Semiclassical limit of fermion stars

Jinmyoung Seok

Department of Mathematics Education Seoul National University

France-Korea IRN webinar in PDE

Based on joint works with Y. Hong, J. Jang and S. Jin

2023.10.16

Jinmyoung Seok (SNU)

2023.10.16

White dwarf as a fermion star

White dwarfs are compact stars with high mean density supported by the pressure of degenerate electron gas.

Figure: Image from Wikipedia

See an image of Sirius A and Sirius B. Sirius B, which is faint point of light is a white dwarf.

Fermions and bosons

Bosons may occupy the same quantum states but fermions may not.

Figure: Image from reddit

Electron degeneracy pressure

Figure: Image from Wikipedia

Chandrasekhar's theory of white dwarfs

• Equation of state:

$$P(\rho) = Cf(\sqrt[3]{\rho/D}), \quad f(x) = \int_0^x \frac{u^4}{\sqrt{1+u^2}} du,$$
 (ES)

Equation of gravitational hydrostatic equilibrium:

$$\frac{1}{r^2}\frac{d}{dr}\left(\frac{r^2}{\rho}\frac{dP(\rho)}{dr}\right) = -4\pi G\rho \tag{GHE}$$

• The solution ρ with initial value $\rho(0) = \rho_0$ describes the density of a white dwarf.

Chandrasekhar's theory of white dwarfs

- The value R at which $\rho(r)$ firstly vanishes represents the radius of the white dwarf.
- R is a decreasing function of ρ_0 .
- The solution ρ is a decreasing function on the interval [0, R].
- As $ho_0 o \infty$, the radius R tends to 0 and the mass of a white star $\int \rho(r) r^2 \, dr$ tends to some positive number M_c . This predicts the gravitational collapse of a star with mass $M > M_c$.
- M_c is called the Chandrasekhar's limit mass.

Semiclassical results by Lieb and Yau (1987 CMP)

Relativistic Schrödinger Hamiltonian for N particles:

$$H_N = \sum_{i=1}^N \sqrt{-\Delta_{x_i} + 1} - 1 - G \sum_{1 \le i < j \le N} \frac{1}{|x_i - x_j|}$$

acting on the Hilbert space

$$\mathcal{H}^{(N)}=(L^2(\mathbb{R}^3)\bigotimes\mathbb{C}^2)^{\wedge N}.$$

• Quantum ground energy level:

$$E_G^Q(N) = \inf \operatorname{spec} H_N$$

Then the eigenfunction belonging to $E_G^Q(N)$ represent the wave function of a white dwarf with mass N but its existence is not known.

◆ロ → ← 同 → ← 三 → へ ○ へ ○

7 / 28

Jinmyoung Seok (SNU) 2023.10.16

Semiclassical results by Lieb and Yau (1987 CMP)

Semiclassical result by Lieb-Yau:

Fix $GN^{2/3}$ as a constant τ (fermions). Then there exists a number $\tau_c>0$ such that if $\tau<\tau_c$

$$\lim_{N\to\infty}\frac{E_G^Q(N)}{E_G^C(N)}=1,$$

where

$$E_G^C(N) := \inf\{\mathcal{E}_G^C(\rho) \mid \rho \ge 0, \, \rho \in L^{4/3}(\mathbb{R}^3), \, \int \rho = N\}$$
 (SVP)

and

$$\mathcal{E}_G^C(\rho) := \int A(\rho) \, dx - \frac{G}{2} \int \frac{\rho(x)\rho(y)}{|x-y|} \, dx dy, \, A(\rho) = \int_0^\rho \sqrt{\left(\frac{3}{4\pi}u\right)^{\frac{2}{3}} + 1} - 1 \, du.$$

- 4 ロ ト 4 個 ト 4 差 ト 4 差 ト - 差 - からぐ

Semiclassical results by Lieb and Yau (1987 CMP)

Semiclassical result by Lieb-Yau:

• There exists a number $M_c(G) > 0$ such that

$$\begin{cases} -\infty < E_G^C(N) < 0 & \text{if } N < M_c(G) \\ E_G^C(N) = -\infty & \text{if } N > M_c(G) \end{cases}$$

 E_G^C is a decreasing function in N.

