On the Kinetic Description of bjective olecular ynamics (OMD)

Kunlun Qi

School of Mathematics
University of Minnesota-Twin Cities

France-Korea IRN webinar in PDE

December 4, 2023

Based on the joint work with Richard D. James (UMN) and Li Wang (UMN)

Outline

(1) Introduction

- Background and Motivation
- Objective Molecular Dynamics (OMD)
(2) From Microscopic to Mesoscopic
- Homo-energetic Boltzmann Equation
- Homo-energetic Mean-field Equation
(3) From Mesoscopic to Macroscopic
- Macroscopic Equations
- The compressible Euler limit via Hilbert expansion
- The compressible Navier-Stokes limit via Chapman-Enskoy expansion
(4) Related Numerical Simulation
(5) Summary and Outlook

1. Introduction

Background and Motivation

"Scale": Newtonian Mechanics \Rightarrow Kinetic Theory \Rightarrow Continuum Mechanics

Figure: Role of kinetic theory in multiscale modeling hierarchy ${ }^{1}$

[^0]
Background and Motivation

"Scale": Newtonian Mechanics \Rightarrow Kinetic Theory \Rightarrow Continuum Mechanics

Figure: Role of kinetic theory in multiscale modeling hierarchy ${ }^{1}$

[^1]
Background and Motivation

"Scale": Newtonian Mechanics \Rightarrow Kinetic Theory \Rightarrow Continuum Mechanics

C: compressible
IC: incompressible

NS: Navier-Stokes
E: Euler
"Objective Molecule Dynamics" (OMD) is a time-dependent invariant manifold of the equations of molecular dynamics.

Basic Set-up

- \Longrightarrow Simulated atoms:

$$
x_{k}(t), \quad k=1, \ldots, M
$$

" + " A discrete group of isometries ${ }^{a}$:

$$
G=\left\{g_{1}, g_{2}, \ldots, g_{N}\right\}, \quad M \ll N
$$

- \Longrightarrow Non-simulated atoms:

$$
x_{i, k}(t)=g_{i}\left(x_{k}(t)\right)
$$

$$
i=1, \ldots, N, k=1, \ldots, M
$$

$$
{ }^{a} g_{1}:=I d, \text { so } x_{1, k}(t)=x_{k}(t)
$$

Objective Structure

1-OS: each atom "see the same environment"

A set of points in \mathbb{R}^{3} is given, $\mathcal{S}=\left\{x_{i} \in \mathbb{R}^{3}, i=1, \ldots, N\right\}, N \leq \infty . \mathcal{S}$ is a 1 -OS if there are orthogonal transformations Q_{1}, \ldots, Q_{N} such that

$$
\left\{x_{i}+Q_{i}\left(x_{j}-x_{1}\right): j=1, \ldots, N\right\}=\mathcal{S}, \text { for } i=1, \ldots, N
$$

M-OS: $x_{i, k}$ "see the same environment" as $x_{1, k}$
Consider a structure consisting of N "molecules", each consisting of M atoms: $\mathcal{S}=\left\{x_{i, k} \in \mathbb{R}^{3}: i=1, \ldots, N, k=1, \ldots, M\right\}, N \leq \infty, M<\infty$.
\mathcal{S} is an M-OS, if $x_{1,1}, \ldots, x_{1, M}$ are distinct and there are $N M$ orthogonal transformations $Q_{i, k}$ such that
$\left\{x_{i, k}+Q_{i, k}\left(x_{j, l}-x_{1, k}\right): j=1, \ldots, N, l=1, \ldots, M\right\}=\mathcal{S}$, for $i=1, \ldots, N, k=1, \ldots, M$

Example of objective structure

Buckminsterfullerine (C_{60})
Let $G=\left\{R_{1}, \ldots, R_{N}\right\}$ be a finite subgroup of $O(3)$ with $N=60$ and let $x_{i}=R_{i} x_{1}$

Single-walled carbon nanotubes

Let $\vec{e}_{1}, \vec{e}_{2}, \vec{e}_{3}$ be an orthonormal basis and $R_{\theta} \in S O(3)$, the carbon nanotubes are given by

$$
g_{1}^{\nu_{1}} g_{2}^{\nu_{2}} g_{3}^{\nu_{3}}, \quad \nu_{1}, \nu_{2}, \nu_{3} \in \mathbb{Z}
$$

with

$$
\begin{aligned}
& g_{1}=\left(R_{\theta_{1}} \mid t_{1}\right), g_{2}=\left(R_{\theta_{2}} \mid t_{2}\right) \\
& g_{3}=(-I+2 e \otimes e \mid 0)
\end{aligned}
$$

Figure: Carbon nanotube (1-OS) with chirality $n=3, m=8$

Symmetry and Invariance

Isometry Group

$$
\begin{gathered}
g=(Q \mid c), \quad Q \in O(3), c \in \mathbb{R}^{3} \\
g(x)=Q x+c, \quad x \in \mathbb{R}^{3}
\end{gathered}
$$

- Closure: $g_{1}=\left(R_{1} \mid c_{1}\right), g_{2}=\left(R_{2} \mid c_{2}\right), g_{1} g_{2}=\left(R_{1} R_{2} \mid c_{1}+R_{1} c_{2}\right)$

$$
\Rightarrow g_{1} g_{2}(x)=g_{1}\left(g_{2}(x)\right)
$$

- Identity: $I d=(I \mid 0)$
- Inverse: $(Q \mid c)^{-1}=\left(Q^{\top} \mid-Q^{\top} c\right)$

Symmetry and Invariance

Isometry Group

$$
\begin{gathered}
g=(Q \mid c), \quad Q \in O(3), c \in \mathbb{R}^{3} \\
g(x)=Q x+c, \quad x \in \mathbb{R}^{3}
\end{gathered}
$$

- Closure: $g_{1}=\left(R_{1} \mid c_{1}\right), g_{2}=\left(R_{2} \mid c_{2}\right), g_{1} g_{2}=\left(R_{1} R_{2} \mid c_{1}+R_{1} c_{2}\right)$

$$
\Rightarrow g_{1} g_{2}(x)=g_{1}\left(g_{2}(x)\right)
$$

- Identity: $I d=(I \mid 0)$
- Inverse: $(Q \mid c)^{-1}=\left(Q^{\top} \mid-Q^{\top} c\right)$

Recall: For a typical dynamical system $\left(x_{i}(t), v_{i}(t)\right)$: for $i=1, \ldots, N$,

$$
\left\{\begin{array}{c}
\dot{x}_{i}(t)=v_{i}(t) \\
\ddot{x}_{i}(t)=\dot{v}_{i}(t)=-\sum_{\substack{j=1 \\
j \neq i}}^{N} \nabla_{x_{i}} U\left(\left|x_{i}(t)-x_{j}(t)\right|\right)
\end{array}\right.
$$

Invariant requirement of the potential*

(1) Frame-indifference: $Q \in O(3), c \in \mathbb{R}^{3}$

$$
\begin{aligned}
& Q \frac{\partial U}{\partial x_{i, k}}\left(\ldots, x_{i_{1}, 1}, \ldots, x_{i_{1}, M}, \ldots, x_{i_{2}, 1}, \ldots, x_{i_{2}, M}\right) \\
& \quad=\frac{\partial U}{\partial x_{i, k}}\left(\ldots, Q x_{i_{1}, 1}+c, \ldots, Q x_{i_{1}, M}+c, \ldots, Q x_{i_{2}, 1}+c, \ldots, Q x_{i_{2}, M}+c\right)
\end{aligned}
$$

(2) Permutation invariance:

$$
\begin{aligned}
& \frac{\partial U}{\partial x_{\Pi(i, k)}}\left(\ldots, x_{i_{1}, 1}, \ldots, x_{i_{1}, M}, \ldots, x_{i_{2}, 1}, \ldots, x_{i_{2}, M}\right) \\
&=\frac{\partial U}{\partial x_{i, k}}\left(\ldots, x_{\Pi\left(i_{1}, 1\right)}, \ldots, x_{\Pi\left(i_{1}, M\right)}, \ldots, x_{\Pi\left(i_{2}, 1\right)}, \ldots, x_{\Pi\left(i_{2}, M\right)}\right)
\end{aligned}
$$

Requirement of isometry**

The isometries g_{i} can depend explicitly on $t>0$, but this time dependence must be consistent with

$$
\frac{\mathrm{d}^{2} x_{j, k}(t)}{\mathrm{d} t^{2}}=\frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}} g_{i}\left(x_{k}(t), t\right)=Q_{i} \frac{\mathrm{~d}^{2} x_{k}(t)}{\mathrm{d} t^{2}}
$$

for $g_{i}=\left(Q_{i} \mid c_{i}\right) \in G, i=1, \ldots, N, k=1, \ldots, M$

Theorem ([James, ICM, '18])

Assumptions: Invariant requirement of the potential* + Requirement of isometry**.

