will consider the following auxiliary equation.

(∂t + uβ · ∇x)ũβ + ũβ · ∇xu
β +∇x p̃

β − η0∆xu
β = 0,

∇x · ũβ = 0, (t, x) ∈ (0,T )× T2

ũβ(0, x) = ũ0(x), x ∈ T2.

(17)



The key reason to introduce correctors εκũβ · (v − εuβ)µ and
ε2κp̃βµ is to get rid of hydrodynamic terms of order ε2κ
(diffusion): as a payback, we obtained terms of order εκ, which is
larger, but all of them are non-hydrodynamic, so they are small in
our scale:

cancel ε2κ ∈ N and get εκ ∈ N⊥ (18)

6. Stability of regular Lagrangian flow when ω ∈ Lp for p ≥ 1
(Crippa-De Lellis 2008)



Thank You!


