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A hyperbolic dispersion estimate, with ap-

plications to the linear Schrödinger equa-

tion
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Abstract. On a Hilbert space H, consider the product P̂nP̂n−1 · · · P̂1 of a large number
of operators P̂j , with ‖P̂j‖ = 1. What kind of geometric considerations can serve to prove
that the norm ‖P̂nP̂n−1 · · · P̂1‖ decays exponentially fast with n ? In the first part of this
note, we will describe a situation in which H = L2(Rd), and the operators P̂j are Fourier
integral operators associated to a sequence of canonical transformations κj . We will give
conditions, on the sequence of transformations κj and on the symbols of the operators
P̂j , under which we can prove exponential decay. This technique was introduced to prove
results related to the quantum unique ergodicity conjecture. In the second half of this
paper, we will survey applications in scattering situations, to prove the existence of a gap
below the real axis in the resolvent spectrum, and to get local smoothing estimates with
loss, as well as Strichartz estimates.

Mathematics Subject Classification (2000). Primary 35P20; Secondary 37D99.

Keywords. Quantum chaos, Schrödinger equation, quantum unique ergodicity, hyper-
bolic dynamical systems, resonances, Strichartz estimates

1. Introduction

On a Hilbert space H, consider the product P̂nP̂n−1 · · · P̂1 of a large number of
operators P̂j , with ‖P̂j‖ = 1. Think, for instance, of the case where each opera-

tor P̂j is an orthogonal projector, or a product of an orthogonal projector and a
unitary operator. What kind of geometric considerations can be helpful to prove
that the norm ‖P̂nP̂n−1 · · · P̂1‖ is strictly less than 1 ? or better, that it decays
exponentially fast with n ? In Section 2, we will describe a situation in which
H = L2(Rd), and the operators P̂j are Fourier integral operators associated to a
sequence of canonical transformations κj . We will give a “hyperbolicity” condi-
tion, on the sequence of transformations κj and on the symbols of the operators

P̂j , under which we can prove exponential decay of the norm ‖P̂nP̂n−1 · · · P̂1‖.
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This technique was introduced in [1, 2], and was used in [1, 2, 3, 29, 4] to prove
results related to the quantum unique ergodicity conjecture, for eigenfunctions of
the laplacian on negatively curved manifolds : see Section 3. In the last section of
this paper (Section 4), we will survey the work of Nonnenmacher-Zworski [27, 28],
Christianson [8, 9, 10], Datchev [12], and Burq-Guillarmou-Hassell [6], who showed
how to use the previous estimates in scattering situations, to prove the existence
of a gap below the real axis in the resolvent spectrum, and to get local smoothing
estimates with loss, as well as Strichartz estimates.

2. The hyperbolic dispersion estimate

In this section, Rd × (Rd)∗ is endowed with the canonical symplectic form ω =∑d
j=1 dxj∧dξj , where dxj denotes the projection of the j-th vector of the canonical

basis in Rd, and dξj is the projection of the j-th vector of the dual basis in (Rd)∗.
The space Rd will also be endowed with its usual scalar product, denoted 〈., .〉,
and we will use it to systematically identify Rd with (Rd)∗.

We consider a sequence of smooth (C∞) canonical transformations κn : Rd ×
Rd −→ Rd × Rd, preserving ω. We will only be interested in the restriction of κ1

to a fixed relatively compact neighbourhood Ω of 0, and it is actually sufficient
for us to assume that the product κn ◦ κn−1 ◦ · · · ◦ κ1 is well defined, for all n,
on Ω. The Darboux-Lie theorem ensures that every lagrangian foliation can be
mapped, by a symplectic change of coordinates, to the foliation of Rd × Rd by
the “horizontal” leaves Lξ0 = {(x, ξ) ∈ Rd × Rd, ξ = ξ0}. Thus, for our purposes,
there is no loss of generality if we make the simplifying assumption that each
symplectic transformation κn preserves this horizontal foliation. It means that
κn is of the form (x, ξ) 7→ (x′, ξ′ = pn(ξ)) where pn : Rd −→ Rd is a smooth
function. In more elaborate words, κn has a generating function of the form
Sn(x, x′, θ) = 〈pn(θ), x′〉 − 〈θ, x〉+ αn(θ) (where x, x′, θ ∈ Rd, and αn : Rd −→ Rd
is a smooth function). We have the equivalence[
(x′, ξ′) = κn(x, ξ)

]
⇐⇒

[
ξ = −∂xSn(x, x′, θ), ξ′ = ∂x′Sn(x, x′, θ), ∂θSn(x, x′, θ) = 0

]
.

The product κn ◦ . . . ◦ κ2 ◦ κ1 also preserves the horizontal foliation, and it admits
the generating function

〈pn ◦ . . . ◦ p1(θ), x′〉 − 〈θ, x〉+ α1(θ) + α2(p1(θ)) + . . .+ αn(pn−1 ◦ . . . ◦ p1(θ))

= 〈pn ◦ . . . ◦ p1(θ), x′〉 − 〈θ, x〉+An(θ),

where the equality defines An(θ).

We will assume that the functions pn are smooth diffeomorphisms, and that all
the derivatives of pn, of p−1

n and of αn are bounded uniformly in n. If p is a map
Rd −→ Rd, we will denote ∇p the matrix ( ∂pi∂θj

)ij , which represents its differential

in the canonical basis.
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Assumptions (H) : We shall be interested in the following operators, acting
on L2(Rd) :

P̂nf(x′) =
1

(2π~)d

∫
x∈Rd,θ∈Rd

e
iSn(x,x′,θ)

~ a(n)(x, x′, θ, ~)f(x)dxdθ,

where ~ > 0 is a parameter destined to go to 0. We will assume that the functions
a(n)(x, x′, θ, ~) have the following properties :

• For a given ~ > 0, the function (x, x′, θ) 7→ a(n)(x, x′, θ, ~) is of class C∞;

• The function a(1)(x, x′, θ, ~) is supported in Ω with respect to the variable x;

• With respect to the variables (x′, θ), the functions a(n)(x, x′, θ, ~) have a
compact support x′ ∈ Ω1, θ ∈ Ω2, independent of n and ~;

• When ~ −→ 0, each a(n)(x, x′, θ, ~) has an asymptotic expansion

a(n)(x, x′, θ, ~) ∼ (det∇pn(θ))1/2
∞∑
k=0

~ka(n)
k (x, x′, θ),

valid up to any order and in all the C` norms. Besides, these asymptotic
expansions are uniform with respect to n.

• If (x′, θ′) = κn(x, θ), we have |a(n)
0 (x, x′, θ)| ≤ 1. This condition ensures that

‖P̂n‖L2−→L2 ≤ 1 +O(~).

The operators P̂n are (semiclassical) Fourier integral operators associated with the
transformations κn.

2.1. Propagation of a single plane wave. The following theorem is

essentially proved in [1]. We denote eξ0,~ the function eξ0,~(x) = e
i〈ξ0,x〉

~ .

Theorem 2.1. Fix ξ0 ∈ Rd. In addition to the assumptions above, assume that

lim sup
n−→+∞

1

n
log‖∇(pn ◦ . . . ◦ p2 ◦ p1)(ξ0)‖ ≤ 0.

