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Uncertainty quantification for PDEs

Statistics
about

uncertain
inputs

PDE

Uncertain
solution of
the PDE
and post-
processing

Statistics
about
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outputs

of interest

The recent interest in UQ for PDEs can be attributed mainly to three factors:

widespread availability of data resulting from advances in technology;
increased development of HPC;
construction and analysis of new algorithms.

In presence of uncertainties it becomes necessary to quantify the propagation
of missing information with respect to some quantity of interest (a quantity
that depends on the solution of the PDE).

The UQ task then consists of determining information about the uncertainty
in an output of interest that depends on the solution of a PDE, given
information about the uncertainty in the inputs of the PDE.
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Uncertainty quantification

Monte Carlo method is non-intrusive with low computational cost and easy
to parallelize, it does not require knowledge of PDF or regularity in the
random space. The convergence of such methods is slow.

Stochastic Galerkin (sG) methods are intrusive methods based on suitable
projections in polynomial spaces of the original problem1. Such methods are
spectrally accurate provided propagation of regularity. They suffer the curse
of dimensionality, the main properties of the solution, like positivity, are lost.

Multifidelity methods based on the use of control variate techniques2. These
methods are more efficient than Galerkin’s stochastic approaches for
problems with high dimensionality of the random space.

DSMC stochastic Galerkin methods combine the efficiency of DSMC
techniques for the Boltzmann equation in phase space with the accuracy of
stochastic Galerkin methods in random space3. This novel hybrid formulation
makes it possible to construct efficient methods that preserve the main
physical properties along with spectral accuracy in the random space.

1S.Jin,J.Hu,Q.Li,L.Liu,R.Shu,Y.Zhu, ...., ’16-’22; L.Pareschi et al. ’18-’22: B.Despres ’10
2G.Dimarco, L.Pareschi ’19-’20; L.Liu, X.Zhu ’20; L. Pareschi, J. Hu, Y. Wang ’21
3J.A.Carrillo, A.Medaglia, L.Pareschi, M.Z. ’18-’23
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Uncertainties in homogeneous kinetic equations

Let us focus on the case of the homogeneous Boltzmann equation

∂tf(z, x, v, t) + v · ∇xf(z, x, v, t) =
1

ε(z)
Q(f, f)(z, x, v, t), x, v ∈ Rdv , t ≥ 0

with ε > 0 the Knudsen number and z ∈ Iz ⊆ Rdz a random vector ∼ p(z). The
Boltzmann collision operator has the form

Q(f, f)(z, x, v, t) =

∫
Sdv−1×Rdv

B

(
|q|, q · n
|q|

)
(f(v′)f(v′∗)∗ − f(v)f(v∗)) dn dv∗.

where q = v − v∗ and the binary interaction rules are given by

v′ =
v + v∗

2
+
|q|
2
n, v′∗ =

v + v∗
2
− |q|

2
n.

The kernel B(|q|, cos θ) ≥ 0 reads

B(|q|, cos θ) = |q|σ(|q|, θ), 0 ≤ θ ≤ π, cos θ =
q · n
|q|

,

here σ(|q|, θ) is the differential cross section at scattering angle θ.
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Collision kernel

We define the total scattering and the momentum-transfer cross section
respectively as follows

σtot(|q|) = 2π

∫ π

0

σ(|q|, θ) sin θdθ, σtr(|q|) = 2π

∫ π

0

σ(|q|, θ)(1− cos θ) sin θdθ.

Amongst the relevant cases we mention the VHS model for which

σ(|q|, θ) = Cγ |q|γ−1 ⇒ B(|q|, θ) = Cγ |q|γ ,

and therefore σtot = σtr = 4πCγ |q|γ−1. Whereas, if particles are subject to
Coulomb forces, according to the Rutherford formula, we should consider

σ(|q|, θ) =
b20

4 sin4(θ/2)
, b0 =

e2

4πε0mr|q|2
,

which become singular for θ → 0 and we have σtot = πλ2
d, σtr = 4πb20 log Λ where

Λ = sin−1(θmin/2).
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Reformulation of DSMC for VHS with uncertainty

We consider first the VHS case. Denote by QΣ(f, f) the collision operator with
the kernel

BΣ(z, |v − v∗|) = min {B(z, |v − v∗|),Σ} , Σ > 0.