• If $N < M_c(G)$ the variational problem (SVP) admits a radially symmetric positive minimizer $\rho_{N,G}$ such that it satisfies (ES) and (GHE) (when G=1).

Quantum Mean-field description of fermion stars

Using the Slater determinants $\psi_1(x_1) \wedge \psi_2(x_2) \wedge \cdots \wedge \psi_N(x_N)$, the evolution of unitary group $\{e^{-itH_N}\}$ is approximated by Hartree-Fock equations,

$$i\partial_t \psi_k = \sqrt{-\Delta + m^2} \psi_k - \sum_{l=1}^N (\frac{1}{|x|} * |\psi_l|^2) \psi_k + \sum_{l=1}^N \psi_l (\frac{1}{|x|} * \{\bar{\psi}_l \psi_k\}), \text{ (HF)}$$

$$k=1,\ldots,N$$
.

Quantum Mean-field description of fermion stars

The energy functional of (HF) is

$$\mathcal{E}(\Psi) = \sum_{k=1}^{N} \langle \psi_k, \sqrt{-\Delta + m^2} \psi_k \rangle - \frac{1}{2} \iint_{\mathbb{R}^6} \frac{\rho_{\Psi}(x) \rho_{\Psi}(y) - |\rho_{\Psi}(x, y)|^2}{|x - y|} dx dy,$$

where $\Psi = \{\psi_k\}_{k=1}^N$ are orthonormal and ρ_{Ψ} denotes the particle density $\sum_{k=1}^N |\psi_k(x)|^2$.

The fermion stars are described as a minimizer of the Hartree-Fock energy.

Jinmyoung Seok (SNU) 2023.10.16 11/28

Operator form of Quantum Mean-field energy

Energy:

$$\mathcal{E}(\gamma) = \mathsf{Tr}\left((\sqrt{1-\Delta}-1)\gamma\right) - \frac{1}{2} \iint_{\mathbb{R}^6} \frac{\rho_\gamma(x)\rho_\gamma(y) - |\gamma(x,y)|^2}{|x-y|} \mathsf{d}x \mathsf{d}y,$$

where $\rho_{\gamma}(x) = \gamma(x, x)$ denotes the density of γ .

Mass:

$$\operatorname{Tr}(\gamma) = m$$
.

Variational problem:

$$ilde{\mathcal{E}}_{\mathsf{QM}}(\mathit{m}) = \inf \left\{ \mathcal{E}(\gamma) \mid \gamma \in \mathfrak{H}^{rac{1}{2}}, \; 0 \leq \gamma \leq 1 \; \mathsf{and} \; \mathsf{Tr}(\gamma) = \mathit{m}
ight\}.$$
 (QVP)

Chandrasekar's limit mass and existence of fermion stars for quantum mean-field formulation

Let

$$\mathcal{K}_{\mathsf{QM}} := \inf_{\gamma \in \mathcal{A}_{\mathsf{QM}} \setminus \{0\}} \frac{\|\gamma\|^{\frac{1}{3}} \big(\mathsf{Tr}\gamma\big)^{\frac{2}{3}} \mathsf{Tr} \left| |\nabla|^{\frac{1}{2}} \gamma |\nabla|^{\frac{1}{2}} \right|}{\|\nabla \Phi_{\gamma}\|_{L^{2}(\mathbb{R}^{3})}^{2}},$$

 $\text{ where } \Phi_{\gamma} = -|\cdot|^{-1}*\rho_{\gamma} \text{ and } \mathcal{A}_{\text{QM}} := \{\gamma \in \mathfrak{H}^{\frac{1}{2}} \mid \gamma \geq 0, \|\gamma\| + \text{Tr}(\gamma) < \infty\}.$

