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e Objective : A system of coupled nonlinear Schrodinger
equations (Schrodinger-Lohe model) is studied in three
perspectives :

1. Discretized (Semi-discrete SL) [Ha, H., Kim, 2022]
2. Wigner transformed (Wigner-Lohe) [Ha, H., Kim, 2022-2]

3. Semiclassical limit (Vlasov-Lohe) [Ha, H., Kim, submitted|
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Schrodinger-Lohe system

e A quantum synchronization which has been studied extensively is the
Schrodinger-Lohe system :

. h? ihk %
lhatlﬁj waJ + V’(/} 12N (’(/)k = izzjfij; wj) , t>0, x¢€ Rd’

wj(oax) :¢JQ(X)7 Jjefl,..., }7

where V; are real valued potential functions and % is the Planck constant.

e Question : What is this model for?
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Classical and Quantum Dynamics

Let H(x, p) be a Hamiltonian. x : position, p : momentum(velocity) and
H(x, V /i) be its quantization. Recall that

e Classical dynamics : The equation of motion is as follows

. oH
=~
o
P=ox"

e Quantum dynamics : We first consider the Schrodinger equation
1
104 = fEAdJ + Vip = Hap.
Then, we compute the expectation of the physical observable A using 1,

i.e.

]E(A) = (A% ¢>L2-

6/57



Back to the Schrodinger-Lohe system

e Consider the many body wave function
V(xy, xn) = 1) - ¥ (xw)-
Then, the Schrodinger-Lohe model can be written as follows
10,V =HW,

where

N
H=) I0I® - ®@H® - ®],

and

=

o (- o us ZQ% (Ol = 9 ) )

m=1
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What is Schrodinger-Lohe model for?

e Therefore, the Schrodinger-Lohe model can be written as

where the Hamiltonian 7 depends on the wave function V.
e We can see the S-L model as a feedback control for quantum system.

e We use the S-L model to control quantum particles to synchronize.
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Some results on the Schrodinger-Lohe system

1. (Conservation of L?-norm) : [|4?]|2 = 1 = [|¢b(t)[|o = 1.

2. Let D(V) = s | Vi = Vjllos and D(¢(t)) = GRS (i) — i (£)] 2
Then, we have

Theorem (Cho-Choi-Ha, '16 & Choi-Ha, '14)

(1) k>0, D(V)=0, D(°)< i implies D(¢(t)) S e "t
(2) k >54D(V) >0, D(¥°) < Dy implies lim limsupD(y(t)) = 0,

K—=00 t 00
where D, is a constant.
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Semi-discrete SL model

e Semi-discrete Schrodinger-Lohe = Schrodinger-Lohe
1. Stability

2. Continuum limit (from discrete to continuous)
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Semi-discrete SL model

For h € (0,1], we define Z¢ := hZ9 = {x = hn: n € Z¢}, and the
discrete Laplacian

£ (x + hej) — 2f (x) + f(x — he))
=2 = -
j=1
Then, for a wave function @Z)Jh = 1/)Jf’(t,x) :Ry x Z§ — C, we define the
semi-discrete Schrodinger-Lohe model :

(W v
!, 97

0y = _,A W + Vil + — (wk wﬁ) , J €[N,

wjh(07x) = ’(/}Ji"7ln(x)7 ij”n

[2(RY) = 1,

where V" : Zf — R, is an external one-body real-valued potential.
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Semi-discrete SL model

e Goal : Semi-discrete SL = SL.

e From continuous to discrete : Given f € LP(RY), the discretization of
f, denoted by £/ : Zg — C is defined by

17
Xmi=hmeZd, f(xy):= 7/ f(y)dy.
he S t10.)

e From discrete to continuous : Conversely, we define the linear
interpolation operator p, which maps a function on Z‘,f to a function on
RY: for x € x,, + [0, h)?,

d
(prf)(x) := f(xm) + Z Flom + heé) — f(Xm)(x — Xm) e

=1

where {¢;} is the standard ONB of R¢.
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e The L}-norm:

