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Motivation

Semi-Lagrangian (SL) schemes are very effective for the treatment of
convection (and drift) terms in kinetic equations.

Obtained by integrating the equations along characteristics.

Large time steps are possible, therefore improving efficiency

SL scheme may not be conservative.

Conservation is very relevant for

Boltzmann or BGK-type equations
(essential for example for capturing shocks)

long time behaviour of Vlasov-like equations

Purpose of the talk: - Introduction to a finite-difference high order
conservative semi-Lagrangian method for the Boltzmann equation.
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The Boltzmann equation

The Boltzmann equation describes collisions among particles.

∂t f + v · ∇x f =
1
ε

Q(f , f ).

• f = f (x , v , t) stands for the velocity distribution function of
molecules with position x ∈ R3 and velocity v ∈ R3 at time t > 0.

• convection term v · ∇x f describes the free streaming of molecules

• collision operator Q(f , f ) describes the binary collisions of
molecules.

• the parameter ε > 0 is called Knudsen number, and defined by

ε =
mean free path between collisions

macroscopic length scale
.
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The Boltzmann equation

The collision operator Q(f , f ) describes the binary collisions of the particles:

Q(f , f )(x , v , t) =
∫
R3

∫
S2

B(|v − v∗|, ω)[f (v ′)f (v ′
∗)− f (v)f (v∗)] dω dv∗.

• (v , v∗) and (v ′, v ′
∗) are pre- and post-collision velocities that satisfy

microscopic momentum and energy conservation

v ′ + v ′
∗ = v + v∗, |v ′|2 + |v ′

∗|2 = |v |2 + |v∗|2.

• ω is a vector of the unit sphere S2.

• B(|v − v∗|, ω) is called collision kernel.

• f (v ′) = f (x , v ′, t), f (v ′
∗) = f (x , v ′

∗, t), f (v) = f (x , v , t), f (v∗) = f (x , v∗, t)
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Properties of the Boltzmann equation:

Macroscopic variables such as density, mean velocity, energy and
temperature of gas are defined by

ρ =

∫
R3

f dv , u =
1
ρ

∫
R3

vf dv , E =

∫
R3

|v |2

2
f dv

T =
1

3Rρ

∫
R3

|v − u|2f dv

where R is the gas constant
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Properties of the Boltzmann equation:

• Conservation laws of mass/momentum/energy:∫
R3

Q(f , f )

 1
v
|v |2

dv = 0.

• H-theorem: ∫
R3

Q(f , f ) ln(f (v))dv ≤ 0.

• The density, mean velocity and temperature of gas are defined by

ρ =

∫
R3

f dv , u =
1
ρ

∫
R3

vf dv , T =
1

3Rρ

∫
R3

|v − u|2f dv

where R is the gas constant
• Local equilibrium (Maxwellian):∫
R3

Q(f , f ) ln(f (v))dv = 0 ↔ f = M(f )(x , v , t) :=
ρ(x , t)√

(2πRT (x , t))3
e− |v−u(x,t)|2

2RT (x,t)
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Computational challenges

The Boltzmann equation presents several computational difficulties:
1 the high dimensionality of the problem: (x , v , t) ∈ R7

2 collision operator Q(f , f ) is a five-dimensional integral on R3 × S2 ⇒
very expensive to compute

3 difficult to preserve conservative quantities numerically (conservation
laws)

4 stability issues from convection term and small Knudsen number.
5 positivity of the solution has to be maintained at a discrete level.
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High order methods

• Eulerian based methods are obtained by discretizing

∂t f + v · ▽x f =
Q(f , f )

ε
.

Strang splitting based method (Filbet and Russo, 2003): 2nd
order accuracy.
Implicit-explicit penalization technique (Filbet and Jin, 2010): 2nd
order accuracy.
Exponential time integrator (Li and Pareschi, 2014): arbitrary
high order accuracy.
Implicit-explicit penalization technique + unstructured mesh
(Boscheri and Dimarco, 2021): arbitrary high order accuracy.

