
Twisting in Hamiltonian Flows

In-Jee Jeong (Seoul National University)

September 18, 2023
Kinetic and fluid equations for collective behavior



Outline

I Filamentation (“creation of long and thin structures”) for
transported scalar: generic phenomenon – but how to prove?

I Twisting (“differential travel speed of nearby trajectories”)
for the flow map gives rise to filamentation.

I Our contribution: stability of twisting for flows generated by
stable velocities. No stability in terms of the flow map!

I Applications to PDE, including fluid and kinetic equations.
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Filamentation in fluid flows
Evolution of elliptical vortex in incompressible flows

Figure: Krasny–Xu 2023
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Motivation: Filamentation in fluid flows

Optimal mixing flows

Figure: Iyer–Xu



Filamentation in plasma dynamics

Phase space evolution in Landau damping

Figure: Krasny–Thomas–Sandberg 2023



Filamentation in plasma dynamics

Velocity distribution evolution in Landau damping

Figure: Krasny–Thomas–Sandberg 2023



Filamentation in plasma dynamics

Two-stream instability: phase space description

Figure: Liu–Chen–Quan–Zhou 2020



Q. How to verify generic filamentation?

I Intro. to Hamiltonian systems

I Steady Hamiltonian systems

I Main result: stability of twisting

I Applications of the main result

I Ideas of proof



Setup: Hamiltonian system

Definition (Hamiltonian flow)

Let Ω be a 2D domain and Ψ(t, ·) : [0,∞)×Ω→ R be an at least
C 2–smooth stream function. Consider the ODE

Ẋ = −∂yΨ(t,X ,Y ),

Ẏ = ∂xΨ(t,X ,Y ).

This defines an associated area-preserving flow map

Φ(t, x , y) = (X (t, x , y),Y (t, x , y)) : [0,∞)× Ω→ Ω.

Question (Twisting)

Under which conditions on Ψ(t, ·) do we have twisting? E.g.

‖∇x ,yΦ(t, ·)‖L∞(Ω) →∞ as t →∞?
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Setup: Hamiltonian system

Definition (Scalar advection)

Let f0 : Ω→ R be C 1–smooth, and define its Φ-pushforward

f (t,Φ(t, x , y)) = f0(x , y).

In other words f (t, ·) = f0 ◦ Φ−1(t, ·).

Question (Filamentation)

Under which conditions on Ψ, f0 do we have filamentation? E.g.

‖∇x ,y f (t, ·)‖L∞(Ω) →∞ as t →∞?
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Key PDE Examples

Incompressible 2D Euler equations:

Φ̇ = ∇⊥Ψ,

Ψ = −(−∆)−1ω,

ω ◦ Φ = ω0.

Vlasov–Poisson equations:

Φ̇ = −∇⊥x ,v (
1

2
|v |2 + U(x) + Uext(x)),

U = ±(−∆x)−1

∫
R
f (t, x , v)dv ,

f ◦ Φ = f0.
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Steady Hamiltonian

Generic C 2 steady Hamiltonian flow: periodic orbits separated by
fix points and connecting orbits. Twisting can be defined in terms
of difference in the period.

Time-dependent case: no periodic orbits in general, and particles
are free to travel essentially anywhere.



Example 1: Shear flows

Domains Ω = T2,T× [0, 1], · · · . Consider Ψ(x , y) = G (y). Then

Ẋ = −G ′(Y ), Ẏ = 0.

We have

X (t, x , y) = x − tG ′(y) (mod2π), ∂yX (t, x , y) = −tG ′′(y);

we say twisting occurs if and only if G ′′ 6≡ 0.



Example 2: Radial flows

Domains Ω = R2,B0(1), · · · . Consider in polar coordinates

Θ̇ = g(R), Ṙ = 0.

We have Θ(t) = θ + tg(r). Twisting occurs if and only if g ′ 6≡ 0.



Twisting for steady Hamiltonian flows

Let Ψ̄ be a steady Hamiltonian on Ω. We say it is twisting if there
is an annular region A ⊂ Ω foliated with streamlines such that the
two connected components of ∂A have different periods.
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Let Ψ̄ be a steady Hamiltonian on Ω. We say it is twisting if there
is an annular region A ⊂ Ω foliated with streamlines such that the
two connected components of ∂A have different periods.

Theorem (Drivas–Elgindi–J. 2023 preprint.)

