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Motivation

Semi-Lagrangian (SL) schemes are very effective for the treatment of
convection (and drift) terms in kinetic equations.

@ Obtained by integrating the equations along characteristics.
@ Large time steps are possible, therefore improving efficiency
@ SL scheme may not be conservative.

Conservation is very relevant for

@ Boltzmann or BGK-type equations
(essential for example for capturing shocks)

@ long time behaviour of Vlasov-like equations

Purpose of the talk: - Introduction to a finite-difference high order
conservative semi-Lagrangian method for the Boltzmann equation.
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The Boltzmann equation

The Boltzmann equation describes collisions among patrticles.

Of + v - Vyf = ~Q(f, ).

y
3
o f = f(x, v, t) stands for the velocity distribution function of

molecules with position x € R® and velocity v € R® at time ¢ > 0.

e convection term v - Vf describes the free streaming of molecules

o collision operator Q(f, f) describes the binary collisions of
molecules.

e the parameter ¢ > 0 is called Knudsen number, and defined by

mean free path between collisions
€= n
macroscopic length scale
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The Boltzmann equation

The collision operator Q(f, f) describes the binary collisions of the particles:

Q(f, f)(x, v, 1) = //B|v—v*\w)[f( VLY — (V) ()] de v,

e (v,v,) and (v, v.) are pre- and post-collision velocities that satisfy
microscopic momentum and energy conservation

Vtvi=vav., VPP = v+ P

e w is a vector of the unit sphere S?.
e B(]v — vi|,w) is called collision kernel.
o f(V') = f(x,V' 1), f(V.) = f(x, Vi, 1), f(v) = f(x,v,t), f(v.) = f(x, v, 1)
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Properties of the Boltzmann equation:

Macroscopic variables such as density, mean velocity, energy and
temperature of gas are defined by

1 v[?
p= fdv, u:f/ vidv, E = —fav
R3 P Jrs R3 2

1 2
=— — ul°f
T 3Rp/Rs|v ulcfav

where R is the gas constant
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Properties of the Boltzmann equation:

e Conservation laws of mass/momentum/energy:

1
Q(f,f)[ v |dv=0.
R3 \V|2

Q(f, ) In(f(v))dv < 0.

e H-theorem:

RS

e The density, mean velocity and temperature of gas are defined by

1 1 5
p= Rsfdv7 uf;/Rsvfdv, TﬁSF]’p/RslV ulfdv

where R is the gas constant
e Local equilibrium (Maxwellian):

| 2

X _ lv—u(x,t)
Pt

/Rs Q(f, f)In(f(v))adv = 0 <> f = M(f)(x, v, ) := N e AT
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Computational challenges

The Boltzmann equation presents several computational difficulties:
@ the high dimensionality of the problem: (x, v, ) € R’

@ collision operator Q(f, f) is a five-dimensional integral on R® x S? =
very expensive to compute

@ difficult to preserve conservative quantities numerically (conservation
laws)

© stability issues from convection term and small Knudsen number.
@ npositivity of the solution has to be maintained at a discrete level.
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High order methods

e Eulerian based methods are obtained by discretizing

(%f"‘V'fo:y.

@ Strang splitting based method (Filbet and Russo, 2003): 2nd
order accuracy.

@ Implicit-explicit penalization technique (Filbet and Jin, 2010): 2nd
order accuracy.

@ Exponential time integrator (Li and Pareschi, 2014): arbitrary
high order accuracy.

@ Implicit-explicit penalization technique + unstructured mesh
(Boscheri and Dimarco, 2021): arbitrary high order accuracy.

->CFL condition: max; |vj| &L < 1
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High order methods

Semi-Lagrangian methods are obtained by discretizing :

df Q. f) dx
E(X(t)’ v,t) = . (x(1), v, 1), =

@ Strang splitting based method (Dimarco, Hauck, Loubére):
second order accuracy.