If $\mathrm{x}_{\mathrm{k}}(\mathrm{t})=\mathrm{x}_{1, \mathrm{k}}(\mathrm{t}), k=1, \ldots, N$ satisfy the equation of molecular dynamics, i.e.,

$$
\left\{\begin{aligned}
m_{k} \ddot{x}_{1, k} & =f_{1, k}\left(\ldots, x_{j, 1}, x_{j, 2}, \ldots, x_{j, M}, x_{j+1,1}, x_{j+1,2}, \ldots, y_{j+1, M}, \ldots\right) \\
& =f_{1, k}\left(\ldots, g_{j}\left(y_{1,1}, t\right), \ldots, g_{j}\left(y_{1, M}, t\right), g_{j+1}\left(y_{1, M}, t\right)\right), \ldots, g_{j+1}\left(y_{1, M}, t\right) \\
x_{1, k}(0) & =x_{k}^{0}, \quad \dot{x}_{1, k}(0)=v_{k}^{0}, \quad k=1, \ldots, M
\end{aligned}\right.
$$

Then, $\mathbf{x}_{\mathbf{i}, \mathbf{k}}=\mathbf{g}\left(\mathbf{x}_{1, \mathbf{k}}(\mathbf{t}), \mathbf{t}\right), i=1, \ldots, N, k=1, \ldots, M$ satisfy the same equations of molecular dynamics:

$$
m_{k} \ddot{x}_{i, k}=f_{1, k}\left(\ldots, x_{j, 1}, x_{j, 2}, \ldots, x_{j, M}, x_{j+1,1}, x_{j+1,2}, \ldots, y_{j+1, M}, \ldots\right)
$$

Sketch of Proof

$$
\begin{aligned}
& m_{k} \ddot{x}_{i, k}=m_{k} Q_{i} \ddot{x}_{1, k} \quad \text { [Requirement**] } \\
= & Q_{i} f_{1, k}\left(\ldots, x_{j, 1}, \ldots, x_{j, M}, x_{j+1,1}, x_{j+1,2}, \ldots, y_{j+1, M}, \ldots\right) \\
= & Q_{i} f_{\Pi(i, k)}\left(\ldots, x_{j, 1}, \ldots, x_{j, M}, x_{j+1,1}, x_{j+1,2}, \ldots, y_{j+1, M}, \ldots\right) \text { [Requirement* (2)] } \\
= & Q_{i} f_{i, k}\left(\ldots, x_{\Pi(j, 1)}, \ldots, x_{\Pi(j, M)}, x_{\Pi(j+1,1)}, x_{\Pi(j+1,2)}, \ldots, y_{\Pi(j+1, M)}, \ldots\right) \\
= & Q_{i} f_{i, k}\left(\ldots, g_{i}^{-1}\left(x_{j, 1}\right), \ldots, g_{i}^{-1}\left(x_{j, M}\right), g_{i}^{-1}\left(x_{j+1,1}\right), \ldots, g_{i}^{-1}\left(x_{j+1, M}\right)\right) \\
= & Q_{i} f_{i, k}\left(\ldots, Q_{i}^{T}\left(x_{j, 1}-c_{i}\right), \ldots, Q_{i}^{T}\left(x_{j, M}-c_{i}\right), Q_{i}^{T}\left(x_{j+1,1}-c_{i}\right)\right.
\end{aligned}
$$

$$
\left.\ldots, Q_{i}^{T}\left(x_{j+1, M}-c_{i}\right), \ldots\right)[\text { Requirement* (1)] }
$$

$$
=f_{i, k}\left(\ldots, x_{j, 1}, x_{j, 2}, \ldots, x_{j, M}, x_{j+1,1}, x_{j+1,2}, \ldots, y_{j+1, M}, \ldots\right)
$$

Requirement of isometry** $\Longrightarrow Q_{i}=$ const $\in O(3)$ and $c_{i}=a_{i} t+b_{i}$

Figure: The invariant manifold of the equations of molecular dynamics.

$$
\left\{\begin{array}{l}
p=m_{k} \dot{x}_{i, k}=m_{k} \frac{\mathrm{~d}}{\mathrm{~d} t} g_{i}\left(x_{1, k}, t\right)=m_{k} Q_{i} \dot{x}_{1, k}+m_{k} a_{i} \\
q=x_{i, k}=g_{i}\left(x_{1, k}, t\right)=Q x_{1, k}+a_{i} t+b_{i}
\end{array}\right.
$$

The simplest example

Translation Group:

$$
G_{T}=\{(\underbrace{I}_{:=Q} \mid \underbrace{\nu_{1} \vec{e}_{1}+\nu_{2} \vec{e}_{2}+\nu_{3} \vec{e}_{3}}_{:=c}): \nu^{1}, \nu^{2}, \nu^{3} \in \mathbb{Z}\}
$$

then, Simulated atoms:

$$
x_{k}(t)=x_{(0,0,0), k}(t), \quad k=1, \ldots, M
$$

Non-simulated atoms:

$$
x_{\nu, k}(t)=g_{\nu}\left(x_{k}(t), t\right)=x_{k}(t)+(I+t A)\left(\nu^{i} \vec{e}_{i}\right), \quad k=1, \ldots, M
$$

Simple Shear

$$
A=\left(\begin{array}{ccc}
0 & K & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

In Euerian Framework:

$$
u(t, x)=A(I+t A)^{-1} x
$$

2. From Microscopic to Mesoscopic

From now, let us jump into the kinetic regime

Figure: The invariant manifold of the equations of molecular dynamics in kinetic regime

What can be inherited from the invariant manifold?

- The velocities at $x_{k}=0$ are $\dot{x}_{k}, k=1, . ., M$
- The velocities at $x=(I+t A) \nu$ are $\dot{x}_{k}+A \nu, k=1, \ldots, M$
- Or, in the Eulerian form used in the kinetic theory, the velocities at x are $\dot{x}_{k}+A(I+t A)^{-1} x, k=1, \ldots, M$

$$
f(t, 0, v)=f\left(t, x, v+A(I+t A)^{-1} x\right) \Longrightarrow f(t, x, v)=g(t, \underbrace{v-A(I+t A)^{-1} x}_{=: w})
$$

For Boltzmann equation

Classical Boltzmann equation

$$
\frac{\partial}{\partial t} g(t, w)+\left[A(I+t A)^{-1} w\right] \cdot \nabla_{w} g(t, w)=Q(g, g)(t, w)
$$

Homo-energetic Boltzmann equation

$$
\begin{aligned}
& \frac{\partial}{\partial t} f(t, x, v)+v \cdot \nabla_{x} f(t, x, v)=Q(f, f)(t, x, v) \\
& \Downarrow f(t, x, v)=g(t, w) \text { with } w:=v-A(I+t A)^{-1} x
\end{aligned}
$$

For Boltzmann equation

Classical Boltzmann equation

$$
\begin{gathered}
\frac{\partial}{\partial t} f(t, x, v)+v \cdot \nabla_{x} f(t, x, v)=Q(f, f)(t, x, v) \\
\Downarrow f(t, x, v)=g(t, w) \text { with } w:=v-A(I+t A)^{-1} x \\
\frac{\partial}{\partial t} g(t, w)+\left[A(I+t A)^{-1} w\right] \cdot \nabla_{w} g(t, w)=Q(g, g)(t, w)
\end{gathered}
$$

Homo-energetic Boltzmann equation

$$
Q(g, f)=\int_{\mathbb{R}^{d}} \int_{\mathbb{S}^{d-1}} \underbrace{\mathcal{B}\left(v-v_{\star}, \sigma\right)}_{\text {collision kernel }}[\underbrace{g\left(v_{\star}^{\prime}\right) f\left(v^{\prime}\right)}_{\text {"gain" }}-\underbrace{g\left(v_{\star}\right) f(v)}_{\text {"loss" }}] \mathrm{d} \sigma \mathrm{~d} v_{*}
$$

$$
\left\{\begin{array}{l}
v^{\prime}=\frac{v+v_{*}}{2}+\frac{\left|v-v_{*}\right|}{2} \sigma \\
v_{\star}^{\prime}=\frac{v+v_{*}}{2}-\frac{\left|v-v_{*}\right|}{2} \sigma
\end{array}\right.
$$

where the parameter σ varies over the unit sphere \mathbb{S}^{d-1}.

Remark I: Classification

$$
f(t, x, v)=g(t, w) \quad \text { with } \quad w=v-\xi(t, x)
$$

Simple shear:

$$
\xi(t, x)=L(t) x=A(I+A t)^{-1} x
$$

$$
L(t)=\left(\begin{array}{lll}
0 & K & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad K \neq 0
$$

$\left\{\begin{array}{l}\text { (i) } \frac{\partial \xi_{k}}{\partial x_{j}} \text { independent on } x ; \\ \text { (ii) } \partial_{t} \xi+\xi \cdot \nabla_{x} \xi=0 .\end{array}\right.$
Planar shear:

$$
L(t)=\frac{1}{t}\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & K \\
0 & 0 & 1
\end{array}\right)+O\left(\frac{1}{t^{2}}\right) \quad \text { as } t \rightarrow \infty
$$

Simple shear with decaying planar dilatation/shear.

$$
L(t)=\left(\begin{array}{ccc}
0 & K_{2} & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)+\frac{1}{t}\left(\begin{array}{ccc}
0 & K_{1} K_{3} & K_{1} \\
0 & 0 & 0 \\
0 & K_{3} & 1
\end{array}\right)+O\left(\frac{1}{t^{2}}\right), \quad K_{2} \neq 0
$$

Combined orthogonal shear:

$$
L(t)=\left(\begin{array}{ccc}
0 & K_{3} & K_{2}-t K_{1} K_{3} \\
0 & 0 & K_{1} \\
0 & 0 & 0
\end{array}\right), \quad K_{1} K_{3} \neq 0
$$

Remark II: Collision kernel

The collision kernel \mathcal{B} is a non-negative function that depends on its arguments only through $\left|v-v_{*}\right|$ and cosine of the deviation angle θ :

$$
\mathcal{B}\left(v-v_{*}, \sigma\right)=B\left(\left|v-v_{*}\right|, \cos \theta\right), \quad \cos \theta=\frac{\sigma \cdot\left(v-v_{*}\right)}{\left|v-v_{*}\right|}
$$

For the inverse power law potential,

$$
B\left(\left|v-v_{*}\right|, \cos \theta\right)=b(\cos \theta) \Phi\left(\left|v-v_{\star}\right|\right)
$$

- Kinetic part:

$$
\Phi\left(\left|v-v_{*}\right|\right)=\left|v-v_{*}\right|^{\gamma} \Rightarrow\left\{\begin{array}{l}
\gamma>0, \text { Hard potential } \Longrightarrow \text { Collision Dominated Case } \\
\gamma=0, \text { Maxwellian molecules } \Longrightarrow \text { Balanced Case } \\
\gamma<0, \text { Soft potential } \Longrightarrow \text { Hyperbolic Dominated Case }
\end{array}\right.
$$

Consider the re-scaling $g(t, w)=\frac{1}{t} G(\tau, \xi)$ with $\tau=\log (t), \xi_{1}=\frac{w_{1}}{t} \xi_{j}=w_{j}, j=2,3$:

$$
\frac{\partial G}{\partial \tau}-\operatorname{div}_{\xi}\left[\left(\xi_{1}+K \xi_{2}\right) \vec{e}_{1} G\right] \approx \mathrm{e}^{\gamma \tau} Q(G, G)
$$

- Angular part:

$$
\left.\sin ^{d-2} \theta b(\cos \theta)\right|_{\theta \rightarrow 0} \sim K \theta^{-1-\nu}, \quad 0<\nu<2
$$

Recall the Big Picture

C: compressible
IC: incompressible

NS: Navier-Stokes
E: Euler

Previous work

Arrow (2): BBGKY hierarchy

- Mean-field Limit: $N \rightarrow \infty$.

$$
\left\{\begin{array}{l}
\dot{x}_{i}(t)=v_{i}(t), \\
\dot{v}_{i}(t)=-\frac{1}{N} \sum_{\substack{j=1 \\
j \neq i}}^{N} \nabla_{x_{i}} U\left(\left|x_{i}(t)-x_{j}(t)\right|\right) .
\end{array}\right.
$$

[Braun-Hepp,'77], [Golse, '03], [Spohn, '12]

- Boltzmann-Grad Limit: $N \varepsilon^{d-1} \rightarrow O(1), N \rightarrow \infty, \varepsilon \rightarrow 0$.

$$
\left\{\begin{array}{l}
\dot{x}_{i}(t)=v_{i}(t), \\
\dot{v}_{i}(t)=-\frac{1}{\varepsilon} \sum_{\substack{j=1 \\
j \neq i}}^{N} \nabla_{x_{i}} U\left(\frac{\left|x_{i}(t)-x_{j}(t)\right|}{\varepsilon}\right) .
\end{array}\right.
$$

[Grad,'49, '58], [Cercignani, '72], [Lanford, '75], [Gallagher-Raymond-Texier, '13]
Arrow (3): Homo-energetic Transformation $f(t, x, v)=g\left(t, v-A(I+t A)^{-1} x\right)$
[Dayal-James, '10], [James, '18], [James-Nota-Velazquez, '19]

Qur first goal:

How to proceed with Arrow (4) ?