Given a random number ξ uniform in (0, 1), we rewrite the acceptance-rejection
collision process in the form

v′i(z, t) = vi(z, t)−
1

2
χ(Σ ξ < Bij(z)) ((vi(z, t)− vj(z, t))− |vi(z, t)− vj(z, t)|n) ,

v′j(z, t) = vj(z, t) +
1

2
χ(Σ ξ < Bij(z)) ((vi(z, t)− vj(z, t))− |vi(z, t)− vj(z, t)|n) ,

where χ(·) is the indicator function and

Bij(z) = B(z, |vi(z, t)− vj(z, t)|).
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Stochastic Galerkin approximation

We consider a set of N samples vi(z, t), i = 1, . . . , N and approximate vi(z, t) by
its generalized polynomial chaos (gPC) expansion

vMi (z, t) =

M∑
m=0

v̂i,m(t)Ψm(z).

In the above expansion {Ψm(z)}Mm=0 are a set of orthogonal polynomials, of
degree less or equal to M orthonormal with respect to the PDF p(z)∫

Rdz

Ψn(z)Ψm(z)p(z) dz = Ez[Ψm(·)Ψn(·)] = δmn, m, n = 0, . . . ,M,

and v̂i,m is the projection of the solution with respect to Ψm

v̂i,m(t) =

∫
Rdz

vi(z, t)Ψm(z)p(z) dz = Ez[vi(·, t)Ψm(·)].

To define the DSMC-sG algorithm we consider the projection on the above space
of the collision process in the DSMC method.
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Stochastic Galerkin approximation

Thanks to the new formulation, we can perform the projection on the space of
modes in the gPC expansion to get for m = 0, . . . ,M

v̂′i,m(t) = v̂i,m(t)− 1

2
Ŵm
ij (ξ, t) +

1

2
V̂ mij (ξ, t)n,

v̂′j,m(t) = v̂j,m(t) +
1

2
Ŵm
ij (ξ, t)− 1

2
V̂ mij (ξ, t)n,

where

Ŵm
ij (ξ, t) =

∫
Rdz

χ(Σ ξ < Bij(z))
(
vMi (z, t)− vMj (z, t)

)
Ψm(z)p(z) dz,

V̂ mij (ξ, t) =

∫
Rdz

χ(Σ ξ < Bij(z))|vMi (z, t)− vMj (z, t)|Ψm(z)p(z) dz.

The above quantities are computed at each collision for a given i, j and ξ. Using
Gaussian quadrature with H points these can be computed at a cost O(MH).
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Consistency estimate on moments

Given a function f(z, v, t) approximated by Monte Carlo samples, its empirical
measure and the empirical measure in the sG representation as

fN (z, v, t) =
1

N

N∑
j=1

δ(v − vi(z, t)), fNM (z, v, t) =
1

N

N∑
j=1

δ(v − vMi (z, t)).

Observe that, for any a test function ϕ, if we denote by

〈ϕ, f〉(z, t) :=

∫
Rd

f(z, v, t)ϕ(v) dv,

we have

〈ϕ, fN 〉(z, t) =
1

N

N∑
j=1

ϕ(vi(z, t)), 〈ϕ, fNM 〉(z, t) =
1

N

N∑
j=1

ϕ(vMi (z, t)).

