Introduction	From Microscopic to Mesoscopic	From Mesoscopic to Macroscopic	Related Numerical Simulation	Summary and Outlook
000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000	0000	0000

On the Kinetic Description of Objective Molecular Dynamics (OMD)

Kunlun Qi

School of Mathematics University of Minnesota–Twin Cities

France-Korea IRN webinar in PDE

December 4, 2023

Based on the joint work with Richard D. James (UMN) and Li Wang (UMN)

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

	From Microscopic to Mesoscopic	From Mesoscopic to Macroscopic	Related Numerical Simulation	Summary and Outlook
000000000000000000000000000000000000000	00000000000000000	000000000	0000	0000
Outline				

1 Introduction

- Background and Motivation
- Objective Molecular Dynamics (OMD)
- Prom Microscopic to Mesoscopic
 - Homo-energetic Boltzmann Equation
 - Homo-energetic Mean-field Equation

3 From Mesoscopic to Macroscopic

- Macroscopic Equations
- The compressible Euler limit via Hilbert expansion
- The compressible Navier-Stokes limit via Chapman-Enskoy expansion

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

4 Related Numerical Simulation

Summary and Outlook

Introduction	From Microscopic to Mesoscopic	From Mesoscopic to Macroscopic	Related Numerical Simulation	Summary and Outlook
••••••				

1. Introduction

"Scale": Newtonian Mechanics \Rightarrow Kinetic Theory \Rightarrow Continuum Mechanics

Figure: Role of kinetic theory in multiscale modeling hierarchy1

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

¹S. Ukai and T. Yang, Mathematical Theory of Boltzmann Equation, '06

NS: Navier-Stokes E: Euler

Figure: Role of kinetic theory in multiscale modeling hierarchy¹

℃.E → IC.E

 $M \to 0$

Vlasov

¹S. Ukai and T. Yang, Mathematical Theory of Boltzmann Equation, '06

"Objective Molecule Dynamics" (OMD)

"Objective Molecule Dynamics" (OMD) is a time-dependent invariant manifold of the equations of molecular dynamics.

Basic Set-up

• \implies Simulated atoms:

$$x_k(t), \quad k = 1, ..., M$$

"+" A discrete group of isometries ":

$$G = \{g_1, g_2, ..., g_N\}, \quad M \ll N$$

• \implies Non-simulated atoms:

$$x_{i,k}(t) = g_i(x_k(t))$$

i = 1, ..., N, k = 1, ..., M.

 $a_{g_1} := Id$, so $x_{1,k}(t) = x_k(t)$

<u></u>				
000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000	0000	0000
Introduction	From Microscopic to Mesoscopic	From Mesoscopic to Macroscopic	Related Numerical Simulation	Summary and Outlook

Objective Structure

1-OS: each atom "see the same environment"

A set of points in \mathbb{R}^3 is given, $S = \{x_i \in \mathbb{R}^3, i = 1, ..., N\}$, $N \leq \infty$. S is a 1-OS if there are orthogonal transformations $Q_1, ..., Q_N$ such that

 ${x_i + Q_i(x_j - x_1): j = 1, ..., N} = S$, for i = 1, ..., N

M-OS: $x_{i,k}$ "see the same environment" as $x_{1,k}$

Consider a structure consisting of N "molecules", each consisting of M atoms: $\mathcal{S} = \{x_{i,k} \in \mathbb{R}^3 : i = 1, ..., N, \ k = 1, ..., M\}, \ N \leq \infty, \ M < \infty.$ $\mathcal{S} \text{ is an } M\text{-OS, if } x_{1,1}, ..., x_{1,M} \text{ are distinct and there are } NM \text{ orthogonal transformations } Q_{i,k} \text{ such that}$

 ${x_{i,k}+Q_{i,k}(x_{j,l}-x_{1,k}): j=1,...,N, l=1,...,M} = S$, for i = 1,...,N, k = 1,...,N

Example of objective structure

Buckminsterfullerine (C_{60})

Let $G = \{R_1, ..., R_N\}$ be a finite subgroup of O(3) with N = 60 and let $x_i = R_i x_1$

Figure: Buckminsterfullerine (C_{60})

Single-walled carbon nanotubes

Let $\vec{e}_1, \vec{e}_2, \vec{e}_3$ be an orthonormal basis and $R_{\theta} \in SO(3)$, the carbon nanotubes are given by

$$g_1^{\nu_1}g_2^{\nu_2}g_3^{\nu_3}, \quad \nu_1, \nu_2, \nu_3 \in \mathbb{Z}$$

with

$$g_1 = (R_{\theta_1}|t_1), \ g_2 = (R_{\theta_2}|t_2)$$

$$g_3 = (-I + 2e \otimes e|0)$$

Figure: Carbon nanotube (1-OS) with chirality n = 3, m = 8

Introduction	From Microscopic to Mesoscopic	From Mesoscopic to Macroscopic	Related Numerical Simulation	Summary and Outlook
000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000	0000	0000

Symmetry and Invariance

Isometry Group

$$g = (Q|c), \quad Q \in O(3), \ c \in \mathbb{R}^3$$

$$g(x) = Qx + c, \quad x \in \mathbb{R}^3$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

• Closure: $g_1 = (R_1 | c_1), g_2 = (R_2 | c_2), g_1g_2 = (R_1R_2 | c_1 + R_1c_2)$

$$\Rightarrow g_1g_2(x) = g_1(g_2(x))$$

- Identity: Id = (I|0)
- Inverse: $(Q | c)^{-1} = (Q^{\top} | Q^{\top} c)$

Introduction	From Microscopic to Mesoscopic	From Mesoscopic to Macroscopic	Related Numerical Simulation	Summary and Outlook
000000000000000000000000000000000000000	000000000000000	000000000	0000	0000

Symmetry and Invariance

Isometry Group

$$g = (Q|c), \quad Q \in O(3), \ c \in \mathbb{R}^3$$

$$g(x) = Qx + c, \quad x \in \mathbb{R}^3$$

• Closure: $g_1 = (R_1 | c_1), g_2 = (R_2 | c_2), g_1g_2 = (R_1R_2 | c_1 + R_1c_2)$

$$\Rightarrow g_1g_2(x) = g_1(g_2(x))$$

- Identity: Id = (I | 0)
- Inverse: $(Q | c)^{-1} = (Q^{\top} | Q^{\top} c)$

Recall: For a typical dynamical system $(x_i(t), v_i(t))$: for i = 1, ..., N,

$$\begin{cases} \dot{x}_{i}(t) = v_{i}(t), \\ \\ \ddot{x}_{i}(t) = \dot{v}_{i}(t) = -\sum_{\substack{j=1 \\ j \neq i}}^{N} \nabla_{x_{i}} U(|x_{i}(t) - x_{j}(t)|). \end{cases}$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Invariant requirement of the potential*

1 Frame-indifference:
$$Q \in O(3), c \in \mathbb{R}^3$$

$$Q \frac{\partial U}{\partial x_{i,k}} (..., x_{i_1,1}, ..., x_{i_1,M}, ..., x_{i_2,1}, ..., x_{i_2,M}) \\ = \frac{\partial U}{\partial x_{i,k}} (..., Q x_{i_1,1} + c, ..., Q x_{i_1,M} + c, ..., Q x_{i_2,1} + c, ..., Q x_{i_2,M} + c)$$

Permutation invariance:

$$\begin{aligned} \frac{\partial U}{\partial x_{\Pi(i,k)}}(...,x_{i_1,1},...,x_{i_1,M},...,x_{i_2,1},...,x_{i_2,M}) \\ &= \frac{\partial U}{\partial x_{i,k}}(...,x_{\Pi(i_1,1)},...,x_{\Pi(i_1,M)},...,x_{\Pi(i_2,1)},...,x_{\Pi(i_2,M)}) \end{aligned}$$

Requirement of isometry**

The isometries g_i can depend explicitly on t > 0, but this time dependence must be consistent with

$$\frac{\mathrm{d}^2 x_{j,k}(t)}{\mathrm{d}t^2} = \frac{\mathrm{d}^2}{\mathrm{d}t^2} g_i(x_k(t), t) = Q_i \frac{\mathrm{d}^2 x_k(t)}{\mathrm{d}t^2}$$

for $g_i = (Q_i | c_i) \in G, i = 1, ..., N, k = 1, ..., M$

Introduction	From Microscopic to Mesoscopic	From Mesoscopic to Macroscopic	Related Numerical Simulation	Summary and Outlook
000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000	0000	0000

Theorem ([James, ICM, '18])

Assumptions: Invariant requirement of the potential * + Requirement of isometry **.

If $\mathbf{x_k}(\mathbf{t}) = \mathbf{x_{1,k}}(\mathbf{t})$, k = 1, ..., N satisfy the equation of molecular dynamics, i.e.,

$$\begin{cases} m_k \ddot{x}_{1,k} = f_{1,k}(\dots, x_{j,1}, x_{j,2}, \dots, x_{j,M}, x_{j+1,1}, x_{j+1,2}, \dots, y_{j+1,M}, \dots) \\ = f_{1,k}(\dots, g_j(y_{1,1}, t), \dots, g_j(y_{1,M}, t), g_{j+1}(y_{1,M}, t)), \dots, g_{j+1}(y_{1,M}, t) \\ x_{1,k}(0) = x_k^0, \quad \dot{x}_{1,k}(0) = v_k^0, \quad k = 1, \dots, M \end{cases}$$

Then, $\mathbf{x}_{i,\mathbf{k}} = \mathbf{g}(\mathbf{x}_{1,\mathbf{k}}(\mathbf{t}), \mathbf{t}), i = 1, ..., N, k = 1, ..., M$ satisfy the same equations of molecular dynamics:

 $m_k \ddot{x}_{i,k} = f_{1,k} (..., x_{j,1}, x_{j,2}, ..., x_{j,M}, x_{j+1,1}, x_{j+1,2}, ..., y_{j+1,M}, ...)$

Introduction	From Microscopic to Mesoscopic	From Mesoscopic to Macroscopic	Related Numerical Simulation	Summary and Outlook
000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000	0000	0000

Sketch of Proof

 $m_k \ddot{x}_{i,k} = m_k Q_i \ddot{x}_{1,k}$ [Requirement**] $=Q_i f_{1,k}(..., x_{i,1}, ..., x_{i,M}, x_{i+1,1}, x_{i+1,2}, ..., y_{i+1,M}, ...)$ $=Q_i f_{\Pi(i,k)}(...,x_{i,1},...,x_{i,M},x_{i+1,1},x_{i+1,2},...,y_{i+1,M},...)$ [Requirement* (2)] $=Q_i f_{i,k}(..., x_{\Pi(i,1)}, ..., x_{\Pi(i,M)}, x_{\Pi(i+1,1)}, x_{\Pi(i+1,2)}, ..., y_{\Pi(i+1,M)}, ...)$ $=Q_{i}f_{i,k}(...,q_{i}^{-1}(x_{i,1}),...,q_{i}^{-1}(x_{i,M}),q_{i}^{-1}(x_{i+1,1}),...,q_{i}^{-1}(x_{i+1,M}))$ $=Q_i f_{i,k}(...,Q_i^T(x_{i,1}-c_i),...,Q_i^T(x_{i,M}-c_i),Q_i^T(x_{i+1,1}-c_i),$..., $Q_i^T(x_{i+1,M} - c_i), ...)$ [Requirement* (1)] $=f_{i,k}(\dots, x_{i,1}, x_{i,2}, \dots, x_{i,M}, x_{i+1,1}, x_{i+1,2}, \dots, y_{i+1,M}, \dots)$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Requirement of isometry^{**} \implies $Q_i = \text{const} \in O(3)$ and $c_i = a_i t + b_i$

$$\mathbf{p} = \{\mathbf{p}_1, \dots, \mathbf{p}_N\}$$

$$(\mathbf{p}_0, \mathbf{q}_0)$$

$$\mathbf{q} = \{\mathbf{q}_1, \dots, \mathbf{q}_N\}$$

Figure: The invariant manifold of the equations of molecular dynamics.

