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gSQG equation in R?

We consider the gSQG (a-SQG) in R2:

3t9 4+ u- VQ = 0,
u=—-VH(-A)"1*20,

for0 < a<1 When a =0 and a =1, a-SQG reduces to the
incompressible Euler and SQG equations, respectively. Note that

(—A) e =C, ;G(y) dy for some C, > 0.
R2 [x —y[®

Biot=Savart law:

X — )L
u(x) = /]R LI o)y

2 |x — y[>te
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A priori estimate in H™(IR?):

Divergence-free condition implies that
d 1 5
—|0(t)|[|[2=— [ Ou-VOdx=—= u-VI]0|“dx =0.
dt R2 2 Jr2
Let m € N. In a similar way, we have
d 2 m m
—|10(t) || gm = — V™u-VO)VTodx
dt R2

< / (I9™ul[V6] + -+ [Vul[V™6]) V™0 dx
R2
S (IV™ull e[ VOl o + [[Vull < V6| 2) V76| 2

for any non-negative p and g with 1/p+1/qg =1/2.
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If we take 1/p = /2 and 1/q = 1/2 — /2, we have from u ~ V-1t
IVPullpmey S IV ullpi-a@ey S 110] pme2)

and
VOl Lary S 1101l Hrve(ra)-

Thus,
d 2. < 3 2
SO Em S N0 [am + IV u(t) [ [|0C)][m, M =1+ 0
By the inequality
HVUHL%(R% S HeHHm(R2), m>1+q,

we obtain
d 2 3
— 0 [ SN0 [Fgms  m>1+a.
dt
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A priori estimate in Cf(R2):
Let 8 € (a, 1]. We consider the flow map ® defined by

d
Ed)(t,x) = u(t, d(t,x)), (0, x) = x.

Using 0(t, ®(t, x)) = Oo(x), we have

|6(t, x) — 6(t, x")| _ 16(t, P(t,x)) — 0(t, d(t, x"))|
xF#x! ‘X - X,’B XF#X! ‘dD(t,X) - q)(t?X/)‘ﬂ
[60(x) — bo(

Note that

%|¢(t,x) — (£, X)) = 2(u(t, by) — u(t, Dy)) - (D(t, x) — D(t, X))
< 2||Vul| o | (2, x) — O(t, x) 2.
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By Gronwall’s inequality, it follows

o= IV e dr o [P(EX) = SN e y0u(r) oo ar

From the Biot—Savart law,
IVull oy S 10llconizmey, B>

This implies

/
e R0l cs a7 < |¢(t,>|<) - ‘D/TRXN < el lelics ar
X —X

Combining the above, we have

16(t)[cs < [|6o]|cae’ o 16Dlcadr 5~ o
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@ «a-SQG is locally well-posed in subcritical spaces. It was crucial that
[V ull oo 2y S 1101 m(w2)s IVullieom2) S 10l ¢ gey-

@ By Cordoba and Martinez-Zoroa (2021) and Jeong and K. (2021), it
was proved that a-SQG is ill-posed in the critical Sobolev space H1*.

o Cl-illposedness of the critical SQG was proved by Elgindi and
Masmoudi (2020).

e a-SQG with o € (0,1) is ill-posed in the critical Holder space C* (in
progress with Choi and Jung).

1 1-
HA(R) o WHP(RE) < CORE), == =)
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gSQG equation in a half-plane

We consider a-SQG in the half-plane R? := (0, 00) x R:

8t0 4+ u-Vo = 0,
(a-SQG)

u=-V(-Ap)tt3g,
for 0 < a < 1. The velocity field u is given by

u(x) = —V*(=Ap) 120
_ (=)t (=9t
- /R%r [ - G(Y)dy (1)

x=yPTe T =P

x— )L
= / ez 0(y)dy,
R

2 |x — y[>te

where y = (—y1, y2) for y = (y1,y2) and 0(y) is the odd extension of 6(y)
in R2.
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@ u; = 0 on the boundary.