Fix K > 0 arbitrary, and an integer M ∈ N. Then we have, for n = K| log ~|,

P̂n◦. . .◦P̂2◦P̂1eξ0,~(x) = ei
An(ξ0)

~ eξn,~(x)(det∇pn◦. . .◦p1(ξ0))1/2

[
M−1∑
k=0

~kb(n)
k (x, ξn)

]
+O(~M ).

The functions b
(n)
k , defined on Rd × Rd, are smooth, and

b
(n)
0 (xn, ξn) =

n∏
j=1

a
(j)
0 (xj , xj+1, ξj),
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where we denote ξn = pn ◦ . . . ◦ p1(ξ0), xn = x and the other terms are defined by
the relations (xj , ξj) = κj ◦ . . . ◦ κ1(x0, ξ0).

The next terms b
(n)
k have the same support as b

(n)
0 . We have |b(n)

0 (xn, ξn)| ≤ 1,
and besides, we have bounds

‖dmb(n)
k ‖ ≤ C(k,m)nm+3k,

where C(k,m) does not depend on n.

If n is fixed, and if we write P̂n ◦ . . . ◦ P̂2 ◦ P̂1eξ0,~(x) explicitly as an integral
over (Rd)2n, this theorem is a straightforward application of the stationary phase
method. If n is allowed to go to infinity as ~ −→ 0, our result amounts to applying
the method of stationary phase on a space whose dimension goes to ∞, and this
is known to be very delicate. The theorem was first proved this way, in an unpub-
lished version (available on request or on my webpage) of the paper [1]. A nicer
proof is available in [1], and has also appeared under different forms in [2, 27]. In

these papers, the proofs are written on a riemannian manifold, for P̂n = e
iτ~∆

2 χ̂n,
where the operators χ̂n belong to a finite family of pseudodifferential operators,
whose symbols are supported inside compact sets of small diameters, and where
∆ is the laplacian and τ > 0 is fixed. In local coordinates, the calculations done
in [1, 2, 27] amount to the simpler statement presented here. In the unpublished
version, the assumptions were much stronger; the transformations κj were assumed
to be analytic, and the symbols a(n) were taken in a Gevrey class. The result was
also much stronger, in that the conclusion held for n = ~−δ, for some δ > 0.

In all the papers under review, the dynamical systems under study satisfy a
uniform hyperbolicity condition, ensuring an exponential decay

sup
ξ∈Ω2

‖∇(pn ◦ . . . ◦ p2 ◦ p1)(ξ)‖ ≤ Ce−λn, (1)

with fixed constants C, λ > 0. This is why, following [27], we call our result a
hyperbolic dispersion estimate. Applications will be surveyed in Sections 3 and 4.

2.2. Estimating the norm of P̂n◦ . . .◦ P̂2◦ P̂1. We use the ~-Fourier
transform

F~u(ξ) =
1

(2π~)d/2

∫
Rd
u(x)e−

i〈ξ,x〉
~ dx,

the inversion formula

u(x) =
1

(2π~)d/2

∫
Rd
F~u(ξ)e

i〈ξ,x〉
~ dξ,

and the Plancherel formula ‖u‖L2(Rd) = ‖F~u‖L2(Rd). Using the Fourier inversion
formula, Theorem 2.1 implies, in a straightforward manner, the following

Theorem 2.2. In addition to the assumptions above, assume that

lim sup
n−→+∞

1

n
log‖∇(pn ◦ . . . ◦ p2 ◦ p1)(ξ)‖ ≤ 0,
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uniformly in ξ ∈ Ω2.
Fix K > 0 arbitrary. Then there exists ~K > 0 such that, for n = K| log ~|, and

for ~ < ~K,

‖P̂n ◦ . . . ◦ P̂2 ◦ P̂1‖L2−→L2 ≤ |Ω2|1/2

(2π~)d/2
sup
ξ∈Ω2

|det∇pn ◦ . . . ◦ p1(ξ)|1/2(1 +O(n3~)),

where |Ω2| denotes the volume of Ω2.

Of course, we always have the trivial bound ‖P̂n ◦ . . . ◦ P̂2 ◦ P̂1‖L2−→L2 ≤
1 +O(~| log ~|). Since we are working in the limit where ~ −→ 0, our estimate can
only have an interest if we have an upper bound of the form

sup
ξ∈Ω2

|det∇pn ◦ . . . ◦ p1(ξ)|1/2 ≤ Ce−λn, λ > 0, (2)

and if K is large enough. Note that (2) is weaker than the condition (1).
We now state a refinement of Theorem 2.2. We consider the same family P̂i,

satisfying Assumptions (H). The multiplicative constants in our estimate have no
importance, and in what follows we will omit them.

Theorem 2.3. [4] In addition to the assumptions above, assume that

lim sup
n−→+∞

1

n
log‖∇(pn ◦ . . . ◦ p2 ◦ p1)(ξ)‖ ≤ 0,

uniformly in ξ ∈ Ω2.
Let r ≤ d, and assume that the isotropic foliation by the leaves {ξr+1 =

cr+1, . . . , ξd = cr} is invariant by each canonical transformation κn. In other
words, the map pn is of the form

pn((ξ1, . . . , ξr), (ξr+1, . . . , ξd)) = (mn(ξ1, . . . , ξd), p̃n(ξr+1, . . . , ξd)) ,

where mn : Rd −→ Rr and p̃n : Rd−r −→ Rd−r.
Fix K > 0 arbitrary. Then there exists ~K > 0 such that, for n = K| log ~|, and

for ~ < ~K,

‖P̂n◦. . .◦P̂2◦P̂1‖L2−→L2 ≤ 1

(2π~)r/2
supξ∈Ω2

|(det∇pn ◦ . . . ◦ p1(ξ))|1/2

infξ∈Ω2
|(det∇p̃n ◦ . . . ◦ p̃1(ξ))|1/2

(1+O(n3~)).

Theorem 2.3 is an improvement of Theorem 2.2 in the case where we have

1

(2π~)d/2
sup
ξ∈Ω2

|(det∇pn ◦ . . . ◦ p1(ξ0))1/2| � 1

but
1

(2π~)r/2
supξ∈Ω2

|(det∇pn ◦ . . . ◦ p1(ξ))|1/2

infξ∈Ω2
|(det∇p̃n ◦ . . . ◦ p̃1(ξ))|1/2

� 1.

