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Kinetic and fluid equations for collective behavior
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Outline
» Filamentation ( “creation of long and thin structures”) for
transported scalar: generic phenomenon — but how to prove?

» Twisting (“differential travel speed of nearby trajectories”)
for the flow map gives rise to filamentation.

» QOur contribution: stability of twisting for flows generated by
stable velocities. No stability in terms of the flow map!

» Applications to PDE, including fluid and kinetic equations.
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Filamentation in fluid flows

Evolution of elliptical vortex in incompressible flows

Figure: Krasny—Xu 2023
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Motivation: Filamentation in fluid flows

Optimal mixing flows

Figure: lyer—Xu
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Filamentation in plasma dynamics

Phase space evolution in Landau damping
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Figure: Krasny—Thomas—Sandberg 2023
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Filamentation in plasma dynamics

Velocity distribution evolution in Landau damping
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Filamentation in plasma dynamics

Two-stream instability: phase space description

Figure: Liu—=Chen—Quan—Zhou 2020



Q. How to verify generic filamentation?

Intro. to Hamiltonian systems

Steady Hamiltonian systems

>

>

» Main result: stability of twisting
» Applications of the main result
>

Ideas of proof




Setup: Hamiltonian system

Definition (Hamiltonian flow)

Let Q be a 2D domain and W(t,-) : [0,00) X Q — R be an at least
C2-smooth stream function. Consider the ODE

X = —-9,V¥(t,X,Y),
Y =9, W(t, X, Y).

This defines an associated area-preserving flow map

o(t, x,y) = (X(t,x,y), Y(t,x,y)) : [0,00) x Q@ — Q.



Setup: Hamiltonian system

Definition (Hamiltonian flow)

Let Q be a 2D domain and W(t,-) : [0,00) x Q2 — R be an at least
C2-smooth stream function. Consider the ODE

X = —-9,V¥(t,X,Y),
Y =0,V(t,X,Y).

This defines an associated area-preserving flow map

d(t, x,y) = (X(t,x,y), Y(t,x,y)) : [0,00) x Q — Q.

Question (Twisting)

Under which conditions on W(t,-) do we have twisting? E.g.
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Setup: Hamiltonian system

Definition (Scalar advection)

Let fy : Q — R be Cl=smooth, and define its ®-pushforward
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In other words f(t, ) = fy 0 ®~1(¢,").



Setup: Hamiltonian system

Definition (Scalar advection)

Let fy : Q — R be Cl=smooth, and define its ®-pushforward

f(t7 q)(t,X,y)) = fO(X7y)'

In other words f(t, ) = fy 0 ®~1(¢,").

Question (Filamentation)

Under which conditions on W, fy do we have filamentation? E.g.

[Vy £ (2, ')||L<><>(Q) — 00 as t— oo’



Key PDE Examples

Incompressible 2D Euler equations:

b =vtvy,
¥=—(—A)lw,

wo®d = wp.



Key PDE Examples

Incompressible 2D Euler equations:

b =vtvy,
¥=—(—A)lw,

wo®d = wp.
Vlasov—Poisson equations:
. 1
b = i, GIvP + U(x) + U(x)),

U= :I:(—AX)_I/ f(t,x,v)dv,
R
fod=Hf.



Steady Hamiltonian

Generic C? steady Hamiltonian flow: periodic orbits separated by
fix points and connecting orbits. Twisting can be defined in terms
of difference in the period.
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Time-dependent case: no periodic orbits in general, and particles
are free to travel essentially anywhere.



Example 1: Shear flows

Domains Q = T2, T x [0,1],--- . Consider W(x,y) = G(y). Then
X =-G'(Y), Y =0.

We have

X(t,x,y) =x —tG'(y) (mod27), 9, X(t,x,y)=—tG"(y);

we say twisting occurs if and only if G” # 0.
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Example 2: Radial flows

Domains Q = R2, By(1),- - - . Consider in polar coordinates
© =g(R), R =0.