© Non-splitting based method (in this work): arbitrary high order
accuracy

->Time step is not restricted by CFL condition
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Semi-Lagrangian scheme

To derive the first order SL method, we begin by writing the BTE in
characteristic form:

af 1
g~ A=k G = 2.1)

x(0) =%, £(0,x,v)="Mh(x,v), t>0, x,veRxRZ

dx 1

e Applying the explicit Euler method to (2.1), we obtain
1 (x,v) = f(x — V' At,v) + AtK"(x — V' At, v),

where f7(x, v) = f(x, v, t,) and K"(x, v) = 1Q(f", f")(x, v, t).
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f.”.+1
f"+l o o 7'.'] o

vj >0

" —e——e——e . .
f[”_] .
7‘,”, and f(,"j are computed on the same characteristic foot x; — \/,-1 At at time 5.

e Discretization in space and velocity further gives

i = 1)+ AtK]). (2.2)

where 7‘,’} ~f(x — VAL, L), K~ K (x,- — v/ Aty t,,) )
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Semi-Lagrangian scheme

First order explicit SL scheme:
| = -
i = 1) + AtK

where 7 ~ f(x; — v! At, v, 1), K ~ K(X — v/ At, v, 7).
@ Since f”/ and K” need to be computed on off-grid points, one
should con5|dera ‘suitable’ reconstruction.

@ Moreover, one has to consider very ‘efficient’ method for
computing collision part K, = 1 Q7.

@ At the end, we want our scheme satisfies ‘discrete conservation’
in time:

Zf”““v,AxAv Zfov,AxAv)
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High order semi-Lagrangian method

Our strategy is to use:

@ a high order non-oscillatory conservative reconstruction (Boscarino,
Cho, Russo, Yun, 2021):
-> high accuracy in space, non-oscillatory solution near discontinuity,
and preservation of mass/momentum/energy

@ fast spectral method (Mouhot and Pareschi, 2006) for the collision
operator:
-> spectral accuracy and fast computation of the collision operator
O(M*~"N% log(N%)), M << N.

@ Weighted L2-minimization technique:
-> the corrected values of collision operator satisfy

S Qe(vy) =0, (v) =1,v, |V
J
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Conservative SL reconstruction

S. Y. Cho, S.Boscarino, G. Russo, S.-B. Yun, J. Comp. Phys., 2021

Example Given u;, we construct a conservative polynomial u;(x) in interval J;
obtained by non-linear reconstruction (e.g.CWENO23):

Xi 1
ui(x) = U + ui(x — x) + %u,”(x —-x)% U= i/ "2 (x)adx
X.

with u;, uf, u;’ suitable approximation of the point-wise value of u and its
derivatives. In order to interpolate u(x; + 0Ax), 6 € [0,1), we use

p=i2 4 1 Y1
Qito = —/ 2 ui(x)dx
Ax Y. 1

i—3
— Z Q/+9AX = Z L_l,'AX
i i
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@ Thus, the use of a conservative reconstruction technique implies
Z Hio(v)Ax = Z o)A Z Kijo(v)Ax = Z Kijo(v)A

for each j.
@ Then, the scheme satisfies
Z 17 (v;) Ax(Av)? Z (7‘,”, + Atf(,"j) (V) Ax(Av)?
N

= i6(v)Ax(Av) +ZZK,,Q V) Ax(Av)?

j i

=07
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Fast Spectral method

Mouhot and Pareschi, Math. Comp., 2000

The spectral method (also called Fourier-Galerkin method) is based
on the Fourier series expansion of the velocity distribution function
and the collision operator:

Ny

fu(v) = kaeu“, i=v-1
k_——

L, L]? is the velocity domain

= (K1, ko) is the multi-index for frequencies such that
B<kik < -1.

@ the summation with respect to kK means

N N
N_q N_1

° [~
° k

e f, is the the Fourier mode that corresponds to the frequency
index k
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In classical spectral method of [Pareschi and Russo], the explicit form
of Fourier mode of collision operator is provided as follows:

[N

1
ék = B(k - ma m)?k—m?ma -

m:

—1

N =

<k<

N2

nlz

@ m=(my,my).

@ B(k—m,m) = B(k — m,m) — (m, m) is the so-called kernel
mode. The explicit form of 5(k — m, m) for the Maxwellian and
hard sphere molecules are computed.

