Twisting in Hamiltonian Flows

In-Jee Jeong (Seoul National University)

September 18, 2023
Kinetic and fluid equations for collective behavior

Outline

- Filamentation ("creation of long and thin structures") for transported scalar: generic phenomenon - but how to prove?

Outline

- Filamentation ("creation of long and thin structures") for transported scalar: generic phenomenon - but how to prove?
- Twisting ("differential travel speed of nearby trajectories") for the flow map gives rise to filamentation.

Outline

- Filamentation ("creation of long and thin structures") for transported scalar: generic phenomenon - but how to prove?
- Twisting ("differential travel speed of nearby trajectories") for the flow map gives rise to filamentation.
- Our contribution: stability of twisting for flows generated by stable velocities.

Outline

- Filamentation ("creation of long and thin structures") for transported scalar: generic phenomenon - but how to prove?
- Twisting ("differential travel speed of nearby trajectories") for the flow map gives rise to filamentation.
- Our contribution: stability of twisting for flows generated by stable velocities. No stability in terms of the flow map!

Outline

- Filamentation ("creation of long and thin structures") for transported scalar: generic phenomenon - but how to prove?
- Twisting ("differential travel speed of nearby trajectories") for the flow map gives rise to filamentation.
- Our contribution: stability of twisting for flows generated by stable velocities. No stability in terms of the flow map!
- Applications to PDE, including fluid and kinetic equations.

Filamentation in fluid flows

Evolution of elliptical vortex in incompressible flows

Figure: Krasny-Xu 2023

Filamentation in fluid flows

Evolution of elliptical vortex in incompressible flows

Figure: Krasny-Xu 2023

Motivation: Filamentation in fluid flows

Optimal mixing flows

Figure: Iyer-Xu

Filamentation in plasma dynamics

Phase space evolution in Landau damping

Figure: Krasny-Thomas-Sandberg 2023

Filamentation in plasma dynamics

Velocity distribution evolution in Landau damping

Figure: Krasny-Thomas-Sandberg 2023

Filamentation in plasma dynamics

Two-stream instability: phase space description

Figure: Liu-Chen-Quan-Zhou 2020

Q. How to verify generic filamentation?

- Intro. to Hamiltonian systems
- Steady Hamiltonian systems
- Main result: stability of twisting
- Applications of the main result
- Ideas of proof

Setup: Hamiltonian system

Definition (Hamiltonian flow)

Let Ω be a 2D domain and $\Psi(t, \cdot):[0, \infty) \times \Omega \rightarrow \mathbb{R}$ be an at least C^{2}-smooth stream function. Consider the ODE

$$
\begin{aligned}
& \dot{X}=-\partial_{y} \Psi(t, X, Y) \\
& \dot{Y}=\partial_{x} \Psi(t, X, Y)
\end{aligned}
$$

This defines an associated area-preserving flow map

$$
\Phi(t, x, y)=(X(t, x, y), Y(t, x, y)):[0, \infty) \times \Omega \rightarrow \Omega
$$

Setup: Hamiltonian system

Definition (Hamiltonian flow)

Let Ω be a 2D domain and $\Psi(t, \cdot):[0, \infty) \times \Omega \rightarrow \mathbb{R}$ be an at least C^{2}-smooth stream function. Consider the ODE

$$
\begin{aligned}
& \dot{X}=-\partial_{y} \Psi(t, X, Y) \\
& \dot{Y}=\partial_{x} \Psi(t, X, Y)
\end{aligned}
$$

This defines an associated area-preserving flow map

$$
\Phi(t, x, y)=(X(t, x, y), Y(t, x, y)):[0, \infty) \times \Omega \rightarrow \Omega
$$

Question (Twisting)

Under which conditions on $\Psi(t, \cdot)$ do we have twisting? E.g.

$$
\left\|\nabla_{x, y} \Phi(t, \cdot)\right\|_{L^{\infty}(\Omega)} \rightarrow \infty \quad \text { as } \quad t \rightarrow \infty ?
$$

Setup: Hamiltonian system

Definition (Scalar advection)

Let $f_{0}: \Omega \rightarrow \mathbb{R}$ be C^{1}-smooth, and define its Φ-pushforward

$$
f(t, \Phi(t, x, y))=f_{0}(x, y)
$$

In other words $f(t, \cdot)=f_{0} \circ \Phi^{-1}(t, \cdot)$.