If we assume that
∫
Rd f(z, v, t) dv = 1, then 〈ϕ, f〉(z, t) is the expectation of ϕ

with respect to f , that we will denote as EV [ϕ]. Similarly, we denote by
σ2
ϕ = VarV (ϕ) its variance with respect to f .
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Consistency estimate on the moments

For a random variable V (z, t) taking values in L2(Rdz ) we define

‖V ‖L2(Rdv ;L2(Rdz )) = EV
[
‖V ‖2L2(Rdz )

]1/2
.

We have the following result:

Theorem (L. Pareschi, M.Z. ’20)

Let f(z, v, t) a probability density function in v at time t ≥ 0 and fNM (z, v, t) the
empirical measure of the N -particles sG approximation with M projections
associated to the samples {v1(z, t), . . . , vN (z, t)}. Provided that
vi(z, t) ∈ Hr(Rdz ) for all i = 1, . . . , N , the following estimate holds

‖〈ϕ, f〉−〈ϕ, fNM 〉‖L2(Rdv ;L2(Rdz )) ≤
‖σϕ‖L2(Rdz )

N1/2
+
C

Mr

(
1

N

N∑
i=1

‖∇ϕ(ξi)‖L2(Rdz )

)

where ϕ is a test function, C > 0 is independent on M , ξi = (1− h)vi + hvMi ,
h ∈ (0, 1).
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VHS model: 2D Maxwellian case (γ = 0 )

Initial uncertain data

f0(z, v) =
a2(z)v2

π
e−a(z)v2

, v =
√
v2
x + v2

y,

so that f0 has the uncertain temperature

T (z) =
1

a(z)
.

An exact solution is given by

f(z, v, t) =
1

2πs(z, t)

[
1− 1− a(z)s(z, t)

a(z)s(z, t)

(
1− v2

2s(z, t)

)]
e−

v2

2s(z,t) ,

where s(z, t) =
2− e−t/8

2a(z)
.

We will consider
a(z) = 2 + κz, z ∼ U([−1, 1]).
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VHS model: 2D Maxwellian case (γ = 0 )

Figure: Expected distribution E[f ] and variance Var(f) of the 2D Boltzmann model for
Maxwell molecules for exact (top tow) and DSMC-sG approximation (bottom row) with
N = 106 and M = 5.
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VHS model: 2D Maxwellian case (γ = 0 )
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Figure: Left: Convergence of the L2(Ω) error with respect to the fourth order moment
obtained from a reference solution computed with N = 106 and M = 25 for the
DSMC-sG methods. Right: evolution of the fourth order moment in the interval [0, 5] for
exact and DSMC-sG approximation with N = 106 and M = 5.
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Numerical examples: VHS case (γ = 1)
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The Landau-Fokker-Planck equation

Let us consider the Landau collision operator

Q(f, f)(z, v, t) = ∇v ·
∫
R3

Φ(q) [f(z, v∗)∇vf(z, v)− f(z, v)∇v∗f(z, v∗)] dv∗,

where Φ is a 3× 3 nonnegative symmetric matrix defining the interactions
between particles

Φ(q) = |q|γ+2S(q), S(q) = I − q ⊗ q
|q|2

,

where γ = −3 gives the so-called Coulomb case. The large time behaviour of
undertain Landau equation is the Maxwellian distribution

M(z, v) =

(
1

2πT (z)

)3/2

exp

(
−v − U(z)2

2T (z)

)
,

where U(z) and T (z) are the uncertain momentum and kinetic temperature of the
system.
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Numerical methods in plasma physics: brief overview

The numerical methods for plasma physics developed in the literature can be
essentially divided into two groups:

1 approaches based on direct discretizations of the corresponding system of
partial differential equations (PDEs), like finite differences/volumes methods
4 and semi-Lagrangian schemes 5 or Fourier spectral methods 6,

2 approaches based on approximations of the underlying particle dynamics at
different levels, like particle-in-cell (PIC) methods 7, direct simulation Monte
Carlo (DSMC) methods for kinetic equations 8, deterministic particle
methods.9

