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An introduction to semiclassical analysis.

1. Mechanics.

1.1. Three approaches to classical mechanics. The variational ap-
proach. The Maupertuis or Euler principle [M1744, E1744] is the mechanical
analogue of the Fermat principle in optics: a solid of mass m = 1, moving under
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the effect of a force F = −gradV , with a total energy E, follows a trajectory γ
which minimizes the action

(1.1) S(γ) =

∫

√

2(E − V (γ))‖dγ‖

among all curves with the same endpoints, and under the constraint that ‖γ̇(t)‖2

2 +
V (γ(t)) = E for all t. More precisely, we should look for critical points of S, among
all paths with given endpoints, and constant total energy E. In these notes, we
work on a riemannian manifold (X, g), and ‖.‖x is the norm defined on TxX by
the riemannian metric : ‖v‖2x = gx(v, v). In other words, the Maupertuis principle
says that the trajectories of energy E are geodesics for a new, degenerate metric,
2(E − V (x))gx.

The dual formulation, due to Lagrange [L1788], is to find the extrema of the
functional

(1.2) A(γ) =

∫ T

0

(

‖γ̇(t)‖2γ(t)
2

− V (γ(t))

)

dt

among all curves going from x to y in a given time T . Let us introduce the la-

grangian L(x, v) =
‖v‖2

x

2 − V (x); the movement is described by the Euler-Lagrange
equation

(1.3)
d

dt

(

∂L

∂v
(γ, γ̇)

)

=
∂L

∂x
(γ, γ̇),

or more explicitly Dγ̇ γ̇ = −gradV (γ). This second order equation defines a local
flow (φtEL) on the tangent bundle TX , called the Euler-Lagrange flow.

Hamiltonian point of view. The hamiltonian is the Fenchel–Legendre trans-
form of L with respect to the variable v :

H(x, ξ) = ξ.v − L(x, v)

with ξ = ∂L
∂v ; we are in a nice situation where the Legendre transformation

Leg : (x, v) 7→
(

x,
∂L

∂v

)

defines a diffeomorphism between the tangent bundle TX and the cotangent bundle

T ∗X . Its inverse is Leg−1 : (x, ξ) 7→
(

x, ∂H∂ξ

)

. In fact, in our case, Leg is nothing

else than the natural identification between TX and T ∗X , provided by the riemann-
ian metric. We can define a scalar product gx on T ∗

xX by gx(ξ, ξ) = gx(v, v) = ‖v‖2x,
with ξ = ∂L

∂v . The vector ξ is called the momentum, and H(x, ξ) = gx(ξ,ξ)
2 +V (x) is

the total energy of the system. We shall also denote gx(ξ, ξ) = ‖ξ‖2x, but the reader
should not confuse the norms ‖.‖x on T ∗

xX and TxX .
The Euler-Lagrange equation (1.3) is equivalent to Hamilton’s system of equa-

tions,

(1.4)











ẋ = ∂H
∂ξ

ξ̇ = −∂H
∂x ,

which define a local flow (φtH) on T ∗X , called the hamiltonian flow. This flow is
conjugate to (φtEL) via the diffeomorphism Leg. It preserves the energy H , in the
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sense that H(x(t), ξ(t)) is constant for any trajectory of the flow (x(t), ξ(t)). The
hamiltonian flow also preserves the Liouville measure dx dξ.

If a is a function on T ∗X (an “observable quantity” in the language of Heisen-
berg), and if we denote at = a ◦ φtH , we have

da

dt
= {H, a},

where {. , .} denotes the Poisson bracket, {H, a} =
∑

∂ξjH ∂xj
a− ∂ξja ∂xj

H .
A more intrinsic way of writing the Hamilton equations (1.4) would be to note

that the vector field on the right hand side is the symplectic gradient of H , with
respect to the canonical symplectic form on T ∗X . Let us define the Liouville 1-form
on the cotangent bundle, defined by

α(x,ξ)(P ) = ξ.dπ(P ) for all P ∈ T(x,ξ)(T
∗X),

where π : T ∗X −→ X is the usual projection, and dπ its tangent map. The
cotangent bundle T ∗X can be endowed with the symplectic form

(1.5) ω = −dα.
In local coordinates, α = p.dq and ω = dq ∧ dp, if p and q denote respectively the
“momentum” and “position” functions, p(x, ξ) = ξ, q(x, ξ) = x. The reader can
check that the right hand side of (1.4) is the expression in local coordinates of the
symplectic gradient XH of H , defined by dH = ω(XH , .). The Poisson bracket is
given by {f, g} = −ω(Xf , Xg) = dg(Xf ), for any two functions f, g on T ∗X .