@ computational cost: O(N2%)



In FSM, the authors use the Carleman representation and
approximate the coefficients 3(k — m, m) with 8'(k — m, m):

B(k —m,m) ~ 8'(k — m,m) Zapk m)ady(m),

© ap(k —m) = ¢g((k—m)-ey,), ap(m)=¢EF(m-ep,z)
@ ey = (cos(f),sin(9)) € ST
® ¢%(s) =2RS 0, =np/M

This finally gives us a convolution structure:

Mo 51
Qf = % > (ap(k — m)_maiy (M) tn — fk_map(m)a;(m)fm> :

p=1 m__ﬂ

@ computational cost: O(M%~"N% log(N%)).
Consequently, we can obtain the values of collision operator:

Inverse Fast Fourier Transform : {Qf}x = Q7



In FSM, the authors use the Carleman representation and
approximate the coefficients 3(k — m, m) with 8'(k — m, m):

B(k —m,m) ~ 8'(k — m,m) Zapk m)ady(m),

© ap(k —m) = ¢g((k—m)-ey,), ap(m)=¢EF(m-ep,z)
@ ey = (cos(f),sin(9)) € ST
® ¢%(s) =2RS 0, =np/M

This finally gives us a convolution structure:

Mo 51
Qf = % > (ap(k — m)_maiy (M) tn — fk_map(m)a;(m)fm) :

p= 1m__ﬂ
@ computational cost: O(M%~1N% log(N%)).
Consequently, we can obtain the values of collision operator:
Inverse Fast Fourier Transform : {Qf}x = Q7

However,
ST Qo(v) #0, 6(v) =1,v. |y
j
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Weighted L2-minimization

S.Boscarino, S. Y. Cho, G. Russo, J. Comp. Phys., 2022

Given U := (p, pU, E)T and an initial guess f € R™)? | we consider a weight function 1/hand
look for a solution g of the following weighted L2-minimization problem:

2

1
fo— — t Cg=U
°%h g9 S 9

min
g9

2

where o denotes the componentwise multiplication and
h(Av)?
2 2 2
f,g, he RMW™  c.— | hv(Av) € RUHFZFDX(N)T
lv12
= (Av)?

Here g is constructed as close as possible to the ratio of f with respect to h which corresponds to
the macroscopic quantities U/, while g o h gives the approximation of f reproducing exactly the same
discrete moments U{. The explicit form of g o his obtained by the method of Lagrange multiplier:

goh=f+cCcT(cc™)™’ (Z/I70<fo%>> oh.

Here the matrix CC" is invertible because it is symmetric and positive definite.
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@ Letting U/ := (p, pU, E)T = (0,0,0,0), and applying the L? projection
method, we can modify the values of collision operator to satisfy

Z O{Z/‘zﬁ(vl) =0, ¢(V1) =1 ‘Vl‘z
j
@ Consequently, the scheme satisfies
Z 7 g(v)Ax(Av)? =) (7,”, + Atf(,”,) B(v))Ax(Av)?
IN

=Y o(AX(AV + ) > Kie(v)Ax(Av)?
joi i

= fio(v)Ax(Av)?

i
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Semi-Lagrangian scheme

First order explicit SL scheme:
| = .
fiy" = 1)+ At

where 1 ~ f(x; — VAt v, 17), K ~ K(X — v] At, v, t7).
@ For each /,j, we interpolate £ from f7 ;.

@ Foreach i, from £/, we compute Q"j using the fast spectral
method (Mouhot and Pareschi).

@ For each i, to prevent loss of conservation we adopt
L2-minimization to impose

ZQ,@ (AV)2=0, ¢ =1,v,V?/2

.. Q" . ~
n __ . n n
@ For each i, j, we set K,.J = EI,-"I and interpolate K,J. from Kz,/~

® update £/}
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High order semi-Lagrangian method

For high order extension in time, we consider the following things:

@ For relatively large £ > 0.01, there is no stiffness in the collision
term. Therefore, for high order extension in time variable, it is
enough to consider high order explicit Runge-Kutta or Adam’s
Bashforth methods
-> stable and high order accuracy in time

@ To have better efficiency, we chose RK methods which include
many zeros in it's Butcher’s table and dupulicated values of ¢

values. In case of RK3, we set o = }:

0 0 0 0 0 0 0 0 0

a o 0 0 1/2 | 1/2 0 0 0

RK3 = 1—a 1— RK4 = 1/2 0 1/2 0 O
T+ cx(3oi—2) a(31a_2) 270304 1 0 0 10

‘ 27 a a(i—a) 5(—a) ‘ % % % 16
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High order time discretization

1_,((34) - I\,i(‘;.x)

! —e - - - -

~(4,3)
K;;
-(4,2) (2,2) ~(2,2) 12(3.3) ~(3,3)
s F2D o k2D EGY - K
+c2 7
1
1
Fe0 peol g g
n i
ljjﬂw \J:l
A(4,1 ~(2.1)
I\,(_J ) K

lllustration of RK4. The quantities on grey points need interpolation.