$$\begin{cases} p = m_k \dot{x}_{i,k} = m_k \frac{\mathrm{d}}{\mathrm{d}t} g_i(x_{1,k}, t) = m_k Q_i \dot{x}_{1,k} + m_k a_i \\ q = x_{i,k} = g_i(x_{1,k}, t) = Q x_{1,k} + a_i t + b_i \end{cases}$$

æ

Introduction	From Microscopic to Mesoscopic	From Mesoscopic to Macroscopic	Related Numerical Simulation	Summary and Outlook
000000000000000000000000000000000000000	000000000000000	000000000	0000	0000

The simplest example

Translation Group:

$$G_{T} = \{ (\underbrace{I}_{:=Q} \mid \underbrace{\nu_{1}\vec{e}_{1} + \nu_{2}\vec{e}_{2} + \nu_{3}\vec{e}_{3}}_{:=c}) : \nu^{1}, \nu^{2}, \nu^{3} \in \mathbb{Z} \}$$

then, Simulated atoms:

$$x_k(t) = x_{(0,0,0),k}(t), \quad k = 1, ..., M$$

Non-simulated atoms:

$$x_{\nu,k}(t) = g_{\nu}(x_k(t), t) = x_k(t) + (I + tA)(\nu^i \vec{e}_i), \quad k = 1, ..., M$$

Introduction	From Microscopic to Mesoscopic	From Mesoscopic to Macroscopic	Related Numerical Simulation	Summary and Outlook
0000000000000	000000000000000000000000000000000000000	000000000	0000	0000
Simple Shear	r			

$$A = \begin{pmatrix} 0 & K & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

In Euerian Framework:

$$u(t,x) = A(I+tA)^{-1}x$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

http://www.aem.umn.edu/ james/research/people.html

By Pahlani-James

From Microscopic to Mesoscopic	From Mesoscopic to Macroscopic	Related Numerical Simulation	Summary and Outlook
••••••			

2. From Microscopic to Mesoscopic

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Introduction

From Microscopic to Mesoscopic

From Mesoscopic to Macroscopic 000000000 Related Numerical Simulation Summary and O 0000 0000

From now, let us jump into the kinetic regime

Figure: The invariant manifold of the equations of molecular dynamics in kinetic regime

What can be inherited from the invariant manifold?

- The velocities at $x_k = 0$ are \dot{x}_k , k = 1, ..., M
- The velocities at $x = (I + tA)\nu$ are $\dot{x}_k + A\nu$, k = 1, ..., M
- Or, in the Eulerian form used in the kinetic theory, the velocities at x are $\dot{x}_k + A(I + tA)^{-1}x$, k = 1, ..., M

$$f(t,0,v) = f(t,x,v + A(I + tA)^{-1}x) \implies f(t,x,v) = g(t, \underbrace{v - A(I + tA)^{-1}x}_{=vv})$$

	From Microscopic to Mesoscopic	From Mesoscopic to Macroscopic	Related Numerical Simulation	Summary and Outlook
000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000	0000	0000

For Boltzmann equation

Classical Boltzmann equation

$$\frac{\partial}{\partial t}f(t,x,v) + v \cdot \nabla_x f(t,x,v) = Q(f,f)(t,x,v)$$
$$\|f(t,x,v) = g(t,w) \text{ with } w \coloneqq v - A(I+tA)^{-1}x$$

$$\frac{\partial}{\partial t}g(t,w) + [A(I+tA)^{-1}w] \cdot \nabla_w g(t,w) = Q(g,g)(t,w)$$

Homo-energetic Boltzmann equation

$$Q(g,f) = \int_{\mathbb{R}^d} \int_{\mathbb{S}^{d-1}} \underbrace{\mathcal{B}(v-v_*,\sigma)}_{\text{collision kernel}} \underbrace{[g(v'_*)f(v')}_{\text{"gain"}} - \underbrace{g(v_*)f(v)}_{\text{"loss"}}] \,\mathrm{d}\sigma \,\mathrm{d}v_*$$

$$\begin{cases} v' = \frac{v + v_*}{2} + \frac{|v - v_*|}{2}\sigma\\ v'_* = \frac{v + v_*}{2} - \frac{|v - v_*|}{2}\sigma \end{cases}$$

where the parameter σ varies over the unit sphere \mathbb{S}^{d-1} .

	From Microscopic to Mesoscopic	From Mesoscopic to Macroscopic	Related Numerical Simulation	Summary and Outlook
000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000	0000	0000

For Boltzmann equation

Classical Boltzmann equation

$$\begin{split} \frac{\partial}{\partial t} f(t,x,v) + v \cdot \nabla_x f(t,x,v) &= Q(f,f)(t,x,v) \\ & \left\| f(t,x,v) = g(t,w) \text{ with } w \coloneqq v - A(I+tA)^{-1}x \right\| \end{split}$$

$$\frac{\partial}{\partial t}g(t,w) + [A(I+tA)^{-1}w] \cdot \nabla_w g(t,w) = Q(g,g)(t,w)$$

Homo-energetic Boltzmann equation

$$Q(g,f) = \int_{\mathbb{R}^d} \int_{\mathbb{S}^{d-1}} \underbrace{\mathcal{B}(v - v_*, \sigma)}_{\text{collision kernel}} \underbrace{[g(v'_*)f(v')]}_{\text{"gain"}} - \underbrace{g(v_*)f(v)}_{\text{"loss"}}] \, \mathrm{d}\sigma \, \mathrm{d}v_*$$

$$\begin{cases} v' = \frac{v + v_*}{2} + \frac{|v - v_*|}{2}\sigma\\ v'_* = \frac{v + v_*}{2} - \frac{|v - v_*|}{2}\sigma \end{cases}$$

where the parameter σ varies over the unit sphere $\mathbb{S}^{d-1}.$

$$\begin{cases} (\mathbf{i}, x) \\ \xi(t, x) = L(t)x = A(I + At)^{-1}x \\ \\ \left\{ \begin{array}{l} (\mathbf{i}) \ \frac{\partial \xi_k}{\partial x_j} \text{ independent on } x; \\ (\mathbf{i}) \ \partial_t \xi + \xi \cdot \nabla_x \xi = 0. \end{array} \right. \end{cases}$$

Simple shear with decaying planar dilatation/shear.

$$L(t) = \begin{pmatrix} 0 & K_2 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + \frac{1}{t} \begin{pmatrix} 0 & K_1 K_3 & K_1 \\ 0 & 0 & 0 \\ 0 & K_3 & 1 \end{pmatrix} + O\left(\frac{1}{t^2}\right), \quad K_2 \neq 0$$

Combined orthogonal shear:

$$L(t) = \begin{pmatrix} 0 & K_3 & K_2 - tK_1K_3 \\ 0 & 0 & K_1 \\ 0 & 0 & 0 \end{pmatrix}, \quad K_1K_3 \neq 0$$

	From Microscopic to Mesoscopic	From Mesoscopic to Macroscopic	Related Numerical Simulation	Summary and Outlook
000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000	0000	0000

Remark II: Collision kernel

The collision kernel \mathcal{B} is a non-negative function that depends on its arguments only through $|v - v_*|$ and cosine of the deviation angle θ :

$$\mathcal{B}(v-v_*,\sigma) = B(|v-v_*|,\cos\theta), \quad \cos\theta = \frac{\sigma \cdot (v-v_*)}{|v-v_*|}.$$

For the inverse power law potential,

$$B(|v-v_*|,\cos\theta) = b(\cos\theta)\Phi(|v-v_*|)$$

• Kinetic part:

$$\Phi(|v-v_*|) = |v-v_*|^{\gamma} \Rightarrow \begin{cases} \gamma > 0, \text{ Hard potential} \implies \text{Collision Dominated Case} \\ \gamma = 0, \text{ Maxwellian molecules} \implies \text{Balanced Case} \\ \gamma < 0, \text{ Soft potential} \implies \text{Hyperbolic Dominated Case} \end{cases}$$

Consider the re-scaling $g(t,w) = \frac{1}{t}G(\tau,\xi)$ with $\tau = \log(t)$, $\xi_1 = \frac{w_1}{t}$, $\xi_j = w_j$, j = 2,3: $\frac{\partial G}{\partial \tau} - \operatorname{div}_{\xi}[(\xi_1 + K\xi_2)\vec{e_1}G] \approx e^{\gamma \tau}Q(G,G)$

• Angular part:

$$\sin^{d-2}\theta b(\cos\theta)\Big|_{\theta\to 0} \sim K\theta^{-1-\nu}, \quad 0 < \nu < 2$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

	From Microscopic to Mesoscopic	From Mesoscopic to Macroscopic	Related Numerical Simulation	Summary and Outlook
000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000	0000	0000

Recall the Big Picture

C: compressible IC: incompressible

NS: Navier-Stokes E: Euler

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Introduction	From Microscopic to Mesoscopic	From Mesoscopic to Macroscopic	Related Numerical Simulation	Summary and Outlook
000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000	0000	0000

Previous work

Arrow (2): BBGKY hierarchy

• Mean-field Limit: $N \to \infty$.

$$\begin{cases} \dot{x}_i(t) = v_i(t), \\ \dot{v}_i(t) = -\frac{1}{N} \sum_{\substack{j=1 \\ j \neq i}}^N \nabla_{x_i} U(|x_i(t) - x_j(t)|) . \end{cases}$$

[Braun-Hepp,'77], [Golse, '03], [Spohn, '12]

• Boltzmann-Grad Limit: $N\varepsilon^{d-1} \to O(1), N \to \infty, \varepsilon \to 0.$

$$\begin{cases} \dot{x}_i(t) = v_i(t), \\ \dot{v}_i(t) = -\frac{1}{\varepsilon} \sum_{\substack{j=1\\j \neq i}}^N \nabla_{x_i} U\left(\frac{|x_i(t) - x_j(t)|}{\varepsilon}\right) \end{cases}$$

[Grad, '49, '58], [Cercignani, '72], [Lanford, '75], [Gallagher-Raymond-Texier, '13] **Arrow (3)**: Homo-energetic Transformation $f(t, x, v) = g(t, v - A(I + tA)^{-1}x)$

[Dayal-James, '10], [James, '18], [James-Nota-Velazquez, '19]

Our first goal:

How to proceed with Arrow (4)?