Tl

he | ST IFx)P ] . pell, o)

d
||f||L‘; = h"||fHep(zg) = x€LY

sup | (x)], p = oo.
XEZ‘;

e The inner product: (f,g)2 := h9 ZXEZZ f(x)g(x),
e Sobolev norms on Zg: |[fllwes = [[(V4)*Fll2 = |((6)°F)" 1z

e For p=2, H} := th’z.
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e The two point correlation function

aj = (Wi, ), A= ()i
e The functionals are defined as :

M(A(t)) ;= max |1 —a;(t)], dist(A, A) = max |aj— d&;

1<ij<N 1<ij<N

o The difference between potentials Vj(x) = V/(x) + v;

D(v) = g lvj — vil

e For some technical reason

m_;:;(l ]_4’DK(V)>’ m+_;<1+ 1— 4’D’£V)>
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Asymptotic Stability

e The dynamics of A = () is (asymptotically) stable.

Theorem (Ha-H.-Kim, '22)

Suppose that potential, coupling strength and initial data satisfy

Vi(x) = V(x) +vj, x€R?Y je[N], &>4D(v),

max{m(A‘"),m(,&in)} <M, = % (1 L1 4DI£V)> |

and let {1;} and {1);} be global solutions to SL corresponding to the
initial data {1/} and {{)I"}, respectively. Then for M> € (M_, 3),
there exists t* € [0, 00) such that for t > t*,

dist(A(t), A(t)) < dist(A(t*),A(t*))exp[ - 24% - E)JTOO‘(t - t*)}.
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Asymptotic Stability

Step 1 : Calculation

d()é,‘j
dt

N
. K
:1(1/j O{U WZ Qi —|—()ka Oé,j)
k=1
Step 2 : More calculation

%dist(A, A) <2k (fnt(A) - ;) dist(A, A), t>0.

Step 3 : Assumption = Existence of an absorbing set : there exists a

finite time t* € (0, 00) such that

sup M(A(t)) <M™ <

t, <t<oo

Step 4 : Apply Step 3 to 2 : %dist(A, A) < *2/{‘% - S)T("O‘dist(A, A).
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From discrete to continuous

Theorem (Ha-H.-Kim, '22)

Suppose system parameters and initial data satisfy

k>0, he(0,1), "€ H(RY),
max (7", g — ()| < O(Vh),

1<ij<N

and let {wf} and {1} be two global smooth solutions to semi-discrete
S-L and S-L model, respectively. Then, there exist uniform (with respect
to h) constants Gy and G, such that

1P (£) = ()2 < GL(L + Y] ll)e VA, &> 0.

In other words, we see that

HPh’lbjh(t) —¢j(t)||;2 — 0, as h goes to 0.
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Main ingredients

1. Discrete vs continuous [Hong, Yang, 2019]
o For f € HY(RY), let " : discretization, pyf" : linear interpolation.

(1) Discretization vs continous
1Nty S I lanceey 18 F ey S 1P Nancan
||thh - fHL?(Rd) N h”fHHl(Rd)-

e Let U(t), U"(t) be the solution operator for the continuous and
discrete linear Schrodinger equation.

(2) Discrete flow vs continuous flow

onUP ey U 12 < Lelht (9 g )+l =7
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Main ingredients

2. H!-norm bound [Huh, Ha, 2017]
Suppose

Y e HHRY), [[9flle =1, V; € Whe(RY).
Then, for any T € (0,00), the solution to SL model satisfies
19 ()] ey S e, tel0,T], Jjel[N].
3. Stability

. _Ah < @3kt in _ o hin )
max lag(t) ~af(0) < & max_ laB(t) — ol (o)
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Idea of the proof

Step 1 : Duhamel’s formula for pyip! — 1);
Prif — ;= paU (8" — U()y]"
+ /Ot (PnU"(t — s)(V/]) — U(t — s)(Viuy))ds
+ /(;t(phUh(t —s)L] — U(t — s)L;)ds.

