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White dwarf as a fermion star

White dwarfs are compact stars with high mean density supported by the
pressure of degenerate electron gas.

Figure: Image from Wikipedia

See an image of Sirius A and Sirius B. Sirius B, which is faint point of
light is a white dwarf.
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Fermions and bosons

Bosons may occupy the same quantum states but fermions may not.

Bosons Fermions

Figure: Image from reddit
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Electron degeneracy pressure
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Chandrasekhar’s theory of white dwarfs

o Equation of state:

4

P(p) = CF(Y/p/D).  F(x) = /0 e (ES)

Equation of gravitational hydrostatic equilibrium:

1d (r_2dP(p)> _ _47Gp (GHE)

ﬁzpdr

@ The solution p with initial value p(0) = po describes the density of a
white dwarf.
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Chandrasekhar’s theory of white dwarfs

@ The value R at which p(r) firstly vanishes represents the radius of the
white dwarf.
@ R is a decreasing function of pg.

@ The solution p is a decreasing function on the interval [0, R].

@ As pg — o0, the radius R tends to 0 and the mass of a white star
[ p(r)r?dr tends to some positive number M.. This predicts the
gravitational collapse of a star with mass M > M..

@ M. is called the Chandrasekhar's limit mass.
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Semiclassical results by Lieb and Yau (1987 CMP)

@ Relativistic Schrodinger Hamiltonian for N particles:

HN_Z\/—AX,+1—1—G >

1<i<j<N ‘ Xi XJ’

acting on the Hilbert space
N) _ (L2(R3) ®Cz)/\N
@ Quantum ground energy level:
Eg(N) = inf spec Hy

Then the eigenfunction belonging to Eg(N) represent the wave
function of a white dwarf with mass N but its existence is not known.

Jinmyoung Seok (SNU) 2023.10.16 7/28



Semiclassical results by Lieb and Yau (1987 CMP)

Semiclassical result by Lieb-Yau:

Fix GN?/3 as a constant 7(fermions). Then there exists a number 7. > 0
such that if 7 < 7

EQ(N
lim GC( )1,
N—oco EG(N
where
ES(N) = inf(€E () | p2 0, p L3R, [ =N} (sVP)
and

EE(p) ::/ /| dxdy,A(p) /\/ —u +1-1du.
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Semiclassical results by Lieb and Yau (1987 CMP)

Semiclassical result by Lieb-Yau:

@ There exists a number M.(G) > 0 such that
—00 < ES(N) <0 if N < M(G)
ES(N)=—oc0  if N> M(G)

ES is a decreasing function in N.
o If N < M.(G) the variational problem (SVP) admits a radially

symmetric positive minimizer py ¢ such that it satisfies (ES) and
(GHE) (when G =1).
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Quantum Mean-field description of fermion stars

Using the Slater determinants 11(x1) A ¥2(x2) A -+ - A n(xn), the
evolution of unitary group {e~"*V} is approximated by Hartree-Fock

equations,

N
iOeth = V=D + m2p— > ( ﬂ* [¥i1%) W-FZ#J/ Pl *{¢/¢k}) (HF)

I=1

k=1,...,N.

Jinmyoung Seok (SNU) 2023.10.16 10/28



Quantum Mean-field description of fermion stars

The energy functional of (HF) is

N
EW) = S (ko V=B + mihy) — // populy) =~ lew (VI
k=1

x =yl
where ¥V = {1/1;(}2’:1 are orthonormal and py denotes the particle density

St k() 2.

The fermion stars are described as a minimizer of the Hartree-Fock energy.
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Operator form of Quantum Mean-field energy

Energy:

£() = Tr (( A1) //R6 Py (X)py(y) = [ (x ,y)lzdxdy’

Ix -yl

where p,(x) = 7(x, x) denotes the density of ~.

Mass:
Tr(y) = m.

Variational problem:

Eqm(m) = inf {5(7) | v € §2,0< v <1and Tr(y) = m} . (QVP)
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Chandrasekar’s limit mass and existence of fermion stars
for quantum mean-field formulation

Let )
1 < 1 1
. bl ) T v
M = in )
q v€AQm\{0} ”V(D’Y”%z(]m)
where &, = —|-| "V p, and Aqu = {7 € 97 | 7 2 0,1y +Tr(7) < oo}

Known result (Lenzmann - Lewin):
o If m3 > 2Kqm, then Equ(m) = —oc.

o If ms < 2Kqm, then —oco < Equ(m) < 0 and Equ(m) is achieved by
a minimizer

Qo =L ImA 1400+ Xg<mt TR
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Kinetic description of fermion stars?

Can we suggest a kinetic theory for fermion stars standing between the
relativistic mean-field quantum theory and the Chandrasekhar theory?

Quantum Mean-field Theory

— Kinetic Theory

semiclassical limit

— Chandrasekhar Theory

reducing to density functional
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Relativistic gravitational Vlasov-Poisson energy

For a distribution function (¢, x, v), we define the relativistic gravitational
Vlasov-Poisson energy

1.'
:// (\/1+|v2=1)f(t,x, v)dxdv——// pr(t: X)pr(t y)d dy,
RS RO Ix =yl

where pr = [ fdv.

The total mass is given by

M(f) = /R pr(t, x) dx = //R F(t,x, v) dvdx
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Kinetic variational problem

The kinetic variational problem is defined by
Ecpm(m) = min H(f) (KVP)
where
A={fe LYR®) | M(f)=m, 0 < f <1, supp(f)is bdd} .

