The Vicsek-BGK equation for collective dynamics

Raphael Winter

University of Vienna
raphael.elias.winter@univie.ac.at

May 12, 2023

SFB
DE
Taming Complexity in Partial Differential Systems

Collective motion

- fish schools
- opinion dynamics
- cell dynamics (e.g. sperm)
- pedestrian dynamics

Common feature: individual agents adapt direction to their neighbors.

Figure: Collective swimming in sperm, from Phuyal et al. 2022

Qualitative behavior

The observed behavior can be
(1) Disordered: the directions of movements are (close to) uniformly distributed, almost no correlation

Observed if density of agents is (locally) low
(2) Ordered: Onset of a collective motion of the group.

Observed if density of agents is (locally) high

Moreover, we observe phase transition, i.e. critical density ρ where behavior changes from a) to b).

Mathematical model

We investigate the Vicsek-BGK model (Degond, Diez, Frouvelle, Merino, 2020):

$$
\begin{aligned}
\partial_{t} F+\omega \cdot \nabla_{x} F & =Q(F), \\
Q(F)(x, \omega) & =\rho_{F}(x) M_{J_{F}}(x, \omega)-F(x, \omega) .
\end{aligned}
$$

Kinetic model for the particle density $F(t, x, \omega)$ determining the local density at
(1) position $x \in \mathbb{T}^{d}$
(2) direction $\omega \in \mathbb{S}^{d-1}$ (constant speed).

Local relaxation towards von-Mises distribution M_{J}

$$
M_{J}(w):=\frac{\exp (\omega \cdot J)}{Z(J)}, \quad Z(J):=\int_{\mathbb{S}^{d-1}} \exp (\omega \cdot J) \mathrm{d} \omega
$$

given in terms of the local flux $J_{f}(x)$

$$
J_{F}(x):=\int_{\mathbb{S}^{d}-1} \omega F(x, w) \mathrm{d} \omega .
$$

Phase transition (Staudner, Merino, 2021)

Consider steady state problem for spatially homogeneous equation (for $F(t, \omega)$)

$$
0=\partial_{t} F=\rho M_{J_{F}}(\omega)-F(\omega) \quad \Leftrightarrow \quad F=\rho M_{J_{F}}(\omega) .
$$

Reduces to closed equation for J_{F} (consistency relation)

$$
\begin{equation*}
J_{F}=\rho \int_{\mathbb{S}^{d-1}} \omega M_{J_{F}}(\omega), \quad \text { or } \quad|J|=\rho c(|J|) . \tag{1}
\end{equation*}
$$

We always have the disordered solution $J_{F}=0$.
On the other hand: c is convex, bounded, with $c^{\prime}(0)=d^{-1}$.

\leadsto A non-trivial solution exists only for $\rho>d$ (Phase transition)

Key mechanism: coexistence of disordered and ordered behavior for some time, what happens through mixing?
Known properties:
(1) Mass conservation
(2) No conservation of energy and momentum, neither dissipation of entropy
(3) von-Mises steady states (as in homogeneous)

Not known:
(1) Well-posedness of initial value problem
(2) Stability of von-Mises steady states
(3) Existence of more steady states?!

Plan of this talk: Answers to 1. and 2.

Theorem (Merino, Schmeiser, W., 2023+)

Let $d \geq 2$ and assume $F_{0} \in L^{1}\left(\mathbb{T}^{d} \times \mathbb{S}^{d-1}\right)$ is a non-negative function with finite entropy:

$$
\begin{equation*}
\int_{\mathbb{T}^{d} \times \mathbb{S}^{d-1}} F_{0}(x, v)\left|\log F_{0}(x, \omega)\right| \mathrm{d} x \mathrm{~d} \omega=E_{0}<\infty . \tag{2}
\end{equation*}
$$

Then there exists a non-negative function $F \in C\left([0, \infty) ; L^{1}\left(\mathbb{T}^{d} \times \mathbb{S}^{d-1}\right)\right)$ which solves the Vicsek-BGK equation in the weak sense.
Moreover, the mass of F is constant in time, and the entropy increases at most exponentially, i.e. there exist constants $c, C>0$ such that

$$
\begin{equation*}
\int_{\mathbb{T}^{d} \times \mathbb{S}^{d-1}} F(t, x, v)|\log F(t, x, v)| \mathrm{d} x \mathrm{~d} v \leq C E_{0} e^{c t} \tag{3}
\end{equation*}
$$

Remarks:
(1) Proof similar to Perthame's theory for Boltzmann BGK.
(2) Uniqueness and L^{∞} solutions unknown.