As a trivial example, when each κn is the identity, Theorem 2.2 gives a non-optimal
bound, whereas we can take r = 0 in Theorem 2.3, and recover the (almost) optimal
bound ‖P̂n ◦ . . . ◦ P̂2 ◦ P̂1‖L2−→L2 ≤ 1 + O(~| log ~|3). A less trivial example will
appear in Section 3.
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3. An application to the quantum unique ergodic-
ity conjecture

3.1. Statement of the conjecture. Let X be a d-dimensional compact
riemannian manifold, let ∆ denote the Laplace-Beltrami operator on X, and let
V be a smooth function on X. In the most general framework, the question of
“quantum ergodicity” asks about the behaviour of the solutions of the stationary
Schrödinger equation (

−~2 ∆

2
+ V

)
ψ~ = E~ψ~, (3)

in the limit ~ −→ 0 and assuming the eigenvalue E~ converges to a fixed value
E. We will always assume that the eigenfunction ψ~ is normalized in L2(X,Vol).
Quantum ergodicity asks about the weak limits of the family of probability mea-
sures |ψ~(x)|2dVol(x). Actually, people are interested in a family of distributions
µ~ on the cotangent bundle T ∗X, that contain more information, defined as fol-
lows :

∀a ∈ C∞c (T ∗X), 〈µ~, a〉 = 〈ψ~,Op~(a)ψ~〉L2(X), (4)

where Op~(a) is a semiclassical pseudodifferential operator with principal symbol
a (if a = a(x, ξ), then Op~(a) = a(x,−i~∂x), and this can be defined properly
using the Weyl calculus in local coordinates). The distribution µ~ appears under
various names in the literature, depending on the specific context : Wigner trans-
form, semiclassical/microlocal defect measure, microlocal lift of ψ~... Although
the definition of µ~ depends on the choice of local coordinates, the collection of
weak limits of µ~, as ~ −→ 0, is well defined, independently on any choices. Be-
sides, the definition (4) can be extended to the case whn a is a function on T ∗X
depending only on the base point x, and in that case Op~(a) is the multiplication
operator by a. We see that the projection of µ~ on X is the probability measure
|ψ~(x)|2dVol(x) that we were originally interested in. The distribution µ~ contains
more information, it tells us something about the local directions of oscillations of
ψ~.

The following is a form of the theorem of propagation of singularities, due to

Hörmander. Define the function H(x, ξ) =
‖ξ‖2x

2 + V (x), on T ∗X – where ‖.‖2x is
the norm on T ∗xX dual to the riemannian metric. Denote (ΦtH) the hamiltonian
flow defined by H, acting on T ∗X. In local coordinates, the flow (ΦtH) is defined
by the following first order differential equation :

ẋ = ∂H
∂ξ

ξ̇ = −∂H∂x .
(5)

We will denote by YH , or simply Y , the vector field on T ∗X associated with this
flow.

Theorem 3.1. (i) Given any sequence ~n −→ 0, one can extract from the sequence
(µ~n) a converging subsequence in D′(T ∗X).
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We will call limits of such subsequences “semiclassical measures” associated
with the family (ψ~).

(ii) Let µ be a semiclassical measure. Then µ is a probability measure, carried
by the level set {H = E}.

(iii) In addition, µ is invariant by the hamiltonian flow (ΦtH) : we have (ΦtH)∗µ =
µ, for all t.

This theorem, in general, does not suffice to characterize a unique limit µ, as
there are generally many invariant measures under (ΦtH). A hamiltonian flow on
T ∗X always preserves the Liouville measure, defined in local coordinates by dxdξ :
this measure, or more precisely its disintegration on {H = E}, is a candidate to be
a semiclassical measure. If the flow (ΦtH) has periodic orbits on the energy level
{H = E}, each of them carries an invariant measure, which is also a candidate
to be a semiclassical measure. Characterizing the set of semiclassical measures is,
in such generality, an open question. The two most studied cases are completely
integrable hamiltonian flows on the one hand, “chaotic” flows on the other hand.
In what follows we will focus on the “chaotic” case, and will give a more precise
definition of this term.

Until the end of this section, we turn to a special case which has been most
studied, and is a source of numerous open questions : the case when V = 0. In this
case, (ΦtH) is the geodesic flow; we shall simply denote it by (Φt). We consider the
case of a non-singular energy level, in other words E 6= 0, and since in this case
the function H is homogeneous with respect to ξ, we may decide without loss of
generality to take E = 1

2 . Then the level set {H = E} is the unit cotangent bundle

S∗X. Letting λ = E~
~2 , equation (3) amounts to studying the eigenfunctions of the

laplacian,
−∆φλ = λφλ,

in the limit λ −→ +∞. We recall that, on a compact manifold, the eigenvalues λ
form a discrete set. We denote µλ ∈ D′(T ∗X) the distribution defined previously,
by 〈µλ, a〉 = 〈φλ,Opλ−1/2(a)φλ〉. We can rephrase our question by asking : among
the invariant probability measures of the geodesic flow, which ones can be obtained
as limits of the family (µλ) ? does the answer depend on the geometry ? The
following theorem is referred to as “the Shnirelman theorem”, or “the quantum
ergodicity theorem”. It was later extended to more general hamiltonian flows [20],
and to the case of manifolds with a boundary (when X has a boundary, one has
to impose boundary conditions to the eigenfunctions) [18].

Theorem 3.2. [33, 38, 11] Let X be a compact riemannian manifold. Let (φn) be
an orthonormal basis of L2(X) formed by eigenfunctions of the laplacian (−∆φn =
λnφn, with λn −→ +∞). Denote µn = µλn .

Assume that the geodesic flow, acting on the unit cotangent bundle S∗X, is
ergodic with respect to the Liouville measure. Then, there exists a subset S ⊂ N of
density 1, such that

µn
n∈S−→ Liouville,

the convergence taking place in D′(T ∗X).
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The set S being of density 1 means that ]S∩[0,N ]
N −→

N→+∞
1.

It is a difficult question to know whether the whole sequence (µn) converges, or
if there can be exceptional subsequences converging to a measure other than Liou-
ville. Of course, the answer depends on the geometry. A particularly frustrating
example is the case where X is a euclidean domain in R2 in the shape of a sta-
dium, called the Bunimovich stadium. In this example, it is quite clear in numerical
simulations that, although Shnirelman’s theorem holds, there are also exceptional
subsequences concentrating on the periodic trajectories that bounce back and forth
between the two parallel sides of the stadium. The first breakthrough in that di-
rection was made in 2008 by Hassell [19], who showed, for “almost all stadia”, that
there are exceptional subsequences of eigenfunctions.

If X is a compact riemannian manifold with negative sectional curvatures,
Rudnick and Sarnak conjectured that, for any orthonormal basis of eigenfunctions
(φn), the whole sequence (µn) should converge to the Liouville measure : this
is referred to as the quantum unique ergodicity conjecture [31]. A special case
of this conjecture, called arithmetic quantum unique ergodicity, was proved by
Lindenstrauss [25, 5], with the final touch by Soundararajan in the case of the
modular surface [36]. They deal with the case of certain hyperbolic surfaces, called
arithmetic congruence surfaces; and the eigenfunctions (φn) are assumed to be
common eigenfunctions of ∆ and of the Hecke operators ([36] shows that there is
no escape of mass to infinity, in the case of noncompact finite volume arithmetic
surfaces, such as the modular surface). The methods therein are a very powerful
mixture of number theory and ergodic theory. They give, unfortunately, no clue
as to the general conjecture.

3.2. Entropy of semiclassical measures on hyperbolic mani-
folds. The papers [1, 2, 3] deal with the question of quantum unique ergodicity
by studying the Kolmogorov-Sinai entropy of semiclassical measures. This en-
tropy, denoted hKS in this paper, is a functional going from the set M1

Φ(S∗X) of
Φt-invariant probability measures on S∗X, to R+. The shortest definition of the
entropy results from a theorem due to Brin and Katok [7]. For any time T > 0,
introduce a distance on S∗X,

dT (ρ, ρ′) = max
t∈[−T/2,T/2]

d(Φtρ,Φtρ′),

where d is the distance built from the Riemannian metric. For ε > 0, denote by
BT (ρ, ε) the ball of centre ρ and radius ε for the distance dT . When ε is fixed and
T goes to infinity, it looks like a thinner and thinner tubular neighbourhood of the
geodesic segment [g−ερ, g+ερ] (this tubular neighbourhood is of radius e−T/2 if the
curvature of X is constant and equal to −1).

