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First-order linear consensus model in finite dimension

ẏi (t) =
N∑

j=1

σij
(
yj (t)− yi (t)

)
1 6 i 6 N (Hegselmann-Krause)

yi (t): state of the agent i (position, opinion, etc).

σij > 0: interaction frequency of the agent i with the agent j .

We say we have consensus when yi (t) = yj (t) = ȳ for all i, j .

The system is symmetric if σij = σji for all i, j , and non-symmetric otherwise.

HK: basic model for collective (social) dynamics. Many other models, like Cucker-Smale second-order models.
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First-order linear consensus model in finite dimension

ẏi (t) =
N∑

j=1

σij
(
yj (t)− yi (t)

)
1 6 i 6 N (Hegselmann-Krause)

Setting

y =



y1

y2

...

yN


A =



−
∑
k 6=1

σ1k σ12 · · · σ1N

σ21 −
∑
k 6=2

σ2k · · · σ2N

...
. . .

...
σN1 σN2 · · · −

∑
k 6=N

σNk


the system is

ẏ(t) = Ay(t)

A: arbitrary N × N real matrix whose off-diagonal coefficients are > 0
and such that the sum of coefficients of any of its rows is zero.



First-order linear consensus model in finite dimension

In what follows we assume that ∀i ∃j 6= i | σij > 0: every agent has at least one
interaction.

A =



−
∑
k 6=1

σ1k σ12 · · · σ1N

σ21 −
∑
k 6=2

σ2k · · · σ2N

...
. . .

...
σN1 σN2 · · · −

∑
k 6=N

σNk


e =



1

1

...

1



Remarks:

Ae = 0

All eigenvalues of A (but 0) have a negative real part (Gershgorin circle
theorem). Hence ker A = IRe.



First-order linear consensus model in finite dimension

ẏ(t) = Ay(t)

In the symmetric case: A = A>

d
dt

N∑
i=1

yi (t) = 〈ẏ(t), e〉 = 〈Ay(t), e〉 = 〈y(t),Ae〉 = 0 ⇒ ȳe = 〈y(t), e〉e = Cst

and (average)

1
2

d
dt
|y(t)− ȳe|2 = 〈A(y(t)− ȳe), y(t)− ȳe〉 < 0 (variance)

hence y(t)→ ȳe exponentially: exponential convergence to consensus.

In the non-symmetric case, this simple argument cannot work because 〈Az, z〉 may be
positive for some z.

→ No existing “L2-theory”. See “L∞-theory” by Jabin Motsch Tadmor (JDE 2014).



In infinite dimension

Ω ⊂ IRd open bounded, 0 6 σ ∈ L∞(Ω2), y : Ω× IR+ → IR

∂y
∂t

(t , x) =

∫
Ω
σ(x , x ′)(y(t , x ′)− y(t , x)) dx ′

i.e.,
ẏ(t) = Ay(t)

with
(Az)(x) =

∫
Ω
σ(x , x ′)(z(x ′)− z(x)) dx ′

A = K −MS (Kz)(x) =

∫
Ω
σ(x , x ′)z(x ′) dx ′, MS = S Id, S = Ke

K : L2(Ω)→ L2(Ω) (Hilbert-Schmidt) compact operator

MS : L2(Ω)→ L2(Ω) multiplication operator

e(x) = 1 ∀x ∈ Ω → note that Ae = 0.

Objective: understand the asymptotic behavior of y(t).



Strong connectivity of the graph

In finite dimension: To σ = (σij ) is associated the directed graph G of 1, 2, . . ., N,
which has an edge from i to j when σij > 0.

When an entry of A is zero, there is no direct interaction between the corresponding
agents and when an entry of A is positive, they are are directly connected.

G is strongly connected if, for any i 6= j , there exists a path, joining i to j in G, of distinct
indices satisfying

i0 = i, ir = j, σik ik+1
> 0, 0 6 k 6 r − 1.

σ =


−4 2 1 1 0
0 −7 0 5 2
0 0 0 0 0
0 0 0 0 0
1 0 0 0 −1


not strongly connected

(3 strongly connected components)



Strong connectivity of the graph

In finite dimension: To σ = (σij ) is associated the directed graph G of 1, 2, . . ., N,
which has an edge from i to j when σij > 0.