Step 2 : Estimate each terms using Main ingredients.

t
DY — ahs < p3 oCt D) — b
max [|py] (£) = U5z S hee *E/ P57 (5) = ()l 1=ds.
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Semiclassical analysis of the S-L model

e From now on, we study the semiclassical analysis of the
Schrodinger-Lohe model.

e Write the equation in an approriate form to investigate the
effect of the scale A.

e This can be done using the Wigner transform and we get
Wigner-Lohe system.

e h and h are completely different !!
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Quantum-Classical Correspondence

e Given a Schrodinger equation

2
ihoe(x, 1) = 5 B, £) + V()(x, ) = Ho.

We want to see what happens when 7 — 0 (Semiclassical Limit).
e For example, the uncertainty principle [x, p] = i% breaks down.
e However, doing this directly to the Schrodinger equation is non sense.

e Two approaches : WKB vs Wigner transform
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WKB method

e One natural way to see this is via the WKB ansatz,

iS(x, t)

¥ = a(x, t)exp(
e This leads us to
1l 2
S =——|VS|© -V,
2m
1 1
Oia=——VS-Va— —aAS.
m 2m

e Weakness : Well-posedness, solution form fixed...

25 /57



Wigner transform method

e Wigner phase space method
Definition
We define the Wigner transform of L2(R9) functions v and ¢ by

W' 0l(x.p) = g | (x " hzy) 5 (x - h{) e dy.

We call w”, the Wigner function or distribution.

e This also has some weaknesses.

26 /57



Wigner transform

e Some properties of the Wigner transform (i = 1).

Lemma

(1) (Moyal identity)
1 _
<W[1/)a ¢]a W[w/7 ¢/]>L2(R2d) — (%)d<wa ¢/>L2 <¢a ¢/>L2,

(2) Jga W, @1(x, P)dp = Y(x)$(x),  [po Wi, ¥](x, p)dp = [t)(x)?

(3) Js Wl 01(x. P = oo FU ()T 5)

e In particular, the expectation value of an observable G is given by

MQZ/WWWWmMMmWW

e Remark : Wigner function can take negative values, i.e. not a true
probability density. cf) Husimi transform.
e However, as h — 0 the Wigner function becomes more positive.
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Wigner transform method

o If ¢ satisfies the linear Schrodinger equation, w” = w”[¢), 1] satisfies
the quantum Liouville equation :

h
oew" +p-V,wh + 79[\/11(‘” ) =0,

where ©[V/] is the pseudodifferential operator,

hy._ _ 3 hyy hy h NelP=P')y 4!
o[V](w") = o) /R2d [V(x—f— > ) V(x > )}W (x,p")e dp'dy.
e Notice that 7 — 0 yields (formally)

ow+p-Vew -V, V-V,w=0.
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The Wigner-Lohe model

e Schrodinger-Lohe = Wigner-Lohe, via the Wigner transform
e We define the Wigner matrix W" = (wj/) by

wjj = w[i;, ],

e In this part, we set i = 1.
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The Wigner-Lohe model

e The Wigner-Lohe model for V; = V is written as
Orwij + p - Vw + O[V](wy)
N
K
=— Wik + Wij) — (/ Wik + Wi dXdP) wi|, (x,p) € R*,
a0 2 () = ([ () |, ()
w;i(0,x, p) = wi(x,p), i,j€[N].

where ©[V] is the pseudodifferential operator,

O[V](w) := —ﬁ /}de {V(X—F%)—V(X—%)} w(x, p')e'P=P)Y dp'dy,

subject to initial constraints:

/ wldxdp = 1, ’/ w,?dxdp— 1‘ <1, i#je][N].
R2d J R2d
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Complete synchronization

e Qur first result is on the uniformization of the Wigner matrix

Theorem (Ha, H., Kim, 2022)

Let wj; be a sufficiently smooth solution to Wigner-Lohe. Then, the
complete aggregation emerges asymptotically:

tin;OHWik_ij”LZZO7 ivjvkamE[N]'

e Set
zjj(t) := / w;i(t,x, p)dxdp, i,je[N], t>0,
R2d
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Complete synchronization

Proof Idea
e Want to derive Grénwall-type inequality for ||wix — wi|| 2.

e But, the inequality contains terms like ||w;j||;2 and |1 — z;| which are
not necessarily bounded.

