The local converse theorem for quasi-split SO(2n)

Jaeho Haan
(joint work with Yeansu Kim and Sanghoon Kwon)

April 24, 2023

Three arithmetic invariants

There are three important arithmetic invariants in number theory.

- L-functions
- γ-functions
- ϵ-functions (or root numbers)

Typically, L-functions encodes the global arithmetic and γ-functions, ϵ-functions govern the local arithmetic.

The global converse theorem (GCT) and the local converse theorem (LCT) are prominent examples to show these phenomena.

Global Converse Theorem for $G L(n)$

For an irreducible admissible representation π and π^{\prime} of $G L(n)(\mathbb{A})$ and $G L(m)(\mathbb{A})$, respectively, we can define its Rankin-Selberg L-function $L\left(s, \pi \times \pi^{\prime}\right)$.

We say that $L\left(s, \pi \times \pi^{\prime}\right)$ is nice if it satisfies

- (A.C) $L\left(s, \pi \times \pi^{\prime}\right)$ extends to an entire function on \mathbb{C}.
- (F.E) $L\left(s, \pi \times \pi^{\prime}\right)=\epsilon\left(s, \pi \times \pi^{\prime}\right) L\left(1-s, \tilde{\pi} \times \widetilde{\pi^{\prime}}\right)$
- (boundedness in vertical strips) $L\left(s, \pi \times \pi^{\prime}\right)$ is bounded in vertical strips.

If π and π^{\prime} are cuspidal automorphic representations, then $L\left(s, \pi \times \pi^{\prime}\right)$ are nice!
Q) The converse holds?

Global Converse Theorem for $G L(n)$

$$
T(m)=\bigcup_{1 \leq d \leq m}\left\{\pi^{\prime}: \text { a cuspidal automorphic representation of } G L(d)\right\}
$$

(Global Converse Theorem), Cogdell, P-S (1994)

Let π be an irreducible admissible representation of $G L_{n}(\mathbb{A})$.
Suppose $L\left(s, \pi \times \pi^{\prime}\right)$ are nice for all $\pi^{\prime} \in T(n-1)$. Then π is a cuspidal automorphic representation.

The GCT tells that the family of GL-twisted L-functions determines the automorphy of global irreducible representations of $\mathrm{GL}_{n}(\mathbb{A})$.

The LCT shows that the local GL-twisted γ-functions uniquely determine the isomorphism classes of generic representations.

History of LCT

Let F be a p-adic local field of characteristic zero.

(weak LCT for GL_{n}) G. Henniart [Invent. M (1993)]

Let π_{1}, π_{2} be irreducible generic admissible representations of GL_{n} with the same central characters. If the twisted γ-factors are same, that is,

$$
\gamma\left(s, \pi_{1} \times \rho, \psi\right)=\gamma\left(s, \pi_{2} \times \rho, \psi\right)
$$

for all irreducible supercuspidal representations ρ of $\mathrm{GL}_{i}(F)$ for $1 \leq i \leq n-1$, then $\pi_{1} \simeq \pi_{2}$.

(weak LCT for $\mathrm{SO}_{2 n+1}$) D. Jiang and D. Soudry, [Ann. M (2003)]

Let π_{1}, π_{2} be irreducible generic admissible representations of $\mathrm{SO}_{2 n+1}$ with the same central characters. If the twisted γ-factors are same, that is,

$$
\gamma\left(s, \pi_{1} \times \rho, \psi\right)=\gamma\left(s, \pi_{2} \times \rho, \psi\right)
$$

for all irreducible supercuspidal representations ρ of $\mathrm{GL}_{i}(F)$ for $1 \leq i \leq 2 n-1$, then $\pi_{1} \simeq \pi_{2}$.

Local Converse Conjecture

[Local Converse Conjecture] D. Jiang (2006)

Let G_{n} be one of the quasi-split group over F in the following $\left(\mathrm{GL}_{2 n}, \mathrm{GL}_{2 n+1}, \mathrm{O}_{2 n}, \mathrm{SO}_{2 n}, \mathrm{Sp}_{2 n}, \mathrm{SO}_{2 n+1}, \mathrm{U}_{2 n}, \mathrm{U}_{2 n+1}\right.$.)