We have ©(t) = 6 + tg(r). Twisting occurs if and only if g’ # 0.
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Twisting for steady Hamiltonian flows

Let U be a steady Hamiltonian on Q. We say it is twisting if there
is an annular region A C € foliated with streamlines such that the
two connected components of A have different periods.
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Twisting for steady Hamiltonian flows

Let W be a steady Hamiltonian on Q. We say it is twisting if there
is an annular region A C € foliated with streamlines such that the
two connected components of A have different periods.

Theorem (Drivas—Elgindi-J. 2023 preprint.)

There exists ¢g = £o(V) such that if W(t,-) be a time-dependent
Hamiltonian on Q satisfying

W —W(t)]l o wrrq) < <o,
then the flow ® generated by V(t,-) is twisting. In particular,

qu)(t, -)HLoo(Q) > cot forall t>0.



Twisting for steady Hamiltonian flows

Let W be a steady Hamiltonian on Q. We say it is twisting if there
is an annular region A C € foliated with streamlines such that the
two connected components of A have different periods.

Theorem (Drivas—Elgindi-J. 2023 preprint.)

There exists ¢g = £o(V) such that if W(t,-) be a time-dependent
Hamiltonian on Q satisfying

W —W(t)]l o wrrq) < <o,
then the flow ® generated by V(t,-) is twisting. In particular,

qu)(t, -)HLoo(Q) > cot forall t>0.

Difficulty: individual particles are free to move anywhere.
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Counterexample?

On T2, we have that W(x, y) = cos(y) is twisting. However,
consider its perturbation W(x, y) = cos(y) + ex. Then

X =sin(Y), Y ==.
The solution is explicitly given by
1
X(t) =x+ g(cos(y) —cos(y +¢t)), Y(t)=y+te

This flow is time periodic!! (NO twisting whatsoever.)

Note that V is actually not smooth on T?.

Indeed: ¥ — V¥ is not in W11(T?).



Theorem (From twisting to filamentation)

In the same setting, there is generic filamentation for advected
scalars; that is, for generic C L jnitial data fy,

IVF(t, )ee = t1, as t— oco.

Applications to PDE
Consider the PDEs of the form

& =vViv, f(t)=fhod L(t)

and f(t) — W(t) by a functional relation. We need a steady
solution (f, W) which is stable just in the W' norm of V.



Application to incompressible 2D Euler

Collection of stable steady Euler flows
» Monotone radial vortex in R?, By(R).
Kirchhoff Ellipses with aspect ratio < 3.
First eigenfunctions on T2 under a symmetry.

>
>
» Second eigenfunctions on T? under two symmetries.
» Constant vorticity flow on bounded domains.
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Application to Vlasov—Poisson equation

Example of a VP stable steady state

Existence and Stability: Marchioro—Pulvirenti ('86), Wan ('90),
Rein ('92, '94), Batt—Morrison—Rein ('95), Guo—Rein ('99), ...

Flx,v) = w(%]v\z FO(x) 4 U(x), & <.



Application to Vlasov—Poisson equation

Example of a VP stable steady state

Existence and Stability: Marchioro—Pulvirenti ('86), Wan ('90),
Rein ('92, '94), Batt—Morrison—Rein ('95), Guo—Rein ('99), ...

Flx,v) = w(%]v\z FO(x) 4 U(x), & <.

Consequence of stability of twisting

Infinite gradient growth for generic perturbations of f.




Proof: twisting quantity in the case T x [0, 1]

Computation of localized averaged winding number:

d d [/ -
—Zi(t) = — // X(t,x,y)Fi(Y(t,x, dxd
O =3 | KExnF ey

Steady case: X = x — t(0,W)(y), Zi(t) =~ Z:(0) — t(d,V)(y;).

Key inequality: |Z-(t) - I,-(t)| < v - V|0t
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» Filamentation common in Hamiltonian systems

» Result of twisting for the flow map

» Stability of twisting in the time-dependent case

» Weak requirement W11 facilitates PDE applications

Thank you for your attention!
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