e Thus, we restrict the initial data to show that |1 — z;| — 0 and
Iwijlle < C.

e Then there exist two positive constants C; and G, such that
N

N

d _ _

p > [lwik — wik|72 < —&(1—C1e “t) > llwik — wikl 74+ Coe™", £ > 0.
k=1 k=1
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Complete synchronization

e Indeed, we have

aHWik — wi|| %2

N
K
= N Z/ (|Wik — wik||Wie — wje| — Re(zie + zoi )| wi — wik]?
=1 RZd

+ |zie — Zjo| |wji| Wik — ij|>dXdp
N

K
< 35 27 (i = w2 lwie = wiell iz = Re(zie + o) | wi — wiel 2
/=1

o lzie = 2l [l il i — wiel2)-
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Existence theory

e Now we investigate the global solvability.

For this, we define a subset X', a norm and a transport operator:

/ fdxdp‘ < oo} ,
R2d

Il = IFlliz + ’/fdxdp

X = {f € L2(R*?) :

, Ai=—p-V,.

and its N2 copies:

X := {F = (Fy) € (L3(R¥))®V

/ F,-jdxdp' <oo, I,j€ [N]},
R2d

1= WFlonn + | [ Fato| s max (WFsl + | [ Focad] ).
JR2d 1) R2d
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Theorem (Ha-H.-Kim, '22)
For T € (0,00), the following assertions hold.
1. If initial data and the potential satisfy

wpeX, ije[N], and V€L®(R),
then there exists a unique mild solution to the Wigner-Lohe:
wj € C([0, T); X), i,j€[N].
2. If we impose further regularity on initial data and the potential

wy € D(A), i, j€[N], and V€ L®(R’)nL*RY),

then there exists a unique classical solution to the Wigner-Lohe.

w; € C([0, T]; X) N CY([0, T]; D(A)), i,j € [N].
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Sketch of proof

Idea of the proof :
(1) Mild solution : Fixed point theorem on the space X.

O:W + p- VW + O[V](W)
= % (Eij WG + R WEj; — W/de(EUGCj + R,-GE,-J-)dxdp) ,
W(0) = WO.

(2) Classical solution : Semigroup theory to the equation of the form

du(t) B
g TAut) =f(tu(t)), t>t,
U(to) = Up.
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(2-continued) For W = (w;;)(;j), we introduce an N x N matrix F(W)
whose (17, j)-th component is given as

N N
K K
(F(W (,J = —Nkz_: Zik+zi)wjj = —Nkz_; (/RM(Wik + ij)dxdp> wij,
Then, we show that F is indeed Lipschitz by using the following :

Lemma (Application of the Gateaux Mean value theorem)

For U,V € X, there exists a positive constant C > 0 that may depend on
time T such that

[F(U) = F(V)llx < CJJU = V.

Then, the functional derivative, denoted by DF, is continuous.
Consequently, F is Lipschitz from a bounded subset of X to X.
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The Vlasov-Lohe

e We study the transition

Schrodinger-Lohe = Wigner-Lohe = Vlasov-Lohe
e Ry

1 : Wigner transform
2 : Semiclassical limit.
e Vlasov-Lohe model
1. Derivation (Formal and Rigorous)

2. Global existence of classical solutions

3. Asymptotic behavior
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The semiclassical limit

e Goal : Semiclassical Limit of a quantum synchronization system?

That is, we want the classical counterpart of the Schrodinger-Lohe
system: Nonidentical potential + Nonlinearity

N

U =~ AP+ U+ 25 S (g2 — (P ulu).

k:

e But, how to take the Wigner transform?

e We assume that the potentials are of the form U'(x) = U(x) + hivj;.

= Wigner matrix approach [Gerard-Markowich-Mauser-Poupaud, '97].
1 hy\ — hy\ ipy
h P(x+2 )0 (x— ) ey
[ﬂ} %](X P) (277) /d“/’ <X+ D )wJ (X 2 ) e y
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The semiclassical limit

e Question : How to send i — 07

e Frequently used test function space is defined by
A= {¢ € Co(R? x RY) : Fpy2¢(x, 2) € L'(RS; C°(R))},
with the norm given by

16lla = / 1 [Fos 6 A5
R xcRd

and we denote by A* the dual space of A.

o Indeed, we work with N?-copies of A.
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Wigner measures

Proposition (Gerard-Markowich-Mauser-Poupaud, '97)

For a bounded family of L2(R*)®N functions {(¢]")}, let W"[W"] be a
matrix whose elements are generalized Wigner distributions:

W5 = whyl, P
Then, the following assertions hold.
1. (Boundedness):
WP sy < W7 2rayen.

