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1. Introduction
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Background and Motivation

“Scale”: Newtonian Mechanics ⇒ Kinetic Theory ⇒ Continuum Mechanics

Figure: Role of kinetic theory in multiscale modeling hierarchy1

1S. Ukai and T. Yang, Mathematical Theory of Boltzmann Equation, ’06
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Background and Motivation [Hilbert Sixth Problem]

“Scale”: Newtonian Mechanics ⇒ Kinetic Theory ⇒ Continuum Mechanics

Figure: Role of kinetic theory in multiscale modeling hierarchy1

1S. Ukai and T. Yang, Mathematical Theory of Boltzmann Equation, ’06
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Background and Motivation [Hilbert Sixth Problem]

“Scale”: Newtonian Mechanics ⇒ Kinetic Theory ⇒ Continuum Mechanics
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“Objective Molecule Dynamics” (OMD)

“Objective Molecule Dynamics” (OMD) is a time-dependent invariant manifold
of the equations of molecular dynamics.

Basic Set-up

Ô⇒ Simulated atoms:

xk(t), k = 1, ...,M

“+” A discrete group of isometries a:

G = {g1, g2, ..., gN}, M ≪ N

Ô⇒ Non-simulated atoms:

xi,k(t) = gi(xk(t))

i = 1, ...,N , k = 1, ...,M .

ag1 ∶= Id, so x1,k(t) = xk(t)
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Objective Structure

1-OS: each atom “see the same environment”

A set of points in R3 is given, S = {xi ∈ R3, i = 1, ...,N}, N ≤ ∞. S is a 1-OS
if there are orthogonal transformations Q1, ...,QN such that

{xi +Qi(xj − x1) ∶ j = 1, ...,N} = S, for i = 1, ...,N

M-OS: xi,k “see the same environment” as x1,k

Consider a structure consisting of N “molecules”, each consisting of M atoms:
S = {xi,k ∈ R3 ∶ i = 1, ...,N, k = 1, ...,M}, N ≤ ∞, M < ∞.
S is an M -OS, if x1,1, ..., x1,M are distinct and there are NM orthogonal trans-
formations Qi,k such that

{xi,k+Qi,k(xj,l−x1,k) ∶ j = 1, ...,N, l = 1, ...,M} = S, for i = 1, ...,N, k = 1, ...,M
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Example of objective structure

Buckminsterfullerine (C60)

Let G = {R1, ...,RN} be a finite subgroup
of O(3) with N = 60 and let xi = Rix1

Figure: Buckminsterfullerine (C60)

Single-walled carbon nanotubes

Let e⃗1, e⃗2, e⃗3 be an orthonormal basis and
Rθ ∈ SO(3), the carbon nanotubes are
given by

gν11 gν22 gν33 , ν1, ν2, ν3 ∈ Z

with

g1 = (Rθ1 ∣t1), g2 = (Rθ2 ∣t2)

g3 = (−I + 2e⊗ e∣0)

Figure: Carbon nanotube (1-OS) with chirality n = 3,m = 8
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Symmetry and Invariance

Isometry Group

g = (Q∣c), Q ∈ O(3), c ∈ R3

g(x) = Qx + c, x ∈ R3

Closure: g1 = (R1 ∣ c1), g2 = (R2 ∣ c2), g1g2 = (R1R2 ∣ c1 +R1c2)
⇒ g1g2(x) = g1(g2(x))

Identity: Id = (I ∣0)
Inverse: (Q ∣ c)−1 = (Q⊺ ∣ −Q⊺c)

Recall: For a typical dynamical system (xi(t), vi(t)): for i = 1, ...,N ,

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ẋi(t) = vi(t),

ẍi(t) = v̇i(t) = −
N

∑
j=1
j≠i

∇xiU (∣xi(t) − xj(t)∣) .
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Invariant requirement of the potential*

1 Frame-indifference: Q ∈ O(3), c ∈ R3

Q
∂U

∂xi,k

(..., xi1,1, ..., xi1,M , ..., xi2,1, ..., xi2,M )

=
∂U

∂xi,k

(...,Qxi1,1 + c, ...,Qxi1,M + c, ...,Qxi2,1 + c, ...,Qxi2,M + c)

2 Permutation invariance:

∂U

∂xΠ(i,k)
(..., xi1,1, ..., xi1,M , ..., xi2,1, ..., xi2,M )

=
∂U

∂xi,k

(..., xΠ(i1,1), ..., xΠ(i1,M), ..., xΠ(i2,1), ..., xΠ(i2,M))

Requirement of isometry**

The isometries gi can depend explicitly on t > 0, but this time dependence must be
consistent with

d2xj,k(t)

dt2
=

d2

dt2
gi(xk(t), t) = Qi

d2xk(t)

dt2

for gi = (Qi∣ci) ∈ G, i = 1, ...,N, k = 1, ...,M



Introduction From Microscopic to Mesoscopic From Mesoscopic to Macroscopic Related Numerical Simulation Summary and Outlook

Theorem ( [James, ICM, ’18] )

Assumptions: Invariant requirement of the potential* + Requirement of
isometry**.