Let π_{1}, π_{2} be irreducible generic admissible representations of G_{n}. If

$$
\gamma\left(s, \pi_{1} \times \rho, \psi\right)=\gamma\left(s, \pi_{2} \times \rho, \psi\right)
$$

for all irreducible supercuspidal representations ρ of $\mathrm{GL}_{i}(F)$ for all $1 \leq i \leq n$, then $\pi_{1} \simeq \pi_{2}$.

Recent development of LCT for classical groups

- "LCT for GL ${ }_{n}$ " (J. Chai [2019, J.E.M.S], H. Jacquet and B. Liu [2018, A.J.M])
- "LCT for $\mathrm{U}_{2 n}$ ", (K. Morimoto, [2018, Trans. M]) (He used the recent "LCT for GL_{n} " result via descent method.)
- "LCT for $\mathrm{Sp}_{2 n}$ for supercuspidal case", (Q. Zhang, [2018, Math. Ann])
- "LCT for $\mathrm{U}_{2 n+1}$ for supercuspidal case", (Q. Zhang, [2019, Trans. M])
- "LCT for $\mathrm{SO}_{2 n+1}$ and $\mathrm{Sp}_{2 n}$ for both $\operatorname{char}(F)=0, p \neq 2$ cases", (Y. Jo, [2022, preprint])
- "LCT for 'split' $\mathrm{SO}_{2 n}$ ", (B. Liu and A. Hazeltine, [2022, preprint]) (The above four results uses the 'partial Bessel function theory' developed by Cogdell, Shahidi and Tsai [2017, Duke].)
- "LCT for $\mathrm{Mp}_{2 n}$ for both char $(F)=0, p \neq 2$ cases", (H-, [2023, preprint])
(use precise local theta correspondence between $\mathrm{SO}_{2 n+1}$ and $\mathrm{Mp}_{2 n}$)

Main result

We proved the "LCT for 'quasi-split' $\mathrm{O}_{2 n}$ " for both $\operatorname{char}(F)=0, p \neq 2$ cases.

(LCT for $\mathrm{O}_{2 n}$) H-K-K, (2023), preprint

Let π_{1}, π_{2} be irreducible generic admissible representations of $\mathrm{O}_{2 n}$ with the same central characters. If the twisted γ-factors are same, that is,

$$
\gamma\left(s, \pi_{1} \times \rho, \psi\right)=\gamma\left(s, \pi_{2} \times \rho, \psi\right)
$$

for all irreducible supercuspidal representations ρ of $\mathrm{GL}_{i}(F)$ for $1 \leq i \leq n$, then $\pi_{1} \simeq \pi_{2}$.

As a corollary, we also proved the "LCT for 'quasi-split' $\mathrm{SO}_{2 n}$ ".
This is achieved by the precise study of the local theta correspondence between $\mathrm{O}(V)$ and $\mathrm{Sp}(W)$. To understand this theorem precisely, we first explain what it means 'generic' in the theorem.

From now on, F denotes a local field of characteristic zero or $p \neq 2$.

Comments on Arthur's results

The LCT is immediate from the local Langlands correspondence for quasi-split classical groups, which is done by Arthur and many others.

However, Arthur's results are conditional of weighted fundamental lemma and stabilization of the trace formula, which is not yet completed.

To make our results unconditional, we avoid to use any Arthur's results.

Generic characters

- G: a quasi-split reductive group over F
- $\mathrm{B}=\mathrm{TU}$: F-rational Borel subgroup of G
- T : maximal F-torus of B
- U : the unipotent radical of B
- Z : the center of G
- $\operatorname{lrr}(G)$: the set of equivalence classes of irreducible admissible representations of $G(F)$

Observation

$\mathrm{T}(F)$ acts on the set of characters on $\mathrm{U}(F)$ by conjugation.
For a character μ of $\mathrm{U}(F)$, we say μ is generic if its stabilizer in $\mathrm{T}(F)$ is $\mathrm{Z}(F)$. For $\pi \in \operatorname{Irr}(G)$, we say π is μ-generic if $\operatorname{Hom} U(\pi, \mu) \neq 0$.

Fact

If π is μ-generic, then for any $t \in \mathrm{~T}(F), \pi$ is μ^{t}-generic.

Orthogonal space

Let $\left(V,\langle,\rangle_{v}\right)$ be a $2 n$-dimensional vector space over F with a non-degenerate symmetric form \langle,\rangle_{V} on V.