Let µ be a Φt–invariant probability measure on S∗X. Then, for µ-almost every
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ρ, the limit

lim
ε−→0

lim inf
T−→+∞

− 1

T
logµ

(
BT (ρ, ε)

)
= lim
ε−→0

lim sup
T−→+∞

− 1

T
logµ

(
BT (ρ, ε)

) def
= hKS(µ, ρ)

exists and it is called the local entropy of the measure µ at the point ρ (it is
independent of ρ if µ is ergodic). The Kolmogorov-Sinai entropy is the average of
the local entropies: hKS(µ) =

∫
hKS(µ, ρ)dµ(ρ).

We recall the following (non obvious) facts :

• if µ ∈M1
Φ(S∗X) is carried by a periodic trajectory of Φt, then hKS(µ) = 0.

• for all µ ∈M1
Φ(S∗X), we have 0 ≤ hKS(µ) ≤

∫
S∗X

∑d−1
j=1 λ

+
j (ρ)dµ(ρ), where

the numbers λ+
j (ρ) are the nonnegative Lyapunov exponents of ρ ∈ S∗X for

the geodesic flow (the Ruelle-Pesin inequality). Note that S∗X has dimension
2d − 1. Because the flow is symplectic, there can be at most d − 1 positive
Lyapunov exponents and d− 1 negative ones.

• If X has negative sectional curvatures, there is equality in the Ruelle-Pesin
inequality if and only if µ is the Liouville measure [24].

• the functional hKS is affine.

If the sectional curvature of X is constant equal to −1, the Ruelle-Pesin inequality
takes the simpler form : hKS(µ) ≤ d − 1, with equality if and only if µ is the
Liouville measure.

The assumption on the curvature implies that the action of (Φt) on S∗X is (uni-
formly) hyperbolic. This means that, for any ρ ∈ S∗X, the tangent space to S∗X
at ρ splits into flow direction, unstable and stable subspaces : there exist C, λ > 0,
and at each ρ ∈ S∗X a splitting Tρ (S∗X) = RY (ρ)⊕E+

ρ ⊕E−ρ , dimE±ρ = d−1,
such that

(i) For all ρ ∈ S∗X, dΦtρE
±
ρ = E±Φt(ρ) for all t ∈ R;

(ii) For all ρ ∈ S∗X, for all v ∈ E∓ρ , ‖dΦtρ.v‖ ≤ Ce−λ|t|‖v‖, for ±t > 0.
Uniform hyperbolicity is a very strong, and very well understood, form of

“chaos”.
Let us define the unstable jacobian by

exp Λ+
t (ρ) = det(dΦteE+

ρ
);

for t large enough, we have Λ+
t (ρ) > 0 for all ρ.

The following form of Theorem 2.2 is used in [1, 2]. Fix δ > 0, and consider a
finite family χ1, . . . , χK of smooth compactly supported functions on T ∗X, such
that

∑K
j=1 χj ≡ 1 on H−1[ 1

2 − δ, 1
2 + δ]. For all j, assume the function χj is

supported on a set Wj of diameter ≤ ε (that will be chosen small enough). Also
assume that each χj vanishes outside H−1[ 1

2 −2δ, 1
2 + 2δ]. Consider the associated
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pseudodifferential operators, defined by the Weyl calculus in local coordinates :
χ̂j = χj(x,−i~∂x). Define P̂j = e

iτ~∆
2 χ̂j , for some fixed time step τ > 0. The

following theorem amounts to Theorem 2.2 if one works in adapted coordinates in
each set Wj :

Theorem 3.3. In the definition of χ̂j, we can fix ε, δ small enough, so that the
following holds.

Fix K > 0 arbitrary. Then there exists ~K > 0 such that, for n = K| log ~|, for
any sequence (α1, . . . , αn) ∈ {1, . . . ,K}n, and for all ~ < ~K,

‖P̂αn ◦ . . . ◦ P̂α2 ◦ P̂α1‖L2−→L2 ≤ 1

(2π~)d/2

n∏
j=1

e
Sτ (Wαj

)

2 ,

where Sτ (Wj) = − infρ∈Wj
Λ+
τ (ρ).

If τ is chosen large enough, then the hyperbolicity condition implies that

Sτ (Wj) < 0, and that
∏n
j=1 e

Sτ (Wαj
)

2 decays exponentially with n. If the sectional
curvature of X is constant, equal to −1, the estimate takes a simpler form :

Theorem 3.4. Assume that the sectional curvature of X is constant, equal to −1.
In the definition of χ̂j, we can fix ε, δ small enough, so that the following holds.

Fix K > 0 arbitrary. Then there exists ~K > 0 such that, for n = K| log ~|, for
any sequence (α1, . . . , αn) ∈ {1, . . . ,K}n, and for all ~ < ~K,

‖P̂αn ◦ . . . ◦ P̂α2 ◦ P̂α1‖L2−→L2 ≤ 1

(2π~)d/2
e−( d−1

2 )n(1 +O(δ))n.

In [1, 2, 3], we showed how these estimates imply the following lower bound on
the entropy of semiclassical measures.

Theorem 3.5. Let X be a compact d-dimensional riemannian manifold, with neg-
ative sectional curvatures. Let (φλ) be a family of normalized eigenfunctions of the
laplacian, ∆φλ = −λφλ, with λ −→ +∞, and let µ be an associated semiclassical
measure. Then :

[1] We have hKS(µ) > 0.
[2] If the sectional curvature of X is constant, equal to −1, we have hKS(µ) ≥

d−1
2 .

Remark. In the case of arithmetic congruence surfaces; and assuming the eigen-
functions (φλ) are common eigenfunctions of ∆ and of the Hecke operators, Bour-
gain and Lindenstrauss [5] proved the following bound on the measures µλ : for
any ρ, and all ε > 0 small enough,

µλ
(
BT (ρ, ε)

)
≤ Ce−T/9, (6)

where the constant C does not depend on ρ or λ. This immediately yields that
any semiclassical measure associated with these eigenmodes satisfies µ(BT (ρ, ε)) ≤
Ce−T/9, which implies that any ergodic component of µ has entropy ≥ 1

9 . The
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measure classification result of [25] then implies that µ has to be the Liouville
measure.

In [2], Theorem 3.4 is used to prove an estimate that can, in a non rigourous
but intuitive manner, be formulated as follows :

µλ
(
BT (ρ, ε)

)
≤ C λ

d−1
4 e−

(d−1)T
2 . (7)

This bound only becomes non-trivial for times T � log λ. For this reason, we
cannot directly deduce bounds on the weights µ(BT (ρ, ε)); the link between (7) and
the entropic bounds of Theorem 3.5 is less direct and uses some specific features of
quantum mechanics.