Known result (Lenzmann - Lewin):

- If $m^{\frac{2}{3}} > 2K_{\mathrm{QM}}$, then $\tilde{E}_{\mathrm{QM}}(m) = -\infty$.
- If $m^{\frac{2}{3}} < 2K_{\rm QM}$, then $-\infty < \tilde{E}_{\rm QM}(m) < 0$ and $\tilde{E}_{\rm QM}(m)$ is achieved by a minimizer

$$\mathit{Q}_{0}=\boldsymbol{1}_{\{\sqrt{1-\Delta}-1+\Phi_{\mathit{Q}_{0}}+\mathit{X}_{\mathit{Q}_{0}}<\mu\}}+\mathcal{R}$$

Kinetic description of fermion stars?

Can we suggest a kinetic theory for fermion stars standing between the relativistic mean-field quantum theory and the Chandrasekhar theory?

Quantum Mean-field Theory

Semiclassical limit Kinetic Theory

 $\underset{\mathsf{reducing\ to\ density\ functional}}{\underbrace{\rightarrow}} \mathsf{Chandrasekhar\ Theory}$

Relativistic gravitational Vlasov-Poisson energy

For a distribution function f(t, x, v), we define the relativistic gravitational Vlasov-Poisson energy

$$\begin{split} H(f) &= \iint_{\mathbb{R}^6} (\sqrt{1+|v|^2}-1) f(t,x,v) \, dx dv - \frac{1}{2} \iint_{\mathbb{R}^6} \frac{\rho_f(t,x) \rho_f(t,y)}{|x-y|} \, dx dy, \\ \text{where } \rho_f &= \int f \, dv. \end{split}$$

The total mass is given by

$$M(f) = \int_{\mathbb{R}^3} \rho_f(t, x) dx = \iint_{\mathbb{R}^6} f(t, x, v) dv dx$$

Kinetic variational problem

The kinetic variational problem is defined by

$$\tilde{E}_{CM}(m) = \min_{f \in \mathcal{A}} H(f)$$
 (KVP)

where

$$\mathcal{A} = \left\{ f \in L^1(\mathbb{R}^6) \mid M(f) = m, \, 0 \leq f \leq 1, \, \operatorname{supp}(f) \text{ is bdd} \right\}.$$

The point-wise constraint $0 \le f \le 1$ inherits the quantum feature of fermions.

Chandrasekar's limit mass and existence of fermion stars for kinetic formulation

Theorem (J. Jang and S.)

Let

$$\mathcal{K}_{\mathsf{CM}} := \inf_{f \in \mathcal{E} \setminus \{0\}} \frac{\||v|f\|_{L^1} \|f\|_{L^1}^{\frac{2}{3}} \|f\|_{L^\infty}^{\frac{1}{3}}}{\|\nabla \Phi_f\|_{L^2}^2},$$

where $\Phi_f = -|\cdot|^{-1} * \rho_f$.

- If $m^{\frac{2}{3}} > 2K_{CM}$, then $\tilde{E}_{CM}(m) = -\infty$.
- If $m^{\frac{2}{3}} < 2K_{CM}$, then $-\infty < \tilde{E}_{CM}(m) < 0$ and $\tilde{E}_{CM}(m)$ is achieved by a minimizer

$$f_0 = \mathbf{1}_{\{\sqrt{1+|p|^2}-1+\Phi_{f_0} \leq \mu\}}$$

.

4 D > 4 A > 4 B > 4 B > B = 40 C

Jinmyoung Seok (SNU)

2023.10.16

Recovery of the Chandrasekhar theory

Theorem (J. Jang and S.)

Let f_0 be a minimizer of (KVP). Then $\rho_0 := \rho_{f_0}$ is a minimizer of (SVP). Consequently, ρ_0 satisfies (ES) and (GHE).