- \mathbb{H} be the hyperbolic plane over F
- For any $c, d \in F^{\times}$, let $\left(V_{c, d},\langle,\rangle_{2}\right)$ be a 2-dimensional orthogonal space with a basis $\left\{e, e^{\prime}\right\}$ satisfying

$$
\left.<e, e>=2 c,<e, e^{\prime}>=0,<e^{\prime}, e^{\prime}\right\rangle=-2 c d
$$

- $\epsilon \in \mathrm{O}\left(V_{c, d}\right)$: the involution of $V_{c, d}$ satisfying

$$
\epsilon(e)=e, \quad \epsilon\left(e^{\prime}\right)=-e^{\prime} .
$$

When $V \simeq \mathbb{H}^{n-1} \oplus V_{c, d}$, we says that V is associated to (c, d).

Orthogonal group

- $\mathrm{O}(V)$: the isometry group of V
- $\mathrm{SO}(V)=\{g \in \mathrm{O}(V) \mid \operatorname{det}(g)=1\}$

Fact

- $\mathrm{O}(V)$ is quasi-split if and only if there are some $c, d \in F^{\times}$such that $V \simeq \mathbb{H}^{n-1} \oplus V_{c, d}$.
- $\mathrm{O}(V)$ is split if and only if $d=1$.

We may assume that V is associated to $(c, d) \in\left(F^{\times}\right)^{2}$.
Using the natural embedding $\mathrm{O}\left(V_{c, d}\right) \hookrightarrow \mathrm{O}(V)$, regard $\epsilon \in \mathrm{O}\left(V_{c, d}\right)$ as an element of $\mathrm{O}(V)$ acting trivially on \mathbb{H}^{n-1}.

Decompose $\mathbb{H}^{n-1}=X \oplus X^{*}$, where X is a $(n-1)$-dimensional maximal isotropic subspace of \mathbb{H}^{n-1} and X^{*} is dual to X. Let $\left\{e_{1}, \cdots, e_{n-1}\right\}$ be a basis of X.

Borel subgroup of $\mathrm{SO}(V)$

- $\mathrm{B}=T U$: the F-rational Borel subgroup of $\mathrm{SO}(V)$ stabilizing the complete flag of X,

$$
0 \subset\left\langle e_{1}\right\rangle \subset \cdots \subset\left\langle e_{1}, \cdots, e_{n-1}\right\rangle=X
$$

- T : the F-rational torus stabilizing the lines $F \cdot e_{i}$ for $1 \leq i \leq n-1$
- U : the unipotent radical of B

Using the basis $\left\{e_{1}, \cdots, e_{n-1}, e, e^{\prime}, e_{n-1}^{*}, \cdots, e_{1}^{*}\right\}$ of V, we describe U as a $(n \times n)$-matrix group.

From now on, we fix a non-trivial additive character $\psi: F \rightarrow \mathbb{C}^{\times}$.

Generic characters of $\mathrm{SO}(\mathrm{V})$

Definition

Let $E=F(\sqrt{d})$. Choose arbitrary $c^{\prime} \in c \mathrm{~N}_{E / F}\left(E^{\times}\right) /\left(F^{\times}\right)^{2}$. Define a generic character $\mu_{c^{\prime}}: \mathrm{U}(F) \rightarrow \mathbb{C}^{\times}$of $\mathrm{SO}(V)(F)$ as

$$
\mu_{c^{\prime}}(u)=\psi\left(u_{1,2}+\cdots+u_{n-2, n-1}+u_{n-1, n}\right) .
$$

Note that $u_{n-1, n}=\left\langle u e, e_{n-1}^{*}\right\rangle v$.

Fact

The map $c^{\prime} \rightarrow \mu_{c^{\prime}}$ gives a bijection between $c \mathrm{~N}_{E / F}\left(E^{\times}\right) /\left(F^{\times}\right)^{2}$ and $\{\mathrm{T}-$ orbits of generic characters of $\mathrm{SO}(V)(F)\}$.

When $\mathrm{O}(V)$ is split (i.e. $d=1$), there is unique T-orbit of generic characters.

Generic representations of $\mathrm{SO}(\mathrm{V})$ and $\mathrm{O}(\mathrm{V})$

Def

For an irreducible admissible representation of $\operatorname{SO}(V)$, we say that π is $\mu_{c^{\prime}}$-generic if $\operatorname{Hom}_{\mathrm{U}(F)}\left(\pi, \mu_{c^{\prime}}\right) \neq 0$.