One can show that the flow φH preserves the symplectic form ω. In the language
of symplectic geometry, a (local) diffeomorphism of T ∗X which preserves ω is called
a canonical transformation.

Hamilton–Jacobi equation, generating functions. This third point of
view, called the Hamilton–Jacobi approach, meets many technical difficulties, but it
is the key tool to understand the semiclassical analysis of the Schrödinger equation.

Around 1830, Hamilton introduced a new formalism, in which the action is
seen as a function of the endpoints x and y [H1830, H1834]. Let γ : [0, T ] −→ X
be a solution of the Euler–Lagrange equation, joining x to y in time T > 0. To
simplify the discussion, we consider here the nice, but usually unrealistic situation,
where such a trajectory is unique. We can then consider the lagrangian action

A(x, y;T ) =
∫ T

0
L(γ, γ̇)dt as a function of x, y, T , and check that

(1.6)
∂A

∂x
= −γ̇(0); ∂A

∂y
= γ̇(T ),

and
∂A

∂T
= −E

where E is the energy E = ‖γ̇‖2

2 + V (γ), constant along the trajectory γ. If we
freeze the variable y (thus fixing an initial or rather “final” condition) and see A as
a function of x ∈ X and T > 0, we have

(1.7)
∂A

∂T
+H(x, ∂xA) = 0.

Hamilton then argues that being able to integrate the hamiltonian vector field
(1.4) is equivalent to finding the generating function A, solution of the Hamilton–
Jacobi equation (1.7) for any initial condition (or a large enough family of initial
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conditions). By this procedure, the ordinary differential equations (1.3) or (1.4)
have been replaced by a single PDE. Quoting Hamilton, “even if it should be
thought that no practical facility is gained, yet an intellectual pleasure may result
from the reduction of [...] all researches respecting the forces and motions of body,
to the study of one characteristic function”.

Let us also consider the Legendre transform of A(x, y;T ) with respect to the
variable T ,

(1.8) S(x, y;E) = ET +A(x, y;T )

where T and E are related by
∂A

∂T
= −E,

which implies that
∂S

∂E
= T.

The function S is nothing else but the Maupertuis action (1.1) of the trajectory γ
joining x to y with energy E:

S(x, y;E) =

∫

√

2(E − V (γ))‖γ̇‖dt =
∫ T

0

‖γ̇‖2dt.

We still have

(1.9)
∂S

∂x
= −γ̇(0); ∂S

∂y
= γ̇(T ).

If we freeze the final state y, the function S solves the stationary Hamilton–Jacobi
equation,

(1.10) H(x, ∂xS) = E.

The solutions of the time–dependent Hamilton–Jacobi equation (1.7) and of the
stationary equation (1.10) are related by the Legendre transform (1.8).

The Hamilton–Jacobi equation (1.7) has a simple geometrical intepretation.
Consider a subset of the cotangent bundle T ∗X , of the form L0 = {(x, dxA0), x ∈
Ω0}, with Ω0 an open subset of X . This is a particular case of a lagrangian sub-
manifold in T ∗X (see Definition 12.1). Let L0 evolve under the hamiltonian flow,
and consider Lt = φtHL0: because φtH preserves the symplectic form ω, Lt is still
a lagrangian manifold. Let us assume that, for t ∈ [0, T ], Lt still projects diffeo-
morphically to an open subset of Ωt ⊂ X . This means exactly that Lt is of the
form Lt = {(x, dxAt), x ∈ Ωt} for some smooth function At. It can be shown that
the relation Lt = φtHL0 is equivalent to At solving the Hamilton–Jacobi equation
(1.7), with the condition that Ωt is the image of L0 under the “exponential” map
associated with L0:

exptL0
: L0 −→ X,(1.11)

ξ 7→ π
(

φtHξ
)

(1.12)

(the notation π denotes the projection T ∗X −→ X).
This approach suffers from the notorious problem of caustics (Figure 1). Usually,

the exponential map will only be a diffeomorphism if the energy H is bounded on
L0, and if t is small enough. For large times two kinds of problems arise,

– exp is not injective (two trajectories starting in L0 land at the same point in
X)



EIGENFUNCTIONS OF THE LAPLACIAN ON NEGATIVELY CURVED MANIFOLDS 5

xxx

LtL0

ξ ξ ξ

Figure 1. Appearance of caustics for large times.