1st-stage value: F(} D= — Q}_}’”

At
ond-stage value:  F? = F&0 ¢ ?Kl(i‘” = Q7

At
ddstagevalue:  FJ% = 70+ ZKEY = QY
dth-stage value:  F(4Y = F40 4 AtK<4 O =Y

9 )

At At
: FPR—. +1 (4 0) (4,1) (4,2) (4,3) (4,4)
numerical solution: f,"/ = F + —6 K,_/ + —3 K + 3 K,,J —+ 3 K,,J .



Derivation of SL method
00000000000000e

n+l
fi
f i
tnt1 -
n
o/ I
i) /
ty .
i
)
'
'
n2 .
X '
th1 e .
] '
' 1
' 1
' 1
3 !
1\)_7 ! '
foe ; e o
|
. )
. '
' '
ond ' i
K; J ! !
th3—< ‘ s
4 on3  n2 ol .
Tij Tij  Tij o Ty T

lllustration of AB4 method. The quantities on grey points need interpolation.

= 55 59 37 9
n+1 __ n,1 n,2 n,3 n,4 (1,1)
fi = ’?7/+A’(24Kf,j — gl og KT+ 54K ) = Qi
Remark: Yoshida’s fourth order splitting method requires

4 interpolations + 3 x 4 computations of collision operator.
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X1D-V2D Accuracy test with smooth data. -~

Smooth initial data on the periodic domain x € [—0.5, 0.5] with

i 5+2 2
polx) = ZEIETE  o(x) = (075, ~0.75),  Tox) = LT

o Equilibrium initial data

e P (X) |V_ UO|2
frxv) = 27r0To(X) P (‘ 2To(X) > '

o Non-equilibrium initial data

e 38 (oo () oo ()

o Maxwell molecules: B(|v — v.|,w) = C
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X1D-V2D Accuracy test with smooth data. -~

Relative LT error and convergence rate of density p
Non-equilibiurm Equilibiurm
CFL=4 I CFL= 10 CFL=4 [ CFL= 10
(Ny, 2Ny) error rate | error rate error rate [ error | rate
(40, 80) 2.572e-07 4.89 1.684e-07 4.26 3.534e-06 4.96 1.670e-06 4.81
(80, 160) 8.663e-09 4.96 8.802e-09 4.18 1.139e-07 4.99 5.943e-08 4.87
(160, 320) 2.787e-10 4.844e-10 3.591e-09 2.036e-09
Table: RK4+QCWENO35+SL
Relative LT error and convergence rate of density p
Non-equilibiurm Equilibiurm
CFL=4 I CFL= 10 CFL=4 [ CFL= 10
(Ny, 2Ny) error rate | error rate error rate | error [ rate
(40, 80) 1.021e-06 4.19 4.272e-05 4.18 3.739e-06 4.85 5.525e-05 5.00
(80, 160) 5.597e-08 4.14 2.358e-06 4.14 1.294e-07 4.87 1.726e-06  4.29
(160,320) | 3.182e-09 1.342e-07 4.432e-09 8.799¢-08

Table: AB4+QCWENO35+SL



Optimal CFL number

Density error
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(Left:equilibrium initial data,

Density error

1010
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Numerical tests
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O Kkn=10?
Kn=10"

2

4

6

8

10 12
CFL number

Right:non-equilibrium initial data)
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X1D-V2D Sod problem - ~ 0.1

Discontinuous initial data on the periodic domain x € [—2, 2] with

(1,0,0,1), if —1<x<05

, Uho, Uzo, To) = ,
(Po, Uro, Uzo, To) {(;,0,0,1), otherwise

e Equilibrium initial data

e __po(X) [V — up|?
w000 = 2 e (ot )

e Maxwell molecules: B(|v — vi|,w) = C
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X1D-V2D Sod problem - ~ 0.1