Denote by $\widetilde{\mathrm{U}}:=\mathrm{U} \rtimes\langle\epsilon\rangle$. Define $\mu_{c^{\prime}}^{ \pm}: \widetilde{\mathrm{U}}(F)=\mathrm{U}(F) \rtimes\langle\epsilon\rangle \rightarrow \mathbb{C}^{\times}$by

$$
\left.\mu_{c^{\prime}}^{ \pm}\right|_{U(F)}=\mu_{c^{\prime}} \text { and } \mu_{c^{\prime}}^{ \pm}(\epsilon)= \pm 1
$$

Def

For an irreducible admissible representation of $O(V)$, we say that π is $\mu_{c^{\prime}}^{ \pm}$-generic if $\operatorname{Hom}_{\mathrm{U}(F)}\left(\pi, \mu_{c^{\prime}}^{ \pm}\right) \neq 0$.

Note that if π is $\mu_{c^{\prime}}^{ \pm}$-generic, then $(\pi \otimes \mathrm{det})$ is $\mu_{c^{\prime}}^{\mp}$-generic.

LCT for $O(V)$

(LCT for $\mathrm{O}_{2 n}$) H-K-K, (2023), preprint

Choose arbitrary $(c, d) \in\left(F^{\times}\right)^{2}$ and $c^{\prime} \in c \mathrm{~N}_{E / F}\left(E^{\times}\right) /\left(F^{\times}\right)^{2}$. Suppose that V is a quadratic space associated to (c, d).

Let π_{1}, π_{2} be irreducible $\mu_{c^{\prime}}^{ \pm}$-generic admissible representations of $\mathrm{O}(V)$ with the same central characters and same signs.

If $\gamma\left(s, \pi_{1} \times \rho, \psi\right)=\gamma\left(s, \pi_{2} \times \rho, \psi\right)$ for all irreducible supercuspidal representations ρ of $\mathrm{GL}_{i}(F)$ for $1 \leq i \leq n$, then

$$
\pi_{1} \simeq \pi_{2}
$$

As a corollary, we have

LCT for $\mathrm{SO}(V)$

(LCT for $\mathrm{SO}_{2 n}$) H-K-K, (2023), preprint

Choose arbitrary $(c, d) \in\left(F^{\times}\right)^{2}$ and $c^{\prime} \in c \mathrm{~N}_{E / F}\left(E^{\times}\right) /\left(F^{\times}\right)^{2}$.
Suppose that V is a quadratic space associated to (c, d).
Let π_{1}, π_{2} be irreducible generic admissible representations of $\mathrm{SO}(V)$ with the same central characters.

If $\gamma\left(s, \pi_{1} \times \rho, \psi\right)=\gamma\left(s, \pi_{2} \times \rho, \psi\right)$ for all irreducible supercuspidal representations ρ of $\mathrm{GL}_{i}(F)$ for $1 \leq i \leq n$, then

$$
\pi_{1} \simeq \pi_{2} \text { or } \pi_{1} \simeq \pi_{2}^{\epsilon}, \quad \text { where } \pi^{\epsilon}(g):=\pi\left(\epsilon g \epsilon^{-1}\right)
$$

When $\operatorname{char}(F)=0$, a special case of this (i.e. $(c, d)=\left(-\frac{1}{8}, 1\right)$ and $c^{\prime}=-\frac{1}{8}$) is proved by A. Hazeltine and B. Liu (preprint, (2022)).

We prove 'LCT for $\mathrm{O}_{2 n}$ ' by relating it with the 'LCT for $\mathrm{Sp}_{2 n}$ ' via the local theta correspondence.

Symplectic group

- $\left(W,\langle,\rangle_{W}\right)$: a symplectic space over F
- $\operatorname{Sp}(W)$: the isometry group of W (it is always split)
- $\left\{f_{i}, f_{j}^{*}\right\}_{1 \leq i, j \leq n}$ be the basis of W such that

$$
\left\langle f_{i}, f_{j}\right\rangle_{w}=\left\langle f_{i}^{*}, f_{j}^{*}\right\rangle_{w}=0, \quad\left\langle f_{i}, f_{j}^{*}\right\rangle_{w}=\delta_{i j}
$$