@ In the half-plane case, it does not hold

\\VU\\L%(Ri) S H9‘|C5(R2+)'

The velocity field u of the solution 8 not vanishing at the boundary
always does not have Lipschitz regularity (see velocity estimates in
key lemmas for the details.)

Let us consider smooth initial data 0g € C2°.

e In R2? domain, it is well-known that
1. Global regularity of solutions for oo = 0.
2. Local regularity of solutions for o € (0, 1].

e In R%r, the global regularity was established for o = 0 (for example,
see Jiu, Li, and Zhang (2023), ...).
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Solution spaces

Forany 0 < B <1, let X = Xﬁ(@) be a subspace of Cﬁ(@) with
anisotropic Lipschitz regularity in space: we say f € X? if it belongs to
C#, differentiable almost everywhere, and satisfies

1—
Ifllxs = [[flleee + |Ix¢ 2 B1f ||oe + |02 || < 0.

° Xf is a subset of X? where f € Xf has a compact support.

o Let suppf C B(0;1). Then, ||f| x5 < |/f|xs for B1 < B2 and
Ifllce < |Ifllxs due to

[f(x1,x0) — F(, x2)| o T 0uf (1, %) dT

|x1 — xq|@ |x1 — xq|@
< Hxl—aa fll f;{l T < ( Hxl_o‘a f|
[e'e) [o o
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Classical solutions to the gSQG in Ri

B A
1

non-existence in C?

for smooth 6
well-posed
in X%
supercritical

0 1 1 a

Figure 1: Well-posedness of a-SQG in X spaces
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Previous results in R%

@ Weak solutions: Resnick (1995) and Constantin and Nguyen (2018)
proved the existence of weak solutions in L$°L2 to the gSQG in R2
and open bounded set with smooth boundary, respectively.

On the other hand, Buckmaster, Shkoller, and Vicol (2019), Isett and
Ma (2021), and Cheng, Kwon, and Li (2021) proved the
non-uniqueness of weak solutions in R?.

@ Patch solutions in ]Ri: Patch solutions have the form of

0(t,x) = Zejlﬂj(t)(x)a

where 6; are some constants and 2;(t) are open sets with nonzero
mutual distances and regular boundaries. Kiselev, Yao, and Zlatos
(2017) proved the local wellposedness of H3-patch solutions and their
finite time blow-up. Gancedo and Patel (2021) proved similar results
with H2-patch solutions.

Junha Kim (Ajou University) Korea-France IRN webinar in PDE March 11, 2024 13 /37



Velocity estimates

Lemma 1
Let o € (0,1) and @ € X2. Then, the velocity u = —V+(—=Ap)~1T26
satisfies

luillcrai-o + [|2uz2]| cr-a + [|01(u2 — U2)|l1 < C[|0]| x4, (2)
where 5 e 9(0 )
Y2
Up(x) == ——/ LA ) S
200 = =] | = O yo) 2
and

O1Ua(x) = Cax *6(0, 52| + [02Ua(x)| S 110261

o Vi, hup € lea, O1up =~ Xl_aH(O,XQ)
@ In contrast, in the whole space R? case, the velocity field produced by
smooth solution 8 € C2° satisfies uy, up € C*
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Let a € (0,1) and 6 € C¢. Let ¢ € C2° be a bump function such that
¢(x) = 1 for x € suppf. Then, the velocity u = —V+(—Ap)~1F20
satisfies
|1 (x) = un(X)] + |u2(x) — wa(x) = O0C)(F(x) — F(x))]
1 3
< C||0||calx — X'|log [ 10 + —— |, G)
x = x|
where 5 (0. 2)
P, )2
f(x):= —/ — ——————dy 4
SR N e (A @
and
Or1f(x) >~ x; @, |0of (x)| S 1.

When a = 0, one sholud replace (4) with

F(x) = 2 /R l0g(1x — (0,2))(0, y2) .
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Our results

We first consider « € (0, %] In this case, we provide two main results.

