Graph Limit for Interacting Particle Systems on Weighted Random Graphs

Nastassia Pouradier Duteil

Laboratoire Jacques-Louis Lions, Sorbonne Université INRIA Paris

> French-Korean Webinar September 25, 2023

Interacting particle system (first-order)

$$\frac{d}{dt}u_{i}(t) = \frac{1}{N}\sum_{j=1}^{N}D(u_{j}(t) - u_{i}(t)), \qquad (1)$$

- $u_i \in \mathbb{R}^d$ is the **state variable** (position, opinion, frequency, etc.)
- $D : \mathbb{R}^d \to \mathbb{R}^d$ is the interaction function. Often, $D(u_j(t) - u_i(t)) = a(||u_j(t) - u_i(t)||)(u_j(t) - u_i(t))$

Interacting particle system (first-order)

$$\frac{d}{dt}u_{i}(t) = \frac{1}{N}\sum_{j=1}^{N}D(u_{j}(t) - u_{i}(t)), \qquad (1)$$

- $u_i \in \mathbb{R}^d$ is the **state variable** (position, opinion, frequency, etc.)
- $D : \mathbb{R}^d \to \mathbb{R}^d$ is the interaction function. Often, $D(u_j(t) - u_i(t)) = a(||u_j(t) - u_i(t)||)(u_j(t) - u_i(t))$

Interacting particle system (first-order)

$$\frac{d}{dt}u_{i}(t) = \frac{1}{N}\sum_{j=1}^{N}D(u_{j}(t) - u_{i}(t)), \qquad (1)$$

- $u_i \in \mathbb{R}^d$ is the state variable (position, opinion, frequency, etc.)
- $D : \mathbb{R}^d \to \mathbb{R}^d$ is the interaction function. Often, $D(u_j(t) - u_i(t)) = a(||u_j(t) - u_i(t)||)(u_j(t) - u_i(t))$

The interactions depend only on the particles' **positions** in the state space.

Interacting particle system (first-order)

$$\frac{d}{dt}u_{i}(t) = \frac{1}{N}\sum_{j=1}^{N}D(u_{j}(t) - u_{i}(t)), \qquad (1)$$

- $u_i \in \mathbb{R}^d$ is the state variable (position, opinion, frequency, etc.)
- $D : \mathbb{R}^d \to \mathbb{R}^d$ is the interaction function. Often, $D(u_j(t) - u_i(t)) = a(||u_j(t) - u_i(t)||)(u_j(t) - u_i(t))$

The interactions depend only on the particles' **positions** in the state space. The particles are said to be **indistinguishable** (or **exchangeable**).

Definition: Indistinguishability

Indistinguishability is preserved if for all solutions (u_1, \dots, u_N) and $(\tilde{u}_1, \dots, \tilde{u}_N)$,

$$\begin{cases} u_i(0) = \tilde{u}_j(0) \\ u_j(0) = \tilde{u}_i(0) \\ u_k(0) = \tilde{u}_k(0) \text{ for all } k \neq i, j \end{cases} \Rightarrow \begin{cases} u_i(t) = \tilde{u}_j(t) \\ u_j(t) = \tilde{u}_i(t) \\ u_k(t) = \tilde{u}_k(t) \text{ for all } k \neq i, j \end{cases}$$

Definition: Indistinguishability

Indistinguishability is preserved if for all solutions (u_1, \dots, u_N) and $(\tilde{u}_1, \dots, \tilde{u}_N)$,

$$\begin{cases} u_i(0) = \tilde{u}_j(0) \\ u_j(0) = \tilde{u}_i(0) \\ u_k(0) = \tilde{u}_k(0) \text{ for all } k \neq i, j \end{cases} \Rightarrow \begin{cases} u_i(t) = \tilde{u}_j(t) \\ u_j(t) = \tilde{u}_i(t) \\ u_k(t) = \tilde{u}_k(t) \text{ for all } k \neq i, j \end{cases}$$

Relabeling the agents does not modify the dynamics.

Definition: Indistinguishability

Indistinguishability is preserved if for all solutions (u_1, \dots, u_N) and $(\tilde{u}_1, \dots, \tilde{u}_N)$,

$$\begin{cases} u_i(0) = \tilde{u}_j(0) \\ u_j(0) = \tilde{u}_i(0) \\ u_k(0) = \tilde{u}_k(0) \text{ for all } k \neq i, j \end{cases} \Rightarrow \begin{cases} u_i(t) = \tilde{u}_j(t) \\ u_j(t) = \tilde{u}_i(t) \\ u_k(t) = \tilde{u}_k(t) \text{ for all } k \neq i, j \end{cases}$$

Relabeling the agents does not modify the dynamics.

Definition: Indistinguishability

Indistinguishability is preserved if for all solutions (u_1, \dots, u_N) and $(\tilde{u}_1, \dots, \tilde{u}_N)$,

$$\begin{cases} u_i(0) = \tilde{u}_j(0) \\ u_j(0) = \tilde{u}_i(0) \\ u_k(0) = \tilde{u}_k(0) \text{ for all } k \neq i, j \end{cases} \Rightarrow \begin{cases} u_i(t) = \tilde{u}_j(t) \\ u_j(t) = \tilde{u}_i(t) \\ u_k(t) = \tilde{u}_k(t) \text{ for all } k \neq i, j \end{cases}$$

Relabeling the agents does not modify the dynamics.

Trivially, System (1) preserves indistinguishability.

Need for of non-exchangeable particle systems

- Animal groups: leader-follower dynamics, animal personality
- Robotics: network communication
- Cell colonies: heterogeneous phenotypes

Interacting particle system on a graph

$$\frac{d}{dt}u_i(t)=\frac{1}{N}\sum_{j=1}^N w_{ij}D(u_j(t)-u_i(t)),$$

- $u_i \in \mathbb{R}^d$ is the state variable (opinion, position)
- $D: \mathbb{R}^d \to \mathbb{R}^d$ is the interaction function
- $w_{ij} \in \mathbb{R}_+$ is the interaction weight

Interacting particle system on a graph

$$\frac{d}{dt}u_i(t)=\frac{1}{N}\sum_{j=1}^N w_{ij}D(u_j(t)-u_i(t)),$$

- $u_i \in \mathbb{R}^d$ is the **state variable** (opinion, position)
- $D: \mathbb{R}^d \to \mathbb{R}^d$ is the interaction function
- $w_{ij} \in \mathbb{R}_+$ is the interaction weight

Interacting particle system on a graph

$$\frac{d}{dt}u_i(t)=\frac{1}{N}\sum_{j=1}^N w_{ij}D(u_j(t)-u_i(t)),$$

- $u_i \in \mathbb{R}^d$ is the **state variable** (opinion, position)
- $D: \mathbb{R}^d \to \mathbb{R}^d$ is the interaction function
- $w_{ij} \in \mathbb{R}_+$ is the interaction weight

The interactions also depend on the agents' labels i, j.

Interacting particle system on a graph

$$\frac{d}{dt}u_i(t)=\frac{1}{N}\sum_{j=1}^N w_{ij}D(u_j(t)-u_i(t)),$$

- $u_i \in \mathbb{R}^d$ is the **state variable** (opinion, position)
- $D: \mathbb{R}^d \to \mathbb{R}^d$ is the interaction function
- $w_{ij} \in \mathbb{R}_+$ is the interaction weight

The interactions also depend on the agents' **labels** i, j. The particles are said to be **non-exchangeable**.

Two types of questions

• Self-organization: emergence of well-organized group patterns.

[Hegselmann and Krause, '02]

Two types of questions

• Self-organization: emergence of well-organized group patterns.

[Hegselmann and Krause, '02]

• Large Population Limit: *N* the number of agents goes to infinity.