2. (Weak-+ compactness): There exists a subsequence of W"[W"]
which converges in (AN*N)* weak-x to the measure W = (w;;). We
call W as the Wigner measure associated to the family {(wf)}
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Formal derivation

e Recall the following Wigner-Lohe sysetm:
h
i . o
= W AZd(wi - wj)WU(va/)e (p P ) ydp/dy

Oewjj +p- Vew] +

N

L+ (Wl + wh) — / (W)} + wl)dxdp | w) b,
24 k=1 ’ R2d y ij

where the pseudodifferential operator is defined by

O[VI(w)(x, p; )

- : " 7 I\l (P=P") Y
T (2n)d /de [V (X+ > > vV (X > )} w(x, p')e dp’ dy.
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Formal derivation

e Now, sending i — 0, yields the following Vlasov-Lohe equation

(‘9tw,-j + P - VXW,",' — VXV o VPW,'J'

=i(vi — vj)wi(x, p)
N

p .
+ 5 (wij + wi) — / (Wik + wij)dxdp | wij ¢ .
2N —~ R2d

e In the following, we want to derive
Schrédinger-Lohe = Wigner-Lohe = Vlasov Lohe or

Wave functions = Wigner functions = Wigner measures.
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Rigorous Derivation

Step 1 : From Schrodinger-Lohe to Wigner-Lohe, i.e. from

h2
lhat%h = _EAth (V + hVJ )wh (l/}k <¢Ev ¢Jh>%ﬁ)»

h
J

= wf’07 ”wf’OHLZ =1, je€ [N],

t=0+

V(4 ) = U (= ) [ ) el

+

K
3 b~ ([ o+ )],

x

where we set U(x) = V/(x) + hu;.
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Schrédinger-Lohe to Wigner-Lohe

In theorem, we have

Theorem (Ha-H.-Kim, submitted)

Suppose that the potentials Ujﬁ := V + hj are in (C* N L®)(RY), and let
{¢I"} C C(R, H*(RY)) NCY(R, L2(R?)) be a set of solutions to SL. Then,
wj satisfies

OVIw)) (v —y

8 xW, = ‘,)/ h (P—Pl)'y /
tW +P v ’J + h (27T)d R2d WU (X p) dp dy

N
K h h R I I ..
-+ N kz:; {(ij + wi) — </R2d(wik + ij)dXdP> W,j}, i,j € [N].

’
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Schrédinger-Lohe to Wigner-Lohe

To show the previous theorem, we prove

Lemma

Suppose that the potentials Ujﬁ = V + hy; belong to (C* N L*®)(RY), and
let {wjﬁ} C C(R, H?(RY)) N CY(R, L2(RY)) be a strong solution to SL.
Then, one has the following regularity estimates:

1. The following functions belong to C*(R; L°°(R?9)):

Wija i(V,‘—l/j)Wl-;l,

N

K o o

o o ol ) = ([t whyaao) wi | s e [l
k=1

2. The following functions belong to C(R; L>°(R?9)):

h 2 h
8W,-j 0 wjj

OXm  — O0x00%m’

Le[vi(w)), ijeIN, tmeld)
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Wigner-Lohe to Vlasov-Lohe

Step 2 : From Wigner-Lohe to Vlasov-Lohe.
e Starting from

Oewj + p- Vew]

= iy o VO ) = U (= 3w e ey
v % EN: {(WIZ +wh) - (/RM(W,-E S W,Z-)dxdp) Wﬂ,
k=1

e We arrive at

0wy + p - Viw; — ViV - V,ow;