Theorem 1 (Local wellposedness)

Let a € (0,3] and B € [, 1 — a]. Then (a-SQG) is locally well-posed on
XZ: for any 0y € X2, there exist T = T(||6o]|x=, |suppfo|) > 0 and a
unique solution  to (a-SQG) in the class L°°(0, T; XZ) n C([0, T]; C#')
for any 0 < 3’ < 6.

Remarks:

o Finite-time singularity formation within this class is possible at least
for small & > 0 as in the patch solution case (refer to Alexander
Kiselev, Lenya Ryzhik, Yao Yao, and Andrej Zlatos (2016) and
Francisco Gancedo and Neel Patel (2021)).

@ Zlatos (2023) proved the local wellposedness and the finite-time
blow-up for a € (0, 3].
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@ The 8 = « case with a > 0 is interesting since it is known that
(a-SQG) is ill-posed in the critical spaces H'*%(R?) and C%(R?) by
Elgindi and Masmoudi (2020), Cordoba and Zoroa (2021), and Jeong
and K. (2021). The differentiability of fp (odd in x; variable) in the
xp determines whether solutions instantaneously blow up or not.

e o = 0 case: Well-posed in X? with 3 > 0.
@ Blow-up criterion: If the local solution blows up at the finite time
t* > 0, then

sup [|020(t)]| 1o = 0.
te[0,t*)
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As a consequence of this theorem, if we consider CZ°-data, there is a
unique local solution in L>([0, T); X) for 8 € [a,1 — a] when a € (0, 4].

Our next result shows that this regularity is sharp, even for CZ°-data. Note
that this is in stark contrast to the global wellposedness result in CSO(REF)
for the 2D Euler equations (o = 0 case). One can easily check that 0ju;
should not be singular in the Euler case since it holds when o = 0 that

= —8%(—AD)719
=0+ 03(-Ap)~1h
=60+ Ohuy.

Recalling that u is smooth in x, direction (even for all o € [0, 1]),
shut) =0k [ O amyay= [ I sy
? 2 Jae Ix — y[2te r2 [x — y|2re ’

u is smooth when 6 € C°(R2).
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Theorem 2 (instantaneous blow-up)

Let a € (0, 1] and assume 6y € CZ° does not vanish on the boundary.
Then, the local-in-time solution € to (a-SQG) given by Theorem 1 does
not belong to L>(0,d; CA) for any 3 >1 — « and 6 > 0.

Theorem 3 (instantaneous blow-up)

Let a € (%, 1] and assume g € C2° does not vanish on the boundary.
Then, there is no solution to (a-SQG) with initial data 6y belonging to
L>°(0,0; C%) for any § > 0.

4

Remarks:

@ Since the solutions must satisfy ||026(t)||1ec < 00 on some interval
[0, 6] by Theorem 1, the smoothness of § should break down in the x;
variable.
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@ One can replace C? and C® with X? and X, respectively, since
Ifllcy < ||fllx+ when supp f C B(0; R) for some R > 0.

@ The non-vanishing condition of initial data implies that there exists
xo € OR?Z such that

|00(x0) — bo(x)]
X0 — x|

Oo(x0) # 0, limsup

x—rx0,xEOR2

> 0.

@ Instantaneous blow-up comes from singular properties of fractional
Laplacian operator on the half-plane. This kind of result can be
extended to the logarithmically irregularized Euler equations, and the
logarithmically regularized ones (ongoing with Jeong and Yao).
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Brief proof of Theorem 1

We recall the definition of X#:

Solution spaces

Forany 0 < 3 <1, let X8 = XB(@) be a subspace of Cﬁ(ﬂ) with
anisotropic Lipschitz regularity in space: we say f € X? if it belongs to
CP, differentiable almost everywhere, and satisfies

=
IFllxs = [1fllee + llxq P01l ioe + 2|1 < oo,

v

and prove that gSQG is well-posed in X for o € (0, il and B € [a,1—al.
Let us fix o, 3 and g € XgB, thus, suppfp C B(0; R) for some R > 0. We
give a priori estimate in X%, From the equation (a-SQG),

9t+(UV)0:0,
we have

0:020 + (U . V)820 = —Oou1010 — Orur50.
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Here, we consider the flow map ¢ defined by

d
ad)(t,x) = u(t, d(t, x)), (0, x) = x.