State space

N. Pouradier Duteil

Underlying weighted graph: $G_N = \langle V(G_N), E(G_N), W(G_N) \rangle$, where

- $V(G_N) = \{1, ..., N\}$
- $E(G_N) = \{(i, j) \mid w_{ij} \neq 0\}$

Underlying weighted graph: $G_N = \langle V(G_N), E(G_N), W(G_N) \rangle$, where

- $V(G_N) = \{1, ..., N\}$
- $E(G_N) = \{(i, j) \mid w_{ij} \neq 0\}$

•
$$W(G_N) = \{w_{ij} \in \mathbb{R} \mid (i,j) \in \{1, ..., N\}^2\}$$

Example: The bidirectional *l*-cycle

$$\frac{d}{dt}u_i = \frac{1}{N}\sum_{j=i-\ell}^{i+\ell} (u_j - u_i) \quad \text{with } \ell = \lfloor rN \rfloor, r \in [0,1] \quad (\ell\text{-nearest})$$

Example: The bidirectional *l*-cycle

$$\frac{d}{dt}u_i = \frac{1}{N}\sum_{j=i-\ell}^{i+\ell} (u_j - u_i) \quad \text{with } \ell = \lfloor rN \rfloor, r \in [0,1] \quad (\ell\text{-nearest})$$

• Graph $G_N = \langle V(G_N), E(G_N), W(G_N) \rangle$ with

Graph representation of the bidirectional *l*-cycle [Biccari, Ko, Zuazua, '19]

Example: The bidirectional *l*-cycle

$$\frac{d}{dt}u_i = \frac{1}{N}\sum_{j=i-\ell}^{i+\ell} (u_j - u_i) \quad \text{with } \ell = \lfloor rN \rfloor, r \in [0,1] \quad (\ell\text{-nearest})$$

• Graph $G_N = \langle V(G_N), E(G_N), W(G_N) \rangle$ with

Graph representation of the bidirectional $\ell\mbox{-cycle}$ [Biccari, Ko, Zuazua, '19]

How do we define the limit of (ℓ -nearest) as $N \to \infty$?

N. Pouradier Duteil

Graph limit on Weighted Random Graph

Definition: graphon

A graphon is a function $W : [0,1]^2 \rightarrow [0,1]$.

Definition: graphon

A graphon is a function $W : [0,1]^2 \rightarrow [0,1]$.

• Let $W_{G_N} : [0,1]^2 \to \{0,1\}.$

 $W_{G_N}(x,y) = 1$ if $(i,j) \in E(G_N)$ and $(x,y) \in \left[\frac{i-1}{N}, \frac{i}{N}\right) \times \left[\frac{j-1}{N}, \frac{j}{N}\right)$.

Definition: graphon

A graphon is a function $W : [0,1]^2 \rightarrow [0,1]$.

• Let $W_{G_N} : [0,1]^2 \to \{0,1\}.$

 $W_{G_N}(x,y) = 1$ if $(i,j) \in E(G_N)$ and $(x,y) \in \left[\frac{i-1}{N}, \frac{i}{N}\right) \times \left[\frac{j-1}{N}, \frac{j}{N}\right)$.

Definition: graphon

A graphon is a function $W : [0,1]^2 \rightarrow [0,1]$.

• Let $W_{G_N} : [0,1]^2 \to \{0,1\}.$

 $W_{G_N}(x,y) = 1$ if $(i,j) \in E(G_N)$ and $(x,y) \in \left[\frac{i-1}{N}, \frac{i}{N}\right) \times \left[\frac{j-1}{N}, \frac{j}{N}\right)$.

Definition: graphon

A graphon is a function $W : [0,1]^2 \rightarrow [0,1]$.

• Let $W_{G_N} : [0,1]^2 \to \{0,1\}.$

 $W_{G_N}(x,y) = 1$ if $(i,j) \in E(G_N)$ and $(x,y) \in \left[\frac{i-1}{N}, \frac{i}{N}\right) \times \left[\frac{j-1}{N}, \frac{j}{N}\right)$.

• $\{W_{G_N}\}$ converges to the $\{0,1\}$ -valued function $W_G(x,y) = \chi_{[0,r]}(|x-y|)$.

Definition: graphon

A graphon is a function $W : [0,1]^2 \rightarrow [0,1]$.

• Let $W_{G_N} : [0,1]^2 \to \{0,1\}.$

 $W_{G_N}(x,y) = 1$ if $(i,j) \in E(G_N)$ and $(x,y) \in \left[\frac{i-1}{N}, \frac{i}{N}\right) \times \left[\frac{j-1}{N}, \frac{j}{N}\right)$.

• $\{W_{G_N}\}$ converges to the $\{0,1\}$ -valued function $W_G(x,y) = \chi_{[0,r]}(|x-y|)$.

The continuum limit

$$\partial_t u(t,x) = \int_I \chi_{[0,r]}(|x-y|)(u(t,x)-u(t,y))dy, \qquad x \in I := [0,1], t \ge 0.$$

Definition: graphon

A graphon is a function $W : [0,1]^2 \rightarrow [0,1]$.

• Let $W_{G_N} : [0,1]^2 \to \{0,1\}.$

 $W_{G_N}(x,y) = 1$ if $(i,j) \in E(G_N)$ and $(x,y) \in \left[\frac{i-1}{N}, \frac{i}{N}\right) \times \left[\frac{j-1}{N}, \frac{j}{N}\right)$.

• $\{W_{G_N}\}$ converges to the $\{0,1\}$ -valued function $W_G(x,y) = \chi_{[0,r]}(|x-y|)$.

The continuum limit

$$\partial_t u(t,x) = \int_I \chi_{[0,r]}(|x-y|)(u(t,x)-u(t,y))dy, \qquad x \in I := [0,1], t \ge 0.$$

Keep in mind: u(t, x) is the **position** (or opinion) of agent with label x

From equations on graphs to a continuum equation on a graphon

Let $W : I^2 \to \mathbb{R}$ a graphon on I^2 . Let $g : I \to \mathbb{R}$. Define a sequence of graphs G_N whose weights \overline{W}^N are obtained by averaging W on the sets I_i^N :

$$\bar{W}_{ij}^N = N^2 \iint_{I_i^N \times I_j^N} W(x, y) dx \, dy.$$

From equations on graphs to a continuum equation on a graphon

Let $W : I^2 \to \mathbb{R}$ a graphon on I^2 . Let $g : I \to \mathbb{R}$. Define a sequence of graphs G_N whose weights \overline{W}^N are obtained by averaging W on the sets I_i^N :

$$\bar{W}_{ij}^N = N^2 \iint_{I_i^N \times I_j^N} W(x, y) dx \, dy.$$

Let $W_N(x,y) = \bar{W}_{ij}^N$ for $(x,y) \in I_i^N imes I_j^N$, and let u_N denote the solution to

$$\begin{cases} \partial_t u_N(t,x) = \int_I W_N(x,y) D(u_N(t,y) - u_N(t,x)) dy \\ u_N(0,x) = N \int_{I_i^N} g(y) dy \quad \text{ for all } x \in I_i^N. \end{cases}$$

From equations on graphs to a continuum equation on a graphon

Let $W : I^2 \to \mathbb{R}$ a graphon on I^2 . Let $g : I \to \mathbb{R}$. Define a sequence of graphs G_N whose weights \overline{W}^N are obtained by averaging W on the sets I_i^N :

$$\bar{W}_{ij}^N = N^2 \iint_{I_i^N \times I_j^N} W(x, y) dx \, dy.$$

Let $W_N(x,y) = \bar{W}_{ij}^N$ for $(x,y) \in I_i^N imes I_j^N$, and let u_N denote the solution to

$$\begin{cases} \partial_t u_N(t,x) = \int_I W_N(x,y) D(u_N(t,y) - u_N(t,x)) dy \\ u_N(0,x) = N \int_{I_i^N} g(y) dy \quad \text{ for all } x \in I_i^N. \end{cases}$$

Theorem [Medvedev, '13]: Graph Limit

If $W \in L^{\infty}(I)$, it holds

$$\|u-u_N\|_{C([0,T];L^2(I))} \xrightarrow[N \to +\infty]{} 0$$

where u is the solution to the integro-differential equation

$$\partial_t u(t,x) = \int_I W(x,y) D(u(t,y) - u(t,x)) dy, \quad u(0,x) = g(x).$$

What of Random Graphs?

Random graphs are needeed:

- when not all edges of a network are known
- when the number of vertices is large
 - Up to 700,000 starlings in a murmuration
 - About 55-70 billion neurons in the human cerebellum

Figure: Left: Starling Murmuration (Bird Watch Ireland). Right: Pyramidal neurons of the cerebral cortex (illustration by Santiago Ramón y Cajal).

Random graphs

• Random graph: a graph which is generated by a random process.

Random graphs

- Random graph: a graph which is generated by a random process.
- **Example 1: Erdos-Rényi graph**: the edge between a pair of distinct nodes is inserted with probability *p*.

Figure: Pixel pictures of the Erdos-Rényi graph with N = 40 and p = 0.5 (left), N = 600 and p = 0.5 (right) [Medvedev, 2014]

Random graphs

- Random graph: a graph which is generated by a random process.
- Example 2 : Small world graph: replacing a random set of the local connections by randomly chosen long-range ones.