Setup: Hamiltonian system

Definition (Scalar advection)

Let $f_{0}: \Omega \rightarrow \mathbb{R}$ be C^{1}-smooth, and define its Φ-pushforward

$$
f(t, \Phi(t, x, y))=f_{0}(x, y)
$$

In other words $f(t, \cdot)=f_{0} \circ \Phi^{-1}(t, \cdot)$.

Question (Filamentation)

Under which conditions on Ψ, f_{0} do we have filamentation? E.g.

$$
\left\|\nabla_{x, y} f(t, \cdot)\right\|_{L^{\infty}(\Omega)} \rightarrow \infty \quad \text { as } \quad t \rightarrow \infty ?
$$

Key PDE Examples

Incompressible 2D Euler equations:

$$
\begin{gathered}
\dot{\Phi}=\nabla^{\perp} \Psi, \\
\psi=-(-\Delta)^{-1} \omega, \\
\omega \circ \Phi=\omega_{0} .
\end{gathered}
$$

Key PDE Examples

Incompressible 2D Euler equations:

$$
\begin{array}{r}
\dot{\Phi}=\nabla^{\perp} \Psi, \\
\Psi=-(-\Delta)^{-1} \omega, \\
\omega \circ \Phi=\omega_{0} .
\end{array}
$$

Vlasov-Poisson equations:

$$
\begin{array}{r}
\dot{\Phi}=-\nabla_{x, v}^{\perp}\left(\frac{1}{2}|v|^{2}+U(x)+U^{e x t}(x)\right), \\
U= \pm\left(-\Delta_{x}\right)^{-1} \int_{\mathbb{R}} f(t, x, v) d v, \\
f \circ \Phi=f_{0}
\end{array}
$$

Steady Hamiltonian

Generic C^{2} steady Hamiltonian flow: periodic orbits separated by fix points and connecting orbits. Twisting can be defined in terms of difference in the period.

Time-dependent case: no periodic orbits in general, and particles are free to travel essentially anywhere.

Example 1: Shear flows

Domains $\Omega=\mathbb{T}^{2}, \mathbb{T} \times[0,1], \cdots$. Consider $\Psi(x, y)=G(y)$. Then

$$
\dot{X}=-G^{\prime}(Y), \quad \dot{Y}=0
$$

We have

$$
X(t, x, y)=x-t G^{\prime}(y)(\bmod 2 \pi), \quad \partial_{y} X(t, x, y)=-t G^{\prime \prime}(y)
$$

we say twisting occurs if and only if $G^{\prime \prime} \not \equiv 0$.

Example 2: Radial flows

Domains $\Omega=\mathbb{R}^{2}, B_{0}(1), \cdots$. Consider in polar coordinates

$$
\dot{\Theta}=g(R), \quad \dot{R}=0
$$

We have $\Theta(t)=\theta+\operatorname{tg}(r)$. Twisting occurs if and only if $g^{\prime} \not \equiv 0$.

Twisting for steady Hamiltonian flows

Let $\bar{\psi}$ be a steady Hamiltonian on Ω. We say it is twisting if there is an annular region $\mathbf{A} \subset \Omega$ foliated with streamlines such that the two connected components of $\partial \mathbf{A}$ have different periods.

Twisting for steady Hamiltonian flows

Let $\bar{\psi}$ be a steady Hamiltonian on Ω. We say it is twisting if there is an annular region $\mathbf{A} \subset \Omega$ foliated with streamlines such that the two connected components of $\partial \mathbf{A}$ have different periods.

Twisting for steady Hamiltonian flows

Let $\bar{\psi}$ be a steady Hamiltonian on Ω. We say it is twisting if there is an annular region $\mathbf{A} \subset \Omega$ foliated with streamlines such that the two connected components of $\partial \mathbf{A}$ have different periods.