Recall that Vuy, 011y € C1¢, but up ~ x; “0(0,x2). Note from the
boundary condition u1(0,x2) = 0 that

d
—[|O1u]| e < alogq’l(f?X) < ||Orun][pee-

Thus,
e C 0 ise dar o P1UEX) o oa0()le ar
X1

and ®(t, x) is well-defined for each x € R3 for all t > 0. Using the flow
map and du1(0, x2) = 0, we have

d
aH@gGHLw < HagulalaHLoo + ‘|82U2829HL00

< ||02u] cr-a|[xi~¥010]| 1o + [|02u2]| o0 [|020]| oo
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Combining with ||x{ ~®010]| 1 < Hxll_ﬁﬁlé?HLoo when > «, we obtain

d
aH@z@HLw S 1020]| oe 10| xS (1020 1< 1]0]] x5
On the other hand,
B:(xt P010) + u-V(x; P010) = —x; PO1u- VO + (1 — B)urx; Pon0.
Recalling 01u2 >~ x; “0(0,x2) and u1(0,x2) = 0, we have
g 70112020 oo < 134 B wn| 101|020 oo S N3O0 o0 1020 Lo
and
1— 159,01 < (1 — B)||0 1=59,0
(1= B)urxy "010]|e0 < (1 — B)||Orur||reelxq 7010 Loo,

respectively. Combining with 1 —a — 3 > 0 and suppd(t) C B(0;2R) on
some time interval [0, T], we obtain

1—
— [ 16]| e < [1026]1 1< 6] x5
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Therefore, we can deduce for 5 € [a,1 — @] that

d
7 10lxe < 11020] =10 x5 < 11011 xe 16l xs-

As a corollary, we obtain that: For any T € (0, c0),

i
/ 1000(8)[[1e dt < 00 = sup [|0()]lxs < 00.
0 te[0,T]
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Brief proof of Theorem 2

Let a € (0, 1] and 6 € C2°(R%). Then from Theorem 1, we obtain
T > 0 and the unique solution 6 € L>°(0, T; X2~). We prove that

sup [|0(t)||cs =00 forall 5 >1—a and § > 0.
t€[0,4]

From the assumption of initial data, we have xo = (0,a) € OR? such that
Oo(x0) # 0 and 020p(x0) > 0. For simplicity, let dp(xp) = 1. Take
x=xo+ (£71, —¢=(=7) for large £ > 0, where v > 0 will be specified
later. We claim that there exists t* = t*(¢) \, 0 and an arbitrary constant
€ > 0 such that

O(t*, d(t*, xp)) — O0(t*, d(t*, x)) _ Oo(x0) — Oo(x) |x0 — x|
[®(t*, x0) — ®(t*, x)|? o — x| |®(t*, x0) — (%, x)[P
> 657

where @ is the flow map defined in the proof of Theorem 1.
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o o(x0) —bo(x)

2 06
PRSI

1
From |X0 _X| = 572 +€72(177) = (1—;2657)2 |3 —X2’ = Xl(l +€27)%’

Ho(Xo) — Go(X) . 00(3,0) — 90(0,X2) + 00(0,X2) — 90(X)

|xo — x| N |xo — x| |xo — x|
1
_ 00(0,2) ~0(0.x2) (1 7 h0(0.0) ~ () (1 2
|a—x2| 14 027 |X1‘ 14 027
> 90(0, a) — Qo(O,Xg)

2 9200(x0)

~

]a—x2|

for sufficiently large £.
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We recall the velocity estimate:

||VU1”C1—a + ||32U2HC1704 < CH@Hxa, Or1uy ~ Xfae(O,XQ).

|X0 _X| >
EE
® Jo(t*,x0) — o(t%, )P ~

Let us consider ®; first. Using u1(0,x2) = 0, we have

= ’ul(t,d)(t,x))’