Figure: Pixel pictures of the Small world graph, p starts at 0 and increases from left to right [Medvedev, 2014]
Dynamical systems on W-random graph

- Let $X = (X_1, X_2, X_3, ...)$ and $X^N = (X_1, X_2, ..., X_N)$ where $X_i, i \in \mathbb{N}$ are i.i.d. random variables with $\mathcal{L}(X_1) = \mathcal{U}([0, 1])$.
- Let $W: [0,1]^2 \rightarrow [0,1]$ be a graphon.

Definition [Medvedev, 2014]

A **W**-random graph on *N* nodes generated by the random sequence *X*, denoted $G_N = \mathbb{G}(X_N, W)$ is such that the edges of G_N are selected at random and

 $\mathbb{P}((i,j) \in E(G_N)) = W(X_i, X_j) \text{ for each } (i,j) \in \{1, \ldots, N\}^2 \text{ for } i \neq j.$

The decision wether to include a pair $(i, j) \in \{1, ..., N\}^2$ is made independently from the decisions of other pairs.

Dynamical systems on W-random graph

- Let $X = (X_1, X_2, X_3, ...)$ and $X^N = (X_1, X_2, ..., X_N)$ where $X_i, i \in \mathbb{N}$ are i.i.d. random variables with $\mathcal{L}(X_1) = \mathcal{U}([0, 1])$.
- Let $W: [0,1]^2 \rightarrow [0,1]$ be a graphon.

Definition [Medvedev, 2014]

A **W**-random graph on *N* nodes generated by the random sequence *X*, denoted $G_N = \mathbb{G}(X_N, W)$ is such that the edges of G_N are selected at random and

$$\mathbb{P}((i,j)\in E(G_N))=W(X_i,X_j) ext{ for each } (i,j)\in \left\{1,\ldots,N
ight\}^2 ext{ for } i
eq j.$$

The decision wether to include a pair $(i, j) \in \{1, ..., N\}^2$ is made independently from the decisions of other pairs.

Dynamical systems on W-random graph

$$rac{d}{dt}u_i^N(t)=rac{1}{N}\sum_{j=1}^N\xi_{ij}D(u_j^N(t)-u_i^N(t))$$

with $\mathcal{L}(\xi_{ij}|X) = \mathcal{B}(W(X_i, X_j)).$

Random graph limit

Dynamical systems on W-random graph

$$rac{d}{dt}u_i^N(t) = rac{1}{N}\sum_{j=1}^N \xi_{ij}D(u_j^N(t) - u_i^N(t))$$
 (D_1)

with $\mathcal{L}(\xi_{ij}|X) = \mathcal{B}(W(X_i, X_j)).$

Random graph limit

Dynamical systems on W-random graph

$$\frac{d}{dt}u_i^N(t) = \frac{1}{N}\sum_{j=1}^N \xi_{ij}D(u_j^N(t) - u_i^N(t))$$
(D₁)

with $\mathcal{L}(\xi_{ij}|X) = \mathcal{B}(W(X_i, X_j)).$

The random graph limit equation

$$\partial_t u(x,t) = \int_I W(x,y) D(u(y,t) - u(x,t)) dy.$$
 (C₁)

↓

Random graph limit

Dynamical systems on W-random graph

$$\frac{d}{dt}u_i^N(t) = \frac{1}{N}\sum_{j=1}^N \xi_{ij}D(u_j^N(t) - u_i^N(t))$$
(D₁)

with $\mathcal{L}(\xi_{ij}|X) = \mathcal{B}(W(X_i, X_j)).$

The random graph limit equation

$$\partial_t u(x,t) = \int_I W(x,y) D(u(y,t) - u(x,t)) dy.$$
 (C₁)

 (D_1) converges to (C_1) [Medvedev, '14]

↓

Theorem [Medvedev, '14]: Random Graph Limit

Suppose $W \in W_0$, a class of symmetric measurable function on I^2 with values on I. D is a **Lipschitz continuous function** on \mathbb{R} and $g \in L^{\infty}(I)$. Let T > 0 and suppose that the solution of $(C_1) u(x, t)$ satisfies the following inequality

$$\begin{split} \min_{t\in[0,T]} \int_I \left\{ \int_I W(x,y) D(u(y,t)-u(x,t))^2 dy \\ -\left(\int_I W(x,y) D(u(y,t)-u(x,t) dy \right)^2 \right\} \geq c_1 > 0. \end{split}$$

Then, the solution of (D_1) and (C_1) satisfy the following relation

$$\lim_{N \to +\infty} \mathbb{P}\{\sup_{t \in [0,T]} \|u^{N}(t) - \mathbf{P}_{X^{N}}u(x,t)\|_{2,N} \le \frac{C}{N^{1/2}}\} = 1$$

for some constant C > 0 with $\mathbf{P}_{X^N} u(x, t) = (u(X_1^N, t), u(X_2^N, t), \dots, u(X_N^N, t))$ and

$$(u,v)_N := rac{1}{N}\sum_{i=1}^N u_i v_i, ext{ and the corresponding norm } \|u\|_{2,N} := \sqrt{(u,u)_N}.$$

• Random **unweighted** graph: $\mathcal{L}(\xi_{ij}|X) = \mathcal{B}(W(X_i, X_j))$

- Random unweighted graph: $\mathcal{L}(\xi_{ij}|X) = \mathcal{B}(W(X_i, X_j))$
- Not quantitative

$$\lim_{N \to +\infty} \mathbb{P}\{\sup_{t \in [0,T]} \|u^{N}(t) - \mathbf{P}_{X^{N}}u(x,t)\|_{2,N} \leq \frac{C}{N^{1/2}}\} = 1$$

- Random **unweighted** graph: $\mathcal{L}(\xi_{ij}|X) = \mathcal{B}(W(X_i, X_j))$
- Not quantitative

$$\lim_{N \to +\infty} \mathbb{P}\{\sup_{t \in [0,T]} \|u^{N}(t) - \mathbf{P}_{X^{N}}u(x,t)\|_{2,N} \le \frac{C}{N^{1/2}}\} = 1$$

• Condition depends on the knowlegde a priori of the limit at all time

$$\begin{split} \min_{t\in[0,T]} \int_I \left\{ \int_I W(x,y) D(u(y,t)-u(x,t))^2 dy \\ - \left(\int_I W(x,y) D(u(y,t)-u(x,t)) dy \right)^2 \right\} \geq c_1 > 0. \end{split}$$

- Random **unweighted** graph: $\mathcal{L}(\xi_{ij}|X) = \mathcal{B}(W(X_i, X_j))$
- Not quantitative

$$\lim_{N \to +\infty} \mathbb{P}\{\sup_{t \in [0,T]} \|u^{N}(t) - \mathbf{P}_{X^{N}}u(x,t)\|_{2,N} \le \frac{C}{N^{1/2}}\} = 1$$

• Condition depends on the knowlegde a priori of the limit at all time

$$\begin{split} \min_{t\in[0,T]} \int_I \left\{ \int_I W(x,y) D(u(y,t)-u(x,t))^2 dy \\ -\left(\int_I W(x,y) D(u(y,t)-u(x,t) dy \right)^2 \right\} \geq c_1 > 0. \end{split}$$

What about weighted graphs ?

Weighted random graph

Example [Garlaschelli, '18]

A weighted random graph model in which the probability of drawing an edge of discrete weight $w \in \mathbb{N}$ between vertices *i* and *j* is given by

$$\mathbb{P}(\xi_{ij}=w)=q_{ij}(w)=p^w(1-p).$$

Weighted random graph

Example [Garlaschelli, '18]

A weighted random graph model in which the probability of drawing an edge of discrete weight $w \in \mathbb{N}$ between vertices *i* and *j* is given by

$$\mathbb{P}(\xi_{ij}=w)=q_{ij}(w)=p^w(1-p).$$

Lack of a general framework !

Weighted random graph

Example [Garlaschelli, '18]

A weighted random graph model in which the probability of drawing an edge of discrete weight $w \in \mathbb{N}$ between vertices *i* and *j* is given by

$$\mathbb{P}(\xi_{ij}=w)=q_{ij}(w)=p^w(1-p).$$

Lack of a general framework !

