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Part I. Vlasov-Poisson system (with M.

Bessemoulin-Chatard)



The Vlasov-Poisson system

The Vlasov-Poisson equations of the plasma in dimensionless variables can be

written as, 

∂f

∂t
+ v

∂f

∂x
+ E

∂f

∂v
= 0 ,

∂E

∂x
= ρ− ρ0 ,

f (t = 0) = f0 ,

(1)

where the density ρ is given by

ρ(t, x) =

∫
R
f (t, x , v) d v , t ≥ 0, x ∈ T.

To ensure the well-posedness of the Poisson problem we add the compatibility

(or normalizing) condition∫
T
ρ(t, x) d x =

∫
T

∫
R
f (t, x , v) d v d x = mes(T) ρ0, ∀ t ≥ 0,

My aim today

To present and study the stability of a class of conservative Spectral method

for this Vlasov-Poisson System.
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Hermite polynomials and Hermite functions

For a given scaling positive function t 7→ α(t) which will be determined later,

we define the weight as

ω(t, v) :=
√

2π exp

(
α2(t) |v |2

2

)
,

and the associated weighted L2 space

L2(ω(t) d v) :=

{
g : R→ R :

∫
R
|g(v)|2 ω(t, v) d v < +∞

}
,

with 〈·, ·〉L2(ω(t) d v) the inner product and ‖ · ‖L2(ω(t) d v) the corresponding

norm. We choose the following basis of normalized scaled time dependent

asymmetrically weighted Hermite functions:

Ψn(t, v) = α(t)Hn (α(t)v)
e−(α(t)v)2/2

√
2π

,

where α is a scaling function depending on time and Hn are the Hermite

polynomials defined by H−1(ξ) = 0, H0(ξ) = 1 and for n ≥ 1, Hn(ξ) has the

following recursive relation
√
n Hn(ξ) = ξHn−1(ξ)−

√
n − 1Hn−2(ξ) , ∀ n ≥ 1 .
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The reformulated Vlasov-Poisson system

For any integer N ≥ 1 and t ≥ 0, we introduce the space VN as the subspace

of L2(ω(t) d v) defined by

VN := Span{Ψn(t), 0 ≤ n ≤ N − 1}.

Then we look for an approximate solution fN of (7) as a finite sum which

corresponds to a truncation of a series

fN(t, x , v) =
N−1∑
n=0

Cn(t, x) Ψn(t, v) , (2)

where N is the number of modes and (Cn)0≤n≤N−1 are computed using

orthogonality property and taking Hn(α v) as test function in (7). Therefore, a

system of evolution equations is obtained for the modes (Cn)0≤n<N

∂tCn + Tn[C ] = Sn[C ,EN ] ,

Tn[C ] =
1

α

(√
n ∂xCn−1 +

√
n + 1 ∂xCn+1

)
,

Sn[C ,EN ] =
α′

α

(
n Cn +

√
(n − 1)n Cn−2

)
+ EN α

√
n Cn−1 ,

(3)
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The reformulated Vlasov-Poisson system

Meanwhile, we observe that the density ρN satisfies

ρN =

∫
R
fN d v = C0 ,

and then the Poisson equation becomes

∂EN

∂x
= C0 − ρ0,N , (4)

Space discretization : discontinuous Galerkin method

Given any k ∈ N, we define a finite dimensional discrete piecewise polynomial

space

Xh =
{
u ∈ L2(T) : u|Ij ∈Pk(Ij), j ∈ J

}
,

where the local space Pk(I ) consists of polynomials of degree at most k on

the interval I .
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Hermite spectral form of the Vlasov equation

Spectral methods are commonly used to approximate the solution to the

Vlasov-Poisson system 1

• It starts with the work of Harold Grad in kinetic theory (1949 CPAM);

• J. P. Holloway and J. W. Schumer (1995) (even before Engelmann et al.

in 1963) applied Hermite functions. Indeed, the product of Hermite

polynomials and a Gaussian, seems to be a natural choice for

Maxwellian-type velocity profiles.

• More recently, these methods generate a new interest leading to new

techniques to improve their efficiency : Le Bourdiec, De Vuyst & Jacquet

(2006), Z. Cai, R. Li and Y. Wang (2013, 2018), Camporeale, Delzanno,

Bergen and Moulton (2016), Manzini, Delzano, Vencels, Markidis (2016).