Theorem (Drivas-Elgindi-J. 2023 preprint.)

There exists $\varepsilon_{0}=\varepsilon_{0}(\bar{\Psi})$ such that if $\Psi(t, \cdot)$ be a time-dependent Hamiltonian on Ω satisfying

$$
\|\bar{\Psi}-\Psi(t)\|_{L_{t}^{\infty} W^{1,1}(\Omega)}<\varepsilon_{0},
$$

then the flow Φ generated by $\Psi(t, \cdot)$ is twisting. In particular,

$$
\|\nabla \Phi(t, \cdot)\|_{L^{\infty}(\Omega)} \geq c_{0} t \quad \text { for all } \quad t \geq 0
$$

Twisting for steady Hamiltonian flows

Let $\bar{\psi}$ be a steady Hamiltonian on Ω. We say it is twisting if there is an annular region $\mathbf{A} \subset \Omega$ foliated with streamlines such that the two connected components of $\partial \mathbf{A}$ have different periods.

Theorem (Drivas-Elgindi-J. 2023 preprint.)

There exists $\varepsilon_{0}=\varepsilon_{0}(\bar{\Psi})$ such that if $\Psi(t, \cdot)$ be a time-dependent Hamiltonian on Ω satisfying

$$
\|\bar{\Psi}-\Psi(t)\|_{L_{t}^{\infty} W^{1,1}(\Omega)}<\varepsilon_{0},
$$

then the flow Φ generated by $\Psi(t, \cdot)$ is twisting. In particular,

$$
\|\nabla \Phi(t, \cdot)\|_{L^{\infty}(\Omega)} \geq c_{0} t \quad \text { for all } \quad t \geq 0
$$

Difficulty: individual particles are free to move anywhere.

Counterexample?

On \mathbb{T}^{2}, we have that $\bar{\Psi}(x, y)=\cos (y)$ is twisting. However, consider its perturbation $\Psi(x, y)=\cos (y)+\varepsilon x$. Then

$$
\dot{X}=\sin (Y), \quad \dot{Y}=\varepsilon
$$

Counterexample?

On \mathbb{T}^{2}, we have that $\bar{\Psi}(x, y)=\cos (y)$ is twisting. However, consider its perturbation $\Psi(x, y)=\cos (y)+\varepsilon x$. Then

$$
\dot{X}=\sin (Y), \quad \dot{Y}=\varepsilon
$$

The solution is explicitly given by

$$
X(t)=x+\frac{1}{\varepsilon}(\cos (y)-\cos (y+\varepsilon t)), \quad Y(t)=y+t \varepsilon
$$

Counterexample?

On \mathbb{T}^{2}, we have that $\bar{\Psi}(x, y)=\cos (y)$ is twisting. However, consider its perturbation $\Psi(x, y)=\cos (y)+\varepsilon x$. Then

$$
\dot{X}=\sin (Y), \quad \dot{Y}=\varepsilon
$$

The solution is explicitly given by

$$
X(t)=x+\frac{1}{\varepsilon}(\cos (y)-\cos (y+\varepsilon t)), \quad Y(t)=y+t \varepsilon
$$

This flow is time periodic!! (NO twisting whatsoever.)

Counterexample?

On \mathbb{T}^{2}, we have that $\bar{\Psi}(x, y)=\cos (y)$ is twisting. However, consider its perturbation $\Psi(x, y)=\cos (y)+\varepsilon x$. Then

$$
\dot{X}=\sin (Y), \quad \dot{Y}=\varepsilon
$$

The solution is explicitly given by

$$
X(t)=x+\frac{1}{\varepsilon}(\cos (y)-\cos (y+\varepsilon t)), \quad Y(t)=y+t \varepsilon
$$

This flow is time periodic!! (NO twisting whatsoever.)
Note that ψ is actually not smooth on \mathbb{T}^{2}.

Counterexample?