By the properties of entropy, our Theorem 3.5 implies :

Corollary 3.6. Under the same assumptions,
[1] If X has (variable) negative sectional curvature, and if γ is a periodic tra-

jectory of Φt, then µ(γ) < 1.
[2] If the sectional curvature of X is constant, equal to −1, and if γ is a periodic

trajectory of Φt, then µ(γ) ≤ 1
2 .

Corollary 3.7. [1] If the sectional curvature of X is constant, equal to −1, then
the Hausdorff dimension of the support of µ is ≥ d.

If X has (variable) negative sectional curvature, we conjectured the following
explicit bound for any semiclassical measure µ :

hKS(µ) ≥ 1

2

∫
S∗X

d−1∑
j=1

λ+
j (x, ξ)dµ(x, ξ). (8)

However, in variable curvature, we were not able to push our method that far. This
inequality has been proved in the case d = 2 by G. Rivière, who was able to extend
the proof to nonpositively curved surfaces [29, 30]. In this case, the inequality
implies that µ cannot be entirely concentrated on an exponentially unstable closed
geodesic.

Proving the quantum unique ergodicity conjecture would be equivalent to get-
ting rid of the 1

2 factor in (8). This is still far from reach, and would require some
new insight into the problem, as there exists an example of a discrete time quan-
tum dynamical system (namely, the “quantum cat-map” [16]) for which equality
is reached in (8). This example, however, comes from a symplectic map that is not
hamiltonian; see [16] for details.

At the moment, it is not known how to prove (8) when E+ or E− have dimen-
sion d− 1 > 1; or for general non-uniformly hyperbolic systems. The Bunimovich
stadium would be a particularly interesting example : the inequality would imply
that µ cannot be entirely concentrated on an exponentially unstable periodic tra-
jectory. It would be also be interesting to prove (8) for systems that have some zero
Lyapunov exponents. This is one of the motivations for the following paragraph.
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3.3. Generalization to higher rank symmetric spaces of non-
positive curvature. Let G be a connected semisimple Lie group with finite
center, let K be a maximal compact subgroup, and G/K the corresponding sym-
metric space. Let Γ be a cocompact lattice in G, and X = Γ\G/K.

Example. Taking G = SOo(1, d;R), K = SO(d;R), one finds that G/K is
the d-dimensional real hyperbolic space, which was already treated in the previ-
ous paragraph. In this section, one should keep in mind the case G = SL(n;R),
K = SO(n;R). For n = 2, G/K is again the 2-dimensional real hyperbolic space,
but from now on we will mostly be interested in n ≥ 3.

We will denote by g the Lie algebra of G; it is endowed with the Killing bilinear
form, which allows to endow G/K with a riemannian metric. We keep using similar
calligraphy for Lie subalgebras of g.

The spectral problem. We look at the algebra D of G-invariant differential
operators on G/K. As a consequence of the structure of semisimple Lie algebras,
it is known that D is commutative, finitely generated. The number of generators
r coincides with the real rank of G/K, the dimension of a maximal flat totally
geodesic submanifold; or with the dimension of a, a maximal abelian subalgebra of
g contained in k⊥.

Note that D always contains the laplacian. If r = 1, D is generated by the
laplacian, but we will mostly be interested in the case r ≥ 2.

Example. For G = SL(n,R),K = SO(n,R), the subalgebra a is the set of diagonal
matrices with vanishing trace. We will denote by A the connected subgroup of G
generated by a, it consists of diagonal matrices with determinant 1 and nonnegative
entries. The rank is the dimension of a, r = n− 1. We denote the Weyl group by
W , in this example it is the group of permutation matrices. It acts on a (and on
its duala∗).

We look at the common eigenfunctions of D on X = Γ\G/K. The “eigenvalue”
is now an r-dimensional vector. In fact, an eigenfunction of D generates a spherical
irreducible representation of G, and these are naturally parametrized by ν ∈ a∗/W .
In what follows, the “eigenvalue” will be parametrized by the spectral parameter
ν ∈ a∗/W .

The semiclassical limit (as proposed by Silberman-Venkatesh [34]). It con-
sists in the limit

‖ν‖ −→ +∞, ν

‖ν‖
−→ ν∞. (9)

To keep semiclassical notations, one can define ~ = ‖ν‖−1.
We are again interested in the question of quantum ergodicity, which consists in

studying a sequence of L2-normalized eigenfunctions φν , of spectral parameters ν,
in the asymptotic regime described above. We want to understand the behaviour
of the measures |φν(x)|2dVol(x).
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The “classical” dynamical system. Consider the algebra H of G-invariant
smooth hamiltonians (i.e. functions) on the cotangent bundle T ∗(G/K), that
are polynomial in the fibers of the projection T ∗(G/K) −→ G/K. Again by
the structure of semisimple Lie algebras, H is commutative under the Poisson
bracket, generated by r functions. The algebra H always contains the quadratic
form associated with the Killing metric. Common energy levels of H are naturally
parametrized by ν ∈ a∗/W . We will denote by Eν the energy layer corresponding
to the value ν.

We will restrict our attention to non-singular energy levels, in the sense that the
generators of H must have everywhere independent differentials. This is equivalent
to ν not being fixed by any element of W : in this case we will say that ν is regular.

The microlocal lift. The measures |φν(x)|2dVol(x) are defined on X. Just
as in (4), we study the distributions µν(a) = 〈φν ,Op~(a)φν〉 (with ~ = ‖ν‖−1),
µν ∈ D′(T ∗X), which project on X to the measure |φν(x)|2dVol(x).

If a = H ∈ H, then Op~(H) is in D, and the isomorphism H(−i~•) ←→
Op~(H) is the Harish-Chandra isomorphism between H and D.

The analogue of Theorem 3.1 reads :

Theorem 3.8. (i) Given any sequence (νn) satisfying (9), one can extract from
the sequence (µνn) a converging subsequence in D′(T ∗X).

We will call limits of such subsequences “semiclassical measures” associated
with the family (φνn), or also “semiclassical measures in the direction ν∞”.

(ii) Let µ be a semiclassical measure in the direction ν∞. Then µ is a probability
measure, carried by the level set Eν∞ .

(iii) In addition, for all H ∈ H, µ is invariant by the hamiltonian flow (ΦtH) :
we have (ΦtH)∗µ = µ, for all t.

One can extend the quantum unique ergodicity conjecture to this new situation :
is it true that the only semiclassical measure in the direction ν∞ is the Liouville
measure on the energy level Eν∞ ?

Analogously to (8), I would expect the following inequality to hold, for any
semiclassical measure µ and all H ∈ H :

hKS(µ,ΦtH) ≥ 1

2

∑
j

λ+
j (ΦtH).

Here hKS(µ,ΦtH) is the entropy of µ for the flow generated by H, and the λ+
j (ΦtH)

are the nonnegative Lyapunov exponents for that flow (since we are on a homoge-
neous space, each λ+

j (ΦtH) is a constant function). However, the method of [2], so
far, can only be pushed to prove the bound :

hKS(µ,ΦtH) ≥
∑
j

(
λ+
j (ΦtH)− λmax(ΦtH)

2

)
, (10)

where the sum is over all j, and λmax(ΦtH) is the largest of the Lyapunov exponents
λ+
j (ΦtH). The right-hand side is, in general, negative, and the lower bound is trivial.
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In [4], we are able to prove an explicit, non-trivial lower bound. To do so, we
need to get rid of the low Lyapunov exponents in (10). This is where we use the
refined norm estimate Theorem 2.3. From now on, we assume that ν∞ regular.