When an entry of A is zero, there is no direct interaction between the corresponding
agents and when an entry of A is positive, they are are directly connected.

G is strongly connected if, for any i 6= j , there exists a path, joining i to j in G, of distinct
indices satisfying

i0 = i, ir = j, σik ik+1
> 0, 0 6 k 6 r − 1.

σ =


−4 2 1 1 0
0 −7 0 5 2
0 3 −3 0 0
0 4 0 −4 0
1 0 0 0 −1


strongly connected



Strong connectivity of the graph

In finite dimension: To σ = (σij ) is associated the directed graph G of 1, 2, . . ., N,
which has an edge from i to j when σij > 0.

When an entry of A is zero, there is no direct interaction between the corresponding
agents and when an entry of A is positive, they are are directly connected.

G is strongly connected if, for any i 6= j , there exists a path, joining i to j in G, of distinct
indices satisfying

i0 = i, ir = j, σik ik+1
> 0, 0 6 k 6 r − 1.

In infinite dimension: The vertices of the directed graph G associated to σ ∈ L∞(Ω2)
are the Lebesgue points x of σ in Ω, i.e., such that x ′ 7→ σ(x , x ′) is defined a.e. in Ω.

Given any two vertices x1 6= x2, we say that (x1, x2) is an arc if x2 ∈ ess suppσ(x1, ·).

The directed graph G is strongly connected if:
1 For any vertices x 6= x ′, there exists a path joining x to x ′ in G, i.e., two-by-two

distinct Lebesgue points x0, ..., xr , for some r ∈ IN∗ such that

x0 = x , xr = x ′, xk+1 ∈ ess suppσ(xk , ·), 0 6 k 6 r − 1.

2 δ = ess inf S > 0: means that (almost) every agent can interact with a significant
continuum of agents in Ω. (actually, relaxable assumption)



Main result

Theorem (Boudin Salvarani Trélat, SIMA 2022)

Assume that the graph associated to σ is strongly connected.

∃!v ∈ ker A∗ s.t. v > 0 and 〈v , e〉 = 1, and the weighted mean ȳv = 〈y(t), v〉e
of any solution y is (time) constant.

∃ρ > 0 | ∀y solution ∀ε ∈ (0, ρ) ∃Mε > 0 s.t.

‖y(t)− ȳv‖ 6 Mε‖y(0)− ȳv‖e(−ρ+ε)t ∀t > 0

- In finite dimension, ρ = |Reλ2|
see also Olfati-Saber Murray (TAC 2004), Weber Theisen Motsch (JSP 2019).

- In infinite dimension, ρ = s(A2) (spectral bound) where A2 : Im A→ Im A is the
isomorphism defined by A2z = Az for every z ∈ Im A.

- In the absence of strong connectivity: exponential convergence to clusters defined by
strongly connected components of σ.



Main steps of the proof

Step 1: properties of A and A∗, definition of the weight

In finite dimension, for any z ∈ IRN ,

(A∗z)i =
∑

j

σji zj −
(∑

j

σij

)
zi 1 6 i 6 N,

In infinite dimension, for any z ∈ L2(Ω),

A∗z(x) =

∫
Ω
σ(x ′, x)z(x ′) dx ′ −

(∫
Ω
σ(x , x ′) dx ′

)
z(x)

=

∫
Ω
σ(x ′, x)z(x ′) dx ′ − S(x)z(x) for a.e. x ∈ Ω.



Main steps of the proof

Proposition

1 ker A = ker A2 is a one-dimensional subspace of X spanned by e.
2 ker A∗ = ker(A∗)2 is a one-dimensional subspace of X .
3 0 is a simple eigenvalue of both A and A∗.

This is proved thanks to the strong connectivity assumption.

Consequence: there exists a unique v ∈ ker A∗ such that 〈v , e〉 = 1 (normalization).



Main steps of the proof

Proposition

1 ker A = ker A2 is a one-dimensional subspace of X spanned by e.
2 ker A∗ = ker(A∗)2 is a one-dimensional subspace of X .
3 0 is a simple eigenvalue of both A and A∗.