Previous work

Arrow (2): BBGKY hierarchy

- Mean-field Limit: $N \rightarrow \infty$.

$$
\left\{\begin{array}{l}
\dot{x}_{i}(t)=v_{i}(t), \\
\dot{v}_{i}(t)=-\frac{1}{N} \sum_{\substack{j=1 \\
j \neq i}}^{N} \nabla_{x_{i}} U\left(\left|x_{i}(t)-x_{j}(t)\right|\right) .
\end{array}\right.
$$

[Braun-Hepp,'77], [Golse, '03], [Spohn, '12]

- Boltzmann-Grad Limit: $N \varepsilon^{d-1} \rightarrow O(1), N \rightarrow \infty, \varepsilon \rightarrow 0$.

$$
\left\{\begin{array}{l}
\dot{x}_{i}(t)=v_{i}(t), \\
\dot{v}_{i}(t)=-\frac{1}{\varepsilon} \sum_{\substack{j=1 \\
j \neq i}}^{N} \nabla_{x_{i}} U\left(\frac{\left|x_{i}(t)-x_{j}(t)\right|}{\varepsilon}\right) .
\end{array}\right.
$$

[Grad,'49, '58], [Cercignani, '72], [Lanford, '75], [Gallagher-Raymond-Texier, '13]
Arrow (3): Homo-energetic Transformation $f(t, x, v)=g\left(t, v-A(I+t A)^{-1} x\right)$
[Dayal-James, '10], [James, '18], [James-Nota-Velazquez, '19]

Our first goal:

How to proceed with Arrow (4) ?

Dynamical system of OMD

Simulated and Non-simulated atoms are indistinguishable in new variable

$$
\begin{gathered}
x_{i, k}(t)=x_{k}(t)+(I+t A) \nu_{i} \\
\Downarrow \\
\dot{x}_{i, k}(t)=\dot{x}_{k}(t)+A \nu_{i} \Rightarrow v_{i, k}(t)=v_{k}(t)+A \nu_{i} \\
\Downarrow \\
\underbrace{v_{i, k}(t)-A(I+t A)^{-1} x_{i, k}(t)}_{:=w_{i, k}(t)}=\underbrace{v_{k}(t)-A(I+t A)^{-1} x_{k}(t)}_{:=w_{k}(t)}
\end{gathered}
$$

The dynamical system of OMD in new variables $\left(x_{i}(t), w_{i}(t)\right)$: for $i=1, \ldots, N$

Dynamical system of OMD

Simulated and Non-simulated atoms are indistinguishable in new variable

$$
\begin{gathered}
x_{i, k}(t)=x_{k}(t)+(I+t A) \nu_{i} \\
\downarrow \\
\dot{x}_{i, k}(t)=\dot{x}_{k}(t)+A \nu_{i} \Rightarrow v_{i, k}(t)=v_{k}(t)+A \nu_{i} \\
\Downarrow \\
\underbrace{v_{i, k}(t)-A(I+t A)^{-1} x_{i, k}(t)}_{:=w_{i, k}(t)}=\underbrace{v_{k}(t)-A(I+t A)^{-1} x_{k}(t)}_{:=w_{k}(t)}
\end{gathered}
$$

The dynamical system of OMD in new variables $\left(x_{i}(t), w_{i}(t)\right)$: for $i=1, \ldots, N$,

$$
\left\{\begin{array}{l}
\dot{x}_{i}(t)=w_{i}(t)+A(I+t A)^{-1} x_{i}(t), \\
\dot{w}_{i}(t)=-\sum_{\substack{j=1 \\
j \neq i}}^{N} \nabla_{x_{i}} U\left(\left|x_{i}(t)-x_{j}(t)\right|\right)-A(I+t A)^{-1} w_{i}(t) .
\end{array}\right.
$$

Kinetic description

- Mean-field type model:

$$
\text { (M) }\left\{\begin{array}{c}
\dot{x}_{i}(t)=w_{i}(t)+A(I+t A)^{-1} x_{i}(t) \\
\dot{w}_{i}(t)=-\frac{1}{N} \sum_{\substack{j=1 \\
j \neq i}}^{N} \nabla_{x_{i}} U\left(\left|x_{i}(t)-x_{j}(t)\right|\right)-A(I+t A)^{-1} w_{i}(t) \\
\quad \downarrow \quad N \rightarrow \infty
\end{array}\right.
$$

$$
\frac{\partial g}{\partial t}+w \cdot \nabla_{x} g+\left[A(I+t A)^{-1} x\right] \cdot \nabla_{x} g-\left[A(I+t A)^{-1} w\right] \cdot \nabla_{w} g=\left[\nabla_{x} U * \rho_{g}\right](t, x) \cdot \nabla_{w} g
$$

- Boltzmann type model:

Kinetic description

- Mean-field type model:

$$
\begin{gathered}
\text { (M) }\left\{\begin{array}{c}
\dot{x}_{i}(t)=w_{i}(t)+A(I+t A)^{-1} x_{i}(t) \\
\dot{w}_{i}(t)=-\frac{1}{N} \sum_{\substack{j=1 \\
j \neq i}}^{N} \nabla_{x_{i}} U\left(\left|x_{i}(t)-x_{j}(t)\right|\right)-A(I+t A)^{-1} w_{i}(t) \\
\quad \downarrow \quad N \rightarrow \infty
\end{array}\right. \\
\frac{\partial g}{\partial t}+w \cdot \nabla_{x} g+\left[A(I+t A)^{-1} x\right] \cdot \nabla_{x} g-\left[A(I+t A)^{-1} w\right] \cdot \nabla_{w} g=\left[\nabla_{x} U * \rho_{g}\right](t, x) \cdot \nabla_{w} g
\end{gathered}
$$

- Boltzmann type model:
(B) $\left\{\begin{array}{l}\dot{x}_{i}(t)=w_{i}(t)+A(I+t A)^{-1} x_{i}(t) \\ \dot{w}_{i}(t)=-\frac{1}{\varepsilon} \sum_{\substack{j=1 \\ j \neq i}}^{N} \nabla_{x_{i}} U\left(\frac{\left|x_{i}(t)-x_{j}(t)\right|}{\varepsilon}\right)-A(I+t A)^{-1} w_{i}(t)\end{array}\right.$
$\downarrow \quad N \varepsilon^{d-1} \rightarrow O(1)$, as $N \rightarrow \infty, \varepsilon \rightarrow 0$
$\frac{\partial g}{\partial t}+w \cdot \nabla_{x} g+\left[A(I+t A)^{-1} x\right] \cdot \nabla_{x} g-\left[A(I+t A)^{-1} w\right] \cdot \nabla_{w} g=Q(g, g)$

00000000000000

Derivation of mean-field limit

Denote

$$
\Omega^{N}:=\left\{\left(x_{1}, w_{1}, x_{2}, w_{2} \ldots, x_{N}, w_{N}\right) \in \mathbb{R}^{6 N} \mid x_{i} \neq x_{j}, i \neq j\right\}
$$

and let

$$
P^{(N)}\left(t, x_{1}, w_{1}, x_{2}, w_{2}, \ldots, x_{N}, w_{N}\right)
$$

be the N-particle distribution function.
Our goal: derive the mean-field equation $P^{(1)}\left(t, x_{1}, w_{1}\right)$
Starting with the Liouville equation satisfied by $P^{(N)}\left(t, x_{1}, w_{1}, \ldots, x_{N}, w_{N}\right)$

$$
\frac{\partial P^{(N)}}{\partial t}+\sum_{i=1}^{N}\left[\dot{x}_{i} \cdot \nabla_{x_{i}} P^{(N)}+\dot{w}_{i} \cdot \nabla_{w_{i}} P^{(N)}\right]=0,
$$

and substituting system (M), it leads to

$$
\begin{aligned}
& \frac{\partial P^{(N)}}{\partial t}+\sum_{i=1}^{N} w_{i} \cdot \nabla_{x_{i}} P^{(N)}+\sum_{i=1}^{N}\left[A(I+t A)^{-1} x_{i}\right] \cdot \nabla_{x_{i}} P^{(N)} \\
& \quad-\frac{1}{N} \sum_{i=1}^{N} \sum_{\substack{j=1 \\
j \neq i}}^{N} \nabla_{x_{i}} U\left(\left|x_{i}-x_{j}\right|\right) \cdot \nabla w_{w_{i}} P^{(s)}-\sum_{i=1}^{N}\left[A(I+t A)^{-1} w_{i}\right] \cdot \nabla_{w_{i}} P^{(N)}=0
\end{aligned}
$$