Theorem 3.9. [4] Let µ be a semiclassical measure associated to the limit (9).
Assume that ν∞ regular.

For any H ∈ H,

hKS(µ,ΦtH) ≥
∑

j,λ+
j (ΦtH)≥

λmax(Φt
H

)

2

(
λ+
j (ΦtH)− λmax(ΦtH)

2

)
.

We note that, unless H is a constant function, the entropy lower bound given
by Theorem 3.9 is always positive.

One reason to study this problem is that, when the rank r is≥ 2, the commuting
flows (ΦtH) (H ∈ H) are expected to have few joint invariant measures. As a
consequence, quantum unique ergodicity should be easier to prove.

To explain what is known about the joint invariant measures of the family (ΦtH),
we translate everything from the language of hamiltonian flows to the language of
group actions. For simplicity we stick to the case G = SL(n,R),K = SO(n,R). If
Eν∞ ⊂ T ∗X is a regular energy level of H, it is known that there is a G-equivariant
identification between Eν∞ and Γ\G/M , where M is the group of diagonal ma-
trices of determinant 1 and entries ±1. Under this identification, the action of
the flows (ΦtH)H∈H on Eν∞ is transported to the right action of the group A on
Γ\G/M . More precisely, if H ∈ H is seen as a polynomial function on g∗, the
hamiltonian flow (ΦtH) is transported to the 1-parameter subgroup etZ of A, with
Z = dH(ν∞) ∈ a (see [21] for a detailed proof of this fact). In particular, a semi-
classical measure µ can be seen as a probability measure on Γ\G/M , invariant
under the right-action of A (in [34], Silberman-Venkatesh constructed a microlocal
lift of φν , that is directly defined on Γ\G/M instead of T ∗X, and their construction
has the advantage of being equivariant). The Liouville measure on Eν∞ corresponds
to the Haar measure on Γ\G/M .

Margulis’ conjecture (see [23]) : Let G be a semisimple Lie group with
finite center, Γ < G a lattice, A < G a maximal split torus. Let µ be an A-invariant
and ergodic Borel probability measure on Γ\G. Then there exists a subgroup L of
G, containing A, closed and connected, and a closed orbit xL ⊂ Γ\G, such that
µ is supported on xL. Also, except possibly when L has a factor of rank 1, µ is
algebraic, that is the L-invariant measure on xL.

Here is what is known about this conjecture. Let us denote µHaar the Haar
measure on Γ\G.

• [14], Theorem 4.1 : Let G be an R-split simple group. There exists 0 < c < 1
such that, if Γ is a lattice of G, and if µ is an A-invariant and ergodic
probability measure on Γ\G satisfying hKS(µ) ≥ c hKS(µHaar) for every
1-parameter subgroup of A, then µ is the Haar measure on Γ\G.



Hyperbolic dispersion estimate 15

In the case G = SL(n,R) : if µ has positive entropy for each 1-parameter
subgroup of A, then µ is the Haar measure on Γ\G.

• [15] If G = SL(n,R), Γ = SL(n,Z), or if Γ is a lattice of “inner type”; if µ is
ergodic and has positive entropy for some 1-parameter subgroup of A, then
µ is algebraic.

• [26, 37] In the latter case, L must be of a certain form : it must be conju-
gate, via a permutation matrix, to the connected component of identity in
GL(t,R)s∩SL(n,R); where n = ts and GL(t,R)s denotes the block-diagonal
embedding of s copies of GL(t,R) into GL(n,R).

Here is a reformulation of Theorem 3.9 :

Theorem 3.10. Let µ be a semiclassical measure associated to the limit (9).
Assume that ν∞ regular.

Then for any 1-parameter flow etZ in A (with Z ∈ a),

hKS(µ, etZ) ≥
∑

j,λ+
j (etZ)≥λmax(etZ )

2

(
λ+
j (etZ)− λmax(etZ)

2

)
.

Unless Z = 0, this lower bound is positive. In the case G = SL(n,R), if we
knew that µ was ergodic, we could deduce from the result of [14] that µ is the Haar
measure, and quantum unique ergodicity would be proved. Unfortunately, nothing
tells us that µ is ergodic. However, our entropic lower bound is explicit, and we
can use the more precise measure classification results listed above, to prove the
following :

Theorem 3.11. [4] Let G = SL(3,R), and Γ be any cocompact lattice in G. Let
µ be a semiclassical measure associated to the limit (9). Assume that ν∞ regular.

Then µ has a Haar component, of weight ≥ 1
4 . In other words, there exists an

A-invariant probability measure ν on Γ\G/M , such that

µ =
1

4
µHaar +

3

4
ν,

where µHaar denotes the Haar measure on Γ\G/M .

Theorem 3.12. [4] Let G = SL(n,R), with n ≥ 3, and let Γ be a lattice associated
to a division algebra over Q. Let µ be a semiclassical measure associated to the
limit (9). Assume that ν∞ regular.

Then µ has a Haar component, of weight ≥ n−1
n−d

(
1
2 −

d−1
n−1

)
, where d is the

largest proper divisor of n.

We cannot prove quantum unique ergodicity, that says that the only semiclas-
sical measure is the Haar measure. But we have a partial result, saying that any
semiclassical measure has a Haar component. For n = 3 the result holds for any
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lattice Γ in SL(n,R), whereas for n ≥ 4 we need to assume that Γ is associated to
a division algebra over Q to apply the results of [15, 26, 37].

As a comparison, for n prime, Γ coming from a division algebra over Q, and
assuming that the φν were also eigenfunctions of the Hecke operators, Silberman-
Venkatesh [34, 35] generalized the inequality (6), and improved it by estimating the
measures of tubular neighbourhoods of orbits of subgroups. If µ is a semiclassical
measure associated to a regular direction ν∞, their result implies that every ergodic
component of µ has positive entropy, with respect to all 1-parameter subgroups of
A. This generalizes the result of [5], and implies that µ is the Haar measure.

4. Resonances, local smoothing and Strichartz es-
timates

Nonnenmacher and Zworski used a variant of Theorem 2.2 in order to prove spectral
estimates in scattering theory [27]. For simplicity, we just state their results in a
special case. On Rd, consider a Schrödinger operator of the form

P (~) = −~2 ∆

2
+ V (x), V ∈ C∞c (Rd,R),

where ∆ is the euclidean laplacian. The resonances of P (~) are defined as poles of
the meromorphic continuation of the resolvent

R(z, ~)
def
= (P (~)− z)−1 : L2(Rd) −→ L2(Rd), =m(z) > 0,

through the continuous spectrum [0,+∞). More precisely,

R(z, ~) : L2
comp(Rd) −→ L2

loc(Rd), z ∈ C \ (−∞, 0],

is a meromorphic family of operators (here L2
comp and L2

loc denote functions which
are compactly supported and in L2, and functions which are locally in L2). The
poles are called resonances, and their set is denoted by Res(P (~)). They are
counted according to their multiplicities.