=:10

Introduction	From Microscopic to Mesoscopic	From Mesoscopic to Macroscopic	Related Numerical Simulation	Summary and Outlook
000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000	0000	0000

Previous work

Arrow (2): BBGKY hierarchy

• Mean-field Limit: $N \to \infty$.

$$\begin{cases} \dot{x}_i(t) = v_i(t), \\ \dot{v}_i(t) = -\frac{1}{N} \sum_{\substack{j=1 \\ j \neq i}}^N \nabla_{x_i} U(|x_i(t) - x_j(t)|) . \end{cases}$$

[Braun-Hepp,'77], [Golse, '03], [Spohn, '12]

• Boltzmann-Grad Limit: $N\varepsilon^{d-1} \to O(1), N \to \infty, \varepsilon \to 0.$

$$\begin{cases} \dot{x}_i(t) = v_i(t), \\ \dot{v}_i(t) = -\frac{1}{\varepsilon} \sum_{\substack{j=1\\j \neq i}}^N \nabla_{x_i} U\left(\frac{|x_i(t) - x_j(t)|}{\varepsilon}\right) \end{cases}$$

[Grad, '49, '58], [Cercignani, '72], [Lanford, '75], [Gallagher-Raymond-Texier, '13] **Arrow (3)**: Homo-energetic Transformation $f(t, x, v) = g(t, v - A(I + tA)^{-1}x)$

[Dayal-James, '10], [James, '18], [James-Nota-Velazquez, '19]

Our first goal:

How to proceed with Arrow (4)?

=: 10

Introduction From Microscopic to Mesoscopic to Mesoscopic to Macroscopic Related Numerical Simulation Summary and Outlook

Dynamical system of OMD

Simulated and Non-simulated atoms are indistinguishable in new variable

$$\begin{aligned} x_{i,k}(t) &= x_k(t) + (I + tA)\nu_i \\ & \downarrow \\ \dot{x}_{i,k}(t) &= \dot{x}_k(t) + A\nu_i \implies v_{i,k}(t) = v_k(t) + A\nu_i \\ & \downarrow \\ \underbrace{v_{i,k}(t) - A(I + tA)^{-1}x_{i,k}(t)}_{:=w_{i,k}(t)} = \underbrace{v_k(t) - A(I + tA)^{-1}x_k(t)}_{:=w_k(t)} \end{aligned}$$

The dynamical system of OMD in new variables $\left(x_i(t),w_i(t)
ight)$: for i = 1,...,N,

$$\begin{cases} \dot{x}_{i}(t) = w_{i}(t) + A(I + tA)^{-1}x_{i}(t), \\ \\ \dot{w}_{i}(t) = -\sum_{\substack{j=1\\j\neq i}}^{N} \nabla_{x_{i}}U(|x_{i}(t) - x_{j}(t)|) - A(I + tA)^{-1}w_{i}(t). \end{cases}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Dynamical system of OMD

Simulated and Non-simulated atoms are indistinguishable in new variable

$$x_{i,k}(t) = x_k(t) + (I + tA)\nu_i$$

$$\downarrow$$

$$\dot{x}_{i,k}(t) = \dot{x}_k(t) + A\nu_i \implies v_{i,k}(t) = v_k(t) + A\nu_i$$

$$\downarrow$$

$$\underbrace{v_{i,k}(t) - A(I + tA)^{-1}x_{i,k}(t)}_{:=w_{i,k}(t)} = \underbrace{v_k(t) - A(I + tA)^{-1}x_k(t)}_{:=w_k(t)}$$

The dynamical system of OMD in new variables $(x_i(t), w_i(t))$: for i = 1, ..., N,

$$\begin{cases} \dot{x}_{i}(t) = w_{i}(t) + A(I + tA)^{-1}x_{i}(t), \\ \\ \dot{w}_{i}(t) = -\sum_{\substack{j=1 \\ j \neq i}}^{N} \nabla_{x_{i}}U(|x_{i}(t) - x_{j}(t)|) - A(I + tA)^{-1}w_{i}(t). \end{cases}$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Introduction	From Microscopic to Mesoscopic	From Mesoscopic to Macroscopic	Related Numerical Simulation	Summary and Outlook
000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000	0000	0000

Kinetic description

• Mean-field type model:

$$(\mathsf{M}) \begin{cases} \dot{x}_{i}(t) = w_{i}(t) + A(I + tA)^{-1}x_{i}(t) \\ \dot{w}_{i}(t) = -\frac{1}{N} \sum_{\substack{j=1\\j\neq i}}^{N} \nabla_{x_{i}} U\left(|x_{i}(t) - x_{j}(t)|\right) - A(I + tA)^{-1}w_{i}(t) \\ \downarrow \qquad N \to \infty \end{cases}$$

$$\frac{\partial g}{\partial t} + w \cdot \nabla_x g + \left[A(I+tA)^{-1}x \right] \cdot \nabla_x g - \left[A(I+tA)^{-1}w \right] \cdot \nabla_w g = \left[\nabla_x U * \rho_g \right](t,x) \cdot \nabla_w g$$

• Boltzmann type model:

$$(\mathbf{B}) \begin{cases} \dot{x}_i(t) = w_i(t) + A(I + tA)^{-1} x_i(t) \\ \dot{w}_i(t) = -\frac{1}{\varepsilon} \sum_{\substack{j=1\\j\neq i}}^N \nabla x_i U\left(\frac{|x_i(t) - x_j(t)|}{\varepsilon}\right) - A(I + tA)^{-1} w_i(t) \\ \downarrow \quad N\varepsilon^{d-1} \to O(1), \text{ as } N \to \infty, \ \varepsilon \to 0 \end{cases}$$

$$\frac{\partial g}{\partial t} + w \cdot \nabla_x g + \left[A(I + tA)^{-1} x \right] \cdot \nabla_x g - \left[A(I + tA)^{-1} w \right] \cdot \nabla_w g = Q(g,g)$$

Introduction	From Microscopic to Mesoscopic	From Mesoscopic to Macroscopic	Related Numerical Simulation	Summary and Outlook
000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000	0000	0000

Kinetic description

• Mean-field type model:

$$(\mathsf{M}) \begin{cases} \dot{x}_{i}(t) = w_{i}(t) + A(I + tA)^{-1}x_{i}(t) \\ \dot{w}_{i}(t) = -\frac{1}{N} \sum_{\substack{j=1\\j\neq i}}^{N} \nabla_{x_{i}} U\left(|x_{i}(t) - x_{j}(t)|\right) - A(I + tA)^{-1}w_{i}(t) \\ \downarrow \qquad N \to \infty \end{cases}$$

$$\frac{\partial g}{\partial t} + w \cdot \nabla_x g + [A(I+tA)^{-1}x] \cdot \nabla_x g - [A(I+tA)^{-1}w] \cdot \nabla_w g = [\nabla_x U * \rho_g](t,x) \cdot \nabla_w g$$

• Boltzmann type model:

$$(\mathbf{B}) \begin{cases} \dot{x}_i(t) = w_i(t) + A(I + tA)^{-1} x_i(t) \\ \dot{w}_i(t) = -\frac{1}{\varepsilon} \sum_{\substack{j=1\\j\neq i}}^N \nabla x_i U\left(\frac{|x_i(t) - x_j(t)|}{\varepsilon}\right) - A(I + tA)^{-1} w_i(t) \\ \downarrow \quad N\varepsilon^{d-1} \to O(1), \text{ as } N \to \infty, \ \varepsilon \to 0 \end{cases}$$

$$\frac{\partial g}{\partial t} + w \cdot \nabla_x g + \left[A(I + tA)^{-1} x \right] \cdot \nabla_x g - \left[A(I + tA)^{-1} w \right] \cdot \nabla_w g = Q(g,g)$$

Introduction From Microscopic to Mesoscopic to Macroscopic to Macroscopic Related Numerical Simulation Summary and Outlook

Derivation of mean-field limit

Denote

$$\boldsymbol{\Omega}^{N} \coloneqq \left\{ (x_{1}, w_{1}, x_{2}, w_{2} ..., x_{N}, w_{N}) \in \mathbb{R}^{6N} \mid x_{i} \neq x_{j}, \ i \neq j \right\}$$

and let

$$\mathcal{D}^{(N)}(t, x_1, w_1, x_2, w_2, ..., x_N, w_N)$$

be the N-particle distribution function.

Our goal: derive the mean-field equation $P^{(1)}(t, x_1, w_1)$

1

Starting with the Liouville equation satisfied by $P^{(N)}(t, x_1, w_1, ..., x_N, w_N)$

$$\frac{\partial P^{(N)}}{\partial t} + \sum_{i=1}^{N} \left[\dot{x}_i \cdot \nabla_{x_i} P^{(N)} + \dot{w}_i \cdot \nabla_{w_i} P^{(N)} \right] = 0,$$

and substituting system (M), it leads to

$$\frac{\partial P^{(N)}}{\partial t} + \sum_{i=1}^{N} w_i \cdot \nabla_{x_i} P^{(N)} + \sum_{i=1}^{N} [A(I+tA)^{-1}x_i] \cdot \nabla_{x_i} P^{(N)} \\ - \frac{1}{N} \sum_{i=1}^{N} \sum_{\substack{j=1\\j\neq i}}^{N} \nabla_{x_i} U\left(|x_i - x_j|\right) \cdot \nabla_{w_i} P^{(s)} - \sum_{i=1}^{N} [A(I+tA)^{-1}w_i] \cdot \nabla_{w_i} P^{(N)} = 0$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへ⊙

Derivation of mean-field limit

Integrating over the domain $\{x_{s+1}, w_{s+1}, ..., x_N, w_N\}$, we obtain the corresponding kinetic equation of the s-marginal distribution $P^{(s)}$,

$$\underbrace{\frac{\partial P^{(s)}}{\partial t} + \underbrace{\int_{\mathbb{R}^{6(N-s)}} \left(\sum_{i=1}^{N} w_{i} \cdot \nabla_{x_{i}} P^{(N)} + \sum_{i=1}^{N} [A(I+tA)^{-1}x_{i}] \cdot \nabla_{x_{i}} P^{(N)} \right) dx_{s+1} \dots w_{N}}_{=:(\mathbf{I})}}_{=:(\mathbf{I})}$$

$$\underbrace{- \int_{\mathbb{R}^{6(N-s)}} \left(\frac{1}{N} \sum_{i=1}^{N} \sum_{\substack{j=1\\j\neq i}}^{s} \nabla_{x_{i}} U\left(|x_{i} - x_{j}|\right) - \sum_{i=1}^{N} [A(I+tA)^{-1}w_{i}] \right) \cdot \nabla_{w_{i}} P^{(N)} dx_{s+1} \dots w_{N}}_{=:(\mathbf{II})}}_{=:(\mathbf{III})}$$

$$\underbrace{- \int_{\mathbb{R}^{6(N-s)}} \frac{1}{N} \sum_{i=1}^{N} \sum_{\substack{j=s+1\\j\neq i}}^{N} \nabla_{x_{i}} U\left(|x_{i} - x_{j}|\right) \cdot \nabla_{w_{i}} P^{(N)} dx_{s+1} \dots x_{N} w_{N}}_{=:(\mathbf{III})}}_{=:(\mathbf{III})}$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Derivation of mean-field limit

For term (I),

$$(I) = \sum_{i=1}^{s} w_{i} \cdot \nabla_{x_{i}} P^{(s)} + \sum_{i=1}^{s} \left[A(I+tA)^{-1} x_{i} \right] \cdot \nabla_{x_{i}} P^{(s)}$$

+
$$\sum_{i=s+1}^{N} \int_{\mathbb{R}^{6(N-s)}} \left[A(I+tA)^{-1} x_{i} \right] \cdot \nabla_{x_{i}} P^{(N)} \, \mathrm{d}x_{s+1} \dots w_{N}$$

=
$$\sum_{i=1}^{s} w_{i} \cdot \nabla_{x_{i}} P^{(s)} + \sum_{i=1}^{s} \left[A(I+tA)^{-1} x_{i} \right] \cdot \nabla_{x_{i}} P^{(s)} - (N-s) \mathrm{Tr} \left[A(I+tA)^{-1} \right] P^{(s)}$$