= ‘ul(t, o(t,x)) — ul(t,0,¢2(t,x))|
< |01 || e @1 (¢, x)
S 18] xaPa(t, x),

d
—¢
‘dt l(tvx)

which implies that ®;(t, x) ~ x; on the sufficiently short time interval
[0, T], not depending on the choice of x; > 0.
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To obtain the claim, we show that there exists t* < /7~ such that

q)g(f*,X) = (Dz(t*,Xo)

)

where ©5(0,x) = xo = a — £~ (177 < 3 = d5(0, x9). We have

d
a(¢2(t7X0) - ¢2(t,X)) = u2(ta q)(t)XO)) - u2(t7 (D(t,X))

= wp(t, D(t,x0)) — wa(t, 0, Pa(t, x)) + wa(t, 0, Po(t, x)) — wa(t, (t, x)).
For the first and second terms, we have from ®(t,xp) = (0, P2(t, x0)) that

Uz(t, 0, ¢2(t,Xg)) — UQ(t,O, ¢2(t,X)) < ”82U2HL00(¢2(t,X0) — ¢2(t,X))
S 1101lx (®2(t, x0) — P2(t, x))

until ®a(t,x) < $o(t, xp).
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On the other hand, using
(9(1',0, Cbg(t,X)) ~ H(t, (D(t,X)) = (90(X) ~ 90(X0) =1

for sufficiently large £, we have

¢1(t,X)
u2(t707¢2(tvx)) - u2(t7¢(tax)) = _/ a1’-’2(1:77—7 (Dz(t,X)) dr
0

¢1(t,X)
~ _/ 7O0(t, 0, bo(t, x)) dr
0

~ — g (t, X)Xl

Combining the above, we have

dt
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Gronwall’s inequality gives
1
®o(t, x0) — Po(t,x) < (a— x2 — Exllfat)ec\lf’“xat
1
= (g_(l—’Y) — Eg_(]'_Oé)1"-)eCI|9||XD‘t

Thus, there exists t* < CY~% such that ®,(t*, x) = ®o(t*, xp).

Now, we have ®1(t*, x) ~ x1 and ®,(t*, x) = Po(t*, xp) with t* < (77,
for sufficiently large £. Thus,

|xo — x| _a—(a— ¢—(1=7)
|d(t*,x0) — P(t*,x)|#P —  d1(t*,x)P
¢—(1=7)
~
— pytB8-1

Taking v € (1 — ,a) and e =+ 3 — 1 > 0, we finish the proof.
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Proof of Lemma 1

Let o € (0,1). We recall y = (—y1,y2) and
x=y)"  (x=9)"
= — O(y)dy.
U(X) /R;i [|X—y|2+a |X—}7|2+a (.y) y

o ||Vui|lcr-a + ||O2uz]|ci-a < []020)|| 100

Given f € L* with supp f C B(0; 1), we can see that

.4 Y f(y)dy ‘é —iizfﬂndy

+ =
2 Ix — y|2te 2 x — g2+

Cl-«o

S [1Fliee-
Cl—«o

This gives ||0xul| ci-a S||020|| 100 and ||O1u1||c1-a = ||O2uz||c1-o S [|020]| 1o -
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o [[01(u2 — Ua)|| 1o < 1|0]| x

We recall 5
n= [ [R5 - R o
Since
X1—y1 1 XN 1
P PE T P T S P T
we have

x=yl* x=7

uz(x)=—/Ri[ L | A0y + Ual)

where

o 2 o 9(07)/2)
) = =5 /_oo x— 0,y V%
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Note that

31(uz(x)—U2(X)):/Rz+[ ma o, atn ]819(y)dy.

