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Motivation

The description of physical dynamics in various scales is one of the
main questions of interest in the mathematical modeling of complex
systems.

In kinetic theory, the description of the evolution of gases has been
explained via the statistical approach on the probabilistic distribution
functions on the mesoscopic level, whereas the fluid theory describes
the dynamics on the macroscopic level.

Each of these interpretations and the asymptotic expansions of the
mesoscopic equations to the macroscopic equations have been
crucial issues.

We provide a newly-devised numerical method of using a machine
learning algorithm for the study of the large-data asymptotic
behaviors of the Deep Neural Network (DNN) solutions to the
kinetic equation in a bounded domain.
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Motivation

In this work (Lee, Jang, and Hwang, 2021), we establish the
commutation of the following diagram of diffusion limit:
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The Vlasov-Poisson-Fokker-Planck system

We are interested in the scaling of the system using the change of variables t′ = ε2t
and x ′ = εx (ε : the ratio of the mean free path of the particles to the typical
macroscopic length scale of the particle flow). With these variables, the VPFP system
in a bounded interval Ω = (−1, 1) can be written in the dimensionless form as follows:

ε2∂t fε + εv∂x fε + εEε∂v fε = ∂v (vfε + ∂v fε), t ∈ [0,T ], x ∈ Ω, v ∈ R,
fε(0, x , v) = f0(x , v),

∂xEε =

∫
R
fεdv − h(x), x ∈ Ω,

Eε(0,−1) = 0,

Eε(t, x) = 0, x ∈ ∂Ω,

(1)

where

fε(t, x , v): the probabilistic density distribution of particles.

Eε(t, x) : the self-consistent electric force.

h(x) : the background charge.

In this work, we consider the VPFP system with the specular boundary condtion:

f (t, x , v)|γ− = f (t, x ,R(x)v), (2)

for all x ∈ ∂Ω, and where R(x)v
def
= v − 2nx (nx · v).
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The Poisson-Nernst–Planck equation

The PNP system consists of the Nernst-Planck equation that describes the drift and
diffusion of ion and the Poisson equation that describes the effect of the
self-consistent electric field. In this paper, we consider the following the 1-dimensional
Poisson-Nernst-Planck (PNP) system in a bounded interval Ω = (−1, 1):

∂tρ = ∂x (∂xρ− ρE), t ∈ [0,T ], x ∈ Ω,

ρ(0, x) = ρ0(x),

∂xE = ρ(t, x)− h(x), x ∈ Ω,

E(0,−1) = 0,

E(t, x) = 0, x ∈ ∂Ω.

(3)

where

ρ(t, x): the density of particles.

Eε(t, x) : the self-consistent electric force.

h(x) : the background charge.

In this work, we consider the PNP system with the no-flux boundary condtion:

(∂xρ− ρE) · nx = 0, x ∈ ∂Ω. (4)
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Mathematical results on the Fokker-Planck equation

The existence and the uniqueness of the solutions to the
Fokker-Planck equation:
[Dita, 1985; Protopopescu, 1987; DiPerna and Lions, 1988]

The existence and the uniqueness of the VPFP system:
[Victory Jr and O’Dwyer, 1990; Neunzert, Pulvirenti, and Triolo, 1984; Degond,

1986; Jin and Zhu, 2018]

The asymptotic behavior and the convergence of the solutions to the
VPFP system:
[Carrillo and Toscani, 1998; Carrillo, Soler, and Vázquez, 1996; Carrillo and

Soler, 1995]
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Part I. On convergence of the VPFP solution to the PNP
solution

Wu, Lin, and Liu (2015) prove that the VPFP system with the Maxwellian
reflection boundary condition converges to the PNP system as ε tends to
zero for the multi-species model case.

Using this result, we derive that the solution of our specific VPFP system
(1) with the specular boundary condition converge to the solution of the
PNP system (3) with the no-flux boundary condition as follows:

fε(t, x , v) → ρ(t, x)M(v) in L1(0,T ; L1(Ω× R)), (5)

where M(v) = 1√
2π

e−
v2

2 and

Eε(t, x) → E(t, x) in L2(0,T ; Lp(Ω)), 1 ≤ p < 2 (6)

as the Knudsen number ε tends to zero.
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An Asymptotic Preserving scheme

An Asymptotic Preserving (AP) scheme: numerical scheme that
preserves the asymptotic limits from the mesoscopic to the
macroscopic models [Filbet and Jin, 2010; Jin, 2012]
In this work, we complete the right diagram of neural network
version similar to the left diagram of the numerical analysis version.

Figure: Illustration of AP schemes (Numerical
version)

Figure: The diagram of diffusion limit (Neural
Network version)
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The main results of this work

The main results of this work are as follows.

