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Part I. Vlasov-Poisson system (with M.
Bessemoulin-Chatard)



The Vlasov-Poisson system

The Vlasov-Poisson equations of the plasma in dimensionless variables can be

written as, ]
of of of
OE
; =p—po, (1)
Ox
f(t=0)="f,

where the density p is given by
p(t,x) = / f(t,x,v)dv, t>0,xeT.

To ensure the well-posedness of the Poisson problem we add the compatibility

(or normalizing) condition

//)(t,x)dxz// f(t,x,v)dvdx = mes(T)po, Vt=>0,
T Jr Jr

My aim today
To present and study the stability of a class of conservative Spectral method

for this Vlasov-Poisson System.
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Hermite polynomials and Hermite functions

For a given scaling positive function t — «(t) which will be determined later,
we define the weight as

2 2
w(t,v) := V2 exp <%) ,
and the associated weighted L2 space
LP(w(t)dv) == {g "R—R: / lg(V)Pw(t,v)dv < +%} ,
JR

with (-, -)/2(,(+)d,) the inner product and || - ||;2(,,()4 ) the corresponding
norm. We choose the following basis of normalized scaled time dependent
asymmetrically weighted Hermite functions:

e—(@(®)v)?/2

V2m
where « is a scaling function depending on time and H, are the Hermite
polynomials defined by H_1(&) = 0, Ho(§) = 1 and for n > 1, H,(&) has the

following recursive relation

VnHy(§) = EHn—1(§) = Vn—1H,2(§), VYn>1.

V,(t,v) = a(t) Hn (a(t)v)
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The reformulated Vlasov-Poisson system

For any integer N > 1 and t > 0, we introduce the space V) as the subspace
of L?(w(t)d v) defined by
Vv := Span{W,(t),

Then we look for an approximate solution fy of (7) as a finite sum which

0<n<N-1}

corresponds to a truncation of a series

(t,x,v) ZC,,tX , V),

n=0

(2)

where N is the number of modes and (C,)o<,<n_1 are computed using
orthogonality property and taking H,(c v) as test function in (7). Therefore, a

system of evolution equations is obtained for the modes (C,)o<n<n
8:Co + T[C] = Sa[C, En],

1
TlCl = = (VAOCros + VA F10:Con)

S:1C, En] = = (n Cot+/(n—1)nC, 2) + Eva/nCoi,
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The reformulated Vlasov-Poisson system

Meanwhile, we observe that the density py satisfies
PN = /f/\,dv = Co,
JR

and then the Poisson equation becomes

OEn
— =G — , 4
ox 0~ Po.N *)

Space discretization : discontinuous Galerkin method
Given any k € N, we define a finite dimensional discrete piecewise polynomial
space

X = {ue 2(T): uly e 2u(l), jeT},
where the local space #,(/) consists of polynomials of degree at most k on
the interval /.
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Hermite spectral form of the Vlasov equation

Spectral methods are commonly used to approximate the solution to the
Vlasov-Poisson system *

e It starts with the work of Harold Grad in kinetic theory (1949 CPAM);

e J. P. Holloway and J. W. Schumer (1995) (even before Engelmann et al.
in 1963) applied Hermite functions. Indeed, the product of Hermite
polynomials and a Gaussian, seems to be a natural choice for
Maxwellian-type velocity profiles.

e More recently, these methods generate a new interest leading to new
techniques to improve their efficiency : Le Bourdiec, De Vuyst & Jacquet
(2006), Z. Cai, R. Li and Y. Wang (2013, 2018), Camporeale, Delzanno,
Bergen and Moulton (2016), Manzini, Delzano, Vencels, Markidis (2016).

e K. Kormann and A. Yurova, stability of Fourier—Hermite method (2021)

e Same spirit as the work of the B. Després : Symmetrization of
Vlasov-Poisson equations. SIAM J. Math. Anal. (2014).

M. Shoucri & G. Knorr (1974), A. Klimas & W. Farell (1994), B. Eliasson (2003), J. Holloway &
J. Schumer (1998)
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Stability estimate in weighted [>

We set i: the measure given as
du: = w(t,v)dxdv
where the weight w is provided before and the following L? weighted space

given by

LP(d pe) == {g TxR—=>R: // xv\d;tt<+x}

Proposition

Consider (f, E) a smooth solution of the Vlasov-Poisson system, where f is
not necessarily nonnegative. Assuming that the initial data fy belongs to
L?(d ju0), then there exists co > 0 such that solution f(t) satisfies for all t > 0

/4~
H f(t)HLZ(d Ht) S HfOHLQ(d 10) et/ O
where o appearing in the definition of the weight w is given by

at) =

Qo
1+2a0 072 [1hll2

(et/2n o 1) : (5)