The classical hamiltonian flow is given by Newton’s equations :

Φt(x, ξ)
def
= (x(t), ξ(t)),

ẋ(t) = ξ(t), ξ̇(t) = −dV (x(t)), x(0) = x, ξ(0) = ξ.

We will denote Y = YH = dΦt

dt t=0
the corresponding vector field. This flow pre-

serves the classical hamiltonian

H(x, ξ)
def
=
‖ξ‖2

2
+ V (x), (x, ξ) ∈ Rd × Rd,

and it leaves invariant the level sets EE = H−1(E). The incoming and outgoing
sets at energy E are defined as

Γ±E = {ρ ∈ EE ,Φt(ρ) 6−→ ∞, t −→ ∓∞}.
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The trapped set at energy E is KE = Γ+
E ∩ Γ−E . It is a compact invariant set for

Φt. We will always assume that KE is non empty.
The fundamental assumption in [27] is that KE contains no fixed points of

the flow, and that the dynamics of (Φt) on KE is (uniformly) hyperbolic. This
means that, for any ρ ∈ KE , the tangent space to EE at ρ splits into flow direction,
unstable and stable subspaces : there exist C, λ > 0, and at each ρ ∈ KE a splitting
TρEE = RY (ρ)⊕ E+

ρ ⊕ E−ρ , dimE±ρ = d− 1, such that

(i) For all ρ ∈ KE , dΦtρE
±
ρ = E±Φt(ρ) for all t ∈ R;

(ii) For all ρ ∈ KE , for all v ∈ E∓ρ , ‖dΦtρ.v‖ ≤ Ce−λ|t|‖v‖, for ±t > 0.
Hyperbolicity implies structural stability, and in particular KE′ is also a non

empty hyperbolic set, for E′ close enough to E.
Let us introduce the unstable jacobian, defined by

exp Λ+
t (ρ) = det(dΦteE+

ρ
);

for t large enough, we have Λ+
t (ρ) > 0 for all ρ.

By assumption, there exists R > 0 such that V is supported inside the ball
B(0, R). Fix δ > 0. The technique of complex scaling, used in [27] (but which we
don’t explain in detail here), allows to construct a deformation Pθ(~) of P (~) with
the following properties : (i) Pθ(~) is a non self-adjoint deformation of P (~), such

that the propagator e−it
Pθ(~)

~ damps very rapidly the functions supported away
from B(0, 3R); (ii) Pθ(~) coincides with P (~) inside B(0, 2R); (iii) the resonances of
P (~) close to the real axis are the eigenvalues of Pθ(~), with the same multiplicities.

The following form of Theorem 2.2 is used in [27]. With the same δ > 0
as previously, consider a finite family χ1, . . . , χK of smooth compactly supported
functions on Rd×Rd, such that

∑K
j=1 χj ≡ 1 on H−1[E−δ, E+δ]∩T ∗B(0, R). For

all j, assume the function χj is supported on a set Wj of diameter ≤ ε (that will be
chosen small enough). Also assume that each χj vanishes outside H−1[E−2δ, E+
2δ]∩T ∗B(0, 2R). Consider the associated pseudodifferential operators, defined by

the Weyl calculus : χ̂j = χj(x,−i~∂x). Define P̂j = e−iτ
P (~)

~ χ̂j , for some fixed
time step τ > 0 (in this definition, it is indifferent to take P (~) or Pθ(~), since
they coincide inside B(0, 2R)). The following theorem is a variant of Theorem 2.2.

Theorem 4.1. In the definition of χ̂j, we can fix ε, δ small enough, so that the
following holds.

Fix K > 0 arbitrary. Then there exists ~K > 0 such that, for n = K| log ~|, for
any sequence (α1, . . . , αn) ∈ {1, . . . ,K}n, and for all ~ < ~K,

‖P̂αn ◦ . . . ◦ P̂α2
◦ P̂α1

‖L2−→L2 ≤ 1

(2π~)d/2

n∏
j=1

e
Sτ (Wαj

)

2 ,

where Sτ (Wj) = − inf |E′−E|≤2δ,ρ∈Wj∩KE′ Λ+
τ (ρ).

If τ is chosen large enough, then the hyperbolicity condition implies that

Sτ (Wj) < 0, and that
∏n
j=1 e

Sτ (Wαj
)

2 decays exponentially with n.
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To study the spectral theory of Pθ(~), we can write

e−inτ
Pθ(~)

~

=
∑

(α1,...,αn)

P̂αn ◦. . .◦P̂α2
◦P̂α1

+

e−inτ Pθ(~)

~ −
∑

(α1,...,αn)

P̂αn ◦ . . . ◦ P̂α2
◦ P̂α1

 ,

where the sum runs over all (α1, . . . , αn) ∈ {1, . . . ,K}n.

The term
(
e−inτ

Pθ(~)

~ −
∑

(α1,...,αn) P̂αn ◦ . . . ◦ P̂α2
◦ P̂α1

)
only takes into ac-

count classical trajectories that, at some time, exit H−1[E− δ, E+ δ]∩T ∗B(0, R).
The trajectories that start inside H−1[E−δ, E+δ]∩T ∗B(0, R), but later exit that

set, are very rapidly damped by e−inτ
Pθ(~)

~ ; an important part of [27] is devoted
to showing that this term is not relevant when one wants to study the resonance
spectrum near {<e(z) = E}. Concerning the other term, we know that each op-
erator P̂αn ◦ . . . ◦ P̂α2 ◦ P̂α1 has a norm that decays exponentially fast with n, but
on the other hand there is an exponential number of terms in the sum

∑
(α1,...,αn).

To measure the competition between the exponential number of terms, and the
exponential decay of each term, it is natural to introduce the following quantity

PE(s) = lim
δ−→0

lim
ε−→0

lim
n−→+∞

1

nτ
logZnτ (s, (Wj)),

where

Znτ (s, (Wj)) = inf
B

 ∑
(α1,...,αn)∈B

n∏
j=1

e
Sτ (Wαj

)

2

 ,

and the inf is taken over all B ⊂ {1, . . . ,K}n, such that KE′ ⊂ ∪(α1,...,αn)∈BWα1 ∩
Φ−τWα2

∩ Φ−(n−1)τWαn for |E′ − E| ≤ δ.
The function s 7→ PE(s) is called the topological pressure associated with the

unstable jacobian. It is strictly decreasing with s.

Corollary 4.2. Fix η > 0 arbitrary. Then we can find τ > 0 large enough, ε, δ
small enough, and a partition of unity (χj) satisfying all the conditions above, such
that the following holds.

For K > 0 arbitrary, there exists ~K > 0 such that, for n = K| log ~|, and for
all ~ < ~K,

‖
∑

(α1,...,αn)

P̂αn ◦ . . . ◦ P̂α2
◦ P̂α1

‖L2−→L2 ≤ 1

(2π~)d/2
enτPE( 1

2 )(1 + η)nτ .

We see that this upper bound is non trivial only if PE( 1
2 ) < 0, which means

in some sense that the trapped set KE is rather small. In dimension d = 2, this
condition is equivalent to saying that the Hausdorff dimension of the trapped set
is < 2.

One of the main results in [27] is to deduce from Corollary 4.2 the existence of
a spectral gap in the resonance spectrum :
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Theorem 4.3. [27] Assume that PE( 1
2 ) < 0.