4N.Crouseilles, F.Filbet ’04; F.Filbet, E.Sonnendrücker, P.Bertrand ’01; G.Dimarco, Q.Li,
L.Pareschi, B.Yan ’15;

5E. Sonnenrücker; J.Roche, P.Bertrand, A.Ghizzo ’99
6I.Gamba, J.Haack, C.Hauck, J.Hu ’17; J.Hu, S.Jin ’16; L.Pareschi, G.Russo, G.Toscani ’00
7C.K. Birdsall, A.B. Langdon ’85; E.Sonnendrücker and coworkers
8A.V.Bobylev, K.Nanbu ’00; R.Caflish, C. Wang, G.Dimarco, B.Cohen, A.Dimits ’08;

L.F.Ricketson, M.S.Rosin, R.Caflisch, A.M.Dimits ’14
9J.A.Carrillo, J.Hu, L.Wang, J.Wu ’20; J.A. Carrillo, S.Jin, Y.Tang ’22
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First order approximation of the Boltzmann operator

It is well-known that in the grazing collision limit we can recover the
Landau-Fokker-Planck equation from a Boltzmann operator with collision kernel
with Coloumb forces. 10 We get the first order approximation

∂tf(v, t) =
1

ε

[∫
R3

∫
S2
D(µ, τ0)f(v′)f(v′∗) dn dv∗ − ρf(v)

]
,

where µ = ω · n, ω = q/|q| and

D(µ, τ0) =

+∞∑
`=0

2`+ 1

4π
P` exp {−`(`+ 1)τ0} , τ0 =

ε

2
|q|σtr(|q|).

Simpler collision kernels D∗(µ, τ0) should satisfy

1. D∗(µ, τ0) ≥ 0 and 2π
∫ 1

−1
D∗(µ, τ0)dµ = 1

2. limτ0→0D∗(µ, τ0) =
1

2π
δ(1− µ)

3. limτ→0
2π

τ0

∫ 1

−1
(D∗(µ, τ0)−D(µ, τ0))P`(µ) = 0

10A.V.Bobylev, K.Nanbu ’00
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Approximated collision kernels

Lemma (Bobylev-Nanbu ’00)

The conditions 1-2-3 are satisfied by any function

D∗(µ, τ0) = ψ

(
1− µ
2τ0

)(
4πτ0

∫ 1/τ0

0

ψ(x)dx

)−1

with ψ(x) ≥ 0 for x > 0 and∫ +∞
0

ψ(x)dx =
∫ +∞

0
xψ(x)dx < +∞

limτ0→0

∫ +∞
1/τ0

xnψ(x)dx = 0, for any n = 2, 3, . . . .

We compare 3 different approximated kernels

i) It has been considered11

D
(1)
∗ (µ, τ0) =

A

4πsinhA
exp{µA},

with cothA−A−1 = exp{−2τ0}.
11K.Nanbu ’97; R. Caflisch, G. Dimarco, L.Pareschi ’10
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Approximated collision kernels

which leads to spherical coordinates (θ, φ) defined as

cos θ =
1

A
log (exp{−A}+ 2r1sinhA)

φ = 2πr2, r1, r2 ∼ U([0, 1])

ii) A simplification has been provided in [A.V. Bobylev, K.Nanbu ’00] and is

D
(2)
∗ (µ, τ0) =

1

2π
δ(µ− ν(τ0)), ν(τ0) =

{
1− 2τ0 0 ≤ τ0 ≤ 1

−1 τ0 > 1

Sampling from D
(2)
∗ (µ, τ0) corresponds in the spherical coordinates to fix θ as

cos θ = ν(τ0) and compute φ = 2πr2, r2 ∼ U([0, 1]).
iii) A third approximation12 is given by

D
(3)
∗ (µ, τ0) =

1

2π
δ(µ− ν̃(τ0)), ν̃(τ0) = 1− 2tanhτ0.

