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1. Presentation
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5Collective dynamics

?

Individual agents
obey simple rules

no leader

Emergence of large−scale
coherent structures

in agent’s behavior

Micro−scale Macro scale

Not directly encoded

Questions:
Link between micro-scale geometry

and large-scale structures

Topology of collective structures

Object of study: swarmalators

Methodology: dual use of microscopic models

and their macroscopic counterparts
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6Swarmer: Vicsek model [Vicsek et al, PRL 95]

Self-propelled particles ⇒ Speed = constant (= c0)

Align with their neighbors up to some noise

Ẋk(t) = c0Vk

dVk(t) = PV ⊥

k
◦ (νV̄kdt+

√
2DdBk

t )

V̄k =
Jk
|Jk|

, Jk =
∑

j, |Xj−Xk|≤R

Vj

P
V ⊥ = Id− V ⊗ V = orth. proj. on {V }⊥ ◦ = Stratonovitch

R

Xk

Vk

small ν large ν

Simulations by A. Frouvelle
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7Oscillator: Kuramoto model [Kuramoto 1975]

Model describing systems of oscillators which synchronize

Original model (Kuramoto)

dϕk(t) = − ν

N

N
∑

j=1

sin(ϕk − ϕj) +
√
2DdBk

t

Variant inspired by the Vicsek model

dϕk(t) = −ν sin(ϕk − ϕ̄(t)) +
√
2DdBk

t , ϕ̄(t) = arg

(

N
∑

j=1

eiϕj

)

small ν large ν

Original

Variant
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8Swarmalator = swarmer + oscillator

[O’Keefe, Hong, Strogartz, Oscillators that sync and swarm, Nature Comm. 2017]

New swarmalator model with original features
no force reciprocity → pursuit behavior

second-order model

noise in velocity and phase

Ẋk(t) = c0Vk−γ∇xW (Xk, ϕk)

dVk(t) = PV ⊥

k
◦ (νV̄kdt+

√
2DdBk

t )

dϕk(t) = −ν′ sin(ϕk − ϕ̄(t)) +
√
2D′ dBk

t

Position-phase coupling through potential W

W (x, ϕ) =
1

N

N
∑

j=1

K(|x−Xj |) sin(ϕj − ϕ)
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9Illustration & applications

c0 = 0 c0 6= 0

Large literature: cf review [O’Keefe & Bettstetter, 2019]

Applications to biology:
Microswimmers (nematodes or sperm) [Peshkov et al, 2019]

Cellular interactions with internal state [Japon et al, 2021]

Nematode swarm from [Peshkov et al, 2019]
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10Topological states of matter

Quantum Hall effect (Klaus von Klitzing, NP 1985)

Conducting (chiral) edge states have non-trivial topology

They are robust against perturbations

Breaking them requires a “topological phase transition”

Topological insulators

Thouless, Haldane, Kosterlitz, NP 2016

Quantum computations, Qubits, . . .
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11Topological states in collective dynamics

Vicsek on a sphere (Marchetti et al, Phys. Rev. X 2017)

Vicsek in a lattice of rings (Bartolo et al, Nature Phys. 2017, Sone &
Ashida, Phys. Rev. Lett. 2019)

“spatial domain engineering”

Goal: new topological states based on internal degrees of freedom

Previous example: swarming rigid bodies
[D., Diez, Na, SIADS 2022]

Motivation: does topological protection
contribute to robustness of living systems?
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2. Macroscopic model
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13Mean-field model (N → ∞)

f(x, v, ϕ, t) distribution function v ∈ S
n−1, ϕ ∈ R/(2πZ)

f(x, v, ϕ, t) dx dv dϕ = number of particles in dx dv dϕ at t

satisfies mean-field kinetic equation

∂tf
ε +∇x ·

[

(v − γ∇xUfε)fε
]

=
1

ε
Q(fε)

Q(f) = D∇v · [−kPv⊥uff +∇vf ] +D′∂ϕ[−k′ sin(αf − ϕ)f + ∂ϕf ]

with

uf =
jf
|jf |

, jf =

∫

f v dv dϕ

αf =
ℓf
|ℓf |

, ℓf =

∫

f eiϕ dv dϕ

Uf = |ℓf | sin(αf − ϕ), k =
ν

D
, k′ =

ν′

D′
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14Equilibria

Solutions of Q(f) = 0 given by von Mises distribution

feq = ρMu(v)Nα(ϕ)

Mu(v) ∼ ekv·u, Nα(ϕ) ∼ ek
′ cos(ϕ−α)

(ρ, u, α) arbitrary in [0,∞)× S
n−1 × R/(2πZ)

When ε → 0, f ε → feq with (ρ, u, α)(x, t):