->CFL condition: maxj |vj | ∆t
∆x < 1
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High order methods

Semi-Lagrangian methods are obtained by discretizing :

df
dt

(
x(t), v , t

)
=

Q(f , f )
ε

(x(t), v , t),
dx
dt

= v .

1 Strang splitting based method (Dimarco, Hauck, Loubère):
second order accuracy.

2 Non-splitting based method (in this work): arbitrary high order
accuracy

->Time step is not restricted by CFL condition
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Semi-Lagrangian scheme

To derive the first order SL method, we begin by writing the BTE in
characteristic form:

df
dt

=
1
ε

Q(f , f ) := K
dx
dt

= v1

x(0) = x̃ , f (0, x , v) = f0(x , v), t ≥ 0, x , v ∈ R× R2.

(2.1)

• Applying the explicit Euler method to (2.1), we obtain

f n+1(x , v) = f n(x − v1∆t , v) + ∆tK n(x − v1∆t , v),

where f n(x , v) = f (x , v , tn) and K n(x , v) = 1
εQ(f n, f n)(x , v , tn).
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f̃ n
i,j and K̃ n

i,j are computed on the same characteristic foot xi − v1
j ∆t at time tn.

• Discretization in space and velocity further gives

f n+1
i,j = f̃ n

i,j +∆tK̃ n
i,j . (2.2)

where f̃ n
i,j ≈ f (xi − v1

j ∆t , vj , tn), K̃ n
i,j ≈ K

(
xi − v1

j ∆t , vj , tn
)
.



Introduction Derivation of SL method Numerical tests

Semi-Lagrangian scheme

First order explicit SL scheme:

f n+1
i,j = f̃ n

i,j +∆tK̃ n
i,j

where f̃ n
i,j ≈ f (xi − v1

j ∆t , vj , tn), K̃ n
i,j ≈ K (xi − v1

j ∆t , vj , tn).

Since f̃ n
i,j and K̃ n

i,j need to be computed on off-grid points, one
should consider a ‘suitable‘ reconstruction.
Moreover, one has to consider very ‘efficient‘ method for
computing collision part K n

i,j =
1
εQn

i,j .
At the end, we want our scheme satisfies ‘discrete conservation‘
in time: ∑

i,j

f n+1
i,j ϕ(vj)∆x(∆v)2 =

∑
i,j

f n
i,jϕ(vj)∆x(∆v)2
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High order semi-Lagrangian method

Our strategy is to use:

a high order non-oscillatory conservative reconstruction (Boscarino,
Cho, Russo, Yun, 2021):
-> high accuracy in space, non-oscillatory solution near discontinuity,
and preservation of mass/momentum/energy

fast spectral method (Mouhot and Pareschi, 2006) for the collision
operator:
-> spectral accuracy and fast computation of the collision operator
O(Mdv−1Ndv log(Ndv )), M << N.

Weighted L2-minimization technique:
-> the corrected values of collision operator satisfy∑

j

Qn
i,jϕ(vj) = 0, ϕ(v) = 1, v , |v |2.
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Conservative SL reconstruction
S. Y. Cho, S.Boscarino, G. Russo, S.-B. Yun, J. Comp. Phys., 2021

Example Given ūi , we construct a conservative polynomial ui(x) in interval Ii
obtained by non-linear reconstruction (e.g.CWENO23):

ui(x) = ui + u′
i (x − xi) +

1
2

u′′
i (x − xi)

2, ūi =
1
∆x

∫ x
i+ 1

2

x
i− 1

2

ui(x)dx

with ui , u′
i , u

′′
i suitable approximation of the point-wise value of u and its

derivatives. In order to interpolate ū(xi + θ∆x), θ ∈ [0, 1), we use

Qi+θ =
1
∆x

∫ y
i+ 1

2

y
i− 1

2

ui(x)dx

→
∑

i

Qi+θ∆x =
∑

i

ūi∆x
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Thus, the use of a conservative reconstruction technique implies∑
i

f̃ n
i,jϕ(vj)∆x =

∑
i

f n
i,jϕ(vj)∆x ,

∑
i

K̃ n
i,jϕ(vj)∆x =

∑
i

K n
i,jϕ(vj)∆x

for each j .