– the tangent map d exp is not injective (focal points, conjugate points).
Geometrically, this means that after some time Lt will cease to project diffeo-

morphically to X . From a PDE point of view, this means that the equation (1.7)
does not, in general, have globally defined smooth solutions.

Although the problem of caustics makes the Hamilton–Jacobi equation rather
difficult to work with, it is, nevertheless, the key tool to understand Schrödinger’s
equation and its semiclassical analysis. Semiclassical methods often break down
with the appearance of caustics, or a little after.

We now review Schrödinger’s view of mechanics, but also the work of Born,
Heisenberg and Jordan, which lead to the idea of quantization.

1.2. Quantum/wave mechanics. At the beginning of the twentieth century,
it became clear that classical mechanics was not applicable to certain problems,
like the study of energy radiation in atoms. People started looking for new physical
laws, but it was not until 1925 that theories judged as satisfactory were elaborated.
These theories involve Planck’s constant h = 2π~ = 6.626068× 10−34m2.kg/s (the
“action quantum”), and one is supposed to recover classical mechanics when letting
h tend to 0 in the equations.

Quantenmechanik. In 1925, Heisenberg, Born and Jordan gave some new
laws of mechanics, supposed to replace the old Hamilton equations (1.4). Consider
a hamiltonian system with d degrees of freedom, meaning that the manifold X has
dimension d. In fact let us take X = Rd as in the paper [BHJ25-II]. In classical
mechanics the time evolution is given by equation (1.4), defining a symplectic flow
on the phase space T ∗X . According to the quantum mechanics of [BHJ25-II], the
time evolution of the system is ruled by the five following principles :

(0) The “phase space” is a Hilbert space H.

(1) The “observable quantities” are described by linear operators ( = infinite
matrices). Heisenberg, Born and Jordan used a boldface letter a to denote the
quantum observable corresponding to the classical observable a; if a is a real–valued
function on T ∗X then the corresponding operator a is hermitian.

(2) Main rules : We consider, in particular, an algebra of operators gen-
erated by the momentum and position observables, p = (p1,p2, ...,pd) and q =
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(q1, ...,qd). These operators must obey the following commutation rules :

[

pk,ql
]

=
~

i
δkl I,(1.13)

[

pk,pl
]

= 0,(1.14)
[

qk,ql
]

= 0.(1.15)

Consider now a classical observable f defined by a power series

f(p, q) =
∑

αsrp
sqr.

Then the quantum observable f should be defined by

f(p,q) =
∑

αsr
1

s+ 1

s
∑

l=0

ps−lqrpl.

This prehistoric “quantization rule” can be applied, in particular, to define the
hamiltonian operator H.

(3) A canonical transformation is a transformation that sends the observables
(p,q) to new observables (P,Q) satisfying the same commutation relations. We
ask that a canonical transformation preserve hermitian operators, and sends an
observable of the form f(p,q) to f(P,Q). Such a transformation is of the form
P = SpS−1, Q = SqS−1, where S is a unitary operator.

(4) The equations of motion are

(1.16)











ṗ = −∂H
∂q

q̇ = ∂H
∂p ,

where we define

∂f

∂x1
= lim

ε−→0

1

ε

(

f(x1 + εI,x2, ...,xs)− f(x1,x2, ...,xs)
)

for f(x1,x2, ...,xs) a power series in the s observables x1,x2, ...,xs (I is the identity
operator).

It can be shown from formula (1.13) that we have the identity

[f ,g] =
~

i

(

∂f

∂p

∂g

∂q
− ∂f

∂q

∂g

∂p

)

holding for f ,g power series in the operators p and q.
In particular, the equations (1.16) can be reexpressed as

ḟ =
i

~
[H, f ]

for any observable f .
(5) To integrate the equation of motion, we must find a unitary operator S

such that

(1.17) SHS−1 = W
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is diagonal. In other words, we look for a canonical transformation which allows to
express the solutions of (1.16) as a superposition of periodic motions1.