Weighted random graphs generated by random sequences

Weighted random graphs generated by deterministic sequences

3 Blinking systems

Definition [Ayi, P.D., 2023]

A **q-weighted random graph** on N nodes generated by the **random** sequence X, denoted G_N , is such that the weight of an edge of G_N is randomly attributed. More precisely, the **law for the weight of the edge** (i, j) is $q(X_i, X_i, .)$ where

$$q: I \times I \rightarrow \mathcal{P}(\mathbb{R}_+)$$

$$(x,y) \mapsto q(x,y;.).$$

The decision of the attribution of the weight of a pair $(i,j) \in \{1, ..., N\}^2$, $i \neq j$, is made **independently** from the decision for other pairs.

 Erdös-Rényi weighted random graph (Garlaschelli, 09): Generate between any two nodes an edge with weight w ∈ N, with probability p^w(1 − p).

 Erdös-Rényi weighted random graph (Garlaschelli, 09): Generate between any two nodes an edge with weight w ∈ N, with probability p^w(1 − p).

$$q(x,y;\cdot) = (1-
ho)\sum_{i=0}^{+\infty}
ho^i \delta_i, \qquad ext{ for all } x,y \in \mathbb{R}.$$

 Erdös-Rényi weighted random graph (Garlaschelli, 09): Generate between any two nodes an edge with weight w ∈ N, with probability p^w(1 − p).

$$q(x,y;\cdot) = (1-p)\sum_{i=0}^{+\infty} p^i \delta_i, \qquad ext{ for all } x,y \in \mathbb{R}.$$

• *W*-random graph (Medvedev, '14): Generate between any two nodes (*x*, *y*) an edge (of weight 1) with probability *W*(*x*, *y*).

 Erdös-Rényi weighted random graph (Garlaschelli, 09): Generate between any two nodes an edge with weight w ∈ N, with probability p^w(1 − p).

$$q(x,y;\cdot) = (1-p)\sum_{i=0}^{+\infty} p^i \delta_i, \qquad ext{ for all } x,y \in \mathbb{R}.$$

 W-random graph (Medvedev, '14): Generate between any two nodes (x, y) an edge (of weight 1) with probability W(x, y).

$$q(x,y;\cdot) = (1-W(x,y))\delta_0 + W(x,y)\delta_1, \qquad ext{ for all } x,y \in \mathbb{R}.$$

Weighted random graph limit

• Let $X = (X_1, X_2, X_3, ...)$ and $X^N = (X_1, X_2, ..., X_N)$ where $X_i, i \in \mathbb{N}$ are i.i.d. random variables with $\mathcal{L}(X_1) = \mathcal{U}(I)$.

Dynamical systems on q-weighted random graph

$$\begin{cases} \frac{d}{dt}u_{i}^{N}(t) = \frac{1}{N}\sum_{j=1}^{N} \xi_{ij}D(u_{j}^{N}(t) - u_{i}^{N}(t)), \\ u_{i}^{N}(0) = g(X_{i}^{N}), \quad i \in \{1, \dots, N\} \end{cases}$$
(S^{r-r})

with $\mathcal{L}(\xi_{ij}|X) = q(X_i, X_j; \cdot).$

Weighted random graph limit

• Let $X = (X_1, X_2, X_3, ...)$ and $X^N = (X_1, X_2, ..., X_N)$ where $X_i, i \in \mathbb{N}$ are i.i.d. random variables with $\mathcal{L}(X_1) = \mathcal{U}(I)$.

Dynamical systems on q-weighted random graph

$$\begin{cases} \frac{d}{dt}u_i^N(t) = \frac{1}{N}\sum_{j=1}^N \xi_{ij}D(u_j^N(t) - u_i^N(t)), \\ u_i^N(0) = g(X_i^N), \quad i \in \{1, \dots, N\} \end{cases}$$
(S^{r-r})

with $\mathcal{L}(\xi_{ij}|X) = q(X_i, X_j; \cdot).$

We prove the convergence towards the continuum limit

The weighted random graph limit equation

$$\begin{cases} \partial_t u(x,t) = \int_I \bar{w}(x,y) D(u(y,t) - u(x,t)) dy \\ u(x,0) = g(x), \quad x \in I, \end{cases}$$
(C)

Weighted random graph limit

• Let $X = (X_1, X_2, X_3, ...)$ and $X^N = (X_1, X_2, ..., X_N)$ where $X_i, i \in \mathbb{N}$ are i.i.d. random variables with $\mathcal{L}(X_1) = \mathcal{U}(I)$.

Dynamical systems on q-weighted random graph

$$\begin{cases} \frac{d}{dt}u_i^N(t) = \frac{1}{N}\sum_{j=1}^N \xi_{ij}D(u_j^N(t) - u_i^N(t)), \\ u_i^N(0) = g(X_i^N), \quad i \in \{1, \dots, N\} \end{cases}$$
(S^{r-r})

with $\mathcal{L}(\xi_{ij}|X) = q(X_i, X_j; \cdot).$

We prove the convergence towards the continuum limit

The weighted random graph limit equation

$$\begin{cases} \partial_t u(x,t) = \int_I \bar{w}(x,y) D(u(y,t) - u(x,t)) dy \\ u(x,0) = g(x), \quad x \in I, \end{cases}$$

where $\bar{w}(x, y) := \int_{\mathbb{R}_+} wq(x, y; dw)$ is the **expected value** of the edge (x, y).

(C)

Our framework

Hypothesis 1

Let $D \in L^{\infty}(\mathbb{R})$ be bounded and Lipschitz continuous, with $\|D\|_{L^{\infty}(\mathbb{R})} := K$ and $\|D'\|_{L^{\infty}(\mathbb{R})} := L$.

Hypothesis 2

There exists M > 0 such that for all $(x, y) \in I^2$, for all $k \in \{1, \dots, 4\}$,

$$\left(\int_{\mathbb{R}_+} w^k q(x,y;dw)\right)^{1/k} \leq M,$$

i.e. the first four moments of the probability measure $q(x, y; \cdot)$ are bounded uniformly in x and y.

Our result

Theorem [Ayi, P.D., 2023]: Weighted Random Graph Limit

Let *D* satisfy Hyp. 1, let $g \in L^{\infty}(I)$ and let *q* be a weighted random graph law satisfying Hyp. 2. Then, solution u^N to the discrete system (S_N^{r-r}) converges to the solution *u* of the continuous model (*C*). More precisely,

$$\mathbb{P}\left[\sup_{t\in[0,T]}\|u^N(t)-\mathsf{P}_{\tilde{X}^N}u(\cdot,t)\|_{2,N}\geq \frac{C_1(T)}{\sqrt{N}}\right]\leq \frac{\tilde{C}_1}{N}$$

where the constants $C_1(T)$ and \tilde{C}_1 are respectively defined by $C_1(T) := \sqrt{T}\sqrt{1 + M^2K^2}e^{(\frac{1}{2} + 4ML)T}$ and $\tilde{C}_1 := 3M^4K^4 + 6$.

Our result

Theorem [Ayi, P.D., 2023]: Weighted Random Graph Limit

Let *D* satisfy Hyp. 1, let $g \in L^{\infty}(I)$ and let *q* be a weighted random graph law satisfying Hyp. 2. Then, solution u^N to the discrete system (S_N^{r-r}) converges to the solution *u* of the continuous model (*C*). More precisely,

$$\mathbb{P}\left[\sup_{t\in[0,T]}\|u^N(t)-\mathsf{P}_{\tilde{X}^N}u(\cdot,t)\|_{2,N}\geq \frac{C_1(T)}{\sqrt{N}}\right]\leq \frac{\tilde{C}_1}{N}$$

where the constants $C_1(T)$ and \tilde{C}_1 are respectively defined by $C_1(T) := \sqrt{T}\sqrt{1 + M^2K^2}e^{(\frac{1}{2} + 4ML)T}$ and $\tilde{C}_1 := 3M^4K^4 + 6$.

Remark that

 We deal with weighted random graphs: the random variables ξ_{ij} ∈ ℝ are not bounded (for unweighted random graphs, ξ_{ij} ∈ {0,1} [Medvedev, '14]).

Our result

Theorem [Ayi, P.D., 2023]: Weighted Random Graph Limit

Let *D* satisfy Hyp. 1, let $g \in L^{\infty}(I)$ and let *q* be a weighted random graph law satisfying Hyp. 2. Then, solution u^N to the discrete system (S_N^{r-r}) converges to the solution *u* of the continuous model (*C*). More precisely,

$$\mathbb{P}\left[\sup_{t\in[0,T]}\|u^N(t)-\mathsf{P}_{\tilde{X}^N}u(\cdot,t)\|_{2,N}\geq \frac{C_1(T)}{\sqrt{N}}\right]\leq \frac{\tilde{C}_1}{N}$$

where the constants $C_1(T)$ and \tilde{C}_1 are respectively defined by $C_1(T) := \sqrt{T}\sqrt{1 + M^2K^2}e^{(\frac{1}{2} + 4ML)T}$ and $\tilde{C}_1 := 3M^4K^4 + 6$.