- Y : the subspace of W generated by $\left\{f_{1}, \cdots, f_{n}\right\}$
- $\mathrm{B}^{\prime}=\mathrm{T}^{\prime} \mathrm{U}^{\prime}$: the F-rational Borel subgroup of $\operatorname{Sp}(W)$ stabilizing the complete flag of Y,

$$
0 \subset\left\langle f_{1}\right\rangle \subset \cdots \subset\left\langle f_{1}, \cdots, f_{n}\right\rangle=Y
$$

- T^{\prime} : the F-rational torus stabilizing the lines $F \cdot f_{i}$ for $1 \leq i \leq n$
- U^{\prime} : the unipotent radical of B^{\prime}

Using the basis $\left\{f_{1}, \cdots, f_{n-1}, f_{n}, f_{n}^{*}, f_{n-1}^{*}, \cdots, f_{1}^{*}\right\}$ of W, we describe U^{\prime} as a $(n \times n)$-matrix group.

Generic representation of $\operatorname{Sp}(W)$

Definition

Choose an arbitrary $d \in F^{\times} /\left(F^{\times}\right)^{2}$. Define a generic character $\mu_{d}^{\prime}: \mathrm{U}^{\prime}(F) \rightarrow \mathbb{C}^{\times}$of $\operatorname{Sp}(W)$ as

$$
\mu_{d}^{\prime}(u)=\psi\left(u_{1,2}+\cdots+u_{n-1, n}+d \cdot u_{n, n+1}\right) .
$$

Fact

The map $d \rightarrow \mu_{d}^{\prime}$ gives a bijection between

$$
F^{\times} /\left(F^{\times}\right)^{2} \leftrightarrow\left\{\mathrm{~T}^{\prime}(F) \text {-orbits of generic characters of } \mathrm{U}^{\prime}(F)\right\}
$$

Definition

For $\pi^{\prime} \in \operatorname{Irr}(\operatorname{Sp}(W))$, we says that π^{\prime} is $\mu_{d^{\prime}}^{\prime}$-generic if $\operatorname{Hom}_{u^{\prime}}\left(\pi^{\prime}, \mu_{d}^{\prime}\right) \neq 0$.

LCT for $\operatorname{Sp}(W)$

(LCT for $\operatorname{Sp}(W)$) Jo, (2022), preprint

Let π_{1}, π_{2} be irreducible μ_{1}^{\prime}-generic admissible representations of $\operatorname{Sp}(W)$ with the same central characters.

If $\gamma\left(s, \pi_{1} \times \rho, \psi\right)=\gamma\left(s, \pi_{2} \times \rho, \psi\right)$ for all irreducible supercuspidal representations ρ of $\mathrm{GL}_{i}(F)$ for $1 \leq i \leq n$, then $\pi_{1} \simeq \pi_{2}$.

To relate this with our theorem, our first task is to extend Jo's result.

(Extended LCT for $\operatorname{Sp}(W)$)

Choose arbitrary $d \in F^{\times} / F^{\times 2}$.
Let π_{1}, π_{2} be irreducible $\mu_{d^{\prime}}^{\prime}$-generic admissible representations of $\operatorname{Sp}(W)$ with the same central characters.

If $\gamma\left(s, \pi_{1} \times \rho, \psi\right)=\gamma\left(s, \pi_{2} \times \rho, \psi\right)$ for all irreducible supercuspidal representations ρ of $\mathrm{GL}_{i}(F)$ for $1 \leq i \leq n$, then $\pi_{1} \simeq \pi_{2}$.

Local theta correspondence between $\mathrm{O}(V)$ and $\mathrm{Sp}(W)$

There is a functor $\Theta_{V, W}: \operatorname{Irr}(\mathrm{O}(V)) \rightarrow \operatorname{Irr}(\operatorname{Sp}(W))$ induced by the local theta correspondence between $\mathrm{O}(V)$ and $\mathrm{Sp}(W)$.

For $\pi \in \operatorname{Irr}(\mathrm{O}(V)), \Theta_{V, W}(\pi)$ may be zero.
Put $\operatorname{Irr}^{\text {supp }}(\mathrm{O}(V)):=\left\{\pi \in \operatorname{Irr}(\mathrm{O}(V))\right.$ such that $\left.\Theta_{V, W}(\pi) \neq 0\right\}$
The Howe duality theorem says that $\left.\Theta_{V, W}\right|_{I_{r r} \text { supp }(O(V))}$ is injective.
The functor $\Theta_{V, W}$ preserves genericity and γ-factors (up to twist).