If xk(t) = x1,k(t), k = 1, ...,N satisfy the equation of molecular dynamics, i.e.,

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

mkẍ1,k =f1,k(..., xj,1, xj,2, ..., xj,M , xj+1,1, xj+1,2, ..., yj+1,M , ...)
=f1,k(..., gj(y1,1, t), ..., gj(y1,M , t), gj+1(y1,M , t)), ..., gj+1(y1,M , t)

x1,k(0) =x0
k, ẋ1,k(0) = v0k, k = 1, ...,M

Then, xi,k = g(x1,k(t), t), i = 1, ...,N, k = 1, ...,M satisfy the same equations
of molecular dynamics:

mkẍi,k = f1,k(..., xj,1, xj,2, ..., xj,M , xj+1,1, xj+1,2, ..., yj+1,M , ...)
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Sketch of Proof

mkẍi,k =mkQiẍ1,k [Requirement**]

=Qif1,k(..., xj,1, ..., xj,M , xj+1,1, xj+1,2, ..., yj+1,M , ...)

=QifΠ(i,k)(..., xj,1, ..., xj,M , xj+1,1, xj+1,2, ..., yj+1,M , ...) [Requirement* (2)]

=Qifi,k(..., xΠ(j,1), ..., xΠ(j,M), xΠ(j+1,1), xΠ(j+1,2), ..., yΠ(j+1,M), ...)

=Qifi,k(..., g−1i (xj,1), ..., g−1i (xj,M), g−1i (xj+1,1), ..., g−1i (xj+1,M))

=Qifi,k(...,QT
i (xj,1 − ci), ...,QT

i (xj,M − ci),QT
i (xj+1,1 − ci),

...,QT
i (xj+1,M − ci), ...) [Requirement* (1)]

=fi,k(..., xj,1, xj,2, ..., xj,M , xj+1,1, xj+1,2, ..., yj+1,M , ...)
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Requirement of isometry** Ô⇒ Qi = const ∈ O(3) and ci = ait + bi

Figure: The invariant manifold of the equations of molecular dynamics.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

p =mkẋi,k =mk
d

dt
gi(x1,k, t) =mkQiẋ1,k +mkai

q =xi,k = gi(x1,k, t) = Qx1,k + ait + bi
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The simplest example

Translation Group:

GT = {( I®
∶=Q

∣ ν1e⃗1 + ν2e⃗2 + ν3e⃗3
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∶=c

) ∶ ν1, ν2, ν3 ∈ Z}

then, Simulated atoms:

xk(t) = x(0,0,0),k(t), k = 1, ...,M

Non-simulated atoms:

xν,k(t) = gν(xk(t), t) = xk(t) + (I + tA)(νie⃗i), k = 1, ...,M
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Simple Shear

http://www.aem.umn.edu/ james/research/people.html

By Pahlani-James

A =
⎛
⎜
⎝

0 K 0
0 0 0
0 0 0

⎞
⎟
⎠

In Euerian Framework:

u(t, x) = A(I + tA)−1x


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}
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2. From Microscopic to Mesoscopic
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From now, let us jump into the kinetic regime

Figure: The invariant manifold of the equations of molecular dynamics in kinetic regime

What can be inherited from the invariant manifold?

The velocities at xk = 0 are ẋk, k = 1, ..,M
The velocities at x = (I + tA)ν are ẋk +Aν, k = 1, ...,M
Or, in the Eulerian form used in the kinetic theory, the velocities at x are
ẋk +A(I + tA)−1x, k = 1, ...,M

f(t,0, v) = f(t, x, v +A(I + tA)−1x) Ô⇒ f(t, x, v) = g(t, v −A(I + tA)−1x
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∶w

)
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For Boltzmann equation

Classical Boltzmann equation

∂

∂t
f(t, x, v) + v⋅∇xf(t, x, v) = Q(f, f)(t, x, v)

Ú
Ú
Ù
f(t, x, v) = g(t,w) with w ∶= v −A(I + tA)−1x

∂

∂t
g(t,w) + [A(I + tA)−1w]⋅∇wg(t,w) = Q(g, g)(t,w)

Homo-energetic Boltzmann equation

Q(g, f) = ∫
Rd ∫Sd−1

B(v − v∗, σ)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
collision kernel

[g(v′∗)f(v
′
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
“gain”

− g(v∗)f(v)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

“loss”

]dσ dv∗

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

v′ =
v + v∗

2
+
∣v − v∗∣

2
σ

v′∗ =
v + v∗

2
−
∣v − v∗∣

2
σ

where the parameter σ varies over the unit
sphere Sd−1.