Remark that

- We deal with weighted random graphs: the random variables ξ_{ij} ∈ ℝ are not bounded (for unweighted random graphs, ξ_{ij} ∈ {0,1} [Medvedev, '14]).
- The convergence is quantitative.

Sketch of the proof

For all $i \in \{1, ..., N\}$ and $t \in [0, T]$, we denote $\zeta_i^N(t) := u(X_i, t) - u_i^N(t)$ and $\zeta^N(t) = (\zeta_1^N(t), ..., \zeta_N^N(t)).$

Sketch of the proof

For all $i \in \{1, \dots, N\}$ and $t \in [0, T]$, we denote

 $\zeta_i^N(t) := u(X_i, t) - u_i^N(t)$

and $\zeta^N(t) = (\zeta^N_1(t), \dots, \zeta^N_N(t)).$

We substract (S_N^{r-r}) from (C) evaluated at $x = X_i$ and obtain

$$\begin{split} \frac{d}{dt}\zeta_{i}^{N}(t) &= \int_{I} \bar{w}(X_{i}, y) D(u(y, t) - u(X_{i}, t)) dy - \frac{1}{N} \sum_{j=1}^{N} \xi_{ij} D(u_{j}^{N}(t) - u_{i}^{N}(t)) \\ &= \int_{I} \bar{w}(X_{i}, y) D(u(y, t) - u(X_{i}, t)) dy - \frac{1}{N} \sum_{j=1}^{N} \xi_{ij} D(u(X_{j}, t) - u(X_{i}, t)) \\ &+ \frac{1}{N} \sum_{j=1}^{N} \xi_{ij} \left[D(u(X_{j}, t) - u(X_{i}, t)) - D(u_{j}^{N}(t) - u_{i}^{N}(t)) \right]. \end{split}$$

Sketch of the proof

For all $i \in \{1, \ldots, N\}$ and $t \in [0, T]$, we denote

 $\zeta_i^N(t) := u(X_i, t) - u_i^N(t)$

and $\zeta^N(t) = (\zeta_1^N(t), \dots, \zeta_N^N(t)).$

We substract (S_N^{r-r}) from (C) evaluated at $x = X_i$ and obtain

$$\begin{split} \frac{d}{dt}\zeta_{i}^{N}(t) &= \int_{I} \bar{w}(X_{i}, y) D(u(y, t) - u(X_{i}, t)) dy - \frac{1}{N} \sum_{j=1}^{N} \xi_{ij} D(u_{j}^{N}(t) - u_{i}^{N}(t)) \\ &= \int_{I} \bar{w}(X_{i}, y) D(u(y, t) - u(X_{i}, t)) dy - \frac{1}{N} \sum_{j=1}^{N} \xi_{ij} D(u(X_{j}, t) - u(X_{i}, t)) \\ &+ \frac{1}{N} \sum_{j=1}^{N} \xi_{ij} \left[D(u(X_{j}, t) - u(X_{i}, t)) - D(u_{j}^{N}(t) - u_{i}^{N}(t)) \right]. \end{split}$$

We denote, for all $t \ge 0$,

$$Z_i^N(t) := rac{1}{N} \sum_{j=1}^N \xi_{ij} D(u(X_j, t) - u(X_i, t)) - \int_I ar w(X_i, y) D(u(y, t) - u(X_i, t)) dy.$$

$$\frac{1}{2}\frac{d}{dt}\|\zeta^{N}\|_{2,N}^{2} = -(Z^{N},\zeta^{N})_{N} + \frac{1}{N^{2}}\sum_{i=1}^{N}\sum_{j=1}^{N}\xi_{ij}[D(u(X_{j}) - u(X_{i})) - D(u_{j}^{N} - u_{i}^{N})]\zeta_{i}^{N}.$$

$$\frac{1}{2}\frac{d}{dt}\|\zeta^{N}\|_{2,N}^{2}=-(Z^{N},\zeta^{N})_{N}+\frac{1}{N^{2}}\sum_{i=1}^{N}\sum_{j=1}^{N}\xi_{ij}[D(u(X_{j})-u(X_{i}))-D(u_{j}^{N}-u_{i}^{N})]\zeta_{i}^{N}.$$

Using the Cauchy-Schwarz inequality, we bound the second term:

$$\left|\frac{1}{N^2}\sum_{i=1}^{N}\sum_{j=1}^{N}\xi_{ij}[D(u(X_j)-u(X_i))-D(u_j^N-u_i^N)]\zeta_i^N\right| \leq L \|\zeta^N\|_{2,N}^2(\alpha_N+\gamma_N),$$

with
$$\alpha_N := \left(\frac{1}{N^2}\sum_{i=1}^N\sum_{j=1}^N\xi_{ij}^2\right)^{\frac{1}{2}}$$
 and $\gamma_N = \max_{i\in\{1,\cdots,N\}}\frac{1}{N}\sum_{j=1}^N\xi_{ij}.$

$$\frac{1}{2}\frac{d}{dt}\|\zeta^{N}\|_{2,N}^{2} = -(Z^{N},\zeta^{N})_{N} + \frac{1}{N^{2}}\sum_{i=1}^{N}\sum_{j=1}^{N}\xi_{ij}[D(u(X_{j}) - u(X_{i})) - D(u_{j}^{N} - u_{i}^{N})]\zeta_{i}^{N}.$$

Using the Cauchy-Schwarz inequality, we bound the second term:

$$\left|\frac{1}{N^2}\sum_{i=1}^{N}\sum_{j=1}^{N}\xi_{ij}[D(u(X_j) - u(X_i)) - D(u_j^N - u_i^N)]\zeta_i^N\right| \le L \|\zeta^N\|_{2,N}^2(\alpha_N + \gamma_N),$$

with
$$\alpha_N := \left(\frac{1}{N^2} \sum_{i=1}^N \sum_{j=1}^N \xi_{ij}^2\right)^{\frac{1}{2}}$$
 and $\gamma_N = \max_{i \in \{1, \cdots, N\}} \frac{1}{N} \sum_{j=1}^N \xi_{ij}$. Then,
$$\frac{d}{dt} \|\zeta^N\|_{2,N}^2 \le \|Z^N\|_{2,N}^2 + \|\zeta^N\|_{2,N}^2 (1 + 2L(\alpha_N + \gamma_N)).$$

$$\frac{1}{2}\frac{d}{dt}\|\zeta^{N}\|_{2,N}^{2}=-(Z^{N},\zeta^{N})_{N}+\frac{1}{N^{2}}\sum_{i=1}^{N}\sum_{j=1}^{N}\xi_{ij}[D(u(X_{j})-u(X_{i}))-D(u_{j}^{N}-u_{i}^{N})]\zeta_{i}^{N}.$$

Using the Cauchy-Schwarz inequality, we bound the second term:

$$\left|\frac{1}{N^2}\sum_{i=1}^{N}\sum_{j=1}^{N}\xi_{ij}[D(u(X_j) - u(X_i)) - D(u_j^N - u_i^N)]\zeta_i^N\right| \le L \|\zeta^N\|_{2,N}^2(\alpha_N + \gamma_N),$$

with
$$\alpha_N := \left(\frac{1}{N^2} \sum_{i=1}^N \sum_{j=1}^N \xi_{ij}^2\right)^{\frac{1}{2}}$$
 and $\gamma_N = \max_{i \in \{1, \cdots, N\}} \frac{1}{N} \sum_{j=1}^N \xi_{ij}$. Then,
$$\frac{d}{dt} \|\zeta^N\|_{2,N}^2 \le \|Z^N\|_{2,N}^2 + \|\zeta^N\|_{2,N}^2 (1 + 2L(\alpha_N + \gamma_N)).$$