(Part II & Part III) We provide the Deep Neural Network solutions
to the VPFP system and PNP system using the Deep Learning
algorithm.

We Provide the theoretical evidence on the convergence of the DNN
solutions to the a priori analytic solutions.
We analyze our DNN solutions via computing the steady-states for
the solutions and via computing the physical quantities of the total
mass, the kinetic energy, the entropy, the electric energy and the free
energy, and their steady-states.

(Part IV) We provide the numerical simulation for the trend of the
diffusion limit from the DNN solution of the VPFP system to the
DNN solution of the PNP system.
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Methodology: A Deep Learning Approach
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Traditional numerical approaches to the solution of the
differential equations.

Classical finite schemes such as Finite Difference Method, Finite Element
Method, and Finite Volume Method can be used to solve the differential
equations numerically

Figure: Finite Difference Method Figure: Finite Element Method

Difficulties in the numerical methods

Construct a specific method to each different problem setups.
Need to consider how we split the domains into triangles.
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What is a Deep Learning?

There have been many studies to utilize an Neural Network (NN) to
solve Differential Equations from the past.
A Deep Learning algorithm is a non-linear function approximation
method using a Deep Neural Network(DNN) structure.
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Deep Neural Network method

Physics informed neural network (PINN) is proposed by Raissi, Perdikaris, and
Karniadakis (2019).

Figure: Physics informed neural network framework (Lu et al., 2019)
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Deep Neural Network method

We take two different neural network structures which share the same inputs to
approximate the coupled nonlinear VPFP system.

Figure: The DNN structure for the VPFP system

Activation function σ̄ : hyper-tangent activation function (σ̄(x) = ex−e−x

ex+e−x )

Optimizer: Adam (Adaptive Moment Estimation) optimizer)
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Grid points

To approximate the kinetic solution f (t, x , v) via the Deep Learning
algorithm, we make the data of grid points for each variable domain.

Grid points for training f nnε (t, x , v ;m,w , b) are chosen randomly as
follows:

{(ti , xj , vk)}i,j,k ∈ [0,T ]× Ω× V (7)

for the governing equation,

{(t = 0, xj , vk)}j,k ∈ Ω× V (8)

for the initial condition and

{(ti , x = −1 or 1, vk)}i,k ∈ [0,T ]× V (9)

for the boundary condition with T = 1 or T = 5, Ω = [−1, 1] and
V = [−10, 10] (truncation the velocity domain).
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Loss functions for the VPFP system

Loss function for the governing eqautions:

Loss fp
GE(1)

(f nn)
def
=

∫
(0,T )

dt

∫
(−1,1)

dx

∫
V

dv |∂t f
nn(t, x, v ;m,w , b) + v∂x f

nn(t, x, v ;m,w , b)

+ E nn
∂v f

nn − (∂vv f
nn(t, x, v ;m,w , b) + ∂v (vf

nn)(t, x, v ;m,w , b))|2, (10)

and

Loss fp
GE(2)

(f nn)
def
=

∫
(0,T )

dt

∫
(−1,1)

dx|∂xE
nn(t, x ;m,w , b)−

∫
V

dv f nn(t, x, v ;m,w , b)|2, (11)

Loss function for the initial condtions:

Loss fp
IC(1)

(f nn)
def
=

∫
(−1,1)

dx

∫
V

dv
∣∣f nn(0, x, v)− f0(x, v)

∣∣2 , (12)

and

Loss fp
IC(2)

(f nn)
def
=

∫
(−1,1)

dx

∣∣∣∣E nn(0, x ;m,w , b)−
(∫ x

−1

dy

∫
R
dvf0(y , v)− (x + 1)

)∣∣∣∣2 . (13)
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Loss functions for the VPFP system

Loss function for the specular boundary condition for f and the Dirichlet boundary condition for E :

Loss fp
BC(1)

(f nn)
def
=

∫
(0,T )

dt

∫
γ−

dxdv
∣∣f nn(t, x, v ;m,w , b)− f nn(t, x,−v ;m,w , b)

∣∣2 , (14)

and

Loss fp
BC(2)

(f nn)
def
=

∫
(0,T )

dt
∑

x∈{−1,1}

|E nn(t, x ;m,w , b)|2. (15)

Finally, we define the total loss as

Loss fpTotal (f
nn)

def
= Loss fpGE + Loss fpIC + Loss fpBC . (16)

* We compute these loss functions via the approximation of the integration by the Riemann sum on the
grid points.
* We define the loss functions for the PNP system similarly.
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Deep Learning algorithm for the VPFP system

Finally, we summarize our Deep Learning algorithm for the VPFP system as follows:

Algorithm 1 Deep Learning algorithm for the VPFP system

1: for number of epochs do
2: Sampling data:
3: Sample m samples t1, t2, ..., tm from [0,1] (or [0,5]).
4: Sample n samples x1, x2, ..., xn from [-1,1].
5: Sample p samples v1, v2, ..., vp from [-10,10].
6: Make a pair the samples to set the training data as (7), (8) and (9).
7: Add new top-k training data paired with the velocity samples.
8: Evaluate the loss function:
9: Approximate the derivative of the DNN output (Autograd).