Semiclassical limit of fermion stars

Quantum energy with \hbar :

$$\mathcal{E}^{\hbar}(\gamma) = \mathsf{Tr}^{\hbar}\left((\sqrt{1-\hbar^2\Delta}-1)\gamma
ight) - rac{1}{2}\iint_{\mathbb{R}^6}rac{
ho_{\gamma}^{\hbar}(x)
ho_{\gamma}^{\hbar}(y) - |\gamma^{\hbar}(x,y)|^2}{|x-y|}dxdy$$

where

$$\mathsf{Tr}^\hbar = (2\pi\hbar)^3 \mathsf{Tr}, \quad \gamma^\hbar(x,y) = (2\pi\hbar)^3 \gamma(x,y), \quad \rho_\gamma^\hbar(x) = \gamma^\hbar(x,x).$$

Variational problem with \hbar :

$$\tilde{\mathcal{E}}_{\mathsf{QM}}^{\hbar}(\mathit{m}) = \inf \left\{ \mathcal{E}^{\hbar}(\gamma) \mid \gamma \in \mathfrak{H}^{\frac{1}{2}}, \ 0 \leq \gamma \leq 1 \ \mathsf{and} \ \mathsf{Tr}^{\hbar}(\gamma) = \mathit{m} \right\}. \quad (\hbar \mathsf{QVP})$$

Jinmyoung Seok (SNU)

19/28

Semiclassical limit of fermion stars

Invariance of K_{QM} :

$$\textit{K}_{\mathsf{QM}} = \inf_{\gamma \in \mathcal{A}_{\mathsf{QM}} \setminus \{0\}} \frac{\|\gamma\|^{\frac{1}{3}} \left(\mathsf{Tr}^{\hbar}\gamma\right)^{\frac{2}{3}} \mathsf{Tr}^{\hbar} \left| |\hbar\nabla|^{\frac{1}{2}}\gamma|\hbar\nabla|^{\frac{1}{2}} \right|}{\|\nabla\Phi^{\hbar}_{\gamma}\|_{\textit{L}^{2}(\mathbb{R}^{3})}^{2}},$$

 $\text{ where } \Phi_{\gamma}^{\hbar} = -|\cdot|^{-1}*\rho_{\gamma}^{\hbar} \text{ and } \mathcal{A}_{\text{QM}} := \{\gamma \in \mathfrak{H}^{\frac{1}{2}} \mid \gamma \geq 0, \|\gamma\| + \text{Tr}(\gamma) < \infty\}.$

Theorem (Y. Hong, S. Jin, S.)

- (Quantum limit mass \leq Classical limit mass) $K_{QM} \leq K_{CM}$
- (Semiclassical limit) Let Q_{\hbar} be a family of minimizers of $(\hbar QVP)$ and f_0 be a minimizer of (KVP). Then as $\hbar \to 0$,

$$\begin{split} \rho_{Q_\hbar} &\rightharpoonup \rho_{f_0} \text{ weakly in } L^q \quad \forall q > 1 \\ \||\nabla|^{-1}\rho_{Q_\hbar} - |\nabla|^{-1}\rho_{f_0}\|_{L^2\cap L^\infty} &\to 0. \end{split}$$

◆ロト ◆団 ト ◆恵 ト ・恵 ・ りへで

Main ingredients for proof: Key inequalties

Lemma (Kinetic interpolation inequality)

If $0 \le f \le 1$, then

$$\|\rho_f\|_{L^{4/3}(\mathbb{R}^3)}^{4/3} \lesssim \||p|f\|_{L^1(\mathbb{R}^3 \times \mathbb{R}^3)}.$$

Proof: The density function ρ_f satisfies the following trivial inequality

$$\rho_f = \int_{|p| \leq R} + \int_{|p| \geq R} f(\cdot, p) dp \lesssim R^3 + \frac{1}{R} ||p| f(\cdot, p)||_{L^1_p(\mathbb{R}^3)}.$$

Optimizing the right hand side, we obtain $(\rho_f)^{4/3} \lesssim |||p|f(\cdot,p)||_{L^1_p(\mathbb{R}^3)}$. Then, integrating, we obtain the desired inequality.