Figure: Velocities during a classical elastic collision
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Remark I: Classification

Figure: The classification of deformation term.
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Remark II: Collision kernel

The collision kernel B is a non-negative function that depends on its arguments only
through ∣v − v∗∣ and cosine of the deviation angle θ:

B(v − v∗, σ) = B(∣v − v∗∣, cos θ), cos θ =
σ ⋅ (v − v∗)

∣v − v∗∣
.

For the inverse power law potential,

B(∣v − v∗∣, cos θ) = b(cos θ)Φ(∣v − v∗∣)

Kinetic part:

Φ(∣v−v∗∣) = ∣v−v∗∣
γ
⇒

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

γ > 0, Hard potentialÔ⇒ Collision Dominated Case

γ = 0, Maxwellian moleculesÔ⇒ Balanced Case

γ < 0, Soft potentialÔ⇒ Hyperbolic Dominated Case

Consider the re-scaling g(t,w) = 1
t
G(τ, ξ) with τ = log(t), ξ1 =

w1
t

ξj = wj , j = 2,3:

∂G

∂τ
− divξ[(ξ1 +Kξ2)e⃗1G] ≈ e

γτQ(G,G)

Angular part:

sind−2 θb(cos θ)∣
θ→0
∼Kθ−1−ν , 0 < ν < 2
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Recall the Big Picture
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Previous work

Arrow (2): BBGKY hierarchy

Mean-field Limit: N →∞.

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

ẋi(t) = vi(t),

v̇i(t) = −
1

N

N

∑
j=1
j≠i

∇xiU (∣xi(t) − xj(t)∣) .

[Braun-Hepp,’77], [Golse, ’03], [Spohn, ’12]

Boltzmann-Grad Limit: Nεd−1 → O(1), N →∞, ε→ 0.

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

ẋi(t) = vi(t),

v̇i(t) = −
1

ε

N

∑
j=1
j≠i

∇xiU (
∣xi(t) − xj(t)∣

ε
) .

[Grad,’49, ’58], [Cercignani, ’72], [Lanford, ’75], [Gallagher-Raymond-Texier, ’13]

Arrow (3): Homo-energetic Transformation f(t, x, v) = g(t, v −A(I + tA)−1x
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∶w

)

[Dayal-James, ’10], [James, ’18], [James-Nota-Velazquez, ’19]

Our first goal:

How to proceed with Arrow (4) ?
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Dynamical system of OMD

Simulated and Non-simulated atoms are indistinguishable in new variable

xi,k(t) = xk(t)+(I + tA)νi
ÚÚÙ

ẋi,k(t) = ẋk(t) +Aνi ⇒ vi,k(t) = vk(t) +Aνi
ÚÚÙ

vi,k(t) −A(I + tA)−1xi,k(t)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∶=wi,k(t)

= vk(t) −A(I + tA)−1xk(t)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∶=wk(t)

The dynamical system of OMD in new variables (xi(t),wi(t)): for i = 1, ...,N ,

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ẋi(t) = wi(t) +A(I + tA)−1xi(t),

ẇi(t) = −
N

∑
j=1
j≠i

∇xiU (∣xi(t) − xj(t)∣) −A(I + tA)−1wi(t).
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Kinetic description

Mean-field type model:

(M)

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

ẋi(t) = wi(t) +A(I + tA)
−1xi(t)

ẇi(t) = −
1

N

N

∑
j=1
j≠i

∇xiU (∣xi(t) − xj(t)∣) −A(I + tA)
−1wi(t)

↓ N →∞

∂g

∂t
+w ⋅∇xg+[A(I+tA)

−1x] ⋅∇xg−[A(I+tA)
−1w] ⋅∇wg = [∇xU ∗ ρg] (t, x) ⋅∇wg

Boltzmann type model:

(B)

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

ẋi(t) = wi(t) +A(I + tA)
−1xi(t)

ẇi(t) = −
1

ε

N

∑
j=1
j≠i

∇xiU (
∣xi(t) − xj(t)∣

ε
) −A(I + tA)−1wi(t)

↓ Nεd−1 → O(1), as N →∞, ε→ 0

∂g

∂t
+ w ⋅ ∇xg + [A(I + tA)−1x] ⋅ ∇xg − [A(I + tA)−1w] ⋅ ∇wg = Q(g, g)
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Derivation of mean-field limit

Denote
ΩN
∶= {(x1,w1, x2,w2..., xN ,wN ) ∈ R6N ∣ xi ≠ xj , i ≠ j}

and let
P (N)(t, x1,w1, x2,w2, ..., xN ,wN )

be the N -particle distribution function.