Derivation of mean-field limit

Integrating over the domain $\left\{x_{s+1}, w_{s+1}, \ldots, x_{N}, w_{N}\right\}$, we obtain the corresponding kinetic equation of the s-marginal distribution $P^{(s)}$,

$$
\begin{gathered}
\frac{\partial P^{(s)}}{\partial t}+\underbrace{\int_{\mathbb{R}^{6(N-s)}}\left(\sum_{i=1}^{N} w_{i} \cdot \nabla_{x_{i}} P^{(N)}+\sum_{i=1}^{N}\left[A(I+t A)^{-1} x_{i}\right] \cdot \nabla_{x_{i}} P^{(N)}\right) \mathrm{d} x_{s+1} \ldots w_{N}}_{=:(\mathrm{I})} \\
-\underbrace{\int_{\mathbb{R}^{6(N-s)}}\left(\frac{1}{N} \sum_{i=1}^{N} \sum_{\substack{j=1 \\
j \neq i}}^{s} \nabla_{x_{i}} U\left(\left|x_{i}-x_{j}\right|\right)-\sum_{i=1}^{N}\left[A(I+t A)^{-1} w_{i}\right]\right) \cdot \nabla_{w_{i}} P^{(N)} \mathrm{d} x_{s+1} \ldots w_{N}}_{=:(\mathrm{II})} \\
=\underbrace{\int_{\mathbb{R}^{6(N-s)}} \frac{1}{N} \sum_{i=1}^{N} \sum_{\substack{\sum_{j=s+1}^{N \neq i}}}^{N} \nabla_{x_{i}} U\left(\left|x_{i}-x_{j}\right|\right) \cdot \nabla_{w_{i}} P^{(N)} \mathrm{d} x_{s+1} w_{s+1} \ldots x_{N} w_{N}}_{=: \text {(III) }}
\end{gathered}
$$

000000000000000000000000000000

Derivation of mean-field limit

For term (1),

$$
\begin{aligned}
(I)= & \sum_{i=1}^{s} w_{i} \cdot \nabla_{x_{i}} P^{(s)}+\sum_{i=1}^{s}\left[A(I+t A)^{-1} x_{i}\right] \cdot \nabla_{x_{i}} P^{(s)} \\
& +\sum_{i=s+1}^{N} \int_{\mathbb{R}^{6(N-s)}}\left[A(I+t A)^{-1} x_{i}\right] \cdot \nabla_{x_{i}} P^{(N)} \mathrm{d} x_{s+1} \ldots w_{N} \\
= & \sum_{i=1}^{s} w_{i} \cdot \nabla{x_{i}} P^{(s)}+\sum_{i=1}^{s}\left[A(I+t A)^{-1} x_{i}\right] \cdot \nabla_{x_{i}} P^{(s)}-(N-s) \operatorname{Tr}\left[A(I+t A)^{-1}\right] P^{(s)}
\end{aligned}
$$

For term (II),

For term (III), since particles are indistinguishable,

000000000000000000000000000000

Derivation of mean-field limit

For term (1),

$$
\begin{aligned}
(I)= & \sum_{i=1}^{s} w_{i} \cdot \nabla_{x_{i}} P^{(s)}+\sum_{i=1}^{s}\left[A(I+t A)^{-1} x_{i}\right] \cdot \nabla_{x_{i}} P^{(s)} \\
& +\sum_{i=s+1}^{N} \int_{\mathbb{R}^{6(N-s)}}\left[A(I+t A)^{-1} x_{i}\right] \cdot \nabla_{x_{i}} P^{(N)} \mathrm{d} x_{s+1} \ldots w_{N} \\
= & \sum_{i=1}^{s} w_{i} \cdot \nabla{x_{i}} P^{(s)}+\sum_{i=1}^{s}\left[A(I+t A)^{-1} x_{i}\right] \cdot \nabla_{x_{i}} P^{(s)}-(N-s) \operatorname{Tr}\left[A(I+t A)^{-1}\right] P^{(s)}
\end{aligned}
$$

For term (II),

$$
\begin{aligned}
(I I)= & -\frac{1}{N} \sum_{\substack{i, j=1 \\
i \neq j}}^{s} \nabla_{x_{i}} U\left(\left|x_{i}-x_{j}\right|\right) \cdot \nabla w_{i} P^{(s)}-\sum_{i=1}^{s}\left[A(I+t A)^{-1} w_{i}\right] \cdot \nabla w_{i} P^{(s)} \\
& +(N-s) \operatorname{Tr}\left[A(I+t A)^{-1}\right] P^{(s)}
\end{aligned}
$$

For term (III), since particles are indistinguishable,

000000000000000000000000000000

Derivation of mean-field limit

For term (1),

$$
\begin{aligned}
(I)= & \sum_{i=1}^{s} w_{i} \cdot \nabla_{x_{i}} P^{(s)}+\sum_{i=1}^{s}\left[A(I+t A)^{-1} x_{i}\right] \cdot \nabla_{x_{i}} P^{(s)} \\
& +\sum_{i=s+1}^{N} \int_{\mathbb{R}^{6(N-s)}}\left[A(I+t A)^{-1} x_{i}\right] \cdot \nabla_{x_{i}} P^{(N)} \mathrm{d} x_{s+1} \ldots w_{N} \\
= & \sum_{i=1}^{s} w_{i} \cdot \nabla_{x_{i}} P^{(s)}+\sum_{i=1}^{s}\left[A(I+t A)^{-1} x_{i}\right] \cdot \nabla_{x_{i}} P^{(s)}-(N-s) \operatorname{Tr}\left[A(I+t A)^{-1}\right] P^{(s)}
\end{aligned}
$$

For term (II),

$$
\begin{aligned}
(I I)= & -\frac{1}{N} \sum_{\substack{i, j=1 \\
i \neq j}}^{s} \nabla_{x_{i}} U\left(\left|x_{i}-x_{j}\right|\right) \cdot \nabla w_{i} P^{(s)}-\sum_{i=1}^{s}\left[A(I+t A)^{-1} w_{i}\right] \cdot \nabla w_{i} P^{(s)} \\
& +(N-s) \operatorname{Tr}\left[A(I+t A)^{-1}\right] P^{(s)}
\end{aligned}
$$

For term (III), since particles are indistinguishable,

$$
\begin{aligned}
(I I I) & =\frac{N-s}{N} \sum_{i=1}^{s} \int_{\mathbb{R}^{6}} \nabla_{x_{i}} U\left(\left|x_{i}-x_{s+1}\right|\right) \cdot \nabla_{w_{i}} P^{(s+1)}\left(t, X_{s}, W_{s}, x_{s+1} w_{s+1}\right) \mathrm{d} x_{s+1} w_{s+1} \\
& =\frac{N-s}{N} \sum_{i=1}^{s} \nabla w_{i} \cdot \int_{\mathbb{R}^{6}}\left[\nabla x_{i} U\left(\left|x_{i}-x_{s+1}\right|\right) P^{(s+1)}\left(t, X_{s}, W_{s}, x_{s+1} w_{s+1}\right)\right] \mathrm{d} x_{s+1} w_{s+1}
\end{aligned}
$$

000000000000000000000000000000

Derivation of mean-field limit

Combining the terms (I) - (III) altogether,

$$
\begin{aligned}
& \frac{\partial P^{(s)}}{\partial t}
\end{aligned}+\sum_{i=1}^{s} w_{i} \cdot \nabla_{x_{i}} P^{(s)}+\sum_{i=1}^{s}\left[A(I+t A)^{-1} x_{i}\right] \cdot \nabla_{x_{i}} P^{(s)} .
$$

If particular, taking $s=1$ above, it reduces to the two-particle case:

Derivation of mean-field limit

Combining the terms (I) - (III) altogether,

$$
\begin{aligned}
& \frac{\partial P^{(s)}}{\partial t}+\sum_{i=1}^{s} w_{i} \cdot \nabla_{x_{i}} P^{(s)}+\sum_{i=1}^{s}\left[A(I+t A)^{-1} x_{i}\right] \cdot \nabla_{x_{i}} P^{(s)} \\
& -\sum_{i=1}^{s}\left[A(I+t A)^{-1} w_{i}\right] \cdot \nabla w_{i} P^{(s)}-\frac{1}{N} \sum_{\substack{i, j=1 \\
i \neq j}}^{s} \nabla_{x_{i}} U\left(\left|x_{i}-x_{j}\right|\right) \cdot \nabla w_{i} P^{(s)} \\
& =\frac{N-s}{N} \sum_{i=1}^{s} \nabla w_{i} \cdot \int_{\mathbb{R}^{6}}\left[\nabla x_{i} U\left(\left|x_{i}-x_{s+1}\right|\right) P^{(s+1)}\left(t, X_{s}, W_{s}, x_{s+1} w_{s+1}\right)\right] \mathrm{d} x_{s+1} w_{s+1}
\end{aligned}
$$

In particular, taking $s=1$ above, it reduces to the two-particle case:

$$
\begin{aligned}
& \frac{\partial P^{(1)}}{\partial t}+w_{1} \cdot \nabla_{x_{1}} P^{(1)}+\left[A(I+t A)^{-1} x_{1}\right] \cdot \nabla_{x_{1}} P^{(1)}-\left[A(I+t A)^{-1} w_{1}\right] \cdot \nabla_{w_{1}} P^{(1)} \\
& \quad=\frac{N-s}{N} \nabla_{w_{1}} \cdot \int_{\mathbb{R}^{6}}\left[\nabla_{x_{1}} U\left(\left|x_{1}-x_{2}\right|\right) P^{(2)}\left(t, x_{1} w_{1}, x_{2} w_{2}\right)\right] \mathrm{d} x_{2} w_{2}
\end{aligned}
$$

Derivation of mean-field limit

To close the hierarchy above, we consider the "propagation of chaos" assumption:

$$
P^{(2)}\left(t, x_{1} w_{1}, x_{2} w_{2}\right)=P^{(1)}\left(t, x_{1}, w_{1}\right) P^{(1)}\left(t, x_{2}, w_{2}\right)
$$

which says the two particles remain independent throughout the dynamics. Under this assumption, the right-hand side becomes

$$
\begin{aligned}
& \frac{N-1}{N} \nabla_{w_{1}} \cdot \int_{\mathbb{R}^{6}}\left[\nabla_{x_{1}} U\left(\left|x_{1}-x_{2}\right|\right) P^{(2)}\left(t, x_{1}, w_{1}, x_{2}, w_{2}\right)\right] \mathrm{d} x_{2} \mathrm{~d} w_{2} \\
= & \frac{N-1}{N} \int_{\mathbb{R}^{6}}\left[\nabla_{x_{1}} U\left(\left|x_{1}-x_{2}\right|\right) P^{(1)}\left(t, x_{2}, w_{2}\right) \nabla_{w_{1}} P^{(1)}\left(t, x_{1}, w_{1}\right)\right] \mathrm{d} x_{2} \mathrm{~d} w_{2} \\
= & \frac{N-1}{N} \int_{\mathbb{R}^{3}}\left[\nabla_{x_{1}} U\left(\left|x_{1}-x_{2}\right|\right) \int_{\mathbb{R}^{3}} P^{(1)}\left(t, x_{2}, w_{2}\right) \mathrm{d} w_{2}\right] \mathrm{d} x_{2} \cdot \nabla_{w_{1}} P^{(1)}\left(t, x_{1}, w_{1}\right) \\
= & \frac{N-1}{N} \nabla_{x_{1}} U * \rho_{P^{(1)}}\left(t, x_{1}\right) \cdot \nabla_{w_{1}} P^{(1)}\left(t, x_{1}, w_{1}\right)
\end{aligned}
$$