From **Gronwall's lemma** and using the fact that $\|\zeta^N(0)\|_{2,N}^2 = 0$, we obtain:

$$\|\zeta^{N}(t)\|_{2,N}^{2} \leq T \sup_{s \in [0,T]} \|Z^{N}(s)\|_{2,N}^{2} e^{(1+2L(\alpha_{N}+\gamma_{N}))T}.$$

$$\|\zeta^{N}(t)\|_{2,N}^{2} \leq T \sup_{s \in [0,T]} \|Z^{N}(s)\|_{2,N}^{2} e^{(1+2L(\alpha_{N}+\gamma_{N}))T}.$$

$$\|\zeta^{N}(t)\|_{2,N}^{2} \leq T \sup_{s \in [0,T]} \|Z^{N}(s)\|_{2,N}^{2} e^{(1+2L(\alpha_{N}+\gamma_{N}))T}$$

Bienaymé-Chebyshev's inequality (general form)

$$\mathbb{P}[|X - \mathbb{E}[X]| \ge C] \le \frac{1}{C^k} \mathbb{E}[|X - \mathbb{E}[X]|^k]$$

Using **Bienaymé-Chebyshev's inequality** and the bounds on the first four moments of q, we can prove that:

•
$$\mathbb{P}[\alpha_N \ge 2M] \le \frac{1}{N^2}$$

• $\mathbb{P}[\gamma_N \ge 2M] \le \frac{5}{N}$
• $\mathbb{P}\left[\|Z^N(t)\|_{2,N} \ge \sqrt{\frac{1+K^2M^2}{N}}\right] \le \frac{3M^4K^4}{N}$

$$\|\zeta^{N}(t)\|_{2,N}^{2} \leq T \sup_{s \in [0,T]} \|Z^{N}(s)\|_{2,N}^{2} e^{(1+2L(\alpha_{N}+\gamma_{N}))T}$$

Bienaymé-Chebyshev's inequality (general form)

$$\mathbb{P}[|X - \mathbb{E}[X]| \ge C] \le \frac{1}{C^k} \mathbb{E}[|X - \mathbb{E}[X]|^k]$$

Using **Bienaymé-Chebyshev's inequality** and the bounds on the first four moments of q, we can prove that:

•
$$\mathbb{P}[\alpha_N \ge 2M] \le \frac{1}{N^2}$$

• $\mathbb{P}[\gamma_N \ge 2M] \le \frac{5}{N}$
• $\mathbb{P}\left[\|Z^N(t)\|_{2,N} \ge \sqrt{\frac{1+K^2M^2}{N}}\right] \le \frac{3M^4K^4}{N}$

And we obtain the desired result:

$$\mathbb{P}\left[\|\zeta^{\mathsf{N}}(t)\|_{2,\mathsf{N}} \geq \frac{C_1}{\sqrt{\mathsf{N}}}\right] \leq \frac{\tilde{C}_1}{\mathsf{N}}.$$

Link with previous results

Dynamical systems on q-weighted random graph

$$rac{d}{dt} u_i^N(t) = rac{1}{N} \sum_{j=1}^N \xi_{ij} D(u_j^N(t) - u_i^N(t))$$
 (S_N^{r-1})

with $\mathcal{L}(\xi_{ij}|X) = q(X_i, X_j, \cdot)$
Link with previous results

Dynamical systems on q-weighted random graph

$$\frac{d}{dt}u_i^N(t) = \frac{1}{N}\sum_{j=1}^N \xi_{ij}D(u_j^N(t) - u_i^N(t))$$
(S_N^{r-r})

with $\mathcal{L}(\xi_{ij}|X) = q(X_i, X_j, \cdot)$

• In [Medvedev, '14], $\mathcal{L}(\xi_{ij}|X) = \mathcal{B}(W(X_i, X_j))$, i.e. with our formalism, $q(x, y, \cdot) = W(x, y)\delta_1 + (1 - W(x, y))\delta_0$. Convergence is shown to $\partial_t u(x, t) = \int_t W(x, y)D(u(y, t) - u(x, t))dy.$

 (C_{1})

Link with previous results

Dynamical systems on q-weighted random graph

$$\frac{d}{dt}u_{i}^{N}(t) = \frac{1}{N}\sum_{j=1}^{N}\xi_{ij}D(u_{j}^{N}(t) - u_{i}^{N}(t))$$
(S_N^{r-r})

with $\mathcal{L}(\xi_{ij}|X) = q(X_i, X_j, \cdot)$

- In [Medvedev, '14], $\mathcal{L}(\xi_{ij}|X) = \mathcal{B}(W(X_i, X_j))$, i.e. with our formalism, $q(x, y, \cdot) = W(x, y)\delta_1 + (1 - W(x, y))\delta_0$. Convergence is shown to $\partial_t u(x, t) = \int_t W(x, y)D(u(y, t) - u(x, t))dy.$
- We show the convergence to

$$\partial_t u(x,t) = \int_I \left(\int_{\mathbb{R}} wq(x,y;dw) \right) D(u(y,t) - u(x,t)) dy.$$
 (C)

 (C_{1})

Link with previous results

Dynamical systems on q-weighted random graph

$$\frac{d}{dt}u_{i}^{N}(t) = \frac{1}{N}\sum_{j=1}^{N}\xi_{ij}D(u_{j}^{N}(t) - u_{i}^{N}(t))$$
(S_N^{r-r})

with $\mathcal{L}(\xi_{ij}|X) = q(X_i, X_j, \cdot)$

- In [Medvedev, '14], $\mathcal{L}(\xi_{ij}|X) = \mathcal{B}(W(X_i, X_j))$, i.e. with our formalism, $q(x, y, \cdot) = W(x, y)\delta_1 + (1 - W(x, y))\delta_0$. Convergence is shown to $\partial_t u(x, t) = \int_t W(x, y)D(u(y, t) - u(x, t))dy.$
- We show the convergence to

$$\partial_t u(x,t) = \int_I \left(\int_{\mathbb{R}} wq(x,y;dw) \right) D(u(y,t) - u(x,t)) dy.$$
 (C)

• The two match since

$$\int_{\mathbb{R}} wq(x,y;dw) = W(x,y).$$

 (C_1)

Weighted Random Graphs generated by Deterministic Sequences

We consider the deterministic sequence

$$x^N = \{x_1^N, \ldots, x_N^N\},\$$

$$x_i^N \in [\frac{i-1}{N}, \frac{i}{N}] :=: I_i^N, i \in \{1, \dots, N\}.$$

Definition [Ayi, P.D., 2023]

A **q-weighted random graph** on N nodes generated by the **deterministic** sequence x^N , denoted \overline{G}_N , is such that the weight of an edge of \overline{G}_N is randomly attributed. More precisely, the **law for the weight of the edge** (i,j) is $q(x_i^N, x_i^N, .)$ where

$$q: I \times I \rightarrow \mathcal{P}(\mathbb{R}_+)$$

$$(x,y) \mapsto q(x,y;.).$$

The decision of the attribution of the weight of a pair $(i, j) \in \{1, ..., N\}^2$, $i \neq j$, is made **independently** from the decision for other pairs.

Weighted random graph limit

• Let
$$x^N = \{x_1^N, \dots, x_N^N\}, x_i^N \in [\frac{i-1}{N}, \frac{i}{N}] =: I_i^N, i \in \{1, \dots, N\}.$$

Dynamical systems on q-weighted random graph generated by deterministic sequence

$$\begin{cases} \frac{d}{dt}u_i^N(t) = \frac{1}{N}\sum_{j=1}^N \xi_{ij}D(u_j^N(t) - u_i^N(t)), \\ u_i^N(0) = g(x_i^N), \quad i \in \{1, \dots, N\} \end{cases}$$
(S_N^{r-d})

with $\mathcal{L}(\xi_{ij}|x^N) = q(x_i^N, x_j^N; \cdot).$

Weighted random graph limit

• Let
$$x^N = \{x_1^N, \dots, x_N^N\}, x_i^N \in [\frac{i-1}{N}, \frac{i}{N}] =: I_i^N, i \in \{1, \dots, N\}.$$

Dynamical systems on q-weighted random graph generated by deterministic sequence

$$\begin{cases} \frac{d}{dt}u_i^N(t) = \frac{1}{N}\sum_{j=1}^N \xi_{ij}D(u_j^N(t) - u_i^N(t)), \\ u_i^N(0) = g(x_i^N), \quad i \in \{1, \dots, N\} \end{cases}$$
(S_N^{r-d})

with $\mathcal{L}(\xi_{ij}|x^N) = q(x_i^N, x_j^N; \cdot).$

We prove the convergence towards the continuum limit

The weighted random graph limit equation

$$\begin{cases} \partial_t u(x,t) = \int_I \left(\int_{\mathbb{R}_+} wq(x,y;dw) \right) D(u(y,t) - u(x,t)) dy \\ u(x,0) = g(x), \quad x \in I, \end{cases}$$
(C)

Our result

Let $I_i^N := I_i^N$ and $u_N \in \mathcal{C}(0, T; L^2(I))$ be defied from u^N by:

$$\forall t \in \mathbb{R}, \ \forall x \in I, \qquad u_N(x,t) = \sum_{i=1}^N u_i^N(t) \mathbf{1}_{I_i^N}(x)$$

Theorem [Ayi, P.D., 2023]

Let *D* satisfy Hyp. 1, and let $g \in C^{0,\frac{1}{2}}(I)$. Suppose that the weighted random graph law satisfies Hyp. 2 and that $(x, y) \mapsto \int_{\mathbb{R}_+} wq(x, y; dw)$ is $\frac{1}{2}$ -Hölder on I^2 . Then, u_N converges to the solution u of the continuous model (*C*). More precisely,

$$\mathbb{P}\left[\|u_N-u\|_{\mathcal{C}(0,T;L^2(I))}\geq \frac{C_2}{\sqrt{N}}\right]\leq \frac{\tilde{C}_2}{N}$$

for some explicit constants $C_2, \tilde{C}_2 > 0$.