(d po)
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Idea of the proof

We compute the time derivative of Hf(t)Hig(d“[). One has

1 ‘ , i 1 ([
71\\f\ﬁz(dw = — // f(vof + EDf)dpu: + = // ad |v? Fd .
2dt J o 2

J JTXR
Then, since ' .
/fE()Vf;udv: %/aszvadv,
R JR
we obtain
1d 2 1 [f 2( 2 )
~——1flli2(d :7// f ((} Ev+aa \v\)du.
2d¢" ) 2 /Jrxr '

hence after Young's inequality and reordering

1d 2 o (3 2 [ 212 1 2
Iz < 5 (3 ®lIEIE> + o) £ v dpe + 3 1Fa -
J JTXR /

2dt
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Idea of the proof

In one dimension, we have (in fact the result is better)
2 o 2
Il < o251 -

Substituting this inequality in the latter estimate, it yields

[ 1
boun + @) [ PIP At o 1
J JTXR !

f (e} Y 2
saillaw < 5 (Gl
Therefore, choosing « as

o
v(t
aldl= 1+2(»0C0”,2Hfo

/2y —_ 1)’
2(d po) (et/2 1)
we get the expected result.

Remark

This approach can be also applied for weighted L” spaces, with p > 1. It
provides L” estimates on the density p

lo(®)llee < CHE o o)

For the Vlasov-Poisson- system, when p > N it gives a control in L™ on the
electric field...
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Stability for the discrete system

Similarly as in the continuous case, we establish the following stability result for
the Hermite/discontinuous Galerkin method

Proposition
For any t € [0, T|, consider the scaling function o provided before and f5(t)

the semi-discrete approximate solution given by the truncated series. Assume
that ||fs5(0)]2(d ug) < +00- Then, we have

d d N—1 .
D) L 2
SOy = (jt((l(f);,[ |Col dx>

N—-1 1
— Z Zl/n [C&n]f,% + 27’\ Hﬂ’-(t)H%Z(d/lr)’

n=0 je g

IN

from which we deduce

15 ()2 ey < 15 (0)l2¢a o) €7 -
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Convergence theorem

Our main result is the following.

Theorem

For any t € [0, T], consider the scaling function o provided before and let
f(t,.) € H"(d i¢) be the solution of the Vlasov-Poisson system (7) where
m > k + 1 and f5 be the approximation defined by Hermite/DG. Then there

exists a constant C > 0, independent of § = (h,1/N) but depending on the
scaling function «(t) such that

1 y
1£(t) — fﬁ'(t)HLz(dm) <C N—D/2 + R<2) (6)

e This result shows spectral accuracy in velocity and classical order of
convergence of the discontinuous Galerkin method for the space
discretization.

e Of course C > 0 denpends on the scaling parameter «;
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Key estimate

Let us define the Fokker-Planck operator F as
Flel(v) = —0, (w () 0. (g (1)) |

where w(t) is the weight defined before. Hence, the Hermite function WV, is
the n-th eigenfunction of the following singular Liouville problem:

—Flgl(v) + Ag(v) =0, veR,
with corresponding eigenvalues )\, = o°(t) n.

Proposition
Let r > 0. For any g € H'(w(t)d v), it holds for all N > 0

2

- (/
Ig = Pwgllizeean = =7 llgllHr e,

(a?(t) N)
with C > 0 independent of N and t.
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Filtering technique & Time adaptive scheme

Filtering
It is a common procedure to reduce the effects of the Gibbs phenomenon.

The filter will consist in multiplying some spectral coefficients by a scaling
factor o in order to reduce the amplitude of high frequencies, for any Ny > 4,

~ n
(= CH(T<N—H>.

Here, we simply apply a filter, called Hou-Li’s filter? for 5 = 36,

1, if 0 < |s| < 2/3,

o(s) = |
exp(—4|s|?), if |s| > 2/3.

Remark

- Observe that the filter is applied only when Ny > 4, hence the filtering
process does not modify the coefficients (Cy)o< <>

- It is possible to adapt the number of modes Ny along the simulations
2Th. Y. Hou and R. Li, (2007)
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Two stream instability

DG-H -t =00.0 DG-H -t=20

o
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IN
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o
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Two stream instability
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Figure 1: Two stream instability: (a) deviation of mass, momentum and energy, (b)
time evolution of the electric field in L2 norm in logarithmic value with DG-H:
Ny x Ny = 64 x 128 and the reference solution is from the PFC scheme with
Ny x N, = 256 x 1024.
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Two stream instability
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Figure 2: Two stream instability: (a) time evolution of the weighted L? norm of f,
(b) time evolution of the scaling function « for DG-H with Ny x Ny = 64 x 128 and
the reference solution is from the PFC scheme with N, x N, = 256 x 1024.
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Part Il : Discrete hypocoercive
estimates for the Vlasov-Fokker-Planck
equation (with A. Blaustein)




The Vlasov-Fokker-Planck equation

We consider the one dimensional Vlasov-Fokker-Planck equation with periodic
boundary conditions in space, it reads

] 1 ) - 1 .
Of + = (vOkf + EOF) = ﬁ(‘)v(vf + o.f), )
€ 7(e
where the electric field derives from a potential ® such that £ = —0,®, with
the following regularity assumption
® e W (T).