Finally, by re-naming $P^{(1)}\left(t, x_{1}, w_{1}\right)$ to $g(t, x, w)$

Derivation of mean-field limit

To close the hierarchy above, we consider the "propagation of chaos" assumption:

$$
P^{(2)}\left(t, x_{1} w_{1}, x_{2} w_{2}\right)=P^{(1)}\left(t, x_{1}, w_{1}\right) P^{(1)}\left(t, x_{2}, w_{2}\right)
$$

which says the two particles remain independent throughout the dynamics. Under this assumption, the right-hand side becomes

$$
\begin{aligned}
& \frac{N-1}{N} \nabla_{w_{1}} \cdot \int_{\mathbb{R}^{6}}\left[\nabla_{x_{1}} U\left(\left|x_{1}-x_{2}\right|\right) P^{(2)}\left(t, x_{1}, w_{1}, x_{2}, w_{2}\right)\right] \mathrm{d} x_{2} \mathrm{~d} w_{2} \\
= & \frac{N-1}{N} \int_{\mathbb{R}^{6}}\left[\nabla_{x_{1}} U\left(\left|x_{1}-x_{2}\right|\right) P^{(1)}\left(t, x_{2}, w_{2}\right) \nabla_{w_{1}} P^{(1)}\left(t, x_{1}, w_{1}\right)\right] \mathrm{d} x_{2} \mathrm{~d} w_{2} \\
= & \frac{N-1}{N} \int_{\mathbb{R}^{3}}\left[\nabla_{x_{1}} U\left(\left|x_{1}-x_{2}\right|\right) \int_{\mathbb{R}^{3}} P^{(1)}\left(t, x_{2}, w_{2}\right) \mathrm{d} w_{2}\right] \mathrm{d} x_{2} \cdot \nabla_{w_{1}} P^{(1)}\left(t, x_{1}, w_{1}\right) \\
= & \frac{N-1}{N} \nabla_{x_{1}} U * \rho_{P^{(1)}}\left(t, x_{1}\right) \cdot \nabla_{w_{1}} P^{(1)}\left(t, x_{1}, w_{1}\right)
\end{aligned}
$$

Finally, by re-naming $P^{(1)}\left(t, x_{1}, w_{1}\right)$ to $g(t, x, w)$

$$
\begin{aligned}
\frac{\partial g(t, x, w)}{\partial t}+w \cdot \nabla_{x} g+\left[A(I+t A)^{-1} x\right] \cdot \nabla_{x} g-[& \left.A(I+t A)^{-1} w\right] \cdot \nabla_{w} g \\
& =\left[\nabla_{x} U * \rho_{g}\right](t, x) \cdot \nabla_{w} g
\end{aligned}
$$

Theorem (Existence, uniqueness and stability [James-Q.-Wang '23])

For any initial datum $g_{0}(x, w) \in \mathcal{P}_{c}\left(\mathbb{R}^{3} \times \mathbb{R}^{3}\right)$, there exists a measure-valued solution $g_{t}(x, w)=g(t, x, w) \in C\left([0,+\infty), \mathcal{P}_{c}\left(\mathbb{R}^{3} \times \mathbb{R}^{3}\right)\right)$ to mean-field equation, and there is an increasing function $R=R(T)$ such that for all $T>0$,

$$
\begin{equation*}
\operatorname{supp} g_{t}(\cdot, \cdot) \subset B_{R(T)} \subset \mathbb{R}^{3} \times \mathbb{R}^{3}, \quad \forall t \in[0, T] \tag{1}
\end{equation*}
$$

This solution is unique among the family of solutions $C\left([0,+\infty), \mathcal{P}_{c}\left(\mathbb{R}^{3} \times \mathbb{R}^{3}\right)\right)$ satisfying (1).

Moreover, assume that $g_{0}, h_{0} \in \mathcal{P}_{c}\left(\mathbb{R}^{3} \times \mathbb{R}^{3}\right)$ are two initial conditions, and g_{t}, h_{t} are the corresponding solutions to mean-field equation. Then,

$$
W_{1}\left(g_{t}(\cdot, \cdot), h_{t}(\cdot, \cdot)\right) \leq \mathrm{e}^{2 t L} W_{1}\left(g_{0}(\cdot, \cdot), h_{0}(\cdot, \cdot)\right), \quad \forall t \geq 0
$$

where L is a constant depending on A and U, and W_{1} is Monge-Kantorovich-Rubinstein distance defined as:

$$
W_{1}(\mu, \nu):=\sup \left\{\left|\int_{\mathbb{R}^{3} \times \mathbb{R}^{3}} \varphi(P)(\mu(P)-\nu(P)) \mathrm{d} P\right|, \varphi \in \operatorname{Lip}\left(\mathbb{R}^{3} \times \mathbb{R}^{3}\right),\|\varphi\|_{\mathrm{Lip}} \leq 1\right\}
$$

Sketch of proof: Fix-point argument
Define a flow operator at time $t \in[0, T)$

For an initial probability measure $g_{0}(x, w)$, the function

Theorem (Existence, uniqueness and stability [James-Q.-Wang '23])

For any initial datum $g_{0}(x, w) \in \mathcal{P}_{c}\left(\mathbb{R}^{3} \times \mathbb{R}^{3}\right)$, there exists a measure-valued solution $g_{t}(x, w)=g(t, x, w) \in C\left([0,+\infty), \mathcal{P}_{c}\left(\mathbb{R}^{3} \times \mathbb{R}^{3}\right)\right)$ to mean-field equation, and there is an increasing function $R=R(T)$ such that for all $T>0$,

$$
\begin{equation*}
\operatorname{supp} g_{t}(\cdot, \cdot) \subset B_{R(T)} \subset \mathbb{R}^{3} \times \mathbb{R}^{3}, \quad \forall t \in[0, T] \tag{1}
\end{equation*}
$$

This solution is unique among the family of solutions $C\left([0,+\infty), \mathcal{P}_{c}\left(\mathbb{R}^{3} \times \mathbb{R}^{3}\right)\right)$ satisfying (1).

Moreover, assume that $g_{0}, h_{0} \in \mathcal{P}_{c}\left(\mathbb{R}^{3} \times \mathbb{R}^{3}\right)$ are two initial conditions, and g_{t}, h_{t} are the corresponding solutions to mean-field equation. Then,

$$
W_{1}\left(g_{t}(\cdot, \cdot), h_{t}(\cdot, \cdot)\right) \leq \mathrm{e}^{2 t L} W_{1}\left(g_{0}(\cdot, \cdot), h_{0}(\cdot, \cdot)\right), \quad \forall t \geq 0
$$

where L is a constant depending on A and U, and W_{1} is Monge-Kantorovich-Rubinstein distance defined as:

$$
W_{1}(\mu, \nu):=\sup \left\{\left|\int_{\mathbb{R}^{3} \times \mathbb{R}^{3}} \varphi(P)(\mu(P)-\nu(P)) \mathrm{d} P\right|, \varphi \in \operatorname{Lip}\left(\mathbb{R}^{3} \times \mathbb{R}^{3}\right),\|\varphi\|_{\mathrm{Lip}} \leq 1\right\}
$$

Sketch of proof: Fix-point argument Define a flow operator at time $t \in[0, T)$,

$$
\mathcal{T}_{\xi, \mathcal{H}}^{t}:(X(0), W(0)) \mapsto(X(t), W(t)) \in \mathbb{R}^{3} \times \mathbb{R}^{3}
$$

For an initial probability measure $g_{0}(x, w)$, the function

$$
g(t, x, w):[0, T) \rightarrow \mathcal{P}_{1}\left(\mathbb{R}^{3} \times \mathbb{R}^{3}\right), \quad t \mapsto g_{t}(x, w):=\mathcal{T}_{\xi, \mathcal{H}}^{t} \# g_{0}(x, w)
$$

is a measure-valued solution in the distributional sense

Let $g_{t}^{N}(x, w):[0, T] \mapsto \mathcal{P}_{1}\left(\mathbb{R}^{3} \times \mathbb{R}^{3}\right)$ be a probability measure defined as

$$
\begin{equation*}
g_{t}^{N}(x, w):=\frac{1}{N} \sum_{i=1}^{N} \delta\left(x-x_{i}(t)\right) \delta\left(w-w_{i}(t)\right) \tag{2}
\end{equation*}
$$

If $x_{i}, w_{i}:[0, T] \mapsto \mathbb{R}^{3}$, for $i=1, \ldots, N$, is a solution to dynamics system, then $g_{t}^{N}(x, w)$ is the measure-valued solution to mean-field equation with the initial condition

$$
\begin{equation*}
g_{0}^{N}(x, w):=\frac{1}{N} \sum_{i=1}^{N} \delta\left(x-x_{i}(0)\right) \delta\left(w-w_{i}(0)\right) \tag{3}
\end{equation*}
$$

for all $t \geq 0$, where $g_{t}(x, w)$ is the unique measure-valued solution to mean-field equation with initial data $g_{0}(x, w)$

Let $g_{t}^{N}(x, w):[0, T] \mapsto \mathcal{P}_{1}\left(\mathbb{R}^{3} \times \mathbb{R}^{3}\right)$ be a probability measure defined as

$$
\begin{equation*}
g_{t}^{N}(x, w):=\frac{1}{N} \sum_{i=1}^{N} \delta\left(x-x_{i}(t)\right) \delta\left(w-w_{i}(t)\right) \tag{2}
\end{equation*}
$$

If $x_{i}, w_{i}:[0, T] \mapsto \mathbb{R}^{3}$, for $i=1, \ldots, N$, is a solution to dynamics system, then $g_{t}^{N}(x, w)$ is the measure-valued solution to mean-field equation with the initial condition

$$
\begin{equation*}
g_{0}^{N}(x, w):=\frac{1}{N} \sum_{i=1}^{N} \delta\left(x-x_{i}(0)\right) \delta\left(w-w_{i}(0)\right) \tag{3}
\end{equation*}
$$

Corollary (Convergence of the empirical measure)

Consider a sequence of g_{0}^{N} in the form of (3) such that

$$
\lim _{N \rightarrow \infty} W_{1}\left(g_{0}^{N}(\cdot, \cdot), g_{0}(\cdot, \cdot)\right)=0
$$

Let g_{t}^{N} be given by (2), where $\left(x_{i}(t), w_{i}(t)\right)$ solves dynamics system with initial conditions $\left(x_{i}(0), w_{i}(0)\right)$. Then we have

$$
\lim _{N \rightarrow \infty} W_{1}\left(g_{t}^{N}(\cdot, \cdot), g_{t}(\cdot, \cdot)\right)=0
$$

for all $t \geq 0$, where $g_{t}(x, w)$ is the unique measure-valued solution to mean-field equation with initial data $g_{0}(x, w)$.