This is proved thanks to the strong connectivity assumption.

Consequence: there exists a unique v ∈ ker A∗ such that 〈v , e〉 = 1 (normalization).

Actually:
v > 0

Proof by an homotopy argument:

[0, 1] 3 λ 7−→ σλ = λσ + (1− λ)‖σ‖∞

Start from the symmetric case, λ = 0, v0 = e, and prove, using analyticity and strong
connectivity, that vλ > 0 along the path.



Main steps of the proof

Proposition

1 ker A = ker A2 is a one-dimensional subspace of X spanned by e.
2 ker A∗ = ker(A∗)2 is a one-dimensional subspace of X .
3 0 is a simple eigenvalue of both A and A∗.

This is proved thanks to the strong connectivity assumption.

Consequence: there exists a unique v ∈ ker A∗ such that 〈v , e〉 = 1 (normalization).

Actually:
v > 0

→ v is a weight
⇒ we define a weighted Hilbert structure on X = IRN or L2(Ω):

〈y , z〉v =
N∑

i=1

vi yi zi 〈y , z〉v =

∫
Ω

y(x)z(x) v(x) dx

(note that v(x) dx is an absolutely continuous probability measure)
Weighted mean:

ȳv = 〈y , v〉e = 〈y , e〉v e



Main steps of the proof

Actually:

Lemma

(ker A)⊥v = Im A

ker A∗v = ker A = Span e, Im A∗v = Im A

X = ker A
⊥v
⊕ Im A = ker A∗

⊥
⊕ Im A

Im A = Im A2

(however A is not v -selfadjoint)

Consequence: π : X → Im A v -orthogonal projection

∀y ∈ X y = ȳv + πy

A2 : Im A −→ Im A
y 7−→ Ay isomorphism.



Main steps of the proof

Changing the basis to X = ker A
⊥v
⊕ Im A:

A =

(
0 0
0 A2

)
⇒ y(t)− ȳv = etA(y(0)− ȳv ) = etAπy(0) = etA2πy(0)

In finite dimension: A2 Hurwitz⇒ exponential convergence at the sharp rate |Reλ2|.

In infinite dimension: study of the spectrum of A and A2:

S(A) ⊂ {z ∈ C | Re z 6 0} and S(A2) = S(A)\{0} ⊂ {z ∈ C | Re z < 0}: by
strong connectivity.
⇒ A is dissipative and A2 is strictly dissipative.

Spectrum of A = discrete spectrum and essential spectrum

A = K −MS with K compact thus S(K ) countable and S(MS) = ess ran(S)

Finally: s(A2) = sup{Re z | z ∈ S(A2)} < 0 (spectral bound).

Spectral mapping theorem⇒ spectral bound = spectral growth of etA2 .

⇒ exponential convergence to consensus, at sharp rate |s(A2)|.



Further comments: discrete-time setting

Discrete time

yn+1
i =

N∑
j=1

γij ∆t yn
j ⇔

yn+1
i − yn

i

∆t
=
∑
j 6=i

γij (yn
j − yn

i ) 1 6 i 6 N, n ∈ IN

If the graph associated with σ is strongly connected then

∃ρ∗ ∈ (0, 1) ∃M∗ > 0 | ‖yn − ȳv‖ 6 M∗ ‖y0 − ȳv‖ ρn
∗ ∀n ∈ IN.



Further comments: kinetic limit

Kinetic limit

Passing to the kinetic limit when N → +∞ in

ẋi (t) = 0, ξ̇i (t) =
1
N

∑
j

σ(xi , xj )(ξj (t)− ξi (t)) with σ(xi , xj ) = σij

gives a probability measure µ(t) = f (t , x , ξ) dx dξ on Ω× IRd solution of

∂tµ+ divξ(X [µ]µ) = 0

with

X [µ](x , ξ) =

∫
Ω×IRd

σ(x , x ′)(ξ∗−ξ)
1

F (x ′)
dµ(x ′, ξ∗) and F (x) =

∫
IRd

f (t , x , ξ) dξ

and we have

y(t , x) =
1

F (x)

∫
IRd
ξ f (t , x , ξ) dξ =

∫
IRd ξ f (t , x , ξ) dξ∫
IRd f (t , x , ξ) dξ

(see ongoing works with T. Paul)



Further comments: weighted variance

Weighted expectation

Ev (y) = 〈y , v〉 = 〈y , e〉v =


N∑

i=1

vi yi if X = IRN∫
Ω

v(x)y(x) dx if X = L2(Ω)

Note that ȳv = Ev (y)e.