• K. Kormann and A. Yurova, stability of Fourier–Hermite method (2021)

• Same spirit as the work of the B. Després : Symmetrization of

Vlasov-Poisson equations. SIAM J. Math. Anal. (2014).
1M. Shoucri & G. Knorr (1974), A. Klimas & W. Farell (1994), B. Eliasson (2003), J. Holloway &

J. Schumer (1998)
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Stability estimate in weighted L2

We set µt the measure given as

dµt = ω(t, v) d x d v

where the weight ω is provided before and the following L2 weighted space

given by

L2(dµt) :=

{
g : T× R→ R :

∫∫
T×R
|g(x , v)|2 dµt < +∞

}
,

Proposition

Consider (f ,E) a smooth solution of the Vlasov-Poisson system, where f is

not necessarily nonnegative. Assuming that the initial data f0 belongs to

L2(dµ0), then there exists c0 > 0 such that solution f (t) satisfies for all t ≥ 0

:

‖f (t)‖L2(dµt ) ≤ ‖f0‖L2(dµ0) e
t/4γ ,

where α appearing in the definition of the weight ω is given by

α(t) =
α0

1 + 2α0 c0 γ2 ‖f0‖2
L2(dµ0)

(et/2γ − 1)
. (5)
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Idea of the proof

We compute the time derivative of ‖f (t)‖2
L2(dµt ). One has

1

2

d

d t
‖f ‖2

L2(dµt ) = −
∫∫

T×R
f (v ∂x f + E ∂v f ) dµt +

1

2

∫∫
T×R

αα′ |v |2 f 2 dµt .

Then, since ∫
R
f E ∂v f ω d v = −1

2

∫
R
α2 f 2 E v ω d v ,

we obtain

1

2

d

d t
‖f ‖2

L2(dµt ) =
1

2

∫∫
T×R

f 2
(
α2 E v + αα′ |v |2

)
dµt .

hence after Young’s inequality and reordering

1

2

d

d t
‖f ‖2

L2(dµt ) ≤
α

2

(γ
2
α3 ‖E‖2

L∞ + α′
) ∫∫

T×R
f 2 |v |2 dµt +

1

4γ
‖f ‖2

L2(dµt ).
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Idea of the proof

In one dimension, we have (in fact the result is better)

‖E‖2
L∞ ≤

c0

α(t)
‖f ‖2

L2(dµt ) .

Substituting this inequality in the latter estimate, it yields

1

2

d

d t
‖f ‖2

L2(dµt ) ≤
α

2

(c0γ

2
α2 ‖f ‖2

L2(dµt ) + α′
) ∫∫

T×R
f 2 |v |2 dµt +

1

4γ
‖f ‖2

L2(dµt ) .

Therefore, choosing α as

α(t) =
α0

1 + 2α0 c0 γ2 ‖f0‖2
L2(dµ0)

(et/2γ − 1)
,

we get the expected result.

Remark

This approach can be also applied for weighted Lp spaces, with p > 1. It

provides Lp estimates on the density ρ

‖ρ(t)‖Lp ≤ C ‖f (t)‖Lp(dµt ).

For the Vlasov-Poisson- system, when p > N it gives a control in L∞ on the

electric field...
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Stability for the discrete system

Similarly as in the continuous case, we establish the following stability result for

the Hermite/discontinuous Galerkin method

Proposition

For any t ∈ [0,T ], consider the scaling function α provided before and fδ(t)

the semi-discrete approximate solution given by the truncated series. Assume

that ‖fδ(0)‖L2(dµ0) < +∞. Then, we have

d

d t
‖fδ(t)‖2

L2(dµt ) :=
d

d t

(
α(t)

N−1∑
n=0

∫
T
|Cδ,n|2 d x

)

≤ −
N−1∑
n=0

∑
j∈Ĵ

νn [Cδ,n]2
j− 1

2
+

1

2 γ
‖fδ(t)‖2

L2(dµt ),

from which we deduce

‖fδ(t)‖L2(dµt ) ≤ ‖fδ(0)‖L2(dµ0) e
t/4γ .
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Convergence theorem

Our main result is the following.