10: Approximate the integration of the DNN output (Trapezoidal rule).
11: Evaluate the loss function for the VPFP system (16).
12: Updating parameters:
13: Update neural network parameters using the Adam optimizer:

w ← wnew
,

b ← bnew
,

14: in the direction of minimizing the pre-defined loss function.
15: end for
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Theoretical results and neural network
simulations
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Theoretical results

Theoretical results

We first prove that there exists a sequence of neural network parameters (neuron

numbers m, weights w and biases b) such that the total loss function Loss fpTotal
converges to 0.

Theorem (Theorem 3.4 of Hwang et al., 2020)

Assume that the number of layers L = 2 and that the solution f to (1) with (2) which

belongs to Ĉ (1,1,2)([0,T ]× [−1, 1]× V ), and the activation function
σ̄(x) ∈ C (2,2,3)([0,T ]× [−1, 1]× V ) is non-polynomial. Then, there exists
{m[j],w[j], b[j]}∞j=1 such that a sequence of the DNN solutions f nn with m[j] nodes,
denoted by

{fj (t, x , v) = f nn(t, x , v ;m[j],w[j], b[j])}∞j=1

satisfies
Loss fpTotal (fj ) → 0 as j → ∞. (17)
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Theoretical results

Theoretical results

Second, we also prove that if we minimize the total loss function Loss fpTotal , it
implies that the Deep Neural Network solution converges to an analytic solution.

We assume that our compact domain V = [−10, 10] of the v -variable is chosen
sufficiently large so that we can have

||f ||L1x ([−1,1];L1v (R\V )) ≤ ϵ and
∣∣∣∂k

v f (t, x , v)− ∂k
v f

nn(t, x , v)
∣∣∣
v∈∂V

≤ ϵ, (18)

for some sufficiently small ϵ > 0 and k = 0, 1.

Theorem

Assume that f is a solution to (1) with (2) which belongs to

Ĉ (1,1,2)([0,T ]× [−1, 1]× V ). If the solution f and the Deep Neural Network solution
f nn(t, x , v ;m,w , b) satisfy (18), then it implies that

∥f nn(·, ·, ·;m,w , b)− f ∥L∞t ([0,T ];L2x,v ([−1,1]×V )) ≤ C(Loss fpTotal (f
nn) + ϵ), (19)

where C is a positive constant depending only on T.
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Neural network simulations for the VPFP system

Neural network simulations for the VPFP system

The entropy of the system “Ent”, the total kinetic energy “KE”, and the electric
potential energy “EE” of the system are defined as

Ent(t)
def
= −

∫
Ω×R

fε log fεdxdv , (20)

KE(t)
def
=

1

2

∫
Ω×R

|v |2fεdxdv , (21)

and

EE(t)
def
=

1

2

∫
Ω
|Eε|2dx . (22)

The Lyapunov functional is also called the free energy defined as

FE(t)
def
= −Ent(t) + KE(t) + EE(t). (23)

We expect that the free energy (23) is a non-increasing function.
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Neural network simulations for the VPFP system

Neural network simulations for the VPFP system

It is well-known that the the VPFP system (1) with the specular boundary condition
has the global equilibrium state (fε,∞,Eε,∞) as

fε,∞(x , v) =
∥f0(·, ·)∥L1x,v

|Ω|
M(v), Eε,∞(x) = −∂xΦ∞(x) = 0, (24)

where M(v)
def
= 1√

2π
e−

v2

2 is the normalized Maxwellian and |Ω| = 2 in our case. We

consider the following initial condition :

f (0, x , v) = f0(x , v) =

{
ex−1

(
1− cos(π

2
v)

)
, if v ∈ (−4, 4),

0, otherwise,
(25)

We expect that the neural network solutions of the VPFP system reach the
steady-state.
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Neural network simulations for the VPFP system

Neural network simulations for the VPFP system

Figure: The pointwise values of f nn(t, x, v ;m,w , b) as time t varies at each position x ’s.
x = −1,−0.5, 0, 0.5, 1 are the points to explain the convergence to the global Maxwellian
∥f0(·,·)∥L1x,v

|Ω| M(v). The steady-state (global Maxwellian) is given via the red-dotted lines.
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Neural network simulations for the VPFP system

Neural network simulations for the VPFP system

Figure: The time-asymptotic behaviors of the L∞ norm, L1 norm of f nn(t, x, v ;m,w , b) (the first

and the second plot) and the L1 norm, L2 norm, and L∞ norm of the difference between

f nn(t, x, v ;m,w , b) and the global Maxwellian
∥f0(·,·)∥L1x,v

|Ω| M(v).