The distribution function f relaxes towards the stationary solution to the
Vlasov-Fokker-Planck equation p.. M, where the Maxwellian M is given by

_ 1 v[?
M(v) = T exp< 5 To> ,

whereas the density p.. is determined by

[0}
Poo = Co EXP -7 |
0

where the constant ¢ is fixed by the conservation of mass
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About the diffusive limit

In the case where 7(c) ~ 792, for some 79 > 0. The spatial density converges
to a time dependent p whose dynamics are driven by a drift-diffusion equation

depending on the force field E.
Indeed, performing the change of variable

X —> X+ 10V

and integrating with respect to v, we deduce that the quantity
m(t,x) = / f(t,x—T1oev,v)dv,
solves the following equation
Oy m + 70 Ox (/ Ef(t,x—Tev,v)dv — (")Xﬂ‘> =0.
According to its definition, 7 verifies: p ~ 7 in the limit ¢ — 0. Therefore, we
may formally replace 7 with p and & with 0 in the latter equation. This yields
f(t,x,v) — pr(t,x) M(v),
e—0
where p, solves

Otpry + 100x (E pry — Oxpry) = 0.
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Hermite decompaosition

We again consider the decomposition of f n the Hermite basis

(t,x,v) ZQtX)\Uk)

The natural functional framework here is the [ space with weight p_.'.
Unfortunately, it is not very well adapted to the space discretization, hence we

set c
Dk = k
\/pi\(_}
and get that
1 k
Dk + - (VKAD1 — VKF1A D) = -~
c (<) (8)
Dk(tf O) =

where operators A and A" are given by

Au = +0u — gu.,

E
A u = —0u — Eu.
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Basic properties on A

1. First, A" is its dual operator in L?(T), indeed for all u, v € H*(T) it holds
(A*u, v) = (Av, u);

2. we have D o lies in the kernel of A, indeed

AD:‘X_;)O = 0;

3. we also point out that since A + A* = 0,0, it holds
| (A+A") ullz < [[Pflwreo|lu

12

4. the operators A and A" do not commute and we have
[A4, A"] = AA" — A" A = 0u®,

which vyields
1A, ATulle < (I19llwa.ee llull2 -
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Long time behavior and propagation of regularity

We define the following H* norm, defined for all D = (D)), . as follows
kEN

1B DIz = > IIBi DillZ2qmy »
keEN
where the family of differential operator B = (), -, is defined as follows
A, itk =0,
B =
A*, else.

Theorem

(i) under the condition ||[D(0)||,. < +oo, it holds

2 < Cexp (7 TS) K t) :

ID(t) — Do

(if) under the condition ||B D(0)||,2 + [|[D(0)||,2 < o0, it holds

B0l < € oo (-5 we):
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Comments on these results

e The main difficulty here consists in proving the convergence of the first
coefficient Dy in the Hermite decomposition of f towards the equilibrium
/P We adapt hypocoercivity methods developed in
Dolbeault-Schmeiser & Mouhot (TAMS 2015) to the framework of
Hermite decomposition

e we introduce modified entropy functionnals in order to recover dissipation
and thus a convergence rate on Dy :

Ho[D|Ds]

= 2 ID(2) ~ DucliZ + <MAD>

where 1 is the particular solution to equation

A"Au = Dy — Doy,

/uﬁxdx =0.
JT
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Diffusive limit ¢ — 0.

We denote by &; the relative entropy ||f — p M||:

&(t) = 3 Y- 10u(0)

k>1

2
12 -

Then we have the following theorem
Theorem

Suppose that 7(¢) = 70 &, For all positive ¢, consider D = (Dk)ken the
solution to (8) with an initial datum D(0) such that

ID©)[2: = IIBDO)IZ + D)% < +oo.

and consider D, = (D, «)en given by limit drift-diffusion equation,
&(t) < &(0)e/C™) 1 € | D(0) — Dooll,n e ™"
On the other hand, it holds

H(DO - DT()-O)(t)HH 1 < C (H(DO — DTO‘O)(O)HH 1 + 5) e ToKt
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Conclusion & Perspectives

e We propose a Hermite decomposition of the Vlasov-Poisson system and
the linear Vlasov-Fokker-Planck equation : this approach allows us to
construct accurate and stable numerical approximation.

e This framework is well suited for discrete hypocoercive estimates : long
time behavior and diffusive limit

e Perspectives : apply this latter strategy for the
Vlasov-Poisson-Fokker-Planck system

25/25



	Part I. Vlasov-Poisson system (with M. Bessemoulin-Chatard)
	Hermite decomposition
	Stability estimate in weighted L2
	Convergence result for Hermite/DG
	Numerical example

	Part II : Discrete hypocoercive estimates for the Vlasov-Fokker-Planck equation (with A. Blaustein)
	Hermite decomposition and reformulation
	Basic properties on A
	Long time behavior and propagation of regularity