Theorem

For any t ∈ [0,T ], consider the scaling function α provided before and let

f (t, .) ∈ Hm(dµt) be the solution of the Vlasov-Poisson system (7) where

m ≥ k + 1 and fδ be the approximation defined by Hermite/DG. Then there

exists a constant C > 0, independent of δ = (h, 1/N) but depending on the

scaling function α(t) such that

‖f (t)− fδ(t)‖L2(dµt ) ≤ C
[

1

N(m−1)/2
+ hk+1/2

]
. (6)

• This result shows spectral accuracy in velocity and classical order of

convergence of the discontinuous Galerkin method for the space

discretization.

• Of course C > 0 denpends on the scaling parameter α;
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Key estimate

Let us define the Fokker-Planck operator F as

F [g ](v) = −∂v
(
ω−1(t) ∂v (g ω(t))

)
,

where ω(t) is the weight defined before. Hence, the Hermite function Ψn is

the n-th eigenfunction of the following singular Liouville problem:

−F [g ](v) + λ g(v) = 0, v ∈ R,

with corresponding eigenvalues λn = α2(t) n.

Proposition

Let r ≥ 0. For any g ∈ H r (ω(t) d v), it holds for all N ≥ 0

‖ g − PVN g ‖L2(ω(t) d v) ≤
C

(α2(t)N )r/2
‖g‖Hr (ω(t) d v) ,

with C > 0 independent of N and t.
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Filtering technique & Time adaptive scheme

Filtering

It is a common procedure to reduce the effects of the Gibbs phenomenon.

The filter will consist in multiplying some spectral coefficients by a scaling

factor σ in order to reduce the amplitude of high frequencies, for any NH ≥ 4,

C̃n = Cn σ

(
n

NH

)
.

Here, we simply apply a filter, called Hou-Li’s filter2 for β = 36,

σ(s) =


1 , if 0 ≤ |s| ≤ 2/3 ,

exp(−β |s|β) , if |s| > 2/3 .

Remark

- Observe that the filter is applied only when NH ≥ 4, hence the filtering

process does not modify the coefficients (Ck)0≤k≤2

- It is possible to adapt the number of modes NH along the simulations
2Th. Y. Hou and R. Li, (2007)
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Two stream instability
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Two stream instability

Figure 1: Two stream instability: (a) deviation of mass, momentum and energy, (b)

time evolution of the electric field in L2 norm in logarithmic value with DG-H:

Nx × NH = 64 × 128 and the reference solution is from the PFC scheme with

Nx × Nv = 256 × 1024.
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Two stream instability

Figure 2: Two stream instability: (a) time evolution of the weighted L2 norm of f ,

(b) time evolution of the scaling function α for DG-H with Nx × NH = 64 × 128 and

the reference solution is from the PFC scheme with Nx × Nv = 256 × 1024.
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Part II : Discrete hypocoercive

estimates for the Vlasov-Fokker-Planck

equation (with A. Blaustein)



The Vlasov-Fokker-Planck equation

We consider the one dimensional Vlasov-Fokker-Planck equation with periodic

boundary conditions in space, it reads

∂t f +
1

ε
(v ∂x f + E ∂v f ) =

1

τ(ε)
∂v (v f + ∂v f ) , (7)

where the electric field derives from a potential Φ such that E = −∂xΦ, with

the following regularity assumption

Φ ∈W 2,∞ (T) .

The distribution function f relaxes towards the stationary solution to the

Vlasov-Fokker-Planck equation ρ∞M, where the Maxwellian M is given by

M(v) =
1√

2πT0

exp

(
− |v |

2

2T0

)
,

whereas the density ρ∞ is determined by

ρ∞ = c0 exp

(
− Φ

T0

)
,

where the constant c0 is fixed by the conservation of mass
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About the diffusive limit

In the case where τ(ε) ∼ τ0 ε
2, for some τ0 > 0. The spatial density converges

to a time dependent ρ whose dynamics are driven by a drift-diffusion equation

depending on the force field E .

Indeed, performing the change of variable

x → x + τ0 ε v

and integrating with respect to v , we deduce that the quantity

π (t, x) =

∫
R
f (t, x − τ0 ε v , v) d v ,

solves the following equation

∂t π + τ0 ∂x

(∫
R
E f (t, x − τ0 ε v , v) d v − ∂x π

)
= 0 .