Then, the scheme satisfies∑
i,j

f n+1
i,j ϕ(vj)∆x(∆v)2 =

∑
j,i

(
f̃ n
i,j +∆tK̃ n

i,j

)
ϕ(vj)∆x(∆v)2

=
∑

j,i

f n
i,jϕ(vj)∆x(∆v)2 +

∑
i

∑
j

K n
i,jϕ(vj)∆x(∆v)2

︸ ︷︷ ︸
=0?
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Fast Spectral method
Mouhot and Pareschi, Math. Comp., 2000

The spectral method (also called Fourier-Galerkin method) is based
on the Fourier series expansion of the velocity distribution function
and the collision operator:

fN(v) =

N
2 −1∑

k=− N
2

f̂k ei πL k·v , i =
√
−1

[−L,L]2 is the velocity domain
k = (k1, k2) is the multi-index for frequencies such that
−N

2 ≤ k1, k2 ≤ N
2 − 1.

the summation with respect to k means
N
2 −1∑

k=− N
2

=

N
2 −1∑

k1,k2=− N
2

f̂k is the the Fourier mode that corresponds to the frequency
index k
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In classical spectral method of [Pareschi and Russo], the explicit form
of Fourier mode of collision operator is provided as follows:

Q̂k =

N
2 −1∑

m=− N
2

β̂(k − m,m)f̂k−m f̂m, −N
2

≤ k ≤ N
2

− 1

m = (m1,m2).
β̂(k − m,m) = β(k − m,m)− β(m,m) is the so-called kernel
mode. The explicit form of β(k − m,m) for the Maxwellian and
hard sphere molecules are computed.
computational cost: O(N2dv )
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In FSM, the authors use the Carleman representation and
approximate the coefficients β(k − m,m) with βf (k − m,m):

β(k − m,m) ≈ βf (k − m,m) =
π

M

M∑
p=1

αp(k − m)α′
p(m),

αp(k − m) := ϕ2
R((k − m) · eθp), α′

p(m) = ϕ2
R(m · eθp+

π
2
)

eθ = (cos(θ), sin(θ)) ∈ S1

ϕ2
R(s) = 2R sin s

s , θp = πp/M
This finally gives us a convolution structure:

Q̂f
k =

π

M

M∑
p=1

N
2 −1∑

m=− N
2

(
αp(k − m)f̂k−mα

′
p(m)f̂m − f̂k−mαp(m)α′

p(m)f̂m
)
.

computational cost: O(Mdv−1Ndv log(Ndv )).
Consequently, we can obtain the values of collision operator:

Inverse Fast Fourier Transform : {Q̂f
k}k =⇒ QJ

However, ∑
j

Qjϕ(vj) ̸= 0, ϕ(vj) = 1, vj , |vj |2.
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In FSM, the authors use the Carleman representation and
approximate the coefficients β(k − m,m) with βf (k − m,m):

β(k − m,m) ≈ βf (k − m,m) =
π

M

M∑
p=1

αp(k − m)α′
p(m),

αp(k − m) := ϕ2
R((k − m) · eθp), α′

p(m) = ϕ2
R(m · eθp+

π
2
)

eθ = (cos(θ), sin(θ)) ∈ S1

ϕ2
R(s) = 2R sin s

s , θp = πp/M
This finally gives us a convolution structure:

Q̂f
k =

π

M

M∑
p=1

N
2 −1∑

m=− N
2

(
αp(k − m)f̂k−mα

′
p(m)f̂m − f̂k−mαp(m)α′

p(m)f̂m
)
.

computational cost: O(Mdv−1Ndv log(Ndv )).
Consequently, we can obtain the values of collision operator:

Inverse Fast Fourier Transform : {Q̂f
k}k =⇒ QJ

However, ∑
j

Qjϕ(vj) ̸= 0, ϕ(vj) = 1, vj , |vj |2.
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Weighted L2-minimization
S.Boscarino, S. Y. Cho, G. Russo, J. Comp. Phys., 2022

Given U := (ρ, ρU, E)⊤ and an initial guess f ∈ R(Nv )2 , we consider a weight function 1/h and
look for a solution g of the following weighted L2-minimization problem:

min
g

∥∥∥∥f ◦
1
h

− g
∥∥∥∥2

2
s.t Cg = U

where ◦ denotes the componentwise multiplication and

f , g, h ∈ R(Nv )2
, C :=

 hj (∆v)2

hj vj (∆v)2

hj
|vj |

2

2 (∆v)2

 ∈ R(1+2+1)×(Nv )2
.

Here g is constructed as close as possible to the ratio of f with respect to h which corresponds to
the macroscopic quantities U , while g ◦ h gives the approximation of f reproducing exactly the same
discrete moments U . The explicit form of g ◦ h is obtained by the method of Lagrange multiplier:

g ◦ h = f + C⊤(CC⊤)−1
(
U − C

(
f ◦

1
h

))
◦ h.

Here the matrix CC⊤ is invertible because it is symmetric and positive definite.
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Letting U := (ρ, ρU,E)⊤ = (0, 0, 0, 0), and applying the L2 projection
method, we can modify the values of collision operator to satisfy∑

j

Qn
i,jϕ(vj) = 0, ϕ(vj) = 1, vj , |vj |2

Consequently, the scheme satisfies∑
i,j

f n+1
i,j ϕ(vj)∆x(∆v)2 =

∑
j,i

(
f̃ n
i,j +∆tK̃ n

i,j

)
ϕ(vj)∆x(∆v)2

=
∑

j,i

f n
i,jϕ(vj)∆x(∆v)2 +

∑
i

∑
j

K n
i,jϕ(vj)∆x(∆v)2

︸ ︷︷ ︸
=0

=
∑

i,j

f n
i,jϕ(vj)∆x(∆v)2
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Semi-Lagrangian scheme

First order explicit SL scheme:

f n+1
i,j = f̃ n

i,j +∆tK̃ n
i,j

where f̃ n
i,j ≈ f (xi − v1

j ∆t , vj , tn), K̃ n
i,j ≈ K (xi − v1

j ∆t , vj , tn).

For each i , j , we interpolate f̃ n
i,j from f n

I,j .

For each i , from f n
i,J , we compute Qn

i,J using the fast spectral
method (Mouhot and Pareschi).
For each i , to prevent loss of conservation we adopt
L2-minimization to impose∑

j

Qn
i,jϕj(∆v)2 = 0, ϕj = 1, vj , v2

j /2

For each i , j , we set K n
i,j =

Qn
i,j
εn

i
and interpolate K̃ n

i,j from K n
I,j .

update f n+1
i,j
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High order semi-Lagrangian method

For high order extension in time, we consider the following things:
For relatively large ε ≥ 0.01, there is no stiffness in the collision
term. Therefore, for high order extension in time variable, it is
enough to consider high order explicit Runge-Kutta or Adam’s
Bashforth methods
-> stable and high order accuracy in time
To have better efficiency, we chose RK methods which include
many zeros in it’s Butcher’s table and dupulicated values of c
values. In case of RK3, we set α = 1

3 :

RK3 =

0 0 0 0
α α 0 0
1 1 + 1−α

α(3α−2) − 1−α
α(3α−2) 0

1
2 − 1

6α
1

6α(1−α)
2−3α

6(1−α)

, RK4 =

0 0 0 0 0
1/2 1/2 0 0 0
1/2 0 1/2 0 0

1 0 0 1 0
1
6

1
3

1
3

1
6
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High order time discretization

Illustration of RK4. The quantities on grey points need interpolation.