Sampling from D
(3)
∗ (µ, τ0) corresponds in the spherical coordinates to

compute (θ, φ) as follows
cos θ = ν̃(τ0), φ = 2πr2

12A.Medaglia,L.Pareschi, M.Z. ’23
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Nanbu DSMC scheme

To introduce the DSMC scheme we consider a simulation algorithm based on the
time discrete form of the above problem originally proposed by Nambu13.

Consider a time interval [0, tmax], and set ∆t = tmax/nt. We denote by fn(v) an
approximation of f(v, n∆t). The forward Euler scheme reads

fn+1 =

(
1− ∆t

ε

)
fn +

∆t

ε
P

(i)
∗,ε(f

n, fn),

where

P
(i)
∗,ε(f, f) =

∫
R3

∫
S2
D

(i)
∗ (µ, τ0)f(v′)f(v′∗) dv∗ dn,

where we substituted D(µ, τ0) by any of the previous approximations D
(i)
∗ ,

i = 1, 2, 3 previously defined. If fn is a probability density then both P∗,ε and
fn+1 are probability densities provided ∆t ≤ 1.

13K. Nanbu ’83, H. Babovski ’86
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Nambu DSMC scheme

Hence, the collision law of two colliding particles reads

v′i = vni −
1

2
(qn(1− cos θ) + hn sin θ)

v′j = vnj +
1

2
(qn(1− cos θ) + hn sin θ)

where qn = vni − vnj and

hnx = qn⊥ cosφ

hny = −(qny q
n
x cosφ+ qnqnz sinφ)/qn⊥

hnz = −(qnz q
n
x cosφ− qnqny sinφ)/qn⊥,

with qn⊥ =
√

(qny )2 + (qnz )2
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Reformulation of DSMC with uncertainties

Given the PDF p(z) a pair of colliding particles is approximated as

vn,M` =

M∑
k=0

v̂n`,kΨk(z), v̂n`,k = Ez[vn` (z)Ψk(z)], ` ∈ {i, j}

qn,Mij =

M∑
k=0

q̂nijΨk(z), q̂nij,k = v̂ni,k − v̂nj,k

Therefore, if we recall that τ0 = τ0(z) and θ = θij(z) we obtain the following
interaction scheme for each projection k = 0, . . . ,M

v̂′i,k = v̂ni,k −
1

2

(
q̂nij,k −

M∑
`=0

q̂nij,`V̂
n
`k + Ŵn

k

)

v̂′j,k = v̂nj,k +
1

2

(
q̂nij,k −

M∑
`=0

q̂nij,`V̂
n
`k + Ŵn

k

)
,

where

V̂ n`k =

∫
Iz

cos θij(z)Ψ`(z)Ψk(z)p(z)dz, Ŵn
ij,k =

∫
Iz

hn,Mij,k (z) sin θij(z)Ψk(z)p(z)dz.
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BKW solution with uncertainties

We consider the model with Maxwell molecules and uncertain initial temperature

f(z, v, t) =
1

2πK(z, t)
e−

|v|2
2K(z,t)

(
5K(z, t)− 3T (z)

2K(z, t)
+
T (z)−K(z, t)

2K(z, t)
|v|2
)
,

with K(z, t) = T (z)
(
1− 2

5e
t/2
)
, T (z) = κ+ 0.1z and z ∼ U([0, 1]).

Click for video
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Coulomb case with uncertainties

We consider T (z) = 1
3 (Tx(z, t) + Ty(z, t) + Tz(z, t)) with uncertain initial

conditions in the temperature along the x-axis: Tx(z, 0) = 1 + 0.05z,
Ty(0) = 0.75, Tz(0) = 0.5 and z ∼ U([0, 1]).
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10-14
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E
rr
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D
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$ D

(2)
$ D

(3)
$

Figure: L2 error of the temperature T (z) for different kernels, for increasing M, with the
NB scheme. We choose N = 106, ∆t = ε = 0.1 and the reference solution is computed
with an order M = 30.
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Trubnikov test