Then there exists δ > 0 such that, for any γ satisfying

0 < γ < min
|E′−E|≤δ

(
−PE′

(
1

2

))
,

there exists ~δ,γ > 0 such that

0 < ~ < ~δ,γ =⇒ Res(P (~)) ∩ ([E − δ, E + δ]− i[0, ~γ]) = ∅.

This means that if the trapped set is small enough, the resonances stay away
from the real axis. This question has been present in the physics literature at least
since the seminal paper by Gaspard and Rice [17]. We note that the analogous
result for scattering by a disjoint union of convex obstacles was proved in 1988 by
Ikawa [22]. One can say that Ikawa’s paper contained, in a hidden form and in a
specific geometric situation, the idea expressed by Theorem 2.1.

One important consequence of Corollary 4.2 is the following estimate on the
resolvent. It is proved in [27], using the relation between the resolvent and the
propagator.

Theorem 4.4. [27] Assume that PE( 1
2 ) < 0. Then, for any χ ∈ C∞c (Rd), there

exists C > 0 such that

‖χ(P (~)− E)−1χ‖L2−→L2 ≤ C log |~|
~

,

for ~ small enough.

These theorems hold for more general operators : see [27] for a more general
set of assumptions. An interesting situation is when there is no potential (V = 0)
and one studies the resonance spectrum of the laplacian for a riemannian metric
that is euclidean ouside a compact set1. Since the hamiltonian is homogeneous,
one can without loss of generality consider the case E = 1

2 , that is, our hamiltonian
flow is the unit geodesic flow. In this situation, the resolvent estimate above was
extended by Datchev to the case of asymptotically conic manifolds, also called
scattering manifolds [12] It is shown in [9, 12] how such resolvent estimates imply
a local smoothing estimate :

Theorem 4.5. [27, 9, 12] Let (X, g) be a riemannian manifold that is euclidean
outside a compact set; or asymptotically conic (see [12] for the definition). Let ∆
denote the associated Laplace-Beltrami operator.

Assume that the trapped set K of the unit speed geodesic flow is compact, hy-
perbolic, and that the pressure of the unstable jacobian on K satisfies P( 1

2 ) < 0.
Then, for any η > 0, for any T > 0 and any χ ∈ C∞c (M), there exists C > 0

such that ∫ T

0

‖χeit∆u‖2H1/2−ηdt ≤ C‖u‖2L2 . (11)

1In the case of convex-cocompact hyperbolic manifolds, the existence of a gap in the resonance
spectrum, if the limit set has small dimension, seems to have been known before.
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The local smoothing effect usually refers to the inequality∫ T

0

‖χeit∆u‖2H1/2dt ≤ C‖u‖2L2 ,

which is known to hold when the trapped set for the geodesic flow is empty. Doi [13]
showed, in a variety of geometric situations, that the absence of trapped geodesics
is also a necessary condition for (11) to hold with η = 0. According to Theorem
4.5, if the trapped set is hyperbolic and small enough, (11) holds for all η > 0,
which is called “local smoothing with loss”.

Burq-Guillarmou-Hassell [6] showed how the combination of Theorem 4.5 and
the norm estimate of Corollary 4.2 yields a Strichartz estimate without loss :

‖eit∆u‖Lp((0,1),Lq(M)) ≤ C‖u‖L2(M),

for 2
p + d

q = d
2 , p > 2, q ≥ 2, (p, q) 6= (2,∞). This estimate holds for riemannian

manifolds that are asymptotically conic, assuming that the trapped set of the unit
geodesic flow is compact, hyperbolic and satisfies P( 1

2 ) < 0.
Finally, Christianson [10] and Nonnenmacher-Zworski [28] show how to extend

the resolvent estimate of Theorem 4.4 to the analytic extension of the cut-off
resolvent in a small strip below the real axis. As an application, Christianson [10]
proves exponential decay of the local energy, under the action of the wave group,
on a riemannian manifold that it euclidean outside a compact set, assuming once
again that the trapped set of the unit geodesic flow is hyperbolic and satisfies
P( 1

2 ) < 0.
We refer the reader to the work of Emmanuel Schenck [32], who used similar

ideas to study the spectrum and the energy decay for the damped wave equation.
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Math. Phys. 109 (1987), 313–326.

[21] J. Hilgert An ergodic Arnold-Liouville theorem for locally symmetric spaces. Twenty
years of Bialowieza: a mathematical anthology, 163–184, World Sci. Monogr. Ser.
Math., 8, World Sci. Publ., Hackensack, NJ, 2005.

[22] M. Ikawa, Decay of solutions of the wave equation in the exterior of several convex
bodies. Ann. Inst. Fourier,. 38 (1988), 113–146.

[23] A. Katok, R. Spatzier, Invariant measures for higher rank hyperbolic Abelian ac-
tions. Erg. Theory and Dynam. Systems, 16 (1996), 751–778.

[24] F. Ledrappier, L.-S. Young, The metric entropy of diffeomorphisms. I. Characteri-
zation of measures satisfying Pesin’s entropy formula, Ann. of Math. (2) 122 (1985),
no. 3, 509–539.

[25] E. Lindenstrauss, Invariant measures and arithmetic quantum unique ergodicity,
Ann. of Math. 163 (2006), 165-219.

[26] E. Lindenstrauss, B. Weiss, On sets invariant under the action of the diagonal
group. Ergodic Theory Dynam. Systems 21 (2001), no. 5, 1481–1500.



22 N. Anantharaman

[27] S. Nonnenmacher, M. Zworski, Quantum decay rates in chaotic scattering, Acta
Mathematica, Volume 203, Number 2, December 2009, 149–233.

[28] S. Nonnenmacher, M. Zworski, Semiclassical resolvent estimates in chaotic scatter-
ing, Appl. Math. Res. Express (2009) 74–86.

[29] G. Rivière, Entropy of semiclassical measures in dimension 2, to appear in Duke
Math. J.

[30] G. Rivière, Entropy of semiclassical measures for nonpositively curved surfaces,
preprint.

[31] Z. Rudnick and P. Sarnak, The behaviour of eigenstates of arithmetic hyperbolic
manifolds, Commun. Math. Phys. 161 (1994), 195–213.

[32] E. Schenck, Energy decay for the damped wave equation under a pressure condition,
preprint 2009.

[33] A. Schnirelman, Ergodic properties of eigenfunctions, Usp. Math. Nauk. 29 (1974),
181–182.

[34] L. Silberman, A. Venkatesh, Quantum unique ergodicity for locally symmetric spaces,
to appear in GAFA.

[35] L. Silberman, A. Venkatesh, Entropy bounds for Hecke eigenfunctions on division
algebras, preprint.

[36] K. Soundararajan, Quantum unique ergodicity for SL2(Z)\H, preprint.

[37] G. Tomanov, Actions of maximal tori on homogeneous spaces. Rigidity in dynamics
and geometry (Cambridge, 2000), 407–424, Springer, Berlin, 2002.

[38] S. Zelditch, Uniform distribution of the eigenfunctions on compact hyperbolic sur-
faces, Duke Math. J. 55 (1987), 919–941.
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versité Paris-Sud, F-91405 Orsay Cedex
E-mail: Nalini.Anantharaman@math.u-psud.fr