3. From Mesoscopic to Macroscopic

Recall the Big Picture

C: compressible
IC: incompressible

NS: Navier-Stokes
E: Euler

Previous work

Arrow (5): Hydrodynamic Limit

- Hilbert or Chapman-Enskoy Expansion : [Hilbert,'12], [Enskoy, '17], [Chapman-Cowling, '39]
- Asymptotic convergence: to C.E. [Caflish, '80], to IC.NS. [DeMasi-Esposito-Lebowitz, '89]
- Renormalized solution of Boltzmann to weak solution of E/NS: to IC. [Bardos-Golse-Levermore '93], [Lions-Masmoudi, '01], [Golse-Saint-Raymond, '04, '09], [Levermore-Masmoudi, '10], [Jiang-Masmoudi, '17]
- Strong solution near equilibrium:
to C.E. [Nishida '78], to IC.NS [Bardos-Ukai '91], [Gallagher-Tristani '20]
Arrow (7): Homo-energetic Transformation for macroscopic quantities [Pahlani-Schwartzentruber-James, '22, '23]

Qur second goal:
How to proceed with Arrow (6) ?

Previous work

Arrow (5): Hydrodynamic Limit

- Hilbert or Chapman-Enskoy Expansion : [Hilbert,'12], [Enskoy, '17], [Chapman-Cowling, '39]
- Asymptotic convergence: to C.E. [Caflish, '80], to IC.NS. [DeMasi-Esposito-Lebowitz, '89]
- Renormalized solution of Boltzmann to weak solution of E/NS: to IC. [Bardos-Golse-Levermore '93], [Lions-Masmoudi, '01], [Golse-Saint-Raymond, '04, '09], [Levermore-Masmoudi, '10], [Jiang-Masmoudi, '17]
- Strong solution near equilibrium:
to C.E. [Nishida '78], to IC.NS [Bardos-Ukai '91], [Gallagher-Tristani '20]
Arrow (7): Homo-energetic Transformation for macroscopic quantities [Pahlani-Schwartzentruber-James, '22, '23]

Our second goal:
How to proceed with Arrow (6) ?

Macroscopic quantities of homo-energetic flow

- Density $\rho(t, x)$:

$$
\rho(t, x)=\int_{\mathbb{R}^{3}} f(t, x, v) \mathrm{d} v=\int_{\mathbb{R}^{3}} g(t, w) \mathrm{d} w=: \rho(t)
$$

- Bulk velocity $u(t, x)$:

$$
\begin{aligned}
u(t, x)=\frac{1}{\rho(t, x)} \int_{\mathbb{R}^{3}} f(t, x, v) v \mathrm{~d} v & =\frac{1}{\rho(t)} \int_{\mathbb{R}^{3}} g(t, w)[w+L(t) x] \mathrm{d} w \\
& =\frac{1}{\rho} \int_{\mathbb{R}^{3}} g w \mathrm{~d} w+[L(t) x] \frac{1}{\rho} \int_{\mathbb{R}^{3}} g \mathrm{~d} w \\
& =L(t) x
\end{aligned}
$$

- Internal energy $e(t, x)$ and temperature $\theta(t, x)$:

$$
\begin{aligned}
\rho(t, x) e(t, x) & =\frac{1}{2} \int_{\mathbb{R}^{3}} f(t, x, v)|v-u(t, x)|^{2} \mathrm{~d} v \\
& =\frac{1}{2} \int_{\mathbb{R}^{3}} g(t, w)|w|^{2} \mathrm{~d} w=: \rho(t) e(t)
\end{aligned}
$$

Consider the equation of state for perfect gas $e(t)=\frac{k_{B} \theta(t)}{\gamma_{a}-1}=\frac{3}{2} \theta(t)$.

- Stress tensor $P_{i j}(t, x)$: for peculiar velocity c,

$$
\begin{aligned}
P_{i j}(t, x) & =\int_{\mathbb{R}^{3}} c_{i}(t, x) c_{j}(t, x) f(t, x, v) \mathrm{d} v \\
& =\int_{\mathbb{R}^{3}} w_{i} w_{j} g(t, w) \mathrm{d} w=: P_{i j}(t)
\end{aligned}
$$

for $i, j=1,2,3$.

By multiplying the collision invariants $1, w_{j}$, and $\frac{1}{2}|w|^{2}$ to homo-energetic equations,

$$
\left\{\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} \rho(t)+\operatorname{Tr}[L(t)] \rho(t) & =0 \\
\rho(t)\left(\frac{\mathrm{d} L(t)}{\mathrm{d} t}+L^{2}(t)\right) & =0 \\
\rho(t) \frac{\mathrm{d} e(t)}{\mathrm{d} t}+\sum_{i=1}^{3} \sum_{j=1}^{3} P_{i j}(t) L_{i j}(t) & =0
\end{aligned}\right.
$$

Gur Resulis:
 - By applying the Hilbert expansion, we derive a reduced Euler system:

 - By applying the Chapman-Enskog expansion, we obtain the corresponding reduced Navier-Stokes system with $O(\epsilon)$ correction terms: $\int \partial_{t} \rho(t)+\operatorname{Tr}[L(t)] \rho(t)=0$

By multiplying the collision invariants $1, w_{j}$, and $\frac{1}{2}|w|^{2}$ to homo-energetic equations,

$$
\left\{\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} \rho(t)+\operatorname{Tr}[L(t)] \rho(t) & =0 \\
\rho(t)\left(\frac{\mathrm{d} L(t)}{\mathrm{d} t}+L^{2}(t)\right) & =0 \\
\rho(t) \frac{\mathrm{d} e(t)}{\mathrm{d} t}+\sum_{i=1}^{3} \sum_{j=1}^{3} P_{i j}(t) L_{i j}(t) & =0
\end{aligned}\right.
$$

Our Results:

- By applying the Hilbert expansion, we derive a reduced Euler system:

$$
\left\{\begin{aligned}
\partial_{t} \rho(t)+\operatorname{Tr}[L(t)] \rho(t) & =0 \\
\partial_{t} \theta(t)+\frac{2}{3} \operatorname{Tr}[L(t)] \theta(t) & =0
\end{aligned}\right.
$$

- By applying the Chapman-Enskog expansion, we obtain the corresponding reduced Navier-Stokes system with $O(\epsilon)$ correction terms:

$$
\left\{\begin{aligned}
\partial_{t} \rho(t)+\operatorname{Tr}[L(t)] \rho(t) & =0 \\
\partial_{t} \theta(t)+\frac{2}{3} \operatorname{Tr}[L(t)] \theta(t) & =\epsilon \mu(\theta) \frac{1}{2}\left(\operatorname{Tr}\left[L^{2}(t)\right]+L(t): L(t)-\frac{2}{3}(\operatorname{Tr}[L(t)])^{2}\right)
\end{aligned}\right.
$$

where μ is the viscosity.

The compressible Euler limit via Hilbert expansion

Starting point:

$$
\partial_{t} g(t, w)-[L(t) w] \cdot \nabla_{w} g(t, w)=\frac{1}{\epsilon} Q(g, g)(t, w)
$$

where ϵ plays a role as Knudsen number.

Hilbert Expansion

Seek the solution in the form of a formal power series in ϵ :

$$
g_{\epsilon}(t, w)=\sum_{n \geq 0} \epsilon^{n} g_{n}(t, w)=g_{0}(t, w)+\epsilon g_{1}(t, w)+\cdots .
$$

For $O\left(\epsilon^{-1}\right)$
which implies that $g_{0}(t, w)$ is in the form of Maxwellian distribution, i.e

The compressible Euler limit via Hilbert expansion

Starting point:

$$
\partial_{t} g(t, w)-[L(t) w] \cdot \nabla_{w} g(t, w)=\frac{1}{\epsilon} Q(g, g)(t, w)
$$

where ϵ plays a role as Knudsen number.