Eulerian CFL=(
11 sLerL=2
sLcrL=10
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Conservation test

without L2-minimization L[2-minimization
N, L=8 L=10 L=8 L=10

Mass 32 | 9.493e-08 7.269e-06 -6.096e-15 -9.144e-15
64 | -1.358e-09 -5.628e-09 -7.803e-15 -1.024e-14
Momentum | 32 | 9.483e-08 2.755e-07 -2.314e-17 6.028e-17
64 | 5.533e-08 8.564e-10 2.263e-17 -3.488e-17
Energy 32 | -9.281e-06 -1.013e-04 -7.132e-15 -9.090e-15
64 | -5.407e-06 -2.339e-07 -7.132e-15 -1.035e-14

Table: Conservation error for RK4+QWENO35+SL
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X1D-V2D Convergence towards global equilibrium

e~1,CFL=6

o Non-equilibrium initial data on the periodic space domain
x € [—1,1] with

1+ Agsin(mx vV — Up|? v+ Up?
fo(x,v) = 2(;—7_0() [exp <|2T00|> + exp <|2T00|)]

1 11
Ay = = T0—0.125, Up = <2,2)

The corresponding global equilibrium is given by

_ P v
Mo =57, exP( 27T,

where

1

;
= fy(x, v)|v|2dv dx
2pg /_1 R2 o Wi

1
pg:/ fo(x,v)dvadx, Ty
1 JRr2
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X1D-V2D Convergence towards global equilibrium

e~1,CFL=6

o 2 4 & 8 10 12 14 16 18 20
t

black circles

1 08 06 04 02 0 02 04 06 08 1

red squares

zoom at time t €[4, 6.5]
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X1D-V3D Sod problem - ~ 0.1

Discontinuous initial data on the periodic domain x € [—2, 2] with

(1,0,0,0,1), if —1<x<05

» Uto, Uzo, Uso, To) = .
(po, U1o, Uzo, Uso, To) {(;0’070,1)’ otherwise

o Equilibrium initial data

e ~ po(x) ex _\V—Uo|2
foq(x, V)= (27TTO(X))% p( 727_0()() ) .

e Hard-sphere molecules: B(|v — v,|,w) = C|v — v,]
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X1D-V3D Sod problem with hard-sphere molecules

e~ 0.0, CFL=4
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X2D-V2D Vortex problem ¢ ~ 0.1

Smooth initial data on the periodic domain (x, y) € [0, 10]? with
u(x,y,0) = (1,1) + (6uy,6up), T(x,y,0)=1+6T

where

5 1-—r2
ouy ——(y—5)27Texp( 5 ),

5 1-—r2
6U2=(X—5)27Texp( 5 )7

5
5T = — o ——exp(1-r%)

with r2 = (x — 5)? + (y — 5)2. For density, we use

p(x,¥,0) = T(x,y,0)

o Maxwell molecules.
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X2D-V2D Vortex problem ¢ ~ 0.1

09

ose
os7
oss ¥
094 \ 095§
vy
v s
09 —"10 oS
i - -
— 092
S s
y 0 o x
p(x,y,0)
os 08
1 1
04 08
0s ‘% 02 0s 0z
0 0 o é
H




Numerical tests
000000000000e00

X2D-V2D Vortex problem e =~ 0.1 at t = 10

1035
1028

103

/

11028

10995 1.025 e 1024
5099 % e
" X , 1.022
0385 102 . i
03 | 102
1015 : —"10
10 -

Contoud Bar.
Contourt Bar.

oo o
01 vor 01 vor
00s foce 00s oz
0 o 3 o o 3
3 3
o2 . o0
005 005 N y
00t 008
04 10 o1 10
o 0
s 00 s 00
s s

ui(x,y,10) — 1 u(x,y,10) —1
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Conclusion

@ The proposed method attains high accuracy and conservation is
maintained.

© The scheme could be very effective for solving rarefied gas flow
e >0.01.

© Compared to RK methods, multi-step AB methods are very
efficient and requires less memory (more efficient than splitting
methods)

© When we consider small Knudsen number Kn << 1, stiffness
becomes important, SL approach can be combined with IMEX
penalization technique.



Thank you for your
attention!
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