1st-stage value: F (1,1)
i,j = f n

i,j =⇒ Q(1,1)
i,j

2nd-stage value: F (2,2)
i,j = F (2,0)

i,j +
∆t
2

K (2,1)
i,j =⇒ Q(2,2)

i,j

3rd-stage value: F (3,3)
i,j = F (2,0)

i,j +
∆t
2

K (2,2)
i,j =⇒ Q(3,3)

i,j

4th-stage value: F (4,4)
i,j = F (4,0)

i,j + ∆tK (4,3)
i,j =⇒ Q(4,4)

i,j

numerical solution: f n+1
i,j = F (4,0)

i,j +
∆t
6

K (4,1)
i,j +

∆t
3

K (4,2)
i,j +

∆t
3

K (4,3)
i,j +

∆t
6

K (4,4)
i,j .
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Illustration of AB4 method. The quantities on grey points need interpolation.

f n+1
i,j = f̃ n

i,j +∆t
(

55
24

K n,1
i,j − 59

24
K n,2

i,j +
37
24

K n,3
i,j +

9
24

K n,4
i,j

)
=⇒ Q(1,1)

i,j

Remark: Yoshida’s fourth order splitting method requires
4 interpolations + 3 × 4 computations of collision operator.



Introduction Derivation of SL method Numerical tests

X1D-V2D Accuracy test with smooth data. ε ≈ 1

Smooth initial data on the periodic domain x ∈ [−0.5,0.5] with

ρ0(x) =
2 + sin 2πx

2
, u0(x) = (0.75, −0.75), T0(x) =

5 + 2 cos2πx
20

.

• Equilibrium initial data

f eq
0 (x , v) =

ρ0(x)
2πT0(x)

exp

(
−|v − u0|2

2T0(x)

)
.

• Non-equilibrium initial data

f neq
0 (x , v) =

1
2

ρ0(x)
2πT0(x)

(
exp

(
− (v − u0(x))2

2T0(x)

)
+ exp

(
− (v + u0(x))2

2T0(x)

))
• Maxwell molecules: B(|v − v∗|, ω) = C
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X1D-V2D Accuracy test with smooth data. ε ≈ 1

Relative L1 error and convergence rate of density ρ
Non-equilibiurm Equilibiurm

CFL= 4 CFL= 10 CFL= 4 CFL= 10
(Nx , 2Nx ) error rate error rate error rate error rate
(40, 80) 2.572e-07 4.89 1.684e-07 4.26 3.534e-06 4.96 1.670e-06 4.81
(80, 160) 8.663e-09 4.96 8.802e-09 4.18 1.139e-07 4.99 5.943e-08 4.87
(160, 320) 2.787e-10 4.844e-10 3.591e-09 2.036e-09

Table: RK4+QCWENO35+SL

Relative L1 error and convergence rate of density ρ
Non-equilibiurm Equilibiurm

CFL= 4 CFL= 10 CFL= 4 CFL= 10
(Nx , 2Nx ) error rate error rate error rate error rate
(40, 80) 1.021e-06 4.19 4.272e-05 4.18 3.739e-06 4.85 5.525e-05 5.00
(80, 160) 5.597e-08 4.14 2.358e-06 4.14 1.294e-07 4.87 1.726e-06 4.29
(160, 320) 3.182e-09 1.342e-07 4.432e-09 8.799e-08

Table: AB4+QCWENO35+SL
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Optimal CFL number
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(Left:equilibrium initial data, Right:non-equilibrium initial data)
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X1D-V2D Sod problem ε ≈ 0.01

Discontinuous initial data on the periodic domain x ∈ [−2,2] with

(ρ0, u10, u20, T0) =

{
(1,0,0,1), if − 1 ≤ x ≤ 0.5( 1

8 ,0,0,
1
4

)
, otherwise

.

• Equilibrium initial data

f eq
0 (x , v) =

ρ0(x)
2πT0(x)

exp

(
−|v − u0|2

2T0(x)

)
.