We define the initial distribution

f0(z, v) =
1

(2π)3/2

1√
Tx(z, 0)Ty(z, 0)Tz(z, 0)

e−
v2
x

2Tx(z,0) e
−

v2
y

2Ty(z,0) e−
v2
z

2Tz(z,0) .

with Tx(z, 0) = Ty(z, 0) = 0.08 + 0.04z > Tz(z, 0) = 0.04. In the case of small
uncertain temperature difference the Trubnikov solution is

∆T (z, t) = T⊥(z, t)− Tz(z, t) = ∆T (z, 0) exp{−t/τT },

with τT = 5
8

√
2π
(

8
√
m

π
√

2

T (z)3/2

e4ρ log Λ

)
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Figure: Time evolution of the expectation of ∆T (z, t)/∆T (z, 0), for different values of
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Sum of two Gaussians
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Bump on tail
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DSMC-sG versus DSMC-MC

We fix the number of particles N = 106, the time step ∆t = ε = 0.1, and we
compute the error in the evaluation of the fourth order moment at fixed time t = 1

Error = |Ez[M4(z, t)]− Ez[M̃4(z, t)]|,

We compare the error with the computational cost that is O(NM2) for the
DSMC-sG scheme and O(NM) for a DSMC-MC scheme.
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Non-homogeneous problems

∂tf(z, x, v, t) + v · ∇xf(z, x, v, t) + E(z, x, t) · ∇vf(z, x, v, t) =
1

ε
Q(f, f)(z, x, v, t),

E(z, x, t) = −∇xφ(z, x, t), ∆xφ(z, x, t) = 1−
∫
R3

f(z, x, v, t)dv,
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Euler-Poisson equation with uncertainties

In the limit ε→ 0 we obtain f(z, x, v, t) =Mρ,U,T (z, x, v) and, thus, we recover
the Euler-Poisson system

∂tρ+∇x · (ρU) = 0

∂t(ρU) +∇x · (ρU ⊗ U) +∇xp = ρ∇xϕ
∂tW +∇x · ((W + p)U) = ρU · ∇xϕ

∇xϕ = ρ− 1

where

ρ = ρ(z, x, t) =

∫
Rdv

f(z, x, v, t)dv, ρU = ρU(z, x, t) =

∫
Rdv

vf(z, x, v, t)dv

and T (z, x, t) =
1

3ρ

∫
Rdv
|v − U(z, x, t)|2f(z, x, v, t)dv defining

W (z, x) = ρ(z, x, t)

(
|U(z, x, t)|2

2
+

3T (z, x, t)

2

)
, p(z, x, t) = ρT.
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Euler-Poisson equation with uncertainties

A direct application of sG methods to the Euler-Poisson system would lead to the
loss of hyperbolicity of the problem. 14 On the other hand, thanks to the
introduced particle Galerkin method we guarantee the conservation of
hyperbolicity (due to reconstruction of the density in the phase space) together
with relaxation towards local Maxwellian. 15.

14B.Despres, G. Poëtte, D. Lucor
15A. Medaglia, L.Pareschi, M.Z. ’23
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Conclusion

To mimic the effects of missing information on the model parameters or
initial conditions we need to include uncertainties on the parameters
characterizing the system of interest.

UQ imposes development of new schemes. We may considered Stochastic
Galerkin methods, that are spectrally accurate in the random field but may
lead to the loss of important structural properties of the numerical solution of
kinetic equations.

We have developed a robust and accurate approach that can effectively
capture the behaviour of charged particles in collisional plasmas under
uncertain data. The development of stochastic Galerkin particle methods
allows to guarantee physical properties of the solution together with accuracy
in terms of random quantities.

The propagation of regularity should be investigated carefully.

Future research directions

sG for the non-homogeneous Boltzmann and Landau
regularity for the Landau equation and its particle approximation
. . .
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