N
: K
=i(vi —yj)wy + o Z (wij + wix) — / (Wik + wij)dxdp | wij ¢ .
2N —~ R2d
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Wigner-Lohe to Vlasov-Lohe

e The derivation of Vlasov-Lohe is based on assumption that we have the
strong convergence for the initial data

/ Wijr.‘(x,p,O)dxdp—>/ w;i(dx, dp, 0),
R2d R2d

and applying the weak-* convergence of the Wigner functions to Wigner
measures.
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Wigner-Lohe to Vlasov-Lohe

e The Wigner measures are weak solutions :

/0 /]Rzlj(aﬂb-&-p.de)—V\/.v‘r@)wij(t7 d, dp)dt

+ #(0, x, p)w;;(0, dx, dp)
R2d

+i(y; — uj)/ / owji(t, dx, dp)dt
0 R2d

N oo
K
MY kz_;/o Lo d(wij + wi)(t, dx, dp)

- h ( o e, o dp)) ([, omie.dx.do))ae =0,

for any test function ¢ € C2°([0, 00) x R?9).
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Wigner-Lohe to Vlasov-Lohe

Theorem (Ha-H.-Kim, submitted)

Suppose that the potentials and initial data satisfy
U=V +hwj € (CNL®)(RY), je[N],

and let {(wf)j}h be a sequence of strong solutions to SL in

C(R; H?(RY)) N CL(R; L2(RY)). If the corresponding Wigner distributions
{w]['} satisfy the assumption on initial data, then the set of
corresponding Wigner measures {w;;} is a global weak solution to VL.
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Global Solvability

e The Vlasov-Lohe model : for (t,x,p) € R, x R
atW,'J' +p- VXW,'J' - V,V. va,'j = i(l/,' — Vj)W,'j

N
K
+ﬁ kz:; {(ij + wik) — (/RH(Wik + ij)dXdP) Wij} ;

- WIJO7 i?j e [N]7

Wij
lt=0

subject to initial constraints:

Wl € W2(R2), /Zdw,-?dxdpzl, ‘ /de}}dxdp—l‘a, i #j € [N].
JR R
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Global Solvability

Proposition (Ha-H.-Kim, submitted)

(Local existence of a classical solution) Suppose that the zeroth order
potential and initial datum satisfy

V e C3(RY) and /]de widxdp =1, Vi€ [N].

Then, there exists a time T, > 0 such that system has a unique set of
solutions {w;} in C1([0, 7..) x R27).

| \

Theorem (Ha-H.-Kim, submitted)

(Global existence of classical solutions) Suppose that the zeroth order
potential V lies in C3(RY) and initial data satisfy the constraints. Then,
for any T € (0,00), there exists a unique global classical solution in
CL([0, 7) x R29),
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Global Solvability

e |dea of the proof : Method of characteristics.

e Local existence : The nonlocal term is determined by the ODEs : If we
set

Zij(t) = /ch’ W,'J'dXdp, I,J € [N]

Then, we integrate the system with respect to (x, p)-variable to find the
ODE system for z;;:

dzj .
dtj =i(y; — ZU QNZ ZU Z,k+2kj).

e Global existence : Using the method of characteristics to estimate the

term N
E) = D D IVIVEW; oo (res)-
0<|al+|8]<2ij=1
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Uniformization of the Wigner matrix

Let {w;;} be a solution to Vlasov-Lohe system. We set

D(2) = T 1 -z, DV):= T, lvi — vjl.

Theorem Suppose that coupling strength and initial data satisfy

1—|-\/1— /I'i

k>0, D(2°<
Then, the following estimates hold.
1. If D(V) = 0, complete synchronization for YW = {w;;} emerges
asymptotically:

li (1) — t)|| = 0.
1 1(8) = w2

2. If D(V) > 0 and k > 4D(V), practical synchronization for Z = {z;}
occurs asymptotically:

lim limsupD(Z(t)) = 0.

K= tso00
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Summary
(1) Continuum limit : Semi-discrete SL = SL
(2) Semiclassical analysis : Study of the Wigner-Lohe model

(2) Semiclassical limit : SL = Wigner-Lohe = Vlasov-Lohe
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Thank you for the listening!
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