For term (II)

$$(II) = -\frac{1}{N} \sum_{\substack{i,j=1\\i\neq j}}^{s} \nabla_{x_i} U\left(|x_i - x_j|\right) \cdot \nabla_{w_i} P^{(s)} - \sum_{i=1}^{s} [A(I + tA)^{-1} w_i] \cdot \nabla_{w_i} P^{(s)} + (N - s) \operatorname{Tr}[A(I + tA)^{-1}] P^{(s)}$$

For term (III), since particles are indistinguishable,

$$(III) = \frac{N-s}{N} \sum_{i=1}^{s} \int_{\mathbb{R}^{6}} \nabla x_{i} U\left(|x_{i} - x_{s+1}|\right) \cdot \nabla w_{i} P^{(s+1)}(t, X_{s}, W_{s}, x_{s+1}w_{s+1}) \, \mathrm{d}x_{s+1}w_{s+1}$$
$$= \frac{N-s}{N} \sum_{i=1}^{s} \nabla w_{i} \cdot \int_{\mathbb{R}^{6}} \left[\nabla x_{i} U\left(|x_{i} - x_{s+1}|\right) P^{(s+1)}(t, X_{s}, W_{s}, x_{s+1}w_{s+1}) \right] \, \mathrm{d}x_{s+1}w_{s+1}$$

Derivation of mean-field limit

For term (I),

$$(I) = \sum_{i=1}^{s} w_i \cdot \nabla_{x_i} P^{(s)} + \sum_{i=1}^{s} \left[A(I+tA)^{-1} x_i \right] \cdot \nabla_{x_i} P^{(s)}$$

+
$$\sum_{i=s+1}^{N} \int_{\mathbb{R}^6(N-s)} \left[A(I+tA)^{-1} x_i \right] \cdot \nabla_{x_i} P^{(N)} \, \mathrm{d}x_{s+1} \dots w_N$$

=
$$\sum_{i=1}^{s} w_i \cdot \nabla_{x_i} P^{(s)} + \sum_{i=1}^{s} \left[A(I+tA)^{-1} x_i \right] \cdot \nabla_{x_i} P^{(s)} - (N-s) \mathrm{Tr} \left[A(I+tA)^{-1} \right] P^{(s)}$$

For term (II),

$$(II) = -\frac{1}{N} \sum_{\substack{i,j=1\\i\neq j}}^{s} \nabla_{x_i} U\left(|x_i - x_j|\right) \cdot \nabla_{w_i} P^{(s)} - \sum_{i=1}^{s} [A(I + tA)^{-1} w_i] \cdot \nabla_{w_i} P^{(s)} + (N - s) \operatorname{Tr}[A(I + tA)^{-1}] P^{(s)}$$

For term (III), since particles are indistinguishable,

$$(III) = \frac{N-s}{N} \sum_{i=1}^{s} \int_{\mathbb{R}^{6}} \nabla x_{i} U\left(|x_{i} - x_{s+1}|\right) \cdot \nabla w_{i} P^{(s+1)}(t, X_{s}, W_{s}, x_{s+1}w_{s+1}) \, \mathrm{d}x_{s+1}w_{s+1}$$
$$= \frac{N-s}{N} \sum_{i=1}^{s} \nabla w_{i} \cdot \int_{\mathbb{R}^{6}} \left[\nabla x_{i} U\left(|x_{i} - x_{s+1}|\right) P^{(s+1)}(t, X_{s}, W_{s}, x_{s+1}w_{s+1}) \right] \, \mathrm{d}x_{s+1}w_{s+1}$$
$$(\Box \lor \langle \Box \rangle \langle$$

Derivation of mean-field limit

For term (I),

$$(I) = \sum_{i=1}^{s} w_{i} \cdot \nabla_{x_{i}} P^{(s)} + \sum_{i=1}^{s} \left[A(I+tA)^{-1} x_{i} \right] \cdot \nabla_{x_{i}} P^{(s)}$$

+
$$\sum_{i=s+1}^{N} \int_{\mathbb{R}^{6(N-s)}} \left[A(I+tA)^{-1} x_{i} \right] \cdot \nabla_{x_{i}} P^{(N)} dx_{s+1} \dots w_{N}$$

=
$$\sum_{i=1}^{s} w_{i} \cdot \nabla_{x_{i}} P^{(s)} + \sum_{i=1}^{s} \left[A(I+tA)^{-1} x_{i} \right] \cdot \nabla_{x_{i}} P^{(s)} - (N-s) \operatorname{Tr} \left[A(I+tA)^{-1} \right] P^{(s)}$$

For term (II),

$$(II) = -\frac{1}{N} \sum_{\substack{i,j=1\\i\neq j}}^{s} \nabla_{x_i} U\left(|x_i - x_j|\right) \cdot \nabla_{w_i} P^{(s)} - \sum_{i=1}^{s} [A(I + tA)^{-1} w_i] \cdot \nabla_{w_i} P^{(s)} + (N - s) \operatorname{Tr}[A(I + tA)^{-1}] P^{(s)}$$

For term (III), since particles are indistinguishable,

$$(III) = \frac{N-s}{N} \sum_{i=1}^{s} \int_{\mathbb{R}^{6}} \nabla_{x_{i}} U\left(|x_{i} - x_{s+1}|\right) \cdot \nabla_{w_{i}} P^{(s+1)}(t, X_{s}, W_{s}, x_{s+1}w_{s+1}) \, \mathrm{d}x_{s+1}w_{s+1}$$
$$= \frac{N-s}{N} \sum_{i=1}^{s} \nabla_{w_{i}} \cdot \int_{\mathbb{R}^{6}} \left[\nabla_{x_{i}} U\left(|x_{i} - x_{s+1}|\right) P^{(s+1)}(t, X_{s}, W_{s}, x_{s+1}w_{s+1}) \right] \, \mathrm{d}x_{s+1}w_{s+1}$$

Destination	Constant California			
000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000	0000	0000
	From Microscopic to Mesoscopic	From Mesoscopic to Macroscopic	Related Numerical Simulation	Summary and Outlook

Derivation of mean-field limit

Combining the terms (I) - (III) altogether,

$$\frac{\partial P^{(s)}}{\partial t} + \sum_{i=1}^{s} w_i \cdot \nabla_{x_i} P^{(s)} + \sum_{i=1}^{s} [A(I+tA)^{-1}x_i] \cdot \nabla_{x_i} P^{(s)} - \sum_{i=1}^{s} [A(I+tA)^{-1}w_i] \cdot \nabla_{w_i} P^{(s)} - \frac{1}{N} \sum_{\substack{i,j=1\\i\neq j}}^{s} \nabla_{x_i} U\left(|x_i - x_j|\right) \cdot \nabla_{w_i} P^{(s)}$$

$$= \frac{N-s}{N} \sum_{i=1}^{5} \nabla w_i \cdot \int_{\mathbb{R}^6} \left[\nabla x_i U\left(|x_i - x_{s+1}| \right) P^{(s+1)}(t, X_s, W_s, x_{s+1} w_{s+1}) \right] \mathrm{d}x_{s+1} w_{s+1}$$

In particular, taking s = 1 above, it reduces to the two-particle case

$$\frac{\partial P^{(1)}}{\partial t} + w_1 \cdot \nabla_{x_1} P^{(1)} + [A(I+tA)^{-1}x_1] \cdot \nabla_{x_1} P^{(1)} - [A(I+tA)^{-1}w_1] \cdot \nabla_{w_1} P^{(1)}$$
$$= \frac{N-s}{N} \nabla_{w_1} \cdot \int_{\mathbb{R}^6} \left[\nabla_{x_1} U\left(|x_1-x_2|\right) P^{(2)}(t,x_1w_1,x_2w_2) \right] \mathrm{d}x_2 w_2$$

◆□ ▶ ◆□ ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへ⊙

Destination	Constant California			
000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000	0000	0000
	From Microscopic to Mesoscopic	From Mesoscopic to Macroscopic	Related Numerical Simulation	Summary and Outlook

Derivation of mean-field limit

Combining the terms (I) - (III) altogether,

$$\frac{\partial P^{(s)}}{\partial t} + \sum_{i=1}^{s} w_i \cdot \nabla_{x_i} P^{(s)} + \sum_{i=1}^{s} [A(I+tA)^{-1}x_i] \cdot \nabla_{x_i} P^{(s)} - \sum_{i=1}^{s} [A(I+tA)^{-1}w_i] \cdot \nabla_{w_i} P^{(s)} - \frac{1}{N} \sum_{\substack{i,j=1\\i\neq j}}^{s} \nabla_{x_i} U\left(|x_i - x_j|\right) \cdot \nabla_{w_i} P^{(s)}$$

$$= \frac{N-s}{N} \sum_{i=1}^{s} \nabla w_i \cdot \int_{\mathbb{R}^6} \left[\nabla x_i U\left(|x_i - x_{s+1}| \right) P^{(s+1)}(t, X_s, W_s, x_{s+1} w_{s+1}) \right] \mathrm{d}x_{s+1} w_{s+1}$$

In particular, taking s = 1 above, it reduces to the two-particle case:

$$\frac{\partial P^{(1)}}{\partial t} + w_1 \cdot \nabla_{x_1} P^{(1)} + [A(I+tA)^{-1}x_1] \cdot \nabla_{x_1} P^{(1)} - [A(I+tA)^{-1}w_1] \cdot \nabla_{w_1} P^{(1)}$$
$$= \frac{N-s}{N} \nabla_{w_1} \cdot \int_{\mathbb{R}^6} \left[\nabla_{x_1} U\left(|x_1-x_2|\right) P^{(2)}(t,x_1w_1,x_2w_2) \right] \mathrm{d}x_2 w_2$$

Introduction From Microscopic to Mesoscopic to Macroscopic to Macroscopic Related Numerical Simulation Summary and Outlook

Derivation of mean-field limit

To close the hierarchy above, we consider the "propagation of chaos" assumption:

$$P^{(2)}(t, x_1w_1, x_2w_2) = P^{(1)}(t, x_1, w_1)P^{(1)}(t, x_2, w_2)$$

which says the two particles remain independent throughout the dynamics. Under this assumption, the right-hand side becomes

$$\frac{N-1}{N} \nabla_{w_1} \cdot \int_{\mathbb{R}^6} \left[\nabla_{x_1} U\left(|x_1 - x_2| \right) P^{(2)}(t, x_1, w_1, x_2, w_2) \right] dx_2 dw_2
= \frac{N-1}{N} \int_{\mathbb{R}^6} \left[\nabla_{x_1} U\left(|x_1 - x_2| \right) P^{(1)}(t, x_2, w_2) \nabla_{w_1} P^{(1)}(t, x_1, w_1) \right] dx_2 dw_2
= \frac{N-1}{N} \int_{\mathbb{R}^3} \left[\nabla_{x_1} U\left(|x_1 - x_2| \right) \int_{\mathbb{R}^3} P^{(1)}(t, x_2, w_2) dw_2 \right] dx_2 \cdot \nabla_{w_1} P^{(1)}(t, x_1, w_1)
= \frac{N-1}{N} \nabla_{x_1} U \star \rho_{P^{(1)}}(t, x_1) \cdot \nabla_{w_1} P^{(1)}(t, x_1, w_1)$$