According to its definition, π verifies: ρ ∼ π in the limit ε → 0. Therefore, we

may formally replace π with ρ and ε with 0 in the latter equation. This yields

f (t, x , v) −→
ε→0

ρτ0 (t, x)M(v) ,

where ρτ0 solves

∂tρτ0 + τ0 ∂x (E ρτ0 − ∂x ρτ0 ) = 0 .
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Hermite decomposition

We again consider the decomposition of f n the Hermite basis

f (t, x , v) =
∑
k∈N

Ck (t, x) Ψk(v) .

The natural functional framework here is the L2 space with weight ρ−1
∞ .

Unfortunately, it is not very well adapted to the space discretization, hence we

set

Dk :=
Ck√
ρ∞

and get that
∂tDk +

1

ε

(√
k ADk−1 −

√
k + 1A?Dk+1

)
= − k

τ(ε)
Dk ,

Dk(t = 0) = D0,ε
k ,

(8)

where operators A and A? are given by
A u = +∂xu −

E

2
u ,

A? u = −∂xu −
E

2
u .
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Basic properties on A

1. First, A? is its dual operator in L2(T), indeed for all u, v ∈ H1(T) it holds

〈A?u, v〉 = 〈Av , u〉 ;

2. we have D∞,0 lies in the kernel of A, indeed

AD∞,0 = 0 ;

3. we also point out that since A+A? = ∂xΦ, it holds

‖ (A+A?) u‖L2 ≤ ‖Φ‖W 1,∞‖u‖L2 ;

4. the operators A and A? do not commute and we have

[A, A?] = AA? −A?A = ∂xxΦ ,

which yields

‖ [A, A?] u‖L2 ≤ ‖Φ‖W 2,∞ ‖u‖L2 .
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Long time behavior and propagation of regularity

We define the following H1 norm, defined for all D = (Dk)k∈N as follows

‖BD‖2
L2 =

∑
k∈N

‖Bk Dk‖2
L2(T) ,

where the family of differential operator B = (Bk)k ≥ 0 is defined as follows

Bk =

 A , if k = 0 ,

A?, else .

Theorem

(i) under the condition ‖D(0)‖L2 < +∞, it holds

‖D(t) − D∞‖L2 ≤ C exp

(
−τ(ε)

ε2
κ t

)
;

(ii) under the condition ‖BD(0)‖L2 + ‖D(0)‖L2 < +∞, it holds

‖BD(t)‖L2 ≤ C exp

(
−τ(ε)

ε2
κ t

)
;
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Comments on these results

• The main difficulty here consists in proving the convergence of the first

coefficient D0 in the Hermite decomposition of f towards the equilibrium
√
ρ∞. We adapt hypocoercivity methods developed in

Dolbeault-Schmeiser & Mouhot (TAMS 2015) to the framework of

Hermite decomposition

• we introduce modified entropy functionnals in order to recover dissipation

and thus a convergence rate on D0 :

H0[D|D∞] =
1

2
‖D(t)− D∞‖2

L2 + α0

〈
τ(ε)

ε
A?D1, u

ε

〉
,

where uε is the particular solution to equation
A?A u = D0 − D∞,0 ,∫
T
u
√
ρ∞ d x = 0 .
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Diffusive limit ε → 0.

We denote by E1 the relative entropy ‖f − ρM‖:

E1(t) =
1

2

∑
k≥1

‖Dk(t)‖2
L2 .

Then we have the following theorem

Theorem

Suppose that τ(ε) = τ0 ε
2. For all positive ε, consider D = (Dk)k∈N the

solution to (8) with an initial datum D(0) such that

‖D(0)‖2
H1 := ‖BD(0)‖2

L2 + ‖D(0)‖2
L2 < +∞ .

and consider Dτ0 = (Dτ0,k)k∈N given by limit drift-diffusion equation,

E1(t) ≤ E1(0) e−t/(2τ0ε
2) + C ε2 ‖D(0)− D∞‖H1 e−τ0 κ t .

On the other hand, it holds

‖(D0 − Dτ0,0)(t)‖H−1 ≤ C
(
‖(D0 − Dτ0,0)(0)‖H−1 + ε

)
e−τ0 κ t
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Conclusion & Perspectives

• We propose a Hermite decomposition of the Vlasov-Poisson system and

the linear Vlasov-Fokker-Planck equation : this approach allows us to

construct accurate and stable numerical approximation.

• This framework is well suited for discrete hypocoercive estimates : long

time behavior and diffusive limit

• Perspectives : apply this latter strategy for the

Vlasov-Poisson-Fokker-Planck system
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