The point-wise constraint 0 < f < 1 inherits the quantum feature of
fermions.
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Chandrasekar’s limit mass and existence of fermion stars
for kinetic formulation

Theorem (J. Jang and S.)
Let

2 1
f 13 0Fl 2o
PR 7 P L A4S
feg\{0} [V Or7,
where ®f = —| - |71 % ps.
o If m% > 2Kcwm, then ECM(m) = —00.
o Ifmi < 2Kcwm, then —oco < LECM(m) < 0 and ECM(m) is achieved by
a minimizer

fo= 1{\/1+|p|2—1+¢f0§u}
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Recovery of the Chandrasekhar theory

Theorem (J. Jang and S.)

Let fy be a minimizer of (KVP). Then pg = pg, is a minimizer of (SVP).
Consequently, po satisfies (ES) and (GHE).
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Semiclassical limit of fermion stars

Quantum energy with A:

B(x)p )
5h(7)=Tr"‘(( 1 20— 1)y __//Rﬁpv( |X_|'V(,y)\ iy

yl

where

T = (20)*Tr,  4"(x,y) = @h)P*(xy),  Ph(x) = 7"(x.%).

Variational problem with Ah:

EgM(m) =inf {é’h(’y) | v € 55%, 0<~y<1land Trh('y) = m} . (hQVP)
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Semiclassical limit of fermion stars

Invariance of Kqu:

2
I3 (Ty) 5T | |12V |2
K M = in ;
M eaqu (0} VoL, 53,
where ®, = —|-[ 1% pl and Aqm = {7 € 52 | 7> 0, 7|+ Tr(7) < oo}.

Theorem (Y. Hong, S. Jin, S.)
@ (Quantum limit mass < Classical limit mass) Kqu < Kcwm

o (Semiclassical limit) Let Qp be a family of minimizers of (hRQVP) and
fo be a minimizer of (KVP). Then as h — 0,

pQ, — pr, weakly in L9 Vq>1

VI~ pa, = V1™ g lli2nre — O

v
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Main ingredients for proof: Key inequalties

Lemma (Kinetic interpolation inequality)

If0<f <1, then

”pr[_4/3(R3) S H|p’f||L1(R3><R3)

Proof: The density function pr satisfies the following trivial inequality

3 — .
pr = /| /| P)op < R® + ol 1plF ()l 3 ey

Optimizing the right hand side, we obtain (pf)*/3 < |||p|f(, p)H,_l(Rs)
Then, integrating, we obtain the desired inequality.
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Main ingredients for proof: Key inequalties

As a quantum analogue of the kinetic interpolation inequality, we have the

Lieb-Thirring inequality.
Lemma (Lieb-Thirring inequality)

Let h e (0,1], s >0 and a € [0, 3). If v is a compact self-adjoint operator

on L%(R3) and 0 < |AV|*y|AV|* < 1, then

3+25s—2a
32«

||f)7|| S5 20 < TRV YRV ),
o (R%)

where the implicit constant is independent of h.
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Main ingredients for proof: Relativistic Weyl's law

For each / > 0, we denote the negative eigenvalues of the operator

V1I—mRA—-14+d,+ X,
in non-decreasing order (counting multiplicities) by

ho_ bk
py < pp < pz<---<0.

Assumption: For a family {®};¢(0,1) of potentials and a family
{Xi}ne(o,1) of self-adjoint operators on L?(R?), the following hold.

@ &; is non-positive;
Q ||¢h||c1(R3) is bounded uniformly in h € (0, 1];

© There exists p < 0 such that [[(®5 — 5)_|[,3/2(g3) is bounded
uniformly in 1 € (0, 1].

Q [ Xl = O(Vh).
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Main ingredients for proof: Relativistic Weyl's law
Given the energy level E < 0, we denote the number of eigenvalues < E by
N"(E) = N"(E; &, Xn) = T (L, a1 0 <£))
and define the associated sum
S"(E) = SM(E; ®n, Xn) = Y (1 — E)

n
Hj <E

Lemma (Relativistic Weyl's law)

Suppose that {®p}pe0,1) and {Xi}ne(0,1] Satisfy Assumption with some
w < 0. Then, for up < p, we have

(2mh)*N"(un) = [{(a,p) € R® x R®: /1 +|p]> — 1+ ®(q) < pn}| + O(A/*).

(2nh)'s" () = [ e (VITTRR = 1+ 04(a) — ) dado + OV,
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|dea of proof: Upper energy estimate

o Let fo = I{W—H%)Su} be a minimizer of (KVP). Define

Th = l{mflwfoqm} + R,
where 0 < Rj, < 1 is a self-adjoint operator on the eigenspace of
V1 —h2A — 1+ ® associated to a negative eigenvalue jij.

@ By using Relativistic Weyl's law, fi5 and R}, can be chosen so that
T (y3) = m.

@ Using Relativistic Weyl's law,

El(m) < €"(m) = H(Q) + o(1) = Ecu(m) + o(1),

which shows

lim sup E§u(m) < Ecm(m)
h—0
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|dea of proof: Lower energy estimate

@ To obtain the lower energy estimate
liminf EZ\(m) > Ecm(m
minf Eqm(m) = Ecm(m),
we do the similar work with the auxiliary kinetic distribution function

= L Tepr1v0q, (<)

where i}, is chosen to be M(f;) = m and ®, is the potential of a
minimizer Qy of (AQVP).

@ Thus we have
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Convergence and Regularity

@ The convergence of the ground state energy shows {f;} is a
minimizing sequence for (KVP). Then it is possble to shows that as
h—0

dg, — dp in H,

which is equivalent to

V1™ 00, = V17 gl 2.

@ Further regularity estimate comes from iteratively applying the
Lieb-Thirring inequality.
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Thank you for your attention!