• Erdös-Rényi random graph: unweighted graph constructed by randomly linking any two nodes with a given probability $p \in (0, 1)$.

- Erdös-Rényi random graph: unweighted graph constructed by randomly linking any two nodes with a given probability $p \in (0, 1)$.
- Erdös-Rényi weighted random graph (Garlaschelli, 09): Generate between any two nodes an edge with weight w ∈ N, with probability p^w(1 − p).

- Erdös-Rényi random graph: unweighted graph constructed by randomly linking any two nodes with a given probability $p \in (0, 1)$.
- Erdös-Rényi weighted random graph (Garlaschelli, 09): Generate between any two nodes an edge with weight w ∈ N, with probability p^w(1 − p).

$$q(x,y;\cdot) = (1-\rho)\sum_{i=0}^{+\infty} \rho^i \delta_i, \qquad \text{for all } x, y \in \mathbb{R}. \tag{2}$$

- Erdös-Rényi random graph: unweighted graph constructed by randomly linking any two nodes with a given probability $p \in (0, 1)$.
- Erdös-Rényi weighted random graph (Garlaschelli, 09): Generate between any two nodes an edge with weight w ∈ N, with probability p^w(1 − p).

$$q(x,y;\cdot) = (1-\rho)\sum_{i=0}^{+\infty} p^i \delta_i, \qquad \text{for all } x, y \in \mathbb{R}.$$

• First moment given by:

$$ar{w}(x,y) = \int_{\mathbb{R}^+} wq(x,y;dw) = (1-p)\sum_{i=1}^{+\infty} ip^i = rac{p}{1-p}$$

- Erdös-Rényi random graph: unweighted graph constructed by randomly linking any two nodes with a given probability $p \in (0, 1)$.
- Erdös-Rényi weighted random graph (Garlaschelli, 09): Generate between any two nodes an edge with weight w ∈ N, with probability p^w(1 − p).

$$q(x,y;\cdot) = (1-p)\sum_{i=0}^{+\infty} p^i \delta_i, \qquad \text{for all } x, y \in \mathbb{R}.$$

• First moment given by:

$$\bar{w}(x,y) = \int_{\mathbb{R}^+} wq(x,y;dw) = (1-p) \sum_{i=1}^{+\infty} ip^i = \frac{p}{1-p}$$

• Limit equation:

$$\begin{cases} \partial_t u(x,t) = \frac{p}{1-p} \int_I D(u(y,t) - u(x,t)) dy \\ u(x,0) = g(x), \quad x \in I. \end{cases}$$

Figure: Left and Center: Random interaction matrices generated by deterministic sequences for N = 20, N = 60 and N = 150, and corresponding continuous graphon \bar{w} for (2).

Figure: Left and Center: Random interaction matrices generated by deterministic sequences for N = 20, N = 60 and N = 150, and corresponding continuous graphon \bar{w} for (2).

Figure: Time evolution of microscopic system (S_N^{r-r}) for N = 60 (left), and of the corresponding projection of the graph limit (right) with (2).

$$\begin{cases} \frac{d}{dt}u_{i}^{N}(t) = \frac{1}{N}\sum_{j=1}^{N}\xi_{ij}D(u_{j}^{N} - u_{i}^{N}), & i \in \{1, \dots, N\}\\ u_{i}^{N}(0) = g(x_{i}^{N}), & i \in \{1, \dots, N\} \end{cases}$$
(S^{r-d})

Figure: Evolution of the graph limit $u(\cdot, t)$ (red) and of $u_N(\cdot, t)$ solution to (S_N^{r-d}) (black) for N = 20 and N = 60, with the random weighted graph law (2).

Convergence of $(\mathcal{S}_{N}^{\mathrm{r-r}})$ and $(\mathcal{S}_{N}^{\mathrm{r-d}})$

Figure: Left: Convergence of (\mathcal{S}_N^{r-r}) quantified by $\sup_{t \in [0,T]} \|u^N(t) - \mathbf{P}_{\tilde{X}_N} u(\cdot, t)\|_{2,N}$. Right: Convergence of (\mathcal{S}_N^{r-d}) quantified by $\sup_{t \in [0,T]} \|u_N(\cdot, t) - u(\cdot, t)\|_{L^2}$ for different values of N, with 20 runs for each value of N. Case of the random weighted graph law (2).

Numerical Illustration 2: Weighted "Small World" network

• *Model for a "small-world" network* (Watts and Strogatz, '98): Connect each node with its *k* closest neighbors to form a ring lattice. Then, rewire each edge at random with probability *p*.

Numerical Illustration 2: Weighted "Small World" network

- *Model for a "small-world" network* (Watts and Strogatz, '98): Connect each node with its *k* closest neighbors to form a ring lattice. Then, rewire each edge at random with probability *p*.
- Refined model for a weighted "small-world" network: Connect two nodes with an edge of weight 1 if they are among each other's closest k neighbors, i.e. if $|X_i X_j| \le r$, where $r := \frac{k}{2N}$. Then, with probability $p = \frac{|X_i X_j|}{r}$, rewire each edge at random, giving the new edge a weight drawn uniformly in the interval [0, 1].

$$q(x,y;dw) = \begin{cases} \frac{\rho(x,y)}{r} d\lambda_{[0,1]} + (1 - \frac{\rho(x,y)}{r})\delta_1 & \text{if } \rho(x-y) \le r \\ d\lambda_{[0,1]} & \text{otherwise} \end{cases}$$
(3)

where $\rho(x, y) = \min\{|x - y|, |x - y - 1|, |y - x - 1|\}.$

Numerical Illustration 2: Weighted "Small World" network

- *Model for a "small-world" network* (Watts and Strogatz, '98): Connect each node with its *k* closest neighbors to form a ring lattice. Then, rewire each edge at random with probability *p*.
- Refined model for a weighted "small-world" network: Connect two nodes with an edge of weight 1 if they are among each other's closest k neighbors, i.e. if $|X_i X_j| \le r$, where $r := \frac{k}{2N}$. Then, with probability $p = \frac{|X_i X_j|}{r}$, rewire each edge at random, giving the new edge a weight drawn uniformly in the interval [0, 1].

$$q(x,y;dw) = \begin{cases} \frac{\rho(x,y)}{r} d\lambda_{[0,1]} + (1 - \frac{\rho(x,y)}{r})\delta_1 & \text{if } \rho(x-y) \le r \\ d\lambda_{[0,1]} & \text{otherwise} \end{cases}$$
(3)

where $\rho(x, y) = \min\{|x - y|, |x - y - 1|, |y - x - 1|\}.$

• First moment:

$$\bar{w}(x,y) = \int_{\mathbb{R}^+} wq(x,y; dw) = \begin{cases} (1 - \frac{\rho(x,y)}{2r}) & \text{if } \rho(x,y) \leq r \\ \frac{1}{2} & \text{otherwise.} \end{cases}$$

Figure: Values of the random interaction matrices generated from a random sequence (left) and a deterministic sequence (right) according to the random weighted graph law (3) for N = 60. Right: Corresponding continuous graphon $(x, y) \mapsto \overline{w}(x, y)$.

$$\begin{cases} \frac{d}{dt} u_i^N(t) = \frac{1}{N} \sum_{j=1}^N \xi_{ij} D(u_j^N(t) - u_i^N(t)), \\ u_i^N(0) = g(X_i^N), \quad i \in \{1, \dots, N\} \end{cases}$$
(S^{r-r})

Figure: Time evolution of the microscopic system (S_N^{r-r}) for N = 60 (left), and of the corresponding projection of the graph limit (right), for the random weighed graph law (3).

$$D(z) = rac{z}{1+\|z\|^2}$$
 and $g(x) = \sin(4x)^2$.

$$\begin{cases} \frac{d}{dt}u_i^N(t) = \frac{1}{N}\sum_{j=1}^N \xi_{ij}D(u_j^N - u_i^N), & i \in \{1, \dots, N\}\\ u_i^N(0) = g(x_i^N), & i \in \{1, \dots, N\} \end{cases}$$
(S^{r-d})

Figure: Evolution of the graph limit $u(\cdot, t)$ (red) and of $u_N(\cdot, t)$ solution to (\mathcal{S}_N^{r-d}) (black) for N = 60, with the random weighted graph law (3).