ρ(x, t) ≥ 0 : mean density

u(x, t) ∈ S
n−1 : mean direction of motion

α(x, t) ∈ R/(2πZ) : mean phase

Eq. satisfied by (ρ, u, α) ≡ macroscopic eqs.
from Wikipedia
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15Macroscopic model

Swarmalator hydrodynamics:

∂tρ+∇x ·
[

ρ(c1u+ bρ∇xα)
]

= 0

∂tu+
[

(c2u+ bρ∇xα) · ∇x

]

u+ΘPu⊥∇x log ρ = 0

ρ
(

∂tα+
[

(c1u+ b′ρ∇xα) · ∇x

]

α
)

−Θ′∇x · (ρ∇xρ) = 0

Coefficients given explicitly in terms of those of kinetic model

Derivation not straightforward due to lack of conservations

Generalized Collision Invariant [D. Motsch, M3AS 2008]
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16Travelling-wave solution

No noise in phase eq. k′ → ∞: ⇒ phase eq. simplifies

∂tα+
[

(c1u+ bρ∇xα) · ∇x

]

α = 0

Introducing z = ∇xα, System equivalent to

∂tρ+∇x ·
[

ρ(c1u+ bρz)
]

= 0

∂tu+
[

(c2u+ bρz) · ∇x

]

u+ΘPu⊥∇x log ρ = 0

∂tz +∇x

[

(c1u+ bρz) · z
]

= 0

∇x ∧ z = 0

Uniform state (ρ0, u0, z0) is a solution

Corresponds to a travelling-wave in phase

α(x, t) = z0 · x− (c1u0 + bρ0z0) · z0 t
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17Hyperbolicity

Linearize about (ρ0, u0, z0)

Hyperbolicity ≈ stability in Fourier variable ξ

Theorem:

(i) if z0 = 0 or z0 ‖ u0 then hyperbolic

(ii) For ρ0|b||z0| either small or large and for some

values of δ = ∡(u0, z0) then not hyperbolic
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18Doubly-periodic travelling waves

Original system (with noise in phase eq.) on 2-d unit torus T2

Proposition: given (p,m) ∈ Z
2, α0 ∈ R, U = (U1, U2) ∈ S

1. Then:

ρ = 1 u = U α = 2π(px1 +mx2)− λt+ α0

is a travelling-wave solution: with travelling-wave speed

λ = 2πc1(pU1 +mU2) + 4π2b′(p2 +m2)

Example with
(p,m) = (0, 1)
U = (1, 0)

Topological state:
eiα makes a complete turn when x2 goes from 0 to 1

(p,m) is the topological index of the solution
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3. Numerical results
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20Goals & methods

1. Validate hydro model against particle model

2. Check stability of topological states in particle model

3. Check stability of topological states in hydro model

Numerical method for particle model:

GPU simulations in Python using the SiSyPHE library

developed by A. Diez [Diez, J Open Source Software 2021]

Numerical method for hydro model:

relaxation approximation by conservative hyperbolic system

[Motsch & Navoret, Mult. Model. Simul. 2011]

Dimensional splitting and HLLE scheme; code in Julia

Both codes available at: https://github.com/antoinediez
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21Validation of hydro model

Use particle simulation in the hydro regime

R ≪ 1, ν, ν′, σ, σ′, γ, N ≫ 1, k, k′ ∼ 1

Use doubly-periodic travelling-wave
anti-aligned: phase-force and self-propulsion velocity opposite

(p,m) = (0, 1)

U = (0, 1)

Compare travelling-wave speeds
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22Stability of topological states (particles)

When noise ց doubly-periodic traveling wave destabilizes

same as before
but small noise

Emergence of segregated constant-phase regions
converge at large times to band-like structure

“Final states”
by ր noise
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23Other initial conditions

Doubly-periodic travelling wave, large noise case

Positively aligned: phase-force and self-propulsion velocity equal

less stable

Orthogonal: phase-force and self-propulsion velocity perpendicular

unstable

Random initial condition, large noise case

complex patterns
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24Stability of topological states (hydro)

No or very small noise: shock formation and blow-up

Small noise:
Anti-aligned: stable
Aligned: stable
Orthogonal: unstable

Consistent with hyperbolicity theorem

orthogonal, low noise

Larger noises: all stable
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4. Conclusion & perspectives
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26Conclusion & perspectives

New swarmalator model

no force reciprocity, second order, with noise in velocity and phase

Derivation of a macroscopic model

Hyperbolicity analysis, travelling-wave topological states

Numerical simulations

validation of macro model, stability of topological states

Perspectives (theory)

existence / uniqueness of solutions to kinetic / macro models

particle → kinetic & kinetic → macro convergence proofs

segregated solutions supported by macro model ?

Perspectives (modelling)

other geometrical configurations: strip and ring

diffusive corrections, higher-dimensional phase-vector space
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