On \mathbb{T}^{2}, we have that $\bar{\Psi}(x, y)=\cos (y)$ is twisting. However, consider its perturbation $\Psi(x, y)=\cos (y)+\varepsilon x$. Then

$$
\dot{X}=\sin (Y), \quad \dot{Y}=\varepsilon
$$

The solution is explicitly given by

$$
X(t)=x+\frac{1}{\varepsilon}(\cos (y)-\cos (y+\varepsilon t)), \quad Y(t)=y+t \varepsilon
$$

This flow is time periodic!! (NO twisting whatsoever.)
Note that ψ is actually not smooth on \mathbb{T}^{2}. Indeed: $\bar{\Psi}-\Psi$ is not in $W^{1,1}\left(\mathbb{T}^{2}\right)$.

Theorem (From twisting to filamentation)

In the same setting, there is generic filamentation for advected scalars; that is, for generic C^{1} initial data f_{0},

$$
\|\nabla f(t, \cdot)\|_{L^{\infty}} \gtrsim t^{1-}, \quad \text { as } \quad t \rightarrow \infty
$$

Applications to PDE

Consider the PDEs of the form

$$
\dot{\Phi}=\nabla^{\perp} \Psi, \quad f(t)=f_{0} \circ \Phi^{-1}(t)
$$

and $f(t) \mapsto \Psi(t)$ by a functional relation. We need a steady solution $(\bar{f}, \bar{\Psi})$ which is stable just in the $W^{1,1}$ norm of $\bar{\Psi}$.

Application to incompressible 2D Euler

Collection of stable steady Euler flows

- Monotone radial vortex in $\mathbb{R}^{2}, B_{0}(R)$.
- Kirchhoff Ellipses with aspect ratio <3.
- First eigenfunctions on \mathbb{T}^{2} under a symmetry.
- Second eigenfunctions on \mathbb{T}^{2} under two symmetries.
- Constant vorticity flow on bounded domains.

Application to Vlasov-Poisson equation

Example of a VP stable steady state

Existence and Stability: Marchioro-Pulvirenti ('86), Wan ('90), Rein ('92, '94), Batt-Morrison-Rein ('95), Guo-Rein ('99), ...

$$
\bar{f}(x, v)=\varphi\left(\frac{1}{2}|v|^{2}+\bar{U}(x)+U^{e x t}(x)\right), \quad \varphi^{\prime} \leq 0 .
$$

Application to Vlasov-Poisson equation

Example of a VP stable steady state

Existence and Stability: Marchioro-Pulvirenti ('86), Wan ('90), Rein ('92, '94), Batt-Morrison-Rein ('95), Guo-Rein ('99), ...

$$
\bar{f}(x, v)=\varphi\left(\frac{1}{2}|v|^{2}+\bar{U}(x)+U^{e x t}(x)\right), \quad \varphi^{\prime} \leq 0 .
$$

Consequence of stability of twisting

Infinite gradient growth for generic perturbations of \bar{f}.

Proof: twisting quantity in the case $\mathbb{T} \times[0,1]$

Computation of localized averaged winding number:

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \mathcal{I}_{i}(t):=\frac{\mathrm{d}}{\mathrm{~d} t} \iint_{\mathbb{T} \times[0,1]} \tilde{x}(t, x, y) F_{i}(Y(t, x, y)) \mathrm{d} x \mathrm{~d} y
$$

Steady case: $\tilde{X}=x-t\left(\partial_{y} \bar{\Psi}\right)(y), \overline{\mathcal{I}}_{i}(t) \simeq \mathcal{I}_{i}(0)-t\left(\partial_{y} \bar{\Psi}\right)\left(y_{i}\right)$.
Key inequality: $\left|\overline{\mathcal{I}}_{i}(t)-\mathcal{I}_{i}(t)\right| \lesssim\|\bar{\Psi}-\Psi\|_{L_{t}^{\infty} W^{1,1}}$.

Summary

- Filamentation common in Hamiltonian systems
- Result of twisting for the flow map
- Stability of twisting in the time-dependent case
- Weak requirement $W^{1,1}$ facilitates PDE applications

Thank you for your attention!