It is notable that the total mass Mass(t) of the distribution f nn(t, x , v ;m,w , b)
is conserved over time in the second plot.

Also, note that the third plot shows that the distribution f nn(t, x , v ;m,w , b)
converges to the global Maxwellian.
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Neural network simulations for the VPFP system

Neural network simulations for the VPFP system

Figure: The time-asymptotic behaviors of the macroscopic quantities of f nn(t, x, v ;m,w , b) and
E nn(t, x ;m,w , b). The steady-state values of the kinetic energy, the entropy, the free energy are
indicated in the red-dotted lines.

Note that the free energy is monotonically decreasing.
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Neural network simulations for the diffusion limit from the VPFP system to the PNP system.

Neural network simulations for the diffusion limit

We consider the convergence of the VPFP solutions to the PNP
solution.

We expect that the neural network solutions of the VPFP system
and the PNP system have the trend of diffusion limit as explained in
the equations (5) and (6).

To observe the trend of the convergence, we compare the neural
network solutions to the VPFP system with the Knudsen numbers
ε = 1, 0.5, 0.2, 0.1, 0.05 and the corresponding neural network
solutions to the PNP system.

It is worth noting that we do not change the number of the grid points
for the VPFP system with any Knudsen numbers, i.e., we analyze the
diffusion limit in the sense of the Asymptotic-Preserving (AP) scheme.
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Neural network simulations for the diffusion limit from the VPFP system to the PNP system.

Neural network simulations for the diffusion limit

Figure: The time-asymptotic behavior of the L∞
x,v norm of f nnε (t, x, v ;m,w , b) and

ρnn(t, x ;m,w , b)M(v) over time t as the Knudsen number ε varies. Each value is drawn in
different colors as shown in the legend.

We can observe that the L∞ norm of the solution f nnε (t, x, v ;m,w , b) converges pointwisely
to the L∞ norm of the ρnn(t, x ;m,w , b)M(v) as the Knudsen number ε becomes close to
zero.
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Neural network simulations for the diffusion limit from the VPFP system to the PNP system.

Neural network simulations for the diffusion limit

Figure: The values of L1
t,x,v norm of the difference between f nnε (t, x, v ;m,w , b) and

ρnn(t, x ;m,w , b)M(v) as ε varies.

The graph shows that the L1t,x,v norm of the difference between f nnε and ρnnM
becomes smaller as the Knudsen number ε tends to zero.
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Extend to FPL equation
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Extend to Fokker-Planck-Landau equation (Lee, Jang, and Hwang, 2022)

Using the additional operator learning method to approximate the homogeneous
Fokker-Planck-Landau (FPL) equation

∂t f (t, v) = ∇v · (D(f )∇f − F (f )f )

with the complex integral terms D(f ) and F (f ).

Figure: Overview of the proposed framework to approximate the solution to the FPL equation.
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Extend to Fokker-Planck-Landau equation (Lee, Jang, and Hwang, 2022)

Using the additional operator learning method to approximate the homogeneous
Fokker-Planck-Landau (FPL) equation

∂t f (t, v) = ∇v · (D(f )∇f − F (f )f )

with the complex integral terms D(f ) and F (f ).

Figure: The pointwise values of f nn(t, v1, v2;m,w , b) as t varies for BKW initial condition. Note
that the upper row shows the 3-d plots of the distribution f (t, v1, v2) and the lower row shows its
cross section with v1 = 0 for visualization purposes. The exact values of the BKW solution are
given via the red-dotted lines.
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Conclusion
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Conclusion

We establish the commutation of the neural network version
diagram of diffusion limit.

To this end, we have introduced the Deep Neural Network (DNN)
solutions to the VPFP system and the PNP system using the Deep
Learning algorithm.

We also provide the theoretical supports on which the approximated
DNN solutions converge to analytic solutions of each system as the
proposed total loss function tends to zero.

We compare the neural network simulation results to existing
analytic results and predict the long-time behavior of the solutions.

We extend the Deep learning method to the FPL equation using the
operator learning method.
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Future direction

Approximate the solutions of more general ordinary and partial
differential equations (Full Boltzmann equation).

Extend to special domains of high dimensional equations using
randomly sampled points.

Use more complicated neural network architectures such as CNN,
RNN.
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Thank You
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