Finally, by re-naming $P^{(1)}(t, x_1, w_1)$ to g(t, x, w)

$$\frac{\partial g(t, x, w)}{\partial t} + w \cdot \nabla_x g + [A(I + tA)^{-1}x] \cdot \nabla_x g - [A(I + tA)^{-1}w] \cdot \nabla_w g$$
$$= [\nabla_x U * \rho_g](t, x) \cdot \nabla_w g$$

Introduction From Microscopic to Mesoscopic to Macroscopic to Macroscopic Related Numerical Simulation Summary and Outlook

Derivation of mean-field limit

To close the hierarchy above, we consider the "propagation of chaos" assumption:

$$P^{(2)}(t, x_1w_1, x_2w_2) = P^{(1)}(t, x_1, w_1)P^{(1)}(t, x_2, w_2)$$

which says the two particles remain independent throughout the dynamics. Under this assumption, the right-hand side becomes

$$\frac{N-1}{N} \nabla_{w_1} \cdot \int_{\mathbb{R}^6} \left[\nabla_{x_1} U\left(|x_1 - x_2| \right) P^{(2)}(t, x_1, w_1, x_2, w_2) \right] dx_2 dw_2
= \frac{N-1}{N} \int_{\mathbb{R}^6} \left[\nabla_{x_1} U\left(|x_1 - x_2| \right) P^{(1)}(t, x_2, w_2) \nabla_{w_1} P^{(1)}(t, x_1, w_1) \right] dx_2 dw_2
= \frac{N-1}{N} \int_{\mathbb{R}^3} \left[\nabla_{x_1} U\left(|x_1 - x_2| \right) \int_{\mathbb{R}^3} P^{(1)}(t, x_2, w_2) dw_2 \right] dx_2 \cdot \nabla_{w_1} P^{(1)}(t, x_1, w_1)
= \frac{N-1}{N} \nabla_{x_1} U * \rho_{P^{(1)}}(t, x_1) \cdot \nabla_{w_1} P^{(1)}(t, x_1, w_1)$$

Finally, by re-naming $P^{(1)}(t, x_1, w_1)$ to g(t, x, w)

$$\frac{\partial g(t, x, w)}{\partial t} + w \cdot \nabla_x g + [A(I + tA)^{-1}x] \cdot \nabla_x g - [A(I + tA)^{-1}w] \cdot \nabla_w g$$
$$= [\nabla_x U * \rho_g](t, x) \cdot \nabla_w g$$

Theorem (Existence, uniqueness and stability [James-Q.-Wang '23])

For any initial datum $g_0(x,w) \in \mathcal{P}_c(\mathbb{R}^3 \times \mathbb{R}^3)$, there exists a measure-valued solution $g_t(x,w) = g(t,x,w) \in C([0,+\infty), \mathcal{P}_c(\mathbb{R}^3 \times \mathbb{R}^3))$ to mean-field equation, and there is an increasing function R = R(T) such that for all T > 0,

supp
$$g_t(\cdot, \cdot) \subset B_{R(T)} \subset \mathbb{R}^3 \times \mathbb{R}^3, \quad \forall \ t \in [0, T]$$
 (1)

This solution is unique among the family of solutions $C([0, +\infty), \mathcal{P}_c(\mathbb{R}^3 \times \mathbb{R}^3))$ satisfying (1).

Moreover, assume that $g_0, h_0 \in \mathcal{P}_c(\mathbb{R}^3 \times \mathbb{R}^3)$ are two initial conditions, and q_t, h_t are the corresponding solutions to mean-field equation. Then,

 $W_1(q_t(\cdot, \cdot), h_t(\cdot, \cdot)) \le e^{2tL} W_1(q_0(\cdot, \cdot), h_0(\cdot, \cdot)), \quad \forall t \ge 0$

where L is a constant depending on A and U, and W_1 is Monge-Kantorovich-Rubinstein distance defined as:

$$W_1(\mu,\nu) \coloneqq \sup\left\{ \left| \int_{\mathbb{R}^3 \times \mathbb{R}^3} \varphi(P)(\mu(P) - \nu(P)) \, \mathrm{d}P \right|, \ \varphi \in Lip(\mathbb{R}^3 \times \mathbb{R}^3), \ \|\varphi\|_{\mathrm{Lip}} \leq 1 \right\}$$

$$\mathcal{T}^t_{\boldsymbol{\xi},\mathcal{H}}: (X(0), W(0)) \mapsto (X(t), W(t)) \in \mathbb{R}^3 \times \mathbb{R}^3$$

is a measure-valued solution in the distributional sense

Theorem (Existence, uniqueness and stability [James-Q.-Wang '23])

For any initial datum $g_0(x,w) \in \mathcal{P}_c(\mathbb{R}^3 \times \mathbb{R}^3)$, there exists a measure-valued solution $g_t(x,w) = g(t,x,w) \in C([0,+\infty), \mathcal{P}_c(\mathbb{R}^3 \times \mathbb{R}^3))$ to mean-field equation, and there is an increasing function R = R(T) such that for all T > 0,

supp
$$g_t(\cdot, \cdot) \subset B_{R(T)} \subset \mathbb{R}^3 \times \mathbb{R}^3, \quad \forall \ t \in [0, T]$$
 (1)

This solution is unique among the family of solutions $C([0, +\infty), \mathcal{P}_c(\mathbb{R}^3 \times \mathbb{R}^3))$ satisfying (1).

Moreover, assume that $g_0, h_0 \in \mathcal{P}_c(\mathbb{R}^3 \times \mathbb{R}^3)$ are two initial conditions, and g_t, h_t are the corresponding solutions to mean-field equation. Then,

 $W_1(g_t(\cdot, \cdot), h_t(\cdot, \cdot)) \le e^{2tL} W_1(g_0(\cdot, \cdot), h_0(\cdot, \cdot)), \quad \forall t \ge 0$

where L is a constant depending on A and U, and W_1 is Monge-Kantorovich-Rubinstein distance defined as:

$$W_1(\mu,\nu) \coloneqq \sup \left\{ \left| \int_{\mathbb{R}^3 \times \mathbb{R}^3} \varphi(P)(\mu(P) - \nu(P)) \, \mathrm{d}P \right|, \ \varphi \in Lip(\mathbb{R}^3 \times \mathbb{R}^3), \ \|\varphi\|_{\mathrm{Lip}} \leq 1 \right\}$$

Sketch of proof: Fix-point argument

Define a flow operator at time $t \in [0, T)$,

$$\mathcal{T}^t_{\xi,\mathcal{H}}: (X(0), W(0)) \mapsto (X(t), W(t)) \in \mathbb{R}^3 \times \mathbb{R}^3$$

For an initial probability measure $g_0(x, w)$, the function

$$g(t, x, w) : [0, T) \to \mathcal{P}_1(\mathbb{R}^3 \times \mathbb{R}^3), \quad t \mapsto g_t(x, w) \coloneqq \mathcal{T}^t_{\xi, \mathcal{H}} \# g_0(x, w)$$

is a measure-valued solution in the distributional sense (a = b + a = b + a = b) = (a = b + a = b)

Let $g_t^N(x,w): [0,T] \mapsto \mathcal{P}_1(\mathbb{R}^3 \times \mathbb{R}^3)$ be a probability measure defined as

$$g_t^N(x,w) \coloneqq \frac{1}{N} \sum_{i=1}^N \delta\big(x - x_i(t)\big) \delta\big(w - w_i(t)\big)$$
(2)

If $x_i, w_i : [0, T] \mapsto \mathbb{R}^3$, for i = 1, ..., N, is a solution to dynamics system, then $g_t^N(x, w)$ is the measure-valued solution to mean-field equation with the initial condition

$$g_0^N(x,w) \coloneqq \frac{1}{N} \sum_{i=1}^N \delta(x - x_i(0)) \delta(w - w_i(0))$$
(3)

Corollary (Convergence of the empirical measure)

Consider a sequence of g_0^N in the form of (3) such that

$$\lim_{N\to\infty} W_1(g_0^N(\cdot,\cdot),g_0(\cdot,\cdot)) = 0.$$

Let g_t^N be given by (2), where $(x_i(t), w_i(t))$ solves dynamics system with initial conditions $(x_i(0), w_i(0))$. Then we have

$$\lim_{N \to \infty} W_1(g_t^N(\cdot, \cdot), g_t(\cdot, \cdot)) = 0$$

for all $t \ge 0$, where $g_t(x, w)$ is the unique measure-valued solution to mean-field equation with initial data $g_0(x, w)$.

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < ⊙

Let $g_t^N(x,w):[0,T]\mapsto \mathcal{P}_1(\mathbb{R}^3 imes\mathbb{R}^3)$ be a probability measure defined as

$$g_t^N(x,w) \coloneqq \frac{1}{N} \sum_{i=1}^N \delta\big(x - x_i(t)\big) \delta\big(w - w_i(t)\big)$$
(2)

If $x_i, w_i : [0, T] \mapsto \mathbb{R}^3$, for i = 1, ..., N, is a solution to dynamics system, then $g_t^N(x, w)$ is the measure-valued solution to mean-field equation with the initial condition

$$g_0^N(x,w) \coloneqq \frac{1}{N} \sum_{i=1}^N \delta(x - x_i(0)) \delta(w - w_i(0))$$
(3)

Corollary (Convergence of the empirical measure)

Consider a sequence of g_0^N in the form of (3) such that

 $\lim_{N\to\infty} W_1(g_0^N(\cdot,\cdot),g_0(\cdot,\cdot)) = 0.$

Let g_t^N be given by (2), where $(x_i(t), w_i(t))$ solves dynamics system with initial conditions $(x_i(0), w_i(0))$. Then we have

$$\lim_{N \to \infty} W_1(g_t^N(\cdot, \cdot), g_t(\cdot, \cdot)) = 0$$

for all $t \ge 0$, where $g_t(x, w)$ is the unique measure-valued solution to mean-field equation with initial data $g_0(x, w)$.

From Microscopic to Mesoscopic	From Mesoscopic to Macroscopic	Related Numerical Simulation	Summary and Outlook
	• 00 000000		

3. From Mesoscopic to Macroscopic

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Introduction	From Microscopic to Mesoscopic	From Mesoscopic to Macroscopic	Related Numerical Simulation	Summary and Outlook
000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000	0000	0000

Recall the Big Picture

C: compressible IC: incompressible

NS: Navier-Stokes E: Euler

▲□▶ ▲□▶ ▲ □▶ ▲ □ ▶ ▲ □ ● ● ● ●

Introduction	From Microscopic to Mesoscopic	From Mesoscopic to Macroscopic	Related Numerical Simulation	Summary and Outlook
000000000000000000000000000000000000000	00000000000000000	00000000	0000	0000
Providus work				

Arrow (5): Hydrodynamic Limit

• Hilbert or Chapman-Enskoy Expansion :

[Hilbert,'12], [Enskoy, '17], [Chapman-Cowling, '39]

• Asymptotic convergence:

to C.E. [Caflish, '80], to IC.NS. [DeMasi-Esposito-Lebowitz, '89]

• Renormalized solution of Boltzmann to weak solution of E/NS:

to IC. [Bardos-Golse-Levermore '93], [Lions-Masmoudi, '01], [Golse-Saint-Raymond, '04, '09], [Levermore-Masmoudi, '10], [Jiang-Masmoudi, '17]

• Strong solution near equilibrium:

to C.E. [Nishida '78], to IC.NS [Bardos-Ukai '91], [Gallagher-Tristani '20]

Arrow (7): Homo-energetic Transformation for macroscopic quantities [Pahlani-Schwartzentruber-James, '22, '23]

Our second goal

How to proceed with Arrow (6)?