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

Jinmyoung Seok (SNU) 2023.10.16 21 / 28

Main ingredients for proof: Key inequalties

As a quantum analogue of the kinetic interpolation inequality, we have the Lieb-Thirring inequality.

Lemma (Lieb-Thirring inequality)

Let $h \in (0,1]$, $s \ge 0$ and $\alpha \in [0,\frac{3}{2})$. If γ is a compact self-adjoint operator on $L^2(\mathbb{R}^3)$ and $0 \leq |\hbar\nabla|^{\alpha}\gamma|\hbar\nabla|^{\alpha} \leq 1$, then

$$\|\rho_{\gamma}^{\hbar}\|_{L^{\frac{3+2s-2\alpha}{3-2\alpha}}(\mathbb{R}^{3})}^{\frac{3+2s-2\alpha}{3-2\alpha}} \lesssim \mathsf{Tr}^{\hbar}(|\hbar\nabla|^{s}\gamma|\hbar\nabla|^{s}),$$

where the implicit constant is independent of \hbar .

Main ingredients for proof: Relativistic Weyl's law

For each $\hbar > 0$, we denote the negative eigenvalues of the operator

$$\sqrt{1-\hbar^2\Delta}-1+\Phi_{\hbar}+\textit{X}_{\hbar}$$

in non-decreasing order (counting multiplicities) by

$$\mu_1^{\hbar} < \mu_2^{\hbar} \le \mu_3^{\hbar} \le \dots < 0.$$

Assumption: For a family $\{\Phi_{\hbar}\}_{\hbar\in(0,1]}$ of potentials and a family $\{X_{\hbar}\}_{\hbar\in(0,1]}$ of self-adjoint operators on $L^2(\mathbb{R}^3)$, the following hold.

- \bullet Φ_{\hbar} is non-positive;
- **3** There exists $\mu < 0$ such that $\|(\Phi_{\hbar} \frac{\mu}{2})_{-}\|_{L^{3/2}(\mathbb{R}^{3})}$ is bounded uniformly in $\hbar \in (0,1]$.
- $\|X_{\hbar}\| = O(\sqrt{\hbar}).$

4□ > 4□ > 4 = > 4 = > = 9 < ○</p>

Main ingredients for proof: Relativistic Weyl's law

Given the energy level E < 0, we denote the number of eigenvalues < E by

$$\textit{N}^{\hbar}(\textit{E}) = \textit{N}^{\hbar}(\textit{E}; \Phi_{\hbar}, \textit{X}_{\hbar}) = \text{Tr}\big(\mathbf{1}_{\{\sqrt{1-\hbar^{2}\Delta}-1+\Phi_{\hbar}+\textit{X}_{\hbar}<\textit{E}\}}\big),$$

and define the associated sum

$$S^{\hbar}(E) = S^{\hbar}(E; \Phi_{\hbar}, X_{\hbar}) = \sum_{\mu_j^{\hbar} < E} (\mu_j^{\hbar} - E)$$

Lemma (Relativistic Weyl's law)