Our goal: derive the mean-field equation P (1)(t, x1,w1)

Starting with the Liouville equation satisfied by P (N)(t, x1,w1, ..., xN ,wN )

∂P (N)

∂t
+

N

∑
i=1
[ẋi ⋅ ∇xiP

(N)
+ ẇi ⋅ ∇wiP

(N)
] = 0 ,

and substituting system (M), it leads to

∂P (N)

∂t
+

N

∑
i=1

wi ⋅ ∇xiP
(N)
+

N

∑
i=1
[A(I + tA)−1xi] ⋅ ∇xiP

(N)

−
1

N

N

∑
i=1

N

∑
j=1
j≠i

∇xiU (∣xi − xj ∣) ⋅ ∇wiP
(s)
−

N

∑
i=1
[A(I + tA)−1wi] ⋅ ∇wiP

(N)
= 0
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Derivation of mean-field limit

Integrating over the domain {xs+1,ws+1, ..., xN ,wN}, we obtain the corresponding

kinetic equation of the s-marginal distribution P (s),

∂P (s)

∂t
+ ∫

R6(N−s)
⎛

⎝

N

∑
i=1

wi ⋅ ∇xiP
(N)
+

N

∑
i=1
[A(I + tA)−1xi] ⋅ ∇xiP

(N)⎞

⎠
dxs+1...wN

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=:(I)

−∫
R6(N−s)

⎛
⎜
⎜
⎜
⎝

1

N

N

∑
i=1

s

∑
j=1
j≠i

∇xiU (∣xi − xj ∣) −
N

∑
i=1
[A(I + tA)−1wi]

⎞
⎟
⎟
⎟
⎠

⋅ ∇wiP
(N) dxs+1...wN

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=:(II)

= ∫
R6(N−s)

1

N

N

∑
i=1

N

∑
j=s+1
j≠i

∇xiU (∣xi − xj ∣) ⋅ ∇wiP
(N) dxs+1ws+1...xNwN

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=:(III)
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Derivation of mean-field limit

For term (I),

(I) =
s

∑
i=1

wi ⋅ ∇xiP
(s)
+

s

∑
i=1
[A(I + tA)−1xi] ⋅ ∇xiP

(s)

+
N

∑
i=s+1

∫
R6(N−s) [A(I + tA)

−1xi] ⋅ ∇xiP
(N) dxs+1...wN

=
s

∑
i=1

wi ⋅ ∇xiP
(s)
+

s

∑
i=1
[A(I + tA)−1xi] ⋅ ∇xiP

(s)
− (N − s)Tr[A(I + tA)−1]P (s)

For term (II),

(II) = −
1

N

s

∑
i,j=1
i≠j

∇xiU (∣xi − xj ∣) ⋅ ∇wiP
(s)
−

s

∑
i=1
[A(I + tA)−1wi] ⋅ ∇wiP

(s)

+ (N − s)Tr[A(I + tA)−1]P (s)

For term (III), since particles are indistinguishable,

(III) =
N − s

N

s

∑
i=1
∫
R6
∇xiU (∣xi − xs+1∣) ⋅ ∇wiP

(s+1)
(t,Xs,Ws, xs+1ws+1) dxs+1ws+1

=
N − s

N

s

∑
i=1
∇wi ⋅ ∫R6

[∇xiU (∣xi − xs+1∣)P
(s+1)

(t,Xs,Ws, xs+1ws+1)] dxs+1ws+1
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Derivation of mean-field limit

Combining the terms (I) − (III) altogether,

∂P (s)

∂t
+

s

∑
i=1

wi ⋅ ∇xiP
(s)
+

s

∑
i=1
[A(I + tA)−1xi] ⋅ ∇xiP

(s)

−
s

∑
i=1
[A(I + tA)−1wi] ⋅ ∇wiP

(s)
−

1

N

s

∑
i,j=1
i≠j

∇xiU (∣xi − xj ∣) ⋅ ∇wiP
(s)

=
N − s

N

s

∑
i=1
∇wi ⋅∫R6

[∇xiU (∣xi − xs+1∣)P
(s+1)

(t,Xs,Ws, xs+1ws+1)] dxs+1ws+1

In particular, taking s = 1 above, it reduces to the two-particle case:

∂P (1)

∂t
+w1 ⋅ ∇x1P

(1)
+ [A(I + tA)−1x1] ⋅ ∇x1P

(1)
− [A(I + tA)−1w1] ⋅ ∇w1P

(1)

=
N − s

N
∇w1 ⋅ ∫R6

[∇x1U (∣x1 − x2∣)P
(2)
(t, x1w1, x2w2)] dx2w2
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Derivation of mean-field limit

To close the hierarchy above, we consider the “propagation of chaos” assumption:

P (2)(t, x1w1, x2w2) = P (1)(t, x1,w1)P (1)(t, x2,w2)

which says the two particles remain independent throughout the dynamics. Under
this assumption, the right-hand side becomes

N − 1
N
∇w1 ⋅ ∫

R6
[∇x1U (∣x1 − x2∣)P (2)(t, x1,w1, x2,w2)] dx2 dw2

=N − 1
N ∫

R6
[∇x1U (∣x1 − x2∣)P (1)(t, x2,w2)∇w1P

(1)(t, x1,w1)] dx2 dw2

=N − 1
N ∫

R3
[∇x1U (∣x1 − x2∣) ∫

R3
P (1)(t, x2,w2) dw2] dx2 ⋅ ∇w1P

(1)(t, x1,w1)

=N − 1
N
∇x1U ∗ ρP (1)(t, x1) ⋅ ∇w1P

(1)(t, x1,w1)

Finally, by re-naming P (1)(t, x1,w1) to g(t, x,w)

∂g(t, x,w)
∂t

+w ⋅ ∇xg + [A(I + tA)−1x] ⋅ ∇xg − [A(I + tA)−1w] ⋅ ∇wg

= [∇xU ∗ ρg] (t, x) ⋅ ∇wg
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Theorem (Existence, uniqueness and stability [James-Q.-Wang ’23] )

For any initial datum g0(x,w) ∈ Pc(R3 × R3), there exists a measure-valued solution
gt(x,w) = g(t, x,w) ∈ C([0,+∞),Pc(R3 × R3)) to mean-field equation, and there is
an increasing function R = R(T ) such that for all T > 0,

supp gt(⋅, ⋅) ⊂ BR(T ) ⊂ R3
×R3, ∀ t ∈ [0, T ] (1)

This solution is unique among the family of solutions C([0,+∞),Pc(R3×R3)) satisfying
(1).
Moreover, assume that g0, h0 ∈ Pc(R3 × R3) are two initial conditions, and gt, ht are
the corresponding solutions to mean-field equation. Then,

W1(gt(⋅, ⋅), ht(⋅, ⋅)) ≤ e
2tLW1(g0(⋅, ⋅), h0(⋅, ⋅)), ∀t ≥ 0

where L is a constant depending on A and U , and W1 is Monge-Kantorovich-Rubinstein
distance defined as:

W1(µ, ν) ∶= sup{∣∫
R3×R3

φ(P )(µ(P ) − ν(P )) dP ∣, φ ∈ Lip(R3
×R3

), ∥φ∥Lip ≤ 1}

Sketch of proof: Fix-point argument

Define a flow operator at time t ∈ [0, T ),

T
t
ξ,H ∶ (X(0),W (0)) ↦ (X(t),W (t)) ∈ R

3
×R3

For an initial probability measure g0(x,w), the function

g(t, x,w) ∶ [0, T ) → P1(R3
×R3

), t↦ gt(x,w) ∶= T
t
ξ,H#g0(x,w)

is a measure-valued solution in the distributional sense
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the corresponding solutions to mean-field equation. Then,

W1(gt(⋅, ⋅), ht(⋅, ⋅)) ≤ e
2tLW1(g0(⋅, ⋅), h0(⋅, ⋅)), ∀t ≥ 0

where L is a constant depending on A and U , and W1 is Monge-Kantorovich-Rubinstein
distance defined as:

W1(µ, ν) ∶= sup{∣∫
R3×R3

φ(P )(µ(P ) − ν(P )) dP ∣, φ ∈ Lip(R3
×R3

), ∥φ∥Lip ≤ 1}

Sketch of proof: Fix-point argument

Define a flow operator at time t ∈ [0, T ),

T
t
ξ,H ∶ (X(0),W (0)) ↦ (X(t),W (t)) ∈ R

3
×R3

For an initial probability measure g0(x,w), the function

g(t, x,w) ∶ [0, T ) → P1(R3
×R3

), t↦ gt(x,w) ∶= T
t
ξ,H#g0(x,w)

is a measure-valued solution in the distributional sense
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Let gNt (x,w) ∶ [0, T ] ↦ P1(R3 ×R3) be a probability measure defined as

gNt (x,w) ∶=
1

N

N

∑
i=1

δ(x − xi(t))δ(w −wi(t)) (2)