Hilbert Expansion

Seek the solution in the form of a formal power series in ϵ :

$$
g_{\epsilon}(t, w)=\sum_{n \geq 0} \epsilon^{n} g_{n}(t, w)=g_{0}(t, w)+\epsilon g_{1}(t, w)+\cdots
$$

For $O\left(\epsilon^{-1}\right)$,

$$
Q\left(g_{0}, g_{0}\right)(t, w)=0
$$

which implies that $g_{0}(t, w)$ is in the form of Maxwellian distribution, i.e.,

$$
g_{0}(t, w)=\mathcal{M}_{[\rho(t), \theta(t)]}:=\frac{\rho(t)}{[2 \pi \theta(t)]^{\frac{3}{2}}} \mathrm{e}^{-\frac{|w|^{2}}{2 \theta(t)}}, \quad \rho(t)>0, \quad \theta(t)>0
$$

For $O\left(\epsilon^{0}\right)$,

$$
\left(\partial_{t}-[L(t) w] \cdot \nabla_{w}\right) g_{0}(t, w)=Q\left(g_{0}, g_{1}\right)(t, w)+Q\left(g_{1}, g_{0}\right)(t, w) .
$$

Define the linearized Boltzmann collision operator

$$
\mathcal{L}_{\mathcal{M}_{[\rho, \theta]}} g:=-2 \mathcal{M}_{[\rho, \theta]}^{-1} Q\left(\mathcal{M}_{[\rho, \theta]}^{-1}, \mathcal{M}_{[\rho, \theta]}^{-1} g\right)
$$

which is an unbounded self-adjoint non-negative Fredholm operator.

$$
\mathcal{L}_{g_{0}}\left(\frac{g_{1}}{g_{0}}\right)=-\left(\partial_{t}-[L(t) w] \cdot \nabla w\right) \ln g_{0}(t, w)
$$

where, for $W=\frac{w}{\sqrt{\theta(t)}}$

and D is

For $O\left(\epsilon^{0}\right)$,

$$
\left(\partial_{t}-[L(t) w] \cdot \nabla_{w}\right) g_{0}(t, w)=Q\left(g_{0}, g_{1}\right)(t, w)+Q\left(g_{1}, g_{0}\right)(t, w) .
$$

Define the linearized Boltzmann collision operator

$$
\mathcal{L}_{\mathcal{M}_{[p, \theta]}} g:=-2 \mathcal{M}_{[\rho, \theta]}^{-1} Q\left(\mathcal{M}_{[\rho, \theta]}^{-1}, \mathcal{M}_{[\rho, \theta]}^{-1} g\right)
$$

which is an unbounded self-adjoint non-negative Fredholm operator.

$$
\mathcal{L}_{g_{0}}\left(\frac{g_{1}}{g_{0}}\right)=-\left(\partial_{t}-[L(t) w] \cdot \nabla_{w}\right) \ln g_{0}(t, w)
$$

We can rearrange the right-hand side, and express it as a linear combination of $1, w_{i},|w|^{2}$,

$$
\begin{aligned}
-\mathcal{L}_{g_{0}}\left(\frac{g_{0}}{g_{1}}\right)= & \frac{1}{\rho(t)}\left(\partial_{t} \rho(t)+\operatorname{Tr}[L(t)] \rho(t)\right)+\frac{1}{2}\left(\frac{|w|^{2}}{\theta(t)}-3\right) \frac{1}{\theta(t)}\left(\partial_{t} \theta(t)+\frac{2}{3} \operatorname{Tr}[L(t)] \theta(t)\right) \\
& +A(W): D
\end{aligned}
$$

where, for $W=\frac{w}{\sqrt{\theta(t)}}, A(W) \in\left(\operatorname{Ker} \mathcal{L}_{g_{0}}\right)^{\perp}$ is

$$
A(W):=W \otimes W-\frac{1}{3}|W|^{2} I=\frac{1}{\theta(t)} w \otimes w-\frac{1}{3} \frac{|w|^{2}}{\theta(t)} I
$$

and D is

$$
D:=\frac{1}{2}\left(L(t)+[L(t)]^{\top}-\frac{2}{3} \operatorname{Tr}[L(t)] I\right)
$$

The compressible Navier-Stokes limit via Chapman-Enskoy expansion

Chapman-Enskoy Expansion

Seek the solution in the following form:

$$
g_{\epsilon}(t, w)=\sum_{n \geq 0} \epsilon^{n} g_{n}[\vec{P}(t)](w)=g_{0}[\vec{P}(t)](w)+\epsilon g_{1}[\vec{P}(t)](w)+\cdots
$$

Compared to the Hilbert expansion, we require that g_{0} has the same first five moments as g_{ϵ} by construction:

$$
\int_{\mathbb{R}^{3}} g_{0}[\vec{P}(t)](w)\binom{1}{\frac{|w|^{2}}{2}} \mathrm{~d} w=\vec{P}(t)=\binom{\rho(t)}{\theta(t)}
$$

where \vec{P} is a vector of conserved quantities. hence,

$$
\int_{\mathbb{R}^{3}} g_{n}[\vec{P}(t)](w)\binom{1}{\frac{|w|^{2}}{2}} \mathrm{~d} w=\overrightarrow{0}, \quad \text { for all } \quad n \geq 1
$$

By taking the moments, the conserved quantities satisfy a system of conservation laws:
where the flux term $\Phi_{n}[\vec{P}](t)$ is denoted as

$[L(t) w] \cdot \nabla_{w} g_{n}[\vec{P}(t)](w) \mathrm{d} w$

The compressible Navier-Stokes limit via Chapman-Enskoy expansion

Chapman-Enskoy Expansion

Seek the solution in the following form:

$$
g_{\epsilon}(t, w)=\sum_{n \geq 0} \epsilon^{n} g_{n}[\vec{P}(t)](w)=g_{0}[\vec{P}(t)](w)+\epsilon g_{1}[\vec{P}(t)](w)+\cdots
$$

Compared to the Hilbert expansion, we require that g_{0} has the same first five moments as g_{ϵ} by construction:

$$
\int_{\mathbb{R}^{3}} g_{0}[\vec{P}(t)](w)\binom{1}{\frac{|w|^{2}}{2}} \mathrm{~d} w=\vec{P}(t)=\binom{\rho(t)}{\theta(t)}
$$

where \vec{P} is a vector of conserved quantities. hence,

$$
\int_{\mathbb{R}^{3}} g_{n}[\vec{P}(t)](w)\binom{1}{\frac{|w|^{2}}{2}} \mathrm{~d} w=\overrightarrow{0}, \quad \text { for all } \quad n \geq 1
$$

By taking the moments, the conserved quantities satisfy a system of conservation laws:

$$
\partial_{t} \vec{P}(t)=\sum_{n \geq 0} \epsilon^{n} \Phi_{n}[\vec{P}](t)=\Phi_{0}(t)+\epsilon \Phi_{1}[\vec{P}](t)+\cdots
$$

where the flux term $\Phi_{n}[\vec{P}](t)$ is denoted as

$$
\Phi_{n}[\vec{P}](t)=\int_{\mathbb{R}^{3}}\binom{1}{\frac{|w|^{2}}{2}}[L(t) w] \cdot \nabla_{w} g_{n}[\vec{P}(t)](w) \mathrm{d} w
$$

for $n \geq 0$.

For $O\left(\epsilon^{0}\right)$,

$$
0=Q\left(g_{0}[\vec{P}(t)], g_{0}[\vec{P}(t)]\right)
$$

For $O\left(\epsilon^{1}\right)$,

$\left(\partial_{t}-[L(t) w] \cdot \nabla_{w}\right) g_{0}[\vec{P}(t)]=Q\left(g_{0}[\vec{P}(t)], g_{1}[\vec{P}(t)]\right)(w)+Q\left(g_{1}[\vec{P}(t)], g_{0}[\vec{P}(t)]\right)$
The left-hand side is
$\left(\partial_{t}-[L(t) w] \cdot \nabla_{w}\right) g_{0}[\vec{P}(t)]$
$=g_{0}[\vec{P}(t)]\left[\frac{1}{\rho(t)}\left(\partial_{t} \rho(t)+\operatorname{Tr}[L(t)] \rho(t)\right)+\frac{1}{2}\left(\frac{|w|^{2}}{\theta(t)}-3\right) \frac{1}{\theta(t)}\left(\partial_{t} \theta(t)+\frac{2}{3} \operatorname{Tr}[L(t)] \theta(t)\right)\right.$
$+[A(W): D\rceil]$
$=g_{0}[\vec{P}(t)](w)[A(W): D]+O(\epsilon)$

$$
\left\{\begin{array}{r}
\mathcal{L}_{g_{0}[\vec{P}(t)]}\left(\frac{g_{0}[\vec{P}(t)]}{g_{1}[\vec{P}(t)]}\right)=-[A(W): D] \\
\int_{\mathbb{R}^{3}} g_{1}[\vec{P}(t)](w)\binom{1}{\frac{|w|^{2}}{2}} \mathrm{~d} w=\overrightarrow{0}
\end{array}\right.
$$

and therefore $g_{1}[\vec{P}(t)]$ can be solved:

$$
\left.g_{1}[\vec{n}(t)]=-g_{0} r \vec{n}(t)\right](w)[a(\theta,|W|) A(W): D]
$$

where the scalar quantity $a(\theta,|W|)$ is denoted as $\mathcal{L}_{g_{0}[\vec{P}(t)]}(a(\theta,|W|) A(W))=A(W)$

$$
0=Q\left(g_{0}[\vec{P}(t)], g_{0}[\vec{P}(t)]\right)
$$

For $O\left(\epsilon^{1}\right)$,

$$
\left(\partial_{t}-[L(t) w] \cdot \nabla_{w}\right) g_{0}[\vec{P}(t)]=Q\left(g_{0}[\vec{P}(t)], g_{1}[\vec{P}(t)]\right)(w)+Q\left(g_{1}[\vec{P}(t)], g_{0}[\vec{P}(t)]\right)
$$

The left-hand side is

$$
\begin{aligned}
& \left(\partial_{t}-[L(t) w] \cdot \nabla w\right) g_{0}[\vec{P}(t)] \\
= & g_{0}[\vec{P}(t)][
\end{aligned} \quad \frac{1}{\rho(t)}\left(\partial_{t} \rho(t)+\operatorname{Tr}[L(t)] \rho(t)\right)+\frac{1}{2}\left(\frac{|w|^{2}}{\theta(t)}-3\right) \frac{1}{\theta(t)}\left(\partial_{t} \theta(t)+\frac{2}{3} \operatorname{Tr}[L(t)] \theta(t)\right)
$$

and therefore $g_{1}[\vec{P}(t)]$ can be solved:

For $O\left(\epsilon^{0}\right)$,

$$
0=Q\left(g_{0}[\vec{P}(t)], g_{0}[\vec{P}(t)]\right)
$$

For $O\left(\epsilon^{1}\right)$,

$$
\left(\partial_{t}-[L(t) w] \cdot \nabla_{w}\right) g_{0}[\vec{P}(t)]=Q\left(g_{0}[\vec{P}(t)], g_{1}[\vec{P}(t)]\right)(w)+Q\left(g_{1}[\vec{P}(t)], g_{0}[\vec{P}(t)]\right)
$$