From the spatially homogeneous case we know

$$
F_{\rho, J}(x, \omega)=\rho M_{J}(\omega)
$$

are steady states if
(1) $J=0$.
(2) $\rho>d$ and $|J|=L(\rho)$, where $L(\rho)>0$ unique solution to

$$
L=\rho c(L) .
$$

Observation: In case 2. we have Manifold of steady states $|J|=L(\rho)$.
Problem: The direction of the total flux

$$
J_{\mathrm{tot}}(t)=\int_{\mathbb{T}^{d} \times \mathbb{S}^{d-1}} \omega F(t, x, \omega) d x d \omega
$$

does not need to be constant in time.

Theorem (Merino, Schmeiser, W., 2023+)

Let $d=2,3$. There exists a constant $\kappa>0$ such that the following holds: For any $\mu \in\left(0, \mu_{*}+\kappa\right)$ there exists $\varepsilon_{0}>0$ such that for any $\bar{J} \in \mathbb{R}^{d},|\bar{J}|=L(\mu)$ and any non-negative initial datum $F_{0} \in H_{x}^{2}\left(\mathbb{T}^{d} \times \mathbb{S}^{d-1}\right)$ with $\mu=\int_{\mathbb{T}^{d} \times \mathbb{S}^{d-1}} F_{0}(x, \omega) d x d \omega$ and

$$
\begin{equation*}
\left\|F_{0}-F_{\mu, \bar{J}}\right\|_{H_{x}^{2}}<\varepsilon_{0}, \tag{4}
\end{equation*}
$$

there exists a global-in-time solution $F=F(t)$ to the Vicsek-BGK equation with initial datum F_{0}. Moreover, there exist $c, C>0$ and $J_{\infty} \in \mathbb{R}^{d}$,
$\left|J_{\infty}\right|=L(\mu)$ such that

$$
\begin{equation*}
\left\|F(t)-F_{\mu, J_{\infty}}\right\|_{H_{x}^{2}} \leq C e^{-c t} \tag{5}
\end{equation*}
$$

Remarks:
(1) H_{x}^{2} is the Sobolev space with 2 weak derivatives in x.
(2) it looks very hard to compute J_{∞} from the initial datum (Manifold of solutions).

Some ingredients of the proof

Let \mathcal{M} be the manifold of von-Mises steady states with density μ.
Sufficient to show:
There are $\varepsilon_{0}>0$ small enough and $T>0$ large enough such that if

$$
\operatorname{dist}\left(F_{0}, \mathcal{M}\right):=\inf _{F \in \mathcal{M}}\left\|F_{0}-F\right\|_{H_{x}^{2}} \leq \varepsilon_{0}
$$

then

$$
\begin{aligned}
& \operatorname{dist}\left(F_{T}, \mathcal{M}\right) \leq \frac{1}{2} \operatorname{dist}\left(F_{0}, \mathcal{M}\right), \\
&\left\|F_{t}-F_{T}\right\|_{H_{x}^{2}} \leq C \operatorname{dist}\left(F_{0}, \mathcal{M}\right), \quad t \in[0, T] .
\end{aligned}
$$

Iterating \leadsto exponential convergence.
Consequence: Reduction to linearized problem

The linearized equation

The linearized equation around $\mu M_{\mathcal{J}}$ reads

$$
\partial_{t} f+\omega \cdot \nabla_{x} f=\rho_{f} M_{\mathcal{J}}+\mu J_{f} \cdot \nabla_{J} M_{\mathcal{J}}-f .
$$