Introduction	From Microscopic to Mesoscopic	From Mesoscopic to Macroscopic	Related Numerical Simulation	Summary and Outlook	
000000000000000000000000000000000000000	0000000000000000	00000000	0000	0000	
Provious work					

Arrow (5): Hydrodynamic Limit

• Hilbert or Chapman-Enskoy Expansion :

[Hilbert,'12], [Enskoy, '17], [Chapman-Cowling, '39]

• Asymptotic convergence:

to C.E. [Caflish, '80], to IC.NS. [DeMasi-Esposito-Lebowitz, '89]

• Renormalized solution of Boltzmann to weak solution of E/NS:

to IC. [Bardos-Golse-Levermore '93], [Lions-Masmoudi, '01], [Golse-Saint-Raymond, '04, '09], [Levermore-Masmoudi, '10], [Jiang-Masmoudi, '17]

• Strong solution near equilibrium:

to C.E. [Nishida '78], to IC.NS [Bardos-Ukai '91], [Gallagher-Tristani '20]

Arrow (7): Homo-energetic Transformation for macroscopic quantities [Pahlani-Schwartzentruber-James, '22, '23]

Our second goal:

How to proceed with Arrow (6)?

Introduction

From Microscopic to Mesoscopic 00000000000000000 From Mesoscopic to Macroscopic

Related Numerical Simulation Summary and C

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

Macroscopic quantities of homo-energetic flow

• Density $\rho(t, x)$:

$$\rho(t,x) = \int_{\mathbb{R}^3} f(t,x,v) \, \mathrm{d}v = \int_{\mathbb{R}^3} g(t,w) \, \mathrm{d}w =: \rho(t)$$

• Bulk velocity u(t, x):

$$u(t,x) = \frac{1}{\rho(t,x)} \int_{\mathbb{R}^3} f(t,x,v) v \, \mathrm{d}v = \frac{1}{\rho(t)} \int_{\mathbb{R}^3} g(t,w) [w+L(t)x] \, \mathrm{d}w$$
$$= \frac{1}{\rho} \int_{\mathbb{R}^3} gw \, \mathrm{d}w + [L(t)x] \frac{1}{\rho} \int_{\mathbb{R}^3} g \, \mathrm{d}w$$
$$= \frac{L(t)x}$$

• Internal energy e(t,x) and temperature $\theta(t,x)$:

$$\rho(t,x)e(t,x) = \frac{1}{2} \int_{\mathbb{R}^3} f(t,x,v)|v-u(t,x)|^2 \, \mathrm{d}v$$
$$= \frac{1}{2} \int_{\mathbb{R}^3} g(t,w)|w|^2 \, \mathrm{d}w =: \rho(t)e(t)$$

Consider the equation of state for perfect gas $e(t) = \frac{k_B \theta(t)}{\gamma_a - 1} = \frac{3}{2} \theta(t)$.

• Stress tensor $P_{ij}(t,x)$: for peculiar velocity c,

$$\begin{aligned} P_{ij}(t,x) &= \int_{\mathbb{R}^3} c_i(t,x) c_j(t,x) f(t,x,v) \, \mathrm{d}v \\ &= \int_{\mathbb{R}^3} w_i w_j g(t,w) \, \mathrm{d}w \eqqcolon P_{ij}(t) \end{aligned}$$

for i, j = 1, 2, 3.

By multiplying the collision invariants 1, w_j , and $\frac{1}{2}|w|^2$ to homo-energetic equations,

$$\begin{cases} \frac{\mathrm{d}}{\mathrm{d}t}\rho(t) + \mathrm{Tr}[L(t)]\rho(t) = 0\\ \rho(t)\left(\frac{\mathrm{d}L(t)}{\mathrm{d}t} + L^{2}(t)\right) = 0\\ \rho(t)\frac{\mathrm{d}e(t)}{\mathrm{d}t} + \sum_{i=1}^{3}\sum_{j=1}^{3}P_{ij}(t)L_{ij}(t) = 0 \end{cases}$$

Our Results:

• By applying the Hilbert expansion, we derive a reduced Euler system:

$$\partial_t \rho(t) + \operatorname{Tr}[L(t)]\rho(t) = 0$$
$$\partial_t \theta(t) + \frac{2}{3} \operatorname{Tr}[L(t)]\theta(t) = 0$$

• By applying the Chapman-Enskog expansion, we obtain the corresponding reduced Navier-Stokes system with $O(\epsilon)$ correction terms:

$$\begin{cases} \partial_t \rho(t) + \operatorname{Tr}[L(t)]\rho(t) = 0\\ \partial_t \theta(t) + \frac{2}{3}\operatorname{Tr}[L(t)]\theta(t) = \epsilon \mu(\theta) \frac{1}{2} \left(\operatorname{Tr}[L^2(t)] + L(t) : L(t) - \frac{2}{3} \left(\operatorname{Tr}[L(t)]\right)^2\right) \end{cases}$$

where μ is the viscosity.

By multiplying the collision invariants 1, w_j , and $\frac{1}{2}|w|^2$ to homo-energetic equations,

$$\begin{cases} \frac{\mathrm{d}}{\mathrm{d}t}\rho(t) + \mathrm{Tr}[L(t)]\rho(t) = 0\\ \rho(t)\left(\frac{\mathrm{d}L(t)}{\mathrm{d}t} + L^{2}(t)\right) = 0\\ \rho(t)\frac{\mathrm{d}e(t)}{\mathrm{d}t} + \sum_{i=1}^{3}\sum_{j=1}^{3}P_{ij}(t)L_{ij}(t) = 0 \end{cases}$$

Our Results:

• By applying the Hilbert expansion, we derive a reduced Euler system:

$$\partial_t \rho(t) + \operatorname{Tr}[L(t)]\rho(t) = 0$$
$$\partial_t \theta(t) + \frac{2}{3} \operatorname{Tr}[L(t)]\theta(t) = 0$$

• By applying the Chapman-Enskog expansion, we obtain the corresponding reduced Navier-Stokes system with $O(\epsilon)$ correction terms:

$$\begin{cases} \partial_t \rho(t) + \operatorname{Tr}[L(t)]\rho(t) = 0\\ \partial_t \theta(t) + \frac{2}{3} \operatorname{Tr}[L(t)]\theta(t) = \epsilon \mu(\theta) \frac{1}{2} \left(\operatorname{Tr}[L^2(t)] + L(t) : L(t) - \frac{2}{3} (\operatorname{Tr}[L(t)])^2 \right) \end{cases}$$

where μ is the viscosity.

Introduction From Microscopic to Mesoscopic **From Mesoscopic to Macroscopic** Related Numerical Simulation Summary and Outlook

The compressible Euler limit via Hilbert expansion

Starting point:

$$\partial_t g(t,w) - [L(t)w] \cdot \nabla_w g(t,w) = \frac{1}{\epsilon} Q(g,g)(t,w)$$

where ϵ plays a role as Knudsen number.

Hilbert Expansion

Seek the solution in the form of a formal power series in ϵ :

$$g_{\epsilon}(t,w) = \sum_{n\geq 0} \epsilon^n g_n(t,w) = g_0(t,w) + \epsilon g_1(t,w) + \cdots.$$

For $O(\epsilon^{-1})$,

$$Q(g_0,g_0)(t,w)=0$$

which implies that $g_0(t, w)$ is in the form of Maxwellian distribution, i.e.,

$$g_0(t,w) = \mathcal{M}_{[\rho(t),\theta(t)]} \coloneqq \frac{\rho(t)}{[2\pi\theta(t)]^{\frac{3}{2}}} e^{-\frac{|w|^2}{2\theta(t)}}, \quad \rho(t) > 0, \quad \theta(t) > 0$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Introduction From Microscopic to Mesoscopic **From Mesoscopic to Macroscopic** Related Numerical Simulation Summary and Outlook

The compressible Euler limit via Hilbert expansion

Starting point:

$$\partial_t g(t,w) - [L(t)w] \cdot \nabla_w g(t,w) = \frac{1}{\epsilon} Q(g,g)(t,w)$$

where ϵ plays a role as Knudsen number.

Hilbert Expansion

Seek the solution in the form of a formal power series in ϵ :

$$g_{\epsilon}(t,w) = \sum_{n\geq 0} \epsilon^n g_n(t,w) = g_0(t,w) + \epsilon g_1(t,w) + \cdots.$$

For $O(\epsilon^{-1})$,

$$Q(g_0,g_0)(t,w)=0$$

which implies that $g_0(t, w)$ is in the form of Maxwellian distribution, i.e.,

$$g_0(t,w) = \mathcal{M}_{[\rho(t),\theta(t)]} \coloneqq \frac{\rho(t)}{[2\pi\theta(t)]^{\frac{3}{2}}} e^{-\frac{|w|^2}{2\theta(t)}}, \quad \rho(t) > 0, \quad \theta(t) > 0$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

$$(\partial_t - [L(t)w] \cdot \nabla_w)g_0(t,w) = Q(g_0,g_1)(t,w) + Q(g_1,g_0)(t,w).$$

Define the linearized Boltzmann collision operator

$$\mathcal{L}_{\mathcal{M}_{\left[\rho,\theta\right]}}g \coloneqq -2\mathcal{M}_{\left[\rho,\theta\right]}^{-1}Q\Big(\mathcal{M}_{\left[\rho,\theta\right]}^{-1},\mathcal{M}_{\left[\rho,\theta\right]}^{-1}g\Big)$$

which is an unbounded self-adjoint non-negative Fredholm operator.

$$\mathcal{L}_{g_0}\left(\frac{g_1}{g_0}\right) = -\left(\partial_t - [L(t)w] \cdot \nabla_w\right) \ln g_0(t,w)$$

We can rearrange the right-hand side, and express it as a linear combination of $1, w_i, |w|^2,$

$$-\mathcal{L}_{g_0}\left(\frac{g_0}{g_1}\right) = \frac{1}{\rho(t)} \left(\partial_t \rho(t) + \mathsf{Tr}[L(t)]\rho(t)\right) + \frac{1}{2} \left(\frac{|w|^2}{\theta(t)} - 3\right) \frac{1}{\theta(t)} \left(\partial_t \theta(t) + \frac{2}{3} \mathsf{Tr}[L(t)]\theta(t)\right) + A(W) : D$$

where, for $W = \frac{w}{\sqrt{\theta(t)}}$, $A(W) \in (\text{Ker } \mathcal{L}_{g_0})^{\perp}$ is $A(W) \coloneqq W \otimes W - \frac{1}{3}|W|^2 I = \frac{1}{\theta(t)}w \otimes w - \frac{1}{3}\frac{|w|^2}{\theta(t)}I$ and D is

$$D \coloneqq \frac{1}{2} \left(L(t) + [L(t)]^{\mathsf{T}} - \frac{2}{3} \operatorname{Tr}[L(t)]I \right)$$

$$(\partial_t - [L(t)w] \cdot \nabla_w)g_0(t,w) = Q(g_0,g_1)(t,w) + Q(g_1,g_0)(t,w).$$

Define the linearized Boltzmann collision operator

$$\mathcal{L}_{\mathcal{M}_{\left[\rho,\theta\right]}}g \coloneqq -2\mathcal{M}_{\left[\rho,\theta\right]}^{-1}Q\Big(\mathcal{M}_{\left[\rho,\theta\right]}^{-1},\mathcal{M}_{\left[\rho,\theta\right]}^{-1}g\Big)$$

which is an unbounded self-adjoint non-negative Fredholm operator.