Blinking systems

$$\forall k \in \mathbb{N}, \forall t \in [k, k+1), \xi_{ij}(t) = \xi_{ij}^k \text{ with } \mathcal{L}(\xi_{ij}^k | \tilde{X}) = q(X_i, X_j, \cdot).$$

Let $T > 0, n \in \mathbb{N}^*, \varepsilon = \frac{T}{n}.$

Definition: blinking system

$$\frac{d}{dt}u_i^{N,\varepsilon}(t) = \frac{1}{N}\sum_{j=1}^N \xi_{ij}\left(\frac{t}{\varepsilon}\right) D(u_j^{N,\varepsilon}(t) - u_i^{N,\varepsilon}(t)), \qquad (S_{N,\varepsilon})$$

$$u_i^{N,\varepsilon}(0) = g(X_i), \quad i \in \{1, \dots, N\}$$

Blinking systems

$$\forall k \in \mathbb{N}, \forall t \in [k, k+1), \xi_{ij}(t) = \xi_{ij}^k \text{ with } \mathcal{L}(\xi_{ij}^k | \tilde{X}) = q(X_i, X_j, \cdot).$$

Let $T > 0, n \in \mathbb{N}^*, \varepsilon = \frac{T}{n}.$

Definition: blinking system

$$\frac{d}{dt}u_i^{N,\varepsilon}(t) = \frac{1}{N}\sum_{j=1}^N \xi_{ij}\left(\frac{t}{\varepsilon}\right) D(u_j^{N,\varepsilon}(t) - u_i^{N,\varepsilon}(t)), \qquad (S_{N,\varepsilon})$$

$$u_i^{N,\varepsilon}(0) = g(X_i), \quad i \in \{1, \dots, N\}$$

Applying results from Averaging Theory (Skorokhod, '02), it holds

$$\mathbb{P}\left\{\lim_{\varepsilon\to 0}\sup_{s\leq T}\left|u^{N,\varepsilon}(s)-u^{N,\mathsf{Av}}(s)\right|=0\right\}=1,$$

Blinking systems

$$\forall k \in \mathbb{N}, \forall t \in [k, k+1), \xi_{ij}(t) = \xi_{ij}^k \text{ with } \mathcal{L}(\xi_{ij}^k | \tilde{X}) = q(X_i, X_j, \cdot).$$

Let $T > 0, n \in \mathbb{N}^*, \varepsilon = \frac{T}{n}.$

Definition: blinking system

$$\begin{aligned} \frac{d}{dt}u_i^{N,\varepsilon}(t) &= \frac{1}{N}\sum_{j=1}^N \xi_{ij}\left(\frac{t}{\varepsilon}\right) D(u_j^{N,\varepsilon}(t) - u_i^{N,\varepsilon}(t)), \\ u_i^{N,\varepsilon}(0) &= g(X_i), \quad i \in \{1, \dots, N\} \end{aligned}$$
(S_{N,\varepsilon})

Applying results from Averaging Theory (Skorokhod, '02), it holds

$$\mathbb{P}\left\{\lim_{\varepsilon\to 0}\sup_{s\leq T}\left|u^{N,\varepsilon}(s)-u^{N,\mathsf{Av}}(s)\right|=0\right\}=1,$$

where $u^{N,Av}$ is the solution to

Definition: Averaged System

$$\begin{cases} \frac{d}{dt}u_i^{N,Av}(t) = \frac{1}{N}\sum_{j=1}^N \left(\int_{\mathbb{R}_+} wq(X_i, X_j; dw)\right) D(u_j^{N,Av}(t) - u_i^{N,Av}(t)), \\ u_i^{N,Av}(0) = g(X_i), \quad i \in \{1, \dots, N\} \end{cases}$$

$$(S_{N,Av})$$

How are all the systems related?

So far we have considered four models :

- the system on a fixed weighted random graph (\mathcal{S}_N^{r-r})
- its limit as N goes to infinity, i.e. the graph limit equation (C)
- the blinking system $(S_{N,\varepsilon})$
- its limit as ε goes to zero, i.e. the associated averaged system $(S_{N,Av})$.

How are all the systems related?

So far we have considered four models :

- the system on a fixed weighted random graph (\mathcal{S}_N^{r-r})
- its limit as N goes to infinity, i.e. the graph limit equation (C)
- the blinking system $(S_{N,\varepsilon})$
- its limit as ε goes to zero, i.e. the associated averaged system $(S_{N,Av})$.

Figure: Existing and missing links between systems $(S_{N,\varepsilon})$, $(S_{N,Av})$, (S_N^{r-r}) and (C)

Convergence of $(S_{N,\varepsilon})$ to (C)

Theorem [Ayi, P.D., '23]

Let T > 0, $\varepsilon > 0$ be given. Let $X = (X_i)_{i \in \mathbb{N}}$ be a sequence of i.i.d. random variables and for all $N \in \mathbb{N}$, let $X^N = (X_i)_{1 \le i \le N}$. Let $\xi_{ij}(t) = \xi_{ij}^k$ for all $t \in [k\varepsilon, (k+1)\varepsilon)$, $k \in \{0, \ldots, n-1\}$ where $\mathcal{L}(\xi_{ij}^k | X^N) = q(X_i, X_j, \cdot)$. Let $u^{N,\varepsilon}$ be the solution to $(S_{N,\varepsilon})$ and let u be the solution to (C). Then,

$$\mathbb{P}\left[\sup_{t\in[0,T]}\|u^{N,\varepsilon}(t)-P_{X^N}u(t,\cdot)\|_{2,N}\geq\frac{C_3(T)}{\sqrt{N\varepsilon}}\right]\leq\frac{\tilde{C}_3(T)}{N\varepsilon}.$$

Convergence of $(S_{N,\varepsilon})$ to (C)

Theorem [Ayi, P.D., '23]

Let T > 0, $\varepsilon > 0$ be given. Let $X = (X_i)_{i \in \mathbb{N}}$ be a sequence of i.i.d. random variables and for all $N \in \mathbb{N}$, let $X^N = (X_i)_{1 \le i \le N}$. Let $\xi_{ij}(t) = \xi_{ij}^k$ for all $t \in [k\varepsilon, (k+1)\varepsilon)$, $k \in \{0, \ldots, n-1\}$ where $\mathcal{L}(\xi_{ij}^k | X^N) = q(X_i, X_j, \cdot)$. Let $u^{N,\varepsilon}$ be the solution to $(S_{N,\varepsilon})$ and let u be the solution to (C). Then,

$$\mathbb{P}\left[\sup_{t\in[0,T]}\|u^{N,\varepsilon}(t)-P_{X^N}u(t,\cdot)\|_{2,N}\geq\frac{C_3(T)}{\sqrt{N\varepsilon}}\right]\leq\frac{\tilde{C}_3(T)}{N\varepsilon}.$$

Figure: Links between systems ($S_{N,\varepsilon}$), ($S_{N,Av}$), (S_N^{r-r}) and (C)

N. Pouradier Duteil

Numerical Simulations

N. Pouradier Duteil

Numerical Simulations

Figure: Quantification of the convergence of the microscopic systems $(S_{N,\varepsilon})$ given by $\sup_{t\in[0,T]} \|u^{N,\varepsilon}(t) - \mathbf{P}_{\tilde{X}_N}u(\cdot,t)\|_{2,N}$ for a fixed $\varepsilon = 0.1$, with 20 runs for each value of N, for the weighted random graph law (??) (logarithmic scale).

Thank you for your attention !