Taking Fourier Laplace transform: $\tilde{f}_{k}(z), k \in \mathbb{Z}^{d}, \Re(z) \geq 0$:

$$
\tilde{f}_{k}(z, \omega):=\int_{0}^{\infty} \int_{\mathbb{T}^{d}} e^{-z t} e^{-i k \cdot x} f(t, x, \omega) d x d t
$$

the equation becomes

$$
\begin{aligned}
& \tilde{J}=\tilde{\rho} \int_{\mathbb{S}^{d-1}} \frac{\omega M_{\mathcal{J}}}{1+z+i k \cdot \omega} d \omega+\mu \int_{\mathbb{S}^{d-1}} \frac{\omega \otimes \nabla_{J} M_{\mathcal{J}}}{1+z+i k \cdot \omega} d \omega \cdot \tilde{J}+R_{1} \\
& \tilde{\rho}=\tilde{\rho} \int_{\mathbb{S}^{d-1}} \frac{M_{\mathcal{J}}}{1+z+i k \cdot \omega} d \omega+\mu \int_{\mathbb{S}^{d-1}} \frac{\nabla_{J} M_{\mathcal{J}}}{1+z+i k \cdot \omega} d \omega \cdot \tilde{J}+R_{2} .
\end{aligned}
$$

Linearized equation

The F-L transforms of density and flux $\tilde{\rho}$ and \tilde{J} solve

$$
\mathcal{K}(k, z, \mu) \cdot\binom{\tilde{J}_{k}(z)}{\tilde{\rho}_{k}(z)}=R_{k}(z) .
$$

Extension of Fourier-Laplace Kernel

Exponential convergence in time of the k-th Fourier component holds if $K^{-1}(k, z, \mu)$ can be analytically extended to $\Re(z) \geq-\delta, \delta>0$ in the left-hand side of the complex plane.

Linearized equation

Strategy: Show this property for $\mu \leq \mu_{*}, \mathcal{J}=0$ and extend by continuity. Problem reduces to:

$$
1 \neq b+\mu \frac{\lambda^{2}}{1-\mu a},
$$

in some uniform region $\Re(z) \geq-\delta, 0 \neq k \in \mathbb{Z}^{d}, \mu \in\left[0, \mu_{*}\right]$

$$
\begin{aligned}
& b(z, k)=\int_{\mathbb{S}^{d-1}} \frac{M_{0}}{1+z+i k \cdot \omega} d \omega, \\
& \lambda(z, k)=\frac{1}{|k|} \int_{\mathbb{S}^{d-1}} \frac{\omega \cdot k M_{0}}{1+z+i k \cdot \omega} d \omega, \\
& a(z, k)=\frac{1}{|k|^{2}} \int_{\mathbb{S}^{d-1}} \frac{(k \cdot \omega)^{2} M_{0}}{1+z+i k \cdot \omega} d \omega .
\end{aligned}
$$

$d=2$: integration and some tricks \leadsto roots of 4-th order polynomials in $z \checkmark$ $d=3$: no such luck, need to try harder. Actually false for $k \in \mathbb{R}^{3}$.

In dimension $d=3$, use argument principle: We need to show

$$
1 \neq b+\mu \frac{\lambda^{2}}{1-\mu a}=: h(z)
$$

for $\Re(z) \geq 0,0 \neq k \in \mathbb{Z}^{d}, \mu \in\left[0, \mu_{*}\right]$.
Since $\mathrm{h}(z)$ analytic on $\Re(z)>-1$, sufficient to show

$$
\begin{aligned}
\gamma: \mathbb{R} & \rightarrow \mathbb{C} \\
x & \mapsto b(i x)+\mu \frac{\lambda^{2}(i x)}{1-\mu a(i x)}
\end{aligned}
$$

does not cross the half-line

$$
H_{+}=\{y \in \mathbb{R}: y \geq 1\}
$$

Argument principle
In order to show

$$
h_{\mu, k}(z) \neq 1, \quad \Re(z) \geq 0,
$$

Use rather accurate estimates to show $\Re(h(i x))<1$.

Thank you!