$$\mathcal{L}_{g_0}\left(\frac{g_1}{g_0}\right) = -\left(\partial_t - [L(t)w] \cdot \nabla_w\right) \ln g_0(t,w)$$

We can rearrange the right-hand side, and express it as a linear combination of $1, w_i, |w|^2,$

$$-\mathcal{L}_{g_0}\left(\frac{g_0}{g_1}\right) = \frac{1}{\rho(t)} \left(\frac{\partial_t \rho(t) + \mathsf{Tr}[L(t)]\rho(t)}{\rho(t)}\right) + \frac{1}{2} \left(\frac{|w|^2}{\theta(t)} - 3\right) \frac{1}{\theta(t)} \left(\frac{\partial_t \theta(t)}{\rho(t)} + \frac{2}{3} \mathsf{Tr}[L(t)]\theta(t)\right) + A(W) : D$$

where, for $W = \frac{w}{\sqrt{\theta(t)}}$, $A(W) \in (\text{Ker } \mathcal{L}_{g_0})^{\perp}$ is $A(W) \coloneqq W \otimes W - \frac{1}{3}|W|^2 I = \frac{1}{\theta(t)}w \otimes w - \frac{1}{3}\frac{|w|^2}{\theta(t)}I$ and D is

$$D \coloneqq \frac{1}{2} \left(L(t) + [L(t)]^{\mathsf{T}} - \frac{2}{3} \mathsf{Tr}[L(t)]I \right)$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

The compressible Navier-Stokes limit via Chapman-Enskoy expansion

Chapman-Enskoy Expansion

Seek the solution in the following form:

$$g_{\epsilon}(t,w) = \sum_{n\geq 0} \epsilon^n g_n [\vec{P}(t)](w) = g_0 [\vec{P}(t)](w) + \epsilon g_1 [\vec{P}(t)](w) + \cdots$$

Compared to the Hilbert expansion, we require that g_0 has the same first five moments as g_ϵ by construction:

$$\int_{\mathbb{R}^3} g_0[\vec{P}(t)](w) \begin{pmatrix} 1\\ \frac{|w|^2}{2} \end{pmatrix} \mathrm{d}w = \vec{P}(t) = \begin{pmatrix} \rho(t)\\ \theta(t) \end{pmatrix}$$

where \vec{P} is a vector of conserved quantities. hence,

$$\int_{\mathbb{R}^3} g_n[\vec{P}(t)](w) \left(\begin{array}{c} 1\\ \frac{|w|^2}{2} \end{array}\right) \mathrm{d}w = \vec{0}\,, \quad \text{for all} \quad n \geq 1$$

By taking the moments, the conserved quantities satisfy a system of conservation laws:

$$\partial_t \vec{P}(t) = \sum_{n \ge 0} \epsilon^n \Phi_n [\vec{P}](t) = \Phi_0(t) + \epsilon \Phi_1 [\vec{P}](t) + \cdots$$

where the flux term $\Phi_n[\vec{P}](t)$ is denoted as

$$\Phi_n[\vec{P}](t) = \int_{\mathbb{R}^3} \begin{pmatrix} 1 \\ \frac{|w|^2}{2} \end{pmatrix} [L(t)w] \cdot \nabla_w g_n[\vec{P}(t)](w) \, \mathrm{d}w$$

for $n \ge 0$.

Introduction From Microscopic to Mesoscopic to Macroscopic to Macr

The compressible Navier-Stokes limit via Chapman-Enskoy expansion

Chapman-Enskoy Expansion

Seek the solution in the following form:

$$g_{\epsilon}(t,w) = \sum_{n \ge 0} \epsilon^{n} g_{n}[\vec{P}(t)](w) = g_{0}[\vec{P}(t)](w) + \epsilon g_{1}[\vec{P}(t)](w) + \cdots$$

Compared to the Hilbert expansion, we require that g_0 has the same first five moments as g_ϵ by construction:

$$\int_{\mathbb{R}^3} g_0[\vec{P}(t)](w) \begin{pmatrix} 1\\ \frac{|w|^2}{2} \end{pmatrix} \mathrm{d}w = \vec{P}(t) = \begin{pmatrix} \rho(t)\\ \theta(t) \end{pmatrix}$$

where \vec{P} is a vector of conserved quantities. hence,

$$\int_{\mathbb{R}^3} g_n[\vec{P}(t)](w) \begin{pmatrix} 1\\ \frac{|w|^2}{2} \end{pmatrix} \mathrm{d}w = \vec{0} \,, \quad \text{for all} \quad n \ge 1$$

By taking the moments, the conserved quantities satisfy a system of conservation laws:

$$\partial_t \vec{P}(t) = \sum_{n \ge 0} \epsilon^n \Phi_n [\vec{P}](t) = \Phi_0(t) + \epsilon \Phi_1 [\vec{P}](t) + \cdots$$

where the flux term $\Phi_n[\vec{P}](t)$ is denoted as

$$\Phi_n[\vec{P}](t) = \int_{\mathbb{R}^3} \begin{pmatrix} 1 \\ \frac{|w|^2}{2} \end{pmatrix} [L(t)w] \cdot \nabla_w g_n[\vec{P}(t)](w) \, \mathrm{d}w$$

for $n \ge 0$.

 $0 = Q\left(g_0[\vec{P}(t)], g_0[\vec{P}(t)]\right)$

For $O(\epsilon^1)$,

 $\left(\partial_t - [L(t)w] \cdot \nabla_w\right) g_0[\vec{P}(t)] = Q\left(g_0[\vec{P}(t)], g_1[\vec{P}(t)]\right)(w) + Q\left(g_1[\vec{P}(t)], g_0[\vec{P}(t)]\right)$ The left-hand side is

 $\left(\partial_t - [L(t)w] \cdot \nabla_w\right) g_0[\vec{P}(t)]$ $= g_0[\vec{P}(t)] \left[\frac{1}{\rho(t)} \left(\partial_t \rho(t) + \operatorname{Tr}[L(t)]\rho(t)\right) + \frac{1}{2} \left(\frac{|w|^2}{\theta(t)} - 3\right) \frac{1}{\theta(t)} \left(\partial_t \theta(t) + \frac{2}{3} \operatorname{Tr}[L(t)]\theta(t)\right)$ $+ [A(W):D] \right]$

 $=g_0[\vec{P}(t)](w)[A(W):D] + O(\epsilon)$

$$\begin{pmatrix} \mathcal{L}_{g_0[\vec{P}(t)]} \left(\frac{g_0[\vec{P}(t)]}{g_1[\vec{P}(t)]} \right) = -\left[A(W) : D \right] \\ \int_{\mathbb{R}^3} g_1[\vec{P}(t)](w) \left(\begin{array}{c} 1\\ \frac{|w|^2}{2} \end{array} \right) \mathrm{d}w = \vec{0} \end{cases}$$

and therefore $g_1[\vec{P}(t)]$ can be solved:

 $g_1[\vec{P}(t)] = -g_0[\vec{P}(t)](w) [a(\theta, |W|)A(W):D]$

where the scalar quantity $a(\theta, |W|)$ is denoted as $\mathcal{L}_{q_0[\vec{P}(t)]}(a(\theta, |W|)A(W)) = A(W)$

 $0=Q\left(g_0[\vec{P}(t)],g_0[\vec{P}(t)]\right)$

For $O(\epsilon^1)$,

$$\left(\partial_t - [L(t)w] \cdot \nabla_w\right) g_0[\vec{P}(t)] = Q\left(g_0[\vec{P}(t)], g_1[\vec{P}(t)]\right)(w) + Q\left(g_1[\vec{P}(t)], g_0[\vec{P}(t)]\right)$$

The left-hand side is

$$\left(\partial_{t} - [L(t)w] \cdot \nabla_{w}\right) g_{0}[\vec{P}(t)]$$

$$= g_{0}[\vec{P}(t)] \left[\frac{1}{\rho(t)} \left(\partial_{t}\rho(t) + \mathsf{Tr}[L(t)]\rho(t)\right) + \frac{1}{2} \left(\frac{|w|^{2}}{\theta(t)} - 3\right) \frac{1}{\theta(t)} \left(\partial_{t}\theta(t) + \frac{2}{3}\mathsf{Tr}[L(t)]\theta(t)\right)$$

$$+ [A(W):D] \right]$$

$$= \left[\vec{P}(t)\right] \left[\int_{0}^{\infty} (t) \left(\frac{1}{2} \left(\frac{|w|^{2}}{\theta(t)} - \frac{1}{2}\right) \left(\frac{|w|^{2}}{\theta(t)} -$$

 $=g_0[\vec{P}(t)](w)[A(W):D] + O(\epsilon)$

$$\begin{pmatrix} \mathcal{L}_{g_0[\vec{P}(t)]} \left(\frac{g_0[\vec{P}(t)]}{g_1[\vec{P}(t)]} \right) = -\left[A(W) : D \right] \\ \int_{\mathbb{R}^3} g_1[\vec{P}(t)](w) \left(\begin{array}{c} 1\\ \frac{|w|^2}{2} \end{array} \right) \mathrm{d}w = \vec{0}$$

and therefore $g_1[\vec{P}(t)]$ can be solved:

 $g_1[\vec{P}(t)] = -g_0[\vec{P}(t)](w) [a(\theta, |W|)A(W):D]$

where the scalar quantity $a(\theta, |W|)$ is denoted as $\mathcal{L}_{q_0[\vec{P}(t)]}(a(\theta, |W|)A(W)) = A(W)$

 $0=Q\left(g_0[\vec{P}(t)],g_0[\vec{P}(t)]\right)$

For $O(\epsilon^1)$,

$$\left(\partial_t - [L(t)w] \cdot \nabla_w\right) g_0[\vec{P}(t)] = Q\left(g_0[\vec{P}(t)], g_1[\vec{P}(t)]\right)(w) + Q\left(g_1[\vec{P}(t)], g_0[\vec{P}(t)]\right)$$

The left-hand side is

$$\left(\partial_t - [L(t)w] \cdot \nabla_w\right) g_0[\vec{P}(t)]$$

$$= g_0[\vec{P}(t)] \left[\frac{1}{\rho(t)} \left(\partial_t \rho(t) + \mathsf{Tr}[L(t)]\rho(t) \right) + \frac{1}{2} \left(\frac{|w|^2}{\theta(t)} - 3 \right) \frac{1}{\theta(t)} \left(\partial_t \theta(t) + \frac{2}{3} \mathsf{Tr}[L(t)]\theta(t) \right)$$

$$+ [A(W):D] \right]$$

$$= g_0[\vec{P}(t)] (w) [A(W):D] + O(c)$$

 $=g_0[\vec{P}(t)](w)[A(W):D] + O(\epsilon)$

$$\begin{pmatrix} \mathcal{L}_{g_0[\vec{P}(t)]} \left(\frac{g_0[\vec{P}(t)]}{g_1[\vec{P}(t)]} \right) = -\left[A(W) : D \right] \\ \int_{\mathbb{R}^3} g_1[\vec{P}(t)](w) \left(\begin{array}{c} 1\\ \frac{|w|^2}{2} \end{array} \right) \mathrm{d}w = \vec{0} \end{cases}$$

and therefore $g_1[\vec{P}(t)]$ can be solved:

$$g_1[\vec{P}(t)] = -g_0[\vec{P}(t)](w)[a(\theta, |W|)A(W):D]$$

where the scalar quantity $a(\theta, |W|)$ is denoted as $\mathcal{L}_{g_0[\vec{P}(t)]}(a(\theta, |W|)A(W)) = A(W)$