If xi,wi ∶ [0, T ] ↦ R3, for i = 1, ...,N , is a solution to dynamics system, then gNt (x,w)
is the measure-valued solution to mean-field equation with the initial condition

gN0 (x,w) ∶=
1

N

N

∑
i=1

δ(x − xi(0))δ(w −wi(0)) (3)

Corollary (Convergence of the empirical measure)

Consider a sequence of gN0 in the form of (3) such that

lim
N→∞

W1(g
N
0 (⋅, ⋅), g0(⋅, ⋅)) = 0.

Let gNt be given by (2), where (xi(t),wi(t)) solves dynamics system with initial con-
ditions (xi(0),wi(0)). Then we have

lim
N→∞

W1(g
N
t (⋅, ⋅), gt(⋅, ⋅)) = 0

for all t ≥ 0, where gt(x,w) is the unique measure-valued solution to mean-field equation
with initial data g0(x,w).
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3. From Mesoscopic to Macroscopic
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Recall the Big Picture
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Previous work

Arrow (5): Hydrodynamic Limit

Hilbert or Chapman-Enskoy Expansion :

[Hilbert,’12], [Enskoy, ’17], [Chapman-Cowling, ’39]

Asymptotic convergence:

to C.E. [Caflish, ’80], to IC.NS. [DeMasi-Esposito-Lebowitz, ’89]

Renormalized solution of Boltzmann to weak solution of E/NS:

to IC. [Bardos-Golse-Levermore ’93], [Lions-Masmoudi, ’01], [Golse-Saint-Raymond,
’04, ’09], [Levermore-Masmoudi, ’10], [Jiang-Masmoudi, ’17]

Strong solution near equilibrium:

to C.E. [Nishida ’78], to IC.NS [Bardos-Ukai ’91], [Gallagher-Tristani ’20]

Arrow (7): Homo-energetic Transformation for macroscopic quantities

[Pahlani-Schwartzentruber-James, ’22, ’23]

Our second goal:

How to proceed with Arrow (6) ?
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Macroscopic quantities of homo-energetic flow

Density ρ(t, x):

ρ(t, x) = ∫
R3

f(t, x, v) dv = ∫
R3

g(t,w) dw =∶ ρ(t)

Bulk velocity u(t, x):

u(t, x) =
1

ρ(t, x)
∫
R3

f(t, x, v)v dv =
1

ρ(t)
∫
R3

g(t,w)[w +L(t)x] dw

=
1

ρ
∫
R3

gw dw + [L(t)x]
1

ρ
∫
R3

g dw

=L(t)x

Internal energy e(t, x) and temperature θ(t, x):

ρ(t, x)e(t, x) =
1

2
∫
R3

f(t, x, v)∣v − u(t, x)∣2 dv

=
1

2
∫
R3

g(t,w)∣w∣2 dw =∶ ρ(t)e(t)

Consider the equation of state for perfect gas e(t) =
kBθ(t)
γa−1

= 3
2
θ(t).

Stress tensor Pij(t, x): for peculiar velocity c,

Pij(t, x) =∫
R3

ci(t, x)cj(t, x)f(t, x, v) dv

=∫
R3

wiwjg(t,w) dw =∶ Pij(t)

for i, j = 1,2,3.
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By multiplying the collision invariants 1, wj , and
1
2
∣w∣2 to homo-energetic equations,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d

dt
ρ(t) +Tr[L(t)]ρ(t) = 0

ρ(t)(
dL(t)

dt
+L2

(t)) = 0

ρ(t)
de(t)

dt
+

3

∑
i=1

3

∑
j=1

Pij(t)Lij(t) = 0

Our Results:

By applying the Hilbert expansion, we derive a reduced Euler system:

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

∂tρ(t) +Tr[L(t)]ρ(t) = 0

∂tθ(t) +
2

3
Tr[L(t)]θ(t) = 0

By applying the Chapman-Enskog expansion, we obtain the corresponding reduced
Navier-Stokes system with O(ϵ) correction terms:

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

∂tρ(t) +Tr[L(t)]ρ(t) = 0

∂tθ(t) +
2

3
Tr[L(t)]θ(t) = ϵµ(θ)

1

2
(Tr[L2

(t)] +L(t) ∶ L(t) −
2

3
(Tr[L(t)])2)

where µ is the viscosity.
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The compressible Euler limit via Hilbert expansion

Starting point:

∂tg(t,w) − [L(t)w] ⋅ ∇wg(t,w) =
1

ϵ
Q(g, g)(t,w)

where ϵ plays a role as Knudsen number.