Properties of $\Theta_{V, W}$

Main Theorem, (H-K-K)

(1) If $\pi \in \operatorname{Irr}(\mathrm{O}(V))$ is tempered and $\mu_{c^{\prime}}^{+}$-generic, then $\pi \in \operatorname{Irr}^{\text {supp }}(\mathrm{O}(V))$ and $\Theta_{V, W}(\pi)$ is $\left(\mu_{-c^{\prime}}^{\prime}\right)^{-1}$-generic.
(2) Let χv be the quadratic character associated to $(F(\sqrt{\operatorname{disc}(V)}) / F$.

Suppose $\pi \in \operatorname{Ir} r^{\text {supp }}(\mathrm{O}(V))$ is $\mu_{c^{\prime}}^{+}$-generic. Then for any irreducible supercuspidal representation ρ of $\mathrm{GL}_{r}(F)$,

$$
\gamma\left(s, \Theta_{V, W}(\pi) \times \rho, \psi\right)=\gamma\left(s, \pi \times \rho \chi_{V}, \psi\right) \cdot \gamma\left(s, \rho \chi_{V}, \psi\right) .
$$

Sketch of the proof

(Proof of LCT for $\mathrm{O}(V)$)
(Step 1) Given $\mu_{c^{\prime}}^{+}$-generic tempered $\pi_{1}, \pi_{2} \in \operatorname{Irr}(\mathrm{O}(V))$, suppose that

$$
\gamma\left(s, \pi_{1} \times \rho, \psi\right)=\gamma\left(s, \pi_{2} \times \rho, \psi\right)
$$

for all supercuspidal $\rho \in \operatorname{Irr}\left(\mathrm{GL}_{i}\right)$ for $1 \leq i \leq n$.
By the second property of $\Theta_{V, W}$,

$$
\gamma\left(s, \Theta_{V, W}\left(\pi_{1}\right) \times \rho, \psi\right)=\gamma\left(s, \Theta_{V, W}\left(\pi_{2}\right) \times \rho, \psi\right)
$$

for all supercuspidal $\rho \in \operatorname{Irr}\left(\mathrm{GL}_{i}\right)$ for $1 \leq i \leq n$.
(Step 2) By the first property of $\Theta_{V, W}, \Theta_{V, W}\left(\pi_{1}\right), \Theta_{V, W}\left(\pi_{1}\right)$ are nonzero and $\left(\mu_{-c^{\prime}}^{\prime}\right)^{-1}$-generic. Then by the extended LCT for $\operatorname{Sp}(W)$, we have $\Theta_{V, W}\left(\pi_{1}\right) \simeq \Theta_{V, W}\left(\pi_{2}\right)$ and so $\pi_{1} \simeq \pi_{2}$.
(Step 3) Reduce the general cases to tempered cases.

Proof of the main theorem

Main Theorem, (H-K-K)

(1) If $\pi \in \operatorname{lrr}(\mathrm{O}(V))$ is tempered and $\mu_{c^{\prime}}^{+}$-generic, then $\pi \in \operatorname{lrr}^{\text {supp }}(\mathrm{O}(V))$ and $\Theta_{V, W}(\pi)$ is $\left(\mu_{-c^{\prime}}^{\prime}\right)^{-1}$-generic.
(2) Let χ_{v} be the quadratic character associated to $(F(\sqrt{\operatorname{disc}(V)}) / F$.

Suppose $\pi \in \operatorname{Ir} r^{\text {supp }}(\mathrm{O}(V))$ is $\mu_{c^{\prime}}^{+}$-generic. Then for any irreducible supercuspidal representation ρ of $\mathrm{GL}_{r}(F)$,

$$
\gamma\left(s, \Theta_{V, W}(\pi) \times \rho, \psi\right)=\gamma\left(s, \pi \times \rho \chi_{v}, \psi\right) \cdot \gamma\left(s, \rho \chi_{v}, \psi\right) .
$$

Remark: The proof of (1) requires the computation of twisted Jacquet module of the Weil representation. It is independent of Arthur's results on the local Langlands correspondence for $\mathrm{O}(V)$.

The proof of (2) consists of showing the non-vanishing and cuspidality of global theta lift from $\mathrm{O}(V)$ to $\mathrm{Sp}(W)$.

Thank you!