The left-hand side is

$$
\left.\begin{array}{rl}
& \left(\partial_{t}-[L(t) w] \cdot \nabla w\right) g_{0}[\vec{P}(t)] \\
= & g_{0}[\vec{P}(t)][
\end{array}\right] \frac{1}{\rho(t)}\left(\partial_{t} \rho(t)+\operatorname{Tr}[L(t)] \rho(t)\right)+\frac{1}{2}\left(\frac{|w|^{2}}{\theta(t)}-3\right) \frac{1}{\theta(t)}\left(\partial_{t} \theta(t)+\frac{2}{3} \operatorname{Tr}[L(t)] \theta(t)\right)
$$

$$
\left\{\begin{array}{c}
\mathcal{L}_{g_{0}[\vec{P}(t)]}\left(\frac{g_{0}[\vec{P}(t)]}{g_{1}[\vec{P}(t)]}\right)=-[A(W): D] \\
\quad \int_{\mathbb{R}^{3}} g_{1}[\vec{P}(t)](w)\binom{1}{\frac{|w|^{2}}{2}} \mathrm{~d} w=\overrightarrow{0}
\end{array}\right.
$$

and therefore $g_{1}[\vec{P}(t)]$ can be solved:

$$
g_{1}[\vec{P}(t)]=-g_{0}[\vec{P}(t)](w)[a(\theta,|W|) A(W): D]
$$

where the scalar quantity $a(\theta,|W|)$ is denoted as $\mathcal{L}_{g_{0}[\vec{P}(t)]}(a(\theta,|W|) A(W))=A(W)$

Hence, the first-order correction to the fluxes in the formal conservation law is

$$
\begin{aligned}
\Phi_{1}[\vec{P}(t)](w) & =\int_{\mathbb{R}^{3}}[L(t) w] \cdot \nabla_{w} g_{1}[\vec{P}(t)](w)\binom{1}{\frac{|w|^{2}}{2}} \mathrm{~d} w \\
& =\binom{0}{\mu(\theta) \frac{1}{2}\left(\operatorname{Tr}\left[L^{2}(t)\right]+L(t): L(t)-\frac{2}{3}(\operatorname{Tr}[L(t)])^{2}\right)}
\end{aligned}
$$

where the viscosity $\mu(\theta)$ can be computed as

$$
\mu(\theta)=\frac{2}{15} \theta \int_{0}^{\infty} a(\theta, r) r^{6} \frac{1}{\sqrt{2 \pi}} \mathrm{e}^{-r^{2} / 2} \mathrm{~d} r
$$

Recall conservation law and keeps only the first two order terms

Spelling out the flux terms, we have

Hence, the first-order correction to the fluxes in the formal conservation law is

$$
\begin{aligned}
\Phi_{1}[\vec{P}(t)](w) & =\int_{\mathbb{R}^{3}}[L(t) w] \cdot \nabla_{w} g_{1}[\vec{P}(t)](w)\binom{1}{\frac{|w|^{2}}{2}} \mathrm{~d} w \\
& =\binom{0}{\mu(\theta) \frac{1}{2}\left(\operatorname{Tr}\left[L^{2}(t)\right]+L(t): L(t)-\frac{2}{3}(\operatorname{Tr}[L(t)])^{2}\right)}
\end{aligned}
$$

where the viscosity $\mu(\theta)$ can be computed as

$$
\mu(\theta)=\frac{2}{15} \theta \int_{0}^{\infty} a(\theta, r) r^{6} \frac{1}{\sqrt{2 \pi}} \mathrm{e}^{-r^{2} / 2} \mathrm{~d} r
$$

Recall conservation law and keeps only the first two order terms

$$
\partial_{t} \vec{P}(t)=\Phi_{0}[\vec{P}](t)+\epsilon \Phi_{1}[\vec{P}](t) \bmod O\left(\epsilon^{2}\right)
$$

Spelling out the flux terms, we have

Hence, the first-order correction to the fluxes in the formal conservation law is

$$
\begin{aligned}
\Phi_{1}[\vec{P}(t)](w) & =\int_{\mathbb{R}^{3}}[L(t) w] \cdot \nabla_{w} g_{1}[\vec{P}(t)](w)\binom{1}{\frac{|w|^{2}}{2}} \mathrm{~d} w \\
& =\binom{0}{\mu(\theta) \frac{1}{2}\left(\operatorname{Tr}\left[L^{2}(t)\right]+L(t): L(t)-\frac{2}{3}(\operatorname{Tr}[L(t)])^{2}\right)}
\end{aligned}
$$

where the viscosity $\mu(\theta)$ can be computed as

$$
\mu(\theta)=\frac{2}{15} \theta \int_{0}^{\infty} a(\theta, r) r^{6} \frac{1}{\sqrt{2 \pi}} \mathrm{e}^{-r^{2} / 2} \mathrm{~d} r
$$

Recall conservation law and keeps only the first two order terms

$$
\partial_{t} \vec{P}(t)=\Phi_{0}[\vec{P}](t)+\epsilon \Phi_{1}[\vec{P}](t) \bmod O\left(\epsilon^{2}\right)
$$

Spelling out the flux terms, we have

$$
\left\{\begin{aligned}
\partial_{t} \rho(t)+\operatorname{Tr}[L(t)] \rho(t) & =0, \\
\partial_{t} \theta(t)+\frac{2}{3} \operatorname{Tr}[L(t)] \theta(t) & =\epsilon \mu(\theta) \frac{1}{2}\left(\operatorname{Tr}\left[L^{2}(t)\right]+L(t): L(t)-\frac{2}{3}(\operatorname{Tr}[L(t)])^{2}\right)
\end{aligned}\right.
$$

which recovers the compressible Navier-Stokes system.
4. Related Numerical Simulation

Spectral Method for Boltzmann Equation

Let $q=v-v_{\star}$ and \hat{q} is the unit vector along q.

$$
\begin{aligned}
Q(f, f)(v) & \approx Q_{R}(f, f)(v) \\
& =\int_{\mathcal{B}_{2 R}} \int_{\mathbb{S}^{d-1}} B(|q|, \sigma \cdot \hat{q})\left[f\left(v^{\prime}\right) f\left(v_{\star}^{\prime}\right)-f(v) f(v-q)\right] \mathrm{d} \sigma \mathrm{~d} q
\end{aligned}
$$

(1) Truncate collision integral: in q to a ball \mathcal{B}_{R} with $R \geq 2 S$ with $\mathcal{B}_{S} \approx \operatorname{supp}_{v}(f)$.
(2) Restrict probability density f into computed domain $\mathcal{D}_{L}=[-L, L]^{d}$: expand it periodically to the whole space.
(3) Approximate density function f : by a truncated Fourier series, $k \in \mathbb{Z}^{d}:-\frac{N}{2} \leq$ $k_{1}, \ldots, k_{d} \leq \frac{N}{2}-1$,

$$
f(v) \approx f_{N}(v)=\sum_{k=-\frac{N}{2}}^{\frac{N}{2}-1} \hat{f}_{k} \mathrm{e}^{\mathrm{i} \frac{\pi}{L} k \cdot v} \text { with } \hat{f}_{k}=\frac{1}{(2 L)^{d}} \int_{\mathcal{D}_{L}} f(v) \mathrm{e}^{-\mathrm{i} \frac{\pi}{L} k \cdot v} \mathrm{~d} v
$$

(9) Substitute and apply of Galerkin projection:

$$
\hat{Q}_{k}=\frac{1}{(2 L)^{d}} \int_{D_{L}} Q\left(f_{N}, f_{N}\right) \mathrm{e}^{-\mathrm{i} \frac{\pi}{L} k \cdot v} \mathrm{~d} v
$$

Numerical Simulation (I): Multi-bumps initial condition [Hu-Q., JCP '20]

Apply our fast spectral solver, coupled with RK4 scheme for time discretization, to solve $\partial_{t} f=Q(f, f)$ with initial datum $F_{0}(v)$:

$$
F_{0}(v)=\frac{1}{3}\left(\delta_{w}(v)+\delta_{w}(|v|-0.2)\right)
$$

Numerical Simulation (II): Discontinuous initial condition [Hu-Q., JCP '20]

For a typical discontinuous initial datum:

$$
F^{0}(v)=\left\{\begin{array}{lll}
\frac{\rho_{1}}{2 \pi T_{1}} \exp \left(-\frac{|v|^{2}}{2 T_{1}}\right), & \text { for } & v_{1}>0 \\
\frac{\rho_{2}}{2 \pi T_{2}} \exp \left(-\frac{|v|^{2}}{2 T_{2}}\right), & \text { for } & v_{1}<0
\end{array}\right.
$$

5. Summary and Outlook

Summary

"Take-home" messages

- Micro: A special class of dynamics system - OMD
- Micro \rightarrow Meso: Mean-field and Boltzmann-Grad Limit
- Meso: A simplified kinetic equation - Homo-energetic Mean-field and Boltzmann
- Meso \rightarrow Macro: Hilbert and Chapman-Enskoy expansion

Outlook

Ongoing work:

Well-posedness:

- Finite energy: General deformation [James-Nota-Velazquez '19], [Bobylev-NotaVelazquez '20], Shear flow [Duan-Liu '21]
- Infinite energy: ?

Long-time Behavior:

- Balance between collision and hyperbolic effect: [James-Nota-Velazquez '19]
- Collision dominated: [James-Nota-Velazquez '19], [Duan-Liu '22], [Kepka '22]
- Hyperbolic dominated: ?

Future work:

(1) Theoretical perspective: rigorous justification of multiscale hierarchy.
(2) Numerical perspective: dimension reduction or high-order scheme
(3) Other Boltzmann-related models: apply the kinetic ideas to Physical, Biology, Quantum systems.

Outlook

Ongoing work:

Well-posedness:

- Finite energy: General deformation [James-Nota-Velazquez '19], [Bobylev-NotaVelazquez '20], Shear flow [Duan-Liu '21]
- Infinite energy: ?

Long-time Behavior:

- Balance between collision and hyperbolic effect: [James-Nota-Velazquez '19]
- Collision dominated: [James-Nota-Velazquez '19], [Duan-Liu '22], [Kepka '22]
- Hyperbolic dominated: ?

Future work:

(1) Theoretical perspective: rigorous justification of multiscale hierarchy.
(2) Numerical perspective: dimension reduction or high-order scheme.
(3) Other Boltzmann-related models: apply the kinetic ideas to Physical, Biology, Quantum systems...

Thanks for your attention!

Papers and preprints can be found at my homepage https://kunlun-qi.github.io/

[^0]: ${ }^{1}$ S. Ukai and T. Yang, Mathematical Theory of Boltzmann Equation, '06

[^1]: ${ }^{1}$ S. Ukai and T. Yang, Mathematical Theory of Boltzmann Equation, '06