Hilbert Expansion

Seek the solution in the form of a formal power series in ϵ:

gϵ(t,w) = ∑
n≥0

ϵngn(t,w) = g0(t,w) + ϵg1(t,w) + ⋯ .

For O(ϵ−1),
Q(g0, g0)(t,w) = 0

which implies that g0(t,w) is in the form of Maxwellian distribution, i.e.,

g0(t,w) =M[ρ(t),θ(t)] ∶=
ρ(t)

[2πθ(t)] 32
e
− ∣w∣

2

2θ(t) , ρ(t) > 0, θ(t) > 0
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For O(ϵ0),

(∂t − [L(t)w] ⋅ ∇w)g0(t,w) = Q(g0, g1)(t,w) +Q(g1, g0)(t,w) .

Define the linearized Boltzmann collision operator

LM[ρ,θ]g ∶= −2M
−1
[ρ,θ]Q(M

−1
[ρ,θ] ,M

−1
[ρ,θ]g)

which is an unbounded self-adjoint non-negative Fredholm operator.

Lg0 (
g1

g0
) = −(∂t − [L(t)w] ⋅ ∇w) ln g0(t,w)

We can rearrange the right-hand side, and express it as a linear combination of
1,wi, ∣w∣

2,

−Lg0 (
g0

g1
) =

1

ρ(t)
(∂tρ(t) +Tr[L(t)]ρ(t)) +

1

2
(
∣w∣2

θ(t)
− 3)

1

θ(t)
(∂tθ(t) +

2

3
Tr[L(t)]θ(t))

+A(W ) ∶ D

where, for W = w√
θ(t)

, A(W ) ∈ (Ker Lg0)
⊥ is

A(W ) ∶=W ⊗W −
1

3
∣W ∣2I =

1

θ(t)
w ⊗w −

1

3

∣w∣2

θ(t)
I

and D is

D ∶=
1

2
(L(t) + [L(t)]⊺ −

2

3
Tr[L(t)]I)
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The compressible Navier-Stokes limit via Chapman-Enskoy expansion

Chapman-Enskoy Expansion

Seek the solution in the following form:

gϵ(t,w) = ∑
n≥0

ϵngn[P⃗ (t)](w) = g0[P⃗ (t)](w) + ϵg1[P⃗ (t)](w) + ⋯

Compared to the Hilbert expansion, we require that g0 has the same first five moments
as gϵ by construction:

∫
R3

g0[P⃗ (t)](w)(
1
∣w∣2
2

) dw = P⃗ (t) = (
ρ(t)
θ(t)

)

where P⃗ is a vector of conserved quantities. hence,

∫
R3

gn[P⃗ (t)](w)(
1
∣w∣2
2

) dw = 0⃗ , for all n ≥ 1

By taking the moments, the conserved quantities satisfy a system of conservation laws:

∂tP⃗ (t) = ∑
n≥0

ϵnΦn[P⃗ ](t) = Φ0(t) + ϵΦ1[P⃗ ](t) + ⋯

where the flux term Φn[P⃗ ](t) is denoted as

Φn[P⃗ ](t) = ∫
R3
(

1
∣w∣2
2

) [L(t)w] ⋅ ∇wgn[P⃗ (t)](w) dw

for n ≥ 0.
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For O(ϵ0),

0 = Q (g0[P⃗ (t)], g0[P⃗ (t)])

For O(ϵ1),

(∂t − [L(t)w] ⋅ ∇w)g0[P⃗ (t)] = Q (g0[P⃗ (t)], g1[P⃗ (t)]) (w) +Q (g1[P⃗ (t)], g0[P⃗ (t)])

The left-hand side is

(∂t − [L(t)w] ⋅ ∇w)g0[P⃗ (t)]

=g0[P⃗ (t)][
1

ρ(t)
(∂tρ(t) +Tr[L(t)]ρ(t)) +

1

2
(
∣w∣2

θ(t)
− 3)

1

θ(t)
(∂tθ(t) +

2

3
Tr[L(t)]θ(t))

+ [A(W ) ∶ D] ]

=g0[P⃗ (t)](w) [A(W ) ∶ D] +O(ϵ)

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Lg0[P⃗ (t)] (
g0[P⃗ (t)]

g1[P⃗ (t)]
) = − [A(W ) ∶ D]