Hence, the first-order correction to the fluxes in the formal conservation law is

$$\begin{split} \Phi_{1}[\vec{P}(t)](w) &= \int_{\mathbb{R}^{3}} [L(t)w] \cdot \nabla_{w} g_{1}[\vec{P}(t)](w) \begin{pmatrix} 1 \\ \frac{|w|^{2}}{2} \end{pmatrix} \mathrm{d}w \\ &= \begin{pmatrix} 0 \\ \mu(\theta) \frac{1}{2} \left(\mathsf{Tr}[L^{2}(t)] + L(t) : L(t) - \frac{2}{3} (\mathsf{Tr}[L(t)])^{2} \right) \end{split}$$

where the viscosity $\mu(\theta)$ can be computed as

$$\mu(\theta) = \frac{2}{15}\theta \int_0^\infty a(\theta, r) r^6 \frac{1}{\sqrt{2\pi}} e^{-r^2/2} dr$$

Recall conservation law and keeps only the first two order terms

$$\partial_t \vec{P}(t) = \Phi_0[\vec{P}](t) + \epsilon \Phi_1[\vec{P}](t) \mod O(\epsilon^2)$$

Spelling out the flux terms, we have

$$\begin{cases} \partial_t \rho(t) + \operatorname{Tr}[L(t)]\rho(t) = 0, \\ \partial_t \theta(t) + \frac{2}{3} \operatorname{Tr}[L(t)]\theta(t) = \epsilon \mu(\theta) \frac{1}{2} \left(\operatorname{Tr}[L^2(t)] + L(t) : L(t) - \frac{2}{3} (\operatorname{Tr}[L(t)])^2 \right) \end{cases}$$

which recovers the compressible Navier-Stokes system.

・ロト・西ト・ヨト ・ヨー うへの

Hence, the first-order correction to the fluxes in the formal conservation law is

$$\begin{split} \Phi_1[\vec{P}(t)](w) &= \int_{\mathbb{R}^3} [L(t)w] \cdot \nabla_w g_1[\vec{P}(t)](w) \begin{pmatrix} 1\\ \frac{|w|^2}{2} \end{pmatrix} \mathrm{d}w \\ &= \begin{pmatrix} 0\\ \mu(\theta) \frac{1}{2} \left(\mathsf{Tr}[L^2(t)] + L(t) : L(t) - \frac{2}{3} (\mathsf{Tr}[L(t)])^2 \right) \end{split}$$

where the viscosity $\mu(\theta)$ can be computed as

$$\mu(\theta) = \frac{2}{15}\theta \int_0^\infty a(\theta, r) r^6 \frac{1}{\sqrt{2\pi}} e^{-r^2/2} dr$$

Recall conservation law and keeps only the first two order terms

$$\partial_t \vec{P}(t) = \Phi_0[\vec{P}](t) + \epsilon \Phi_1[\vec{P}](t) \mod O(\epsilon^2)$$

Spelling out the flux terms, we have

$$\begin{cases} \partial_t \rho(t) + \operatorname{Tr}[L(t)]\rho(t) = 0, \\ \partial_t \theta(t) + \frac{2}{3} \operatorname{Tr}[L(t)]\theta(t) = \epsilon \mu(\theta) \frac{1}{2} \left(\operatorname{Tr}[L^2(t)] + L(t) : L(t) - \frac{2}{3} (\operatorname{Tr}[L(t)])^2 \right) \end{cases}$$

which recovers the compressible Navier-Stokes system.

・ロト・西ト・田・・田・ ひゃぐ

Hence, the first-order correction to the fluxes in the formal conservation law is

$$\begin{split} \Phi_{1}[\vec{P}(t)](w) &= \int_{\mathbb{R}^{3}} [L(t)w] \cdot \nabla_{w} g_{1}[\vec{P}(t)](w) \begin{pmatrix} 1 \\ \frac{|w|^{2}}{2} \end{pmatrix} \mathrm{d}w \\ &= \begin{pmatrix} 0 \\ \mu(\theta) \frac{1}{2} \left(\mathsf{Tr}[L^{2}(t)] + L(t) : L(t) - \frac{2}{3} (\mathsf{Tr}[L(t)])^{2} \right) \end{split}$$

where the viscosity $\mu(\theta)$ can be computed as

$$\mu(\theta) = \frac{2}{15}\theta \int_0^\infty a(\theta, r) r^6 \frac{1}{\sqrt{2\pi}} e^{-r^2/2} dr$$

Recall conservation law and keeps only the first two order terms

$$\partial_t \vec{P}(t) = \Phi_0[\vec{P}](t) + \epsilon \Phi_1[\vec{P}](t) \mod O(\epsilon^2)$$

Spelling out the flux terms, we have

$$\begin{cases} \partial_t \rho(t) + \operatorname{Tr}[L(t)]\rho(t) = 0, \\ \partial_t \theta(t) + \frac{2}{3} \operatorname{Tr}[L(t)]\theta(t) = \epsilon \mu(\theta) \frac{1}{2} \left(\operatorname{Tr}[L^2(t)] + L(t) : L(t) - \frac{2}{3} (\operatorname{Tr}[L(t)])^2 \right) \end{cases}$$

which recovers the compressible Navier-Stokes system.

・ロト・西ト・ヨト ・日・ うへの

Introduction	From Microscopic to Mesoscopic	From Mesoscopic to Macroscopic	Related Numerical Simulation	Summary and Outlook
			0000	

4. Related Numerical Simulation

			0000	
Introduction	From Microscopic to Mesoscopic	From Mesoscopic to Macroscopic	Related Numerical Simulation	Summary and Outlook

Spectral Method for Boltzmann Equation

Let $q = v - v_*$ and \hat{q} is the unit vector along q.

$$Q(f,f)(v) \approx Q_R(f,f)(v)$$

= $\int_{\mathcal{B}_{2R}} \int_{\mathbb{S}^{d-1}} B(|q|, \sigma \cdot \hat{q}) [f(v')f(v'_*) - f(v)f(v-q)] d\sigma dq$

- **1** Truncate collision integral: in q to a ball \mathcal{B}_R with $R \ge 2S$ with $\mathcal{B}_S \approx \operatorname{supp}_v(f)$.
- **2** Restrict probability density f into computed domain $\mathcal{D}_L = [-L, L]^d$: expand it periodically to the whole space.
- Approximate density function f: by a truncated Fourier series, $k \in \mathbb{Z}^d : -\frac{N}{2} \le k_1, ..., k_d \le \frac{N}{2} 1$,

$$f(v) \approx f_N(v) = \sum_{k=-\frac{N}{2}}^{\frac{N}{2}-1} \hat{f}_k \operatorname{e}^{\operatorname{i} \frac{\pi}{L} k \cdot v} \text{ with } \hat{f}_k = \frac{1}{(2L)^d} \int_{\mathcal{D}_L} f(v) \operatorname{e}^{-\operatorname{i} \frac{\pi}{L} k \cdot v} \mathrm{d}v.$$

Substitute and apply of Galerkin projection:

$$\hat{Q}_k = \frac{1}{(2L)^d} \int_{D_L} Q(f_N, f_N) e^{-i\frac{\pi}{L}k \cdot v} dv.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Introduction From Microscopic to Mesoscopic to Macroscopic Related Numerical Simulation Summary and Outlook

Numerical Simulation (I): Multi-bumps initial condition [Hu-Q., JCP '20]

Apply our fast spectral solver, coupled with RK4 scheme for time discretization, to solve $\partial_t f = Q(f, f)$ with initial datum $F_0(v)$:

$$F_0(v) = \frac{1}{3} \left(\delta_w(v) + \delta_w(|v| - 0.2) \right)$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Introduction

From Mesoscopic to Macroscopic 0000000000 Related Numerical Simulation

Summary and Outlook

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Numerical Simulation (II): Discontinuous initial condition [Hu-Q., JCP '20]

For a typical discontinuous initial datum:

$$F^{0}(v) = \begin{cases} \frac{\rho_{1}}{2\pi T_{1}} \exp\left(-\frac{|v|^{2}}{2T_{1}}\right), & \text{for } v_{1} > 0\\ \frac{\rho_{2}}{2\pi T_{2}} \exp\left(-\frac{|v|^{2}}{2T_{2}}\right), & \text{for } v_{1} < 0 \end{cases}$$

Introduction	From Microscopic to Mesoscopic	From Mesoscopic to Macroscopic	Related Numerical Simulation	Summary and Outlook
000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000	0000	0000

5. Summary and Outlook

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Introduction	From Microscopic to Mesoscopic	From Mesoscopic to Macroscopic	Related Numerical Simulation	Summary and Outlook
000000000000000000000000000000000000000	000000000000000000	000000000	0000	0000
-				

Summary

"Take-home" messages

- Micro: A special class of dynamics system OMD
- Micro → Meso: Mean-field and Boltzmann-Grad Limit
- Meso: A simplified kinetic equation Homo-energetic Mean-field and Boltzmann
- Meso → Macro: Hilbert and Chapman-Enskoy expansion

Introduction	From Microscopic to Mesoscopic	From Mesoscopic to Macroscopic	Related Numerical Simulation	Summary and Outlook
000000000000000000000000000000000000000	000000000000000000	000000000	0000	0000
Outlook				

Ongoing work:

Well-posedness:

- Finite energy: General deformation [James-Nota-Velazquez '19], [Bobylev-Nota-Velazquez '20], Shear flow [Duan-Liu '21]
- Infinite energy: ?

Long-time Behavior:

- Balance between collision and hyperbolic effect: [James-Nota-Velazquez '19]
- Collision dominated: [James-Nota-Velazquez '19], [Duan-Liu '22], [Kepka '22]
- Hyperbolic dominated: ?

Future work:

- **O** Theoretical perspective: rigorous justification of multiscale hierarchy.
- Output: Numerical perspective: dimension reduction or high-order scheme.
- Other Boltzmann-related models: apply the kinetic ideas to Physical, Biology, Quantum systems...

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Introduction	From Microscopic to Mesoscopic	From Mesoscopic to Macroscopic	Related Numerical Simulation	Summary and Outlook
00000000000000	0000000000000000000	000000000	0000	0000
Outlook				

Ongoing work:

Well-posedness:

- Finite energy: General deformation [James-Nota-Velazquez '19], [Bobylev-Nota-Velazquez '20], Shear flow [Duan-Liu '21]
- Infinite energy: ?

Long-time Behavior:

- Balance between collision and hyperbolic effect: [James-Nota-Velazquez '19]
- Collision dominated: [James-Nota-Velazquez '19], [Duan-Liu '22], [Kepka '22]
- Hyperbolic dominated: ?

Future work:

- **1** Theoretical perspective: rigorous justification of multiscale hierarchy.
- Q Numerical perspective: dimension reduction or high-order scheme.
- Other Boltzmann-related models: apply the kinetic ideas to Physical, Biology, Quantum systems...

Introduction	From Microscopic to Mesoscopic	From Mesoscopic to Macroscopic	Related Numerical Simulation	Summary and Outlook
				0000

Thanks for your attention!

Papers and preprints can be found at my homepage https://kunlun-qi.github.io/

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