Weighted variance

Varv (y) = Ev

(
(y − Ev (y))2

)
= Ev (y2)− Ev (y)2 = ‖πy‖2

v

In finite dimension:

Varv (y) =
N∑

i=1

vi (yi − 〈y , e〉v )2 =
N∑

i=1

vi y2
i − 〈y , e〉

2
v =

1
2

N∑
i,j=1

vi vj (yi − yj )
2

In infinite dimension:

Varv (y) =

∫
Ω

v(x)(y(x)− ȳv )2 dx =

∫
Ω

v(x)y(x)2 dx − (ȳv )2

=
1
2

∫∫
Ω2

v(x)v(x ′)(y(x)− y(x ′))2 dx ′ dx



Further comments: weighted variance

Setting Vv (t) = 1
2 Varv (y(t)) where ẏ(t) = Ay(t), we have

V̇v = 〈y ,Ay〉v = −Q(y) = −Q2(πy)

where

Q(y) = −〈y ,Ay〉v =


1
2

N∑
i,j=1

vi σij (yj − yi )
2 in finite dimension

1
2

∫∫
Ω2

v(x)σ(x , x ′)(y(x)− y(x ′))2 dx ′ dx in infinite dimension

Q2(z) = −〈z,A2z〉v

We recover convergence to consensus thanks to the LaSalle invariance principle.

→ This is an “L2 theory” in the non-symmetric case.



Open issues

Use the v -weighted variance as a Lyapunov functional in control problems.

Incorporate noise and/or nonlinearities in the system and establish robustness.

Study the case of σ(t) or σ(|xi − xj |) and obtain the sharp asymptotic
convergence rate.

Study non-symmetric second-order models (generalized Cucker-Smale models).



Ongoing work: control of vote opinions
(with L. Boudin and F. Salvarani)

In finite dimension:

ẏi (t) =
n∑

j=1

σi,j
(
yj (t)− yi (t)

)
︸ ︷︷ ︸

Ay(t): binary interactions

+

∫ t

0
β(t − s) (yi (s)− yi (t)) ds︸ ︷︷ ︸

memory term: self-thinking

+
m∑

k=1

αk (uk (t)− yi (t))

︸ ︷︷ ︸
influence of media

uk (t): opinion provided by media→ control
αk : influence amplitude

In infinite dimension:

∂t y(t , x) = (Ay(t))(x) +

∫ t

0
β(t − s)(y(s, x)− y(t , x)) ds +

m∑
k=1

αk (uk (t)− y(t , x))

Theorem

Assume that
∫ +∞

0 |β(s)| ds < ᾱ =
∑m

k=1 αk . For every ȳ ∈ IR, any m-tuple of constant controls
(u1, . . . , um) such that

∑m
k=1 αk uk = ᾱȳ steers exponentially all solutions to the point ȳe.

Proof by using the Lyapunov function V (t) = Varv (y(t)) + C
∫ t

0

∫ +∞
t |β(u − s)| du ‖y(s)‖2 ds.



Ongoing work: connectivity optimization
(with N. Ayi, L. Boudin and N. Pouradier Duteil)

Question

How to choose at best σ, among all functions such that 0 6 σ 6 σmax and
∫∫

Ω2
σ = 1,

so as to maximize the exponential decay rate?

In some sense we seek to “maximize the connectivity” of the graph.

Thanks to the weighted variance and to a probabilistic argument, we model the
problem as

sup
06σ6σmax∫∫

σ=1

inf
x∈Ω

(∫
Ω
σ(x , x ′) dx ′ vσ(x)

)

This is a very nonlinear problem.

For the moment, we know that σ = 1 is not a maximizer...