∫
R3

g1[P⃗ (t)](w)(
1
∣w∣2
2

) dw = 0⃗

and therefore g1[P⃗ (t)] can be solved:

g1[P⃗ (t)] = −g0[P⃗ (t)](w) [a(θ, ∣W ∣)A(W ) ∶ D]

where the scalar quantity a(θ, ∣W ∣) is denoted as Lg0[P⃗ (t)](a(θ, ∣W ∣)A(W )) = A(W )
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Hence, the first-order correction to the fluxes in the formal conservation law is

Φ1[P⃗ (t)](w) =∫
R3
[L(t)w] ⋅ ∇wg1[P⃗ (t)](w)

⎛

⎝

1

∣w∣2
2

⎞

⎠
dw

=
⎛
⎜
⎝

0

µ(θ) 1
2
(Tr[L2(t)] +L(t) ∶ L(t) − 2

3
(Tr[L(t)])2)

⎞
⎟
⎠

where the viscosity µ(θ) can be computed as

µ(θ) =
2

15
θ∫

∞

0
a(θ, r)r6

1
√
2π

e−r
2/2 dr

Recall conservation law and keeps only the first two order terms

∂tP⃗ (t) = Φ0[P⃗ ](t) + ϵΦ1[P⃗ ](t) mod O(ϵ2)

Spelling out the flux terms, we have

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

∂tρ(t) +Tr[L(t)]ρ(t) = 0,

∂tθ(t) +
2

3
Tr[L(t)]θ(t) = ϵµ(θ)

1

2
(Tr[L2

(t)] +L(t) ∶ L(t) −
2

3
(Tr[L(t)])2)

which recovers the compressible Navier-Stokes system.
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⎜
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4. Related Numerical Simulation
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Spectral Method for Boltzmann Equation

Let q = v − v∗ and q̂ is the unit vector along q.

Q(f, f)(v) ≈ QR(f, f)(v)

= ∫
B2R
∫
Sd−1

B(∣q∣, σ ⋅ q̂)[f(v′)f(v′∗) − f(v)f(v − q)]dσ dq

1 Truncate collision integral: in q to a ball BR with R ≥ 2S with BS ≈ suppv(f).

2 Restrict probability density f into computed domain DL = [−L,L]
d: expand it

periodically to the whole space.

3 Approximate density function f : by a truncated Fourier series, k ∈ Zd ∶ −N
2
≤

k1, ..., kd ≤
N
2
− 1,

f(v) ≈ fN (v) =

N
2
−1

∑

k=−N
2

f̂k ei
π
L
k⋅v with f̂k =

1

(2L)d
∫
DL

f(v) e− i
π
L
k⋅v dv.

4 Substitute and apply of Galerkin projection:

Q̂k =
1

(2L)d
∫
DL

Q(fN , fN ) e
− i π

L
k⋅v dv.
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Numerical Simulation (I): Multi-bumps initial condition [Hu-Q., JCP ’20]

Apply our fast spectral solver, coupled with RK4 scheme for time discretization, to solve
∂tf = Q(f, f) with initial datum F0(v):

F0(v) =
1

3
(δw(v) + δw(∣v∣ − 0.2))
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Numerical Simulation (II): Discontinuous initial condition [Hu-Q., JCP ’20]

For a typical discontinuous initial datum:

F 0
(v) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

ρ1
2πT1

exp(−
∣v∣2
2T1
) , for v1 > 0

ρ2
2πT2

exp(−
∣v∣2
2T2
) , for v1 < 0
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5. Summary and Outlook
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Summary

“Take-home” messages

Micro: A special class of dynamics system – OMD

Micro → Meso: Mean-field and Boltzmann-Grad Limit

Meso: A simplified kinetic equation – Homo-energetic Mean-field and Boltzmann

Meso → Macro: Hilbert and Chapman-Enskoy expansion



Introduction From Microscopic to Mesoscopic From Mesoscopic to Macroscopic Related Numerical Simulation Summary and Outlook

Outlook

Ongoing work:

Well-posedness:

Finite energy: General deformation [James-Nota-Velazquez ’19], [Bobylev-Nota-
Velazquez ’20], Shear flow [Duan-Liu ’21]

Infinite energy: ?

Long-time Behavior:

Balance between collision and hyperbolic effect: [James-Nota-Velazquez ’19]

Collision dominated: [James-Nota-Velazquez ’19], [Duan-Liu ’22], [Kepka ’22]

Hyperbolic dominated: ?

Future work:

1 Theoretical perspective: rigorous justification of multiscale hierarchy.

2 Numerical perspective: dimension reduction or high-order scheme.

3 Other Boltzmann-related models: apply the kinetic ideas to Physical, Biol-
ogy, Quantum systems...
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Thanks for your attention!
Papers and preprints can be found at my homepage

https://kunlun-qi.github.io/
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