• Maxwell molecules: B(|v − v∗|, ω) = C
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X1D-V2D Sod problem ε ≈ 0.01
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Conservation test

without L2-minimization L2-minimization

Nv L = 8 L = 10 L = 8 L = 10

Mass 32 9.493e-08 7.269e-06 -6.096e-15 -9.144e-15
64 -1.358e-09 -5.628e-09 -7.803e-15 -1.024e-14

Momentum 32 9.483e-08 2.755e-07 -2.314e-17 6.028e-17
64 5.533e-08 8.564e-10 2.263e-17 -3.488e-17

Energy 32 -9.281e-06 -1.013e-04 -7.132e-15 -9.090e-15
64 -5.407e-06 -2.339e-07 -7.132e-15 -1.035e-14

Table: Conservation error for RK4+QWENO35+SL
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X1D-V2D Convergence towards global equilibrium
ε ≈ 1, CFL = 6

• Non-equilibrium initial data on the periodic space domain
x ∈ [−1,1] with

f0(x , v) =
1 + A0 sin(πx)

2πT0

[
exp

(
−|v − u0|2

2T0

)
+ exp

(
−|v + u0|2

2T0

)]
A0 =

1
2
, T0 = 0.125, u0 =

(
1
2
,

1
2

)
The corresponding global equilibrium is given by

Mg =
ρg

2πTg
exp

(
−|v |2

2Tg

)
where

ρg =

∫ 1

−1

∫
R2

f0(x , v)dv dx , Tg =
1

2ρg

∫ 1

−1

∫
R2

f0(x , v)|v |2dv dx
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X1D-V2D Convergence towards global equilibrium
ε ≈ 1, CFL = 6
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X1D-V3D Sod problem ε ≈ 0.01

Discontinuous initial data on the periodic domain x ∈ [−2,2] with

(ρ0, u10, u20, u30, T0) =

{
(1,0,0,0,1), if − 1 ≤ x ≤ 0.5( 1

8 ,0,0,0,
1
4

)
, otherwise

.

• Equilibrium initial data

f eq
0 (x , v) =

ρ0(x)
(2πT0(x))

3
2
exp

(
−|v − u0|2

2T0(x)

)
.

• Hard-sphere molecules: B(|v − v∗|, ω) = C|v − v∗|
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X1D-V3D Sod problem with hard-sphere molecules
ε ≈ 0.01, CFL = 4
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X2D-V2D Vortex problem ε ≈ 0.1

Smooth initial data on the periodic domain (x , y) ∈ [0,10]2 with

u(x , y ,0) = (1,1) + (δu1, δu2), T (x , y ,0) = 1 + δT

where

δu1 = −(y − 5)
5

2π
exp

(
1 − r2

2

)
,

δu2 = (x − 5)
5

2π
exp

(
1 − r2

2

)
,

δT = − 5
16π2 exp

(
1 − r2)

with r2 = (x − 5)2 + (y − 5)2. For density, we use

ρ(x , y ,0) = T (x , y ,0)

• Maxwell molecules.
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X2D-V2D Vortex problem ε ≈ 0.1 at t = 0

ρ(x , y , 0) T (x , y , 0)

u1(x , y , 0)− 1 u2(x , y , 0)− 1
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X2D-V2D Vortex problem ε ≈ 0.1 at t = 10

ρ(x , y , 10) T (x , y , 10)

u1(x , y , 10)− 1 u2(x , y , 10)− 1
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Conclusion

1 The proposed method attains high accuracy and conservation is
maintained.

2 The scheme could be very effective for solving rarefied gas flow
ε ≥ 0.01.

3 Compared to RK methods, multi-step AB methods are very
efficient and requires less memory (more efficient than splitting
methods)

4 When we consider small Knudsen number Kn << 1, stiffness
becomes important, SL approach can be combined with IMEX
penalization technique.
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Thank you for your
attention!
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