Suppose that $\{\Phi_{\hbar}\}_{\hbar\in(0,1]}$ and $\{X_{\hbar}\}_{\hbar\in(0,1]}$ satisfy <u>Assumption</u> with some $\mu<0$. Then, for $\mu_{\hbar}\leq\mu$, we have

$$egin{aligned} &(2\pi\hbar)^3 extstyle N^\hbar(\mu_\hbar) = \left| \left\{ (q,p) \in \mathbb{R}^3 imes \mathbb{R}^3 : \sqrt{1+|p|^2} - 1 + \Phi_\hbar(q) \leq \mu_\hbar
ight\} \right| + O(\hbar^{1/4}). \ &(2\pi\hbar)^3 S^\hbar(\mu_\hbar) = \iint_{\sqrt{1-|p|^2} - 1 + \Phi_\hbar(q) < \mu_\hbar} \left(\sqrt{1-|p|^2} - 1 + \Phi_\hbar(q) - \mu_\hbar
ight) dq dp + O(\sqrt{\hbar}), \end{aligned}$$

24 / 28

Idea of proof: Upper energy estimate

 \bullet Let $\mathit{f}_0 = \mathbf{1}_{\{\sqrt{1+|p|^2}-1+\Phi_{\mathit{f}_0} \leq \mu\}}$ be a minimizer of (KVP). Define

$$\gamma_{\hbar} = \mathbf{1}_{\{\sqrt{1-\hbar^2\Delta}-1+\Phi_{f_0}< ilde{\mu}_{\hbar}\}} + ilde{\mathcal{R}}_{\hbar},$$

where $0 \leq \tilde{\mathcal{R}}_{\hbar} \leq 1$ is a self-adjoint operator on the eigenspace of $\sqrt{1-\hbar^2\Delta}-1+\Phi$ associated to a negative eigenvalue $\tilde{\mu}_{\hbar}$.

- By using Relativistic Weyl's law, $\tilde{\mu}_{\hbar}$ and $\tilde{\mathcal{R}}_{\hbar}$ can be chosen so that $\mathrm{Tr}^{\hbar}(\gamma_{\hbar})=m.$
- Using Relativistic Weyl's law,

$$ilde{\mathcal{E}}_{\mathsf{QM}}^{\hbar}(\mathit{m}) \leq \mathcal{E}^{\hbar}(\gamma_{\hbar}) = \mathit{H}(\mathit{Q}) + \mathit{o}(1) = ilde{\mathcal{E}}_{\mathsf{CM}}(\mathit{m}) + \mathit{o}(1),$$

which shows

$$\limsup_{h\to 0} ilde{E}_{\mathsf{QM}}^h(m) \leq ilde{E}_{\mathsf{CM}}(m)$$

4□ > 4□ > 4□ > 4□ > 4□ > 900

Jinmyoung Seok (SNU)

25/28

Idea of proof: Lower energy estimate

To obtain the lower energy estimate

$$\liminf_{\hbar \to 0} \tilde{E}^{\hbar}_{\mathsf{QM}}(m) \geq \tilde{E}_{\mathsf{CM}}(m),$$

we do the similar work with the auxiliary kinetic distribution function

$$f_\hbar = \mathbf{1}_{\{\sqrt{1+|p|^2}-1+\Phi_{Q_\hbar}(q)< ilde{\mu}_\hbar'\}},$$

where $\tilde{\mu}'_{\hbar}$ is chosen to be $M(f_{\hbar}) = m$ and $\Phi_{Q_{\hbar}}$ is the potential of a minimizer Q_{\hbar} of $(\hbar \text{QVP})$.

Thus we have

$$\lim_{\hbar \to 0} \tilde{E}_{\mathsf{QM}}^{\hbar}(m) = \tilde{E}_{\mathsf{CM}}(m),$$

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

Convergence and Regularity

• The convergence of the ground state energy shows $\{f_{\hbar}\}$ is a minimizing sequence for (KVP). Then it is possble to shows that as $\hbar \to 0$

$$\Phi_{Q_\hbar} o \Phi_{f_0} \quad ext{in } \dot{H}^1,$$

which is equivalent to

$$\||\nabla|^{-1}\rho_{Q_{\hbar}}-|\nabla|^{-1}\rho_{f_0}\|_{L^2}.$$

 Further regularity estimate comes from iteratively applying the Lieb-Thirring inequality.

Thank you for your attention!