There exists ε0 = ε0(Ψ̄) such that if Ψ(t, ·) be a time-dependent
Hamiltonian on Ω satisfying

‖Ψ̄−Ψ(t)‖L∞t W 1,1(Ω) < ε0,

then the flow Φ generated by Ψ(t, ·) is twisting. In particular,

‖∇Φ(t, ·)‖L∞(Ω) ≥ c0t for all t ≥ 0.

Difficulty: individual particles are free to move anywhere.



Twisting for steady Hamiltonian flows

Let Ψ̄ be a steady Hamiltonian on Ω. We say it is twisting if there
is an annular region A ⊂ Ω foliated with streamlines such that the
two connected components of ∂A have different periods.

Theorem (Drivas–Elgindi–J. 2023 preprint.)

There exists ε0 = ε0(Ψ̄) such that if Ψ(t, ·) be a time-dependent
Hamiltonian on Ω satisfying

‖Ψ̄−Ψ(t)‖L∞t W 1,1(Ω) < ε0,

then the flow Φ generated by Ψ(t, ·) is twisting. In particular,

‖∇Φ(t, ·)‖L∞(Ω) ≥ c0t for all t ≥ 0.

Difficulty: individual particles are free to move anywhere.



Twisting for steady Hamiltonian flows

Let Ψ̄ be a steady Hamiltonian on Ω. We say it is twisting if there
is an annular region A ⊂ Ω foliated with streamlines such that the
two connected components of ∂A have different periods.

Theorem (Drivas–Elgindi–J. 2023 preprint.)

There exists ε0 = ε0(Ψ̄) such that if Ψ(t, ·) be a time-dependent
Hamiltonian on Ω satisfying

‖Ψ̄−Ψ(t)‖L∞t W 1,1(Ω) < ε0,

then the flow Φ generated by Ψ(t, ·) is twisting. In particular,

‖∇Φ(t, ·)‖L∞(Ω) ≥ c0t for all t ≥ 0.

Difficulty: individual particles are free to move anywhere.



Counterexample?

On T2, we have that Ψ̄(x , y) = cos(y) is twisting. However,
consider its perturbation Ψ(x , y) = cos(y) + εx . Then

Ẋ = sin(Y ), Ẏ = ε.

The solution is explicitly given by

X (t) = x +
1

ε
(cos(y)− cos(y + εt)), Y (t) = y + tε.

This flow is time periodic!! (NO twisting whatsoever.)

Note that Ψ is actually not smooth on T2.

Indeed: Ψ̄−Ψ is not in W 1,1(T2).
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Ẋ = sin(Y ), Ẏ = ε.
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Theorem (From twisting to filamentation)

In the same setting, there is generic filamentation for advected
scalars; that is, for generic C 1 initial data f0,

‖∇f (t, ·)‖L∞ & t1−, as t →∞.

Applications to PDE

Consider the PDEs of the form

Φ̇ = ∇⊥Ψ, f (t) = f0 ◦ Φ−1(t)

and f (t) 7→ Ψ(t) by a functional relation. We need a steady
solution (f̄ , Ψ̄) which is stable just in the W 1,1 norm of Ψ̄.



Application to incompressible 2D Euler

Collection of stable steady Euler flows

I Monotone radial vortex in R2, B0(R).

I Kirchhoff Ellipses with aspect ratio < 3.

I First eigenfunctions on T2 under a symmetry.

I Second eigenfunctions on T2 under two symmetries.

I Constant vorticity flow on bounded domains.

I ...



Application to Vlasov–Poisson equation

Example of a VP stable steady state

Existence and Stability: Marchioro–Pulvirenti (’86), Wan (’90),
Rein (’92, ’94), Batt–Morrison–Rein (’95), Guo–Rein (’99), ...

f̄ (x , v) = ϕ(
1

2
|v |2 + Ū(x) + Uext(x)), ϕ′ ≤ 0.

Consequence of stability of twisting

Infinite gradient growth for generic perturbations of f̄ .
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Proof: twisting quantity in the case T× [0, 1]

Computation of localized averaged winding number:

d

dt
Ii (t) :=

d

dt

∫∫
T×[0,1]

X̃ (t, x , y)Fi (Y (t, x , y))dxdy

Steady case: X̃ = x − t(∂y Ψ̄)(y), Īi (t) ' Ii (0)− t(∂y Ψ̄)(yi ).

Key inequality:
∣∣Īi (t)− Ii (t)

∣∣ . ‖Ψ̄−Ψ‖L∞t W 1,1 .



Summary

I Filamentation common in Hamiltonian systems

I Result of twisting for the flow map

I Stability of twisting in the time-dependent case

I Weak requirement W 1,1 facilitates PDE applications

Thank you for your attention!
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