We estimate

X — —«
M L ‘2+a819(y dy ‘ 1%( L Jlegig(y)dy

< HX1 ©010]| Lo~

on the two regions {0 < y; < 2x} U{|x1 — y1| < x1}, and

X1— Y1 X1+ y1 ] 1—a
+ - 010(y)dy < [Ixq“010|| L,
/{y1> ) [Ix—yl2+"‘ x — y[2+e !

using the cancellation property. Thus, we have
101 (u2(x) = Ua(x))ll1oe S [5x4~ *016] o and [|01(u2 — Ua) |1 S 1161 xe-
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o |01Us(x) — Caxl_o‘H(O,X2)‘ + 02 Ua(x)] < [1920]]

Ua(x) :== _2 /OO _00.y2) dys.

& J 0o ’X - (07)/2)’&

We recall

Then, we have

e Xle(O,}Q)
01U, =2 — 7 d
1l /oo x— (0, ya)P7e V2

1 > x1(6(0, y2) — 6(0, x2))
= 2x10(0 EE———— 2
xaf( ’XQ)/OO X (0, yp)2re 2t /oo x— (0, )Pt 2

—a > x1(0(0, y2) — 6(0, x2))
= Cog 00 2 x— O

o

Using the change of variable gives

2/oo x1(0(0, y2) — 6(0, x2))

oo X = (0, y2) P

dyz| < min{x *[|6]| e, x; " [020 )l }. O

Junha Kim (Ajou University) Korea-France IRN webinar in PDE March 11, 2024 34 /37



References

1. Peter Constantin and Huy Quang Nguyen, Global weak solutions for
SQG in bounded domains, Comm. Pure Appl. Math. 71 (2018), no. 11,
2323-2333. MR 3862092

2. Diego Cordoba and Luis Martinez-Zoroa, Non existence and strong
ill-posedness in C¥ and Sobolev spaces for SQG, arXiv:2107.07463 (2021).
3. Tarek M. Elgindi and Nader Masmoudi, L* ill-posedness for a class of
equations arising in hydrodynamics, Arch. Ration. Mech. Anal. 235
(2020), no. 3, 1979-2025. MR 4065655

4. Junekey Jeon and Andrej Zlatos, An improved regularity criterion and
absence of splash-like singularities for g-SQG patches, arXiv:2112.00191
(2021).

5. In-Jee Jeong and Junha Kim, Strong illposedness for SQG in critical
sobolev spaces, arXiv:2107.07739 (2021).

6. Alexander Kiselev and Xiaoyutao Luo, On nonexistence of splash
singularities for the a-SQG patches, J. Nonlinear Sci. 33 (2023).

Junha Kim (Ajou University) Korea-France IRN webinar in PDE March 11, 2024 35/37



7. Alexander Kiselev, Lenya Ryzhik, Yao Yao, and Andrej Zlatos, Finite
time singularity for the modified SQG patch equation, Ann. of Math. (2)
184 (2016), no. 3, 909-948. MR 3549626

8. Alexander Kiselev, Yao Yao, and Andrej Zlatos, Local regularity for the
modified SQG patch equation, Comm. Pure Appl. Math. 70 (2017), no.
7, 1253-1315. MR 3666567

9. Huy Quang Nguyen, Global weak solutions for generalized SQG in
bounded domains, Anal. PDE 11 (2018), no. 4, 1029-1047. MR 3749375
10. Tristan Buckmaster, Steve Shkoller, and Vlad Vicol, Nonuniqueness of
weak solutions to the SQG equation, Comm. Pure Appl. Math. 72
(2019), no. 9, 1809-1874. MR 3987721

11. Philip Isett and Andrew Ma, A direct approach to nonuniqueness and
failure of compactness for the SQG equation, Nonlinearity 34 (2021), no.
5, 3122-3162. MR 4260790

12. Francisco Gancedo and Neel Patel, On the local existence and blow-up
for generalized SQG patches, Ann. PDE 7 (2021), no. 1, Paper No. 4, 63.
MR 4235799 13. S. Resnick, Dynamical problems in nonlinear advective
partial differential equations, ProQuest LLC, Ann Arbor, MI, 1995, Thesis
(Ph.D.)-The University of Chicago.

Junha Kim (Ajou University) Korea-France IRN webinar in PDE March 11, 2024 36 /37



Thank you very much
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