In a basis where H is diagonal, we find, for any observable f , that the matrix
elements evolve according to

(1.18) fnm(t) = fnm(0)e2iπνnmt

where the radiation sprectrum νnm (“physical spectrum”) is related to the eigen-
values (En) of H (“mathematical spectrum”) by

νnm =
En − Em

h
.

Wellenmechanik. In 1926, Erwin Schrödinger, independently of the work of
Heisenberg, Born and Jordan, proposed a new equation, supposed to describe the
state of our system submitted to a force field −gradV , when the value of the energy
E is given : the “stationary” Schrödinger equation is a second order elliptic PDE,

(1.19) −~2

2
△ψ + V ψ = Eψ,

where E is the energy. As we shall see, this equation is closely related to the
stationary Hamilton–Jacobi equation (1.10). The corresponding evolution equation
reads

(1.20) i~
∂φ

∂t
=

(

−~2

2
△+ V

)

φ.

These two forms of the equation are related by a time/energy Fourier transform
φ(t) =

∫

e−iEt/~ψEdE, which recalls the relation (1.8).
According to Schrödinger’s theory, the energy spectrum can be computed by

finding the values of E for which equation (1.19) admits solutions which are “single–
valued, finite, and continuous throughout configuration space”.

Schrödinger, motivated by the works of De Broglie, gives an interpretation of
ψ as a “wave function”. “The true mechanical process is realised or represented
in a fitting way by the wave processes in q–space, and not by the motion of image

1The analogy with the theory of classical hamiltonian systems can be pushed further. In
fact, equation (1.16) is a linear hamiltonian flow, in an infinite dimensional space. Such systems
are completely integrable, due to the fact that a unitary transformation diagonalizing H always
exists. To be more explicit, let (H, 〈., .〉) be a complex Hilbert space, seen as a real vector space

endowed with the symplectic form ω(φ, ψ) = ℑm〈φ, ψ〉. If we use an orthonormal basis (en) to
define coordinates, φ =

∑
n(xn + iξn)en, then (xn, ξn) are Darboux coordinates, meaning that

ω =
∑
n dxn ∧ dξn.

Let H be a self–adjoint operator; it can be used to define a quadratic hamiltonian H(ψ) =
1
2
〈ψ,Hψ〉. If we consider quadratic observables, f(ψ) = 1

2
〈ψ, fψ〉, then the Poisson bracket defined

by ω correspond to the usual commutator bracket,

{f, g}(ψ) =
1

2
〈ψ, i[f ,g]ψ〉.

The Hamilton equations defined by H read dψ

dt
= −iHψ. Finally, linear transformations preserving

ω are of the form ψ 7→ Sψ where S is unitary.

Thus, finding a unitary S such that S−1HS is diagonal amounts to finding a linear canonical
transformation ψ 7→ Sψ which transforms the hamiltonian H into H(Sψ) = 1

2

∑
(2πνn)2(x2n+ξ

2
n).

This means that we can integrate the equation of motion by decomposing it into a superposition
of infinitely many independent harmonic oscillators.
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points in this space. The study of the motion of image points, which is the object
of classical mechanics, is only an approximate treatment, and has, as such, just
as much justification as geometrical or “ray” optics has, compared with the true
optical process”. This approximation is only justified when the dimensions of the
system are very large compared to the wave length : “we inevitably became involved
in irremovable contradictions if we tried, as was very natural, to maintain also the
idea of paths of systems in these processes; just as we find the tracing of the course
of a light ray to be meaningless, in the neighbourhood of a diffraction phenomenon”.

It is particularly interesting for us to note that Schrödinger derived the form of
his equation by a heuristic argument, based on the desired asymptotic behaviour
of the solutions when ~ −→ 0 :

Assume that our mechanical phenomenon is described by a wave function ψ,

and assume that this wave has the particular form : ψ(x, 0) = exp
(

iA(x,0)
~

+ C
)

at t = 0. Assume also that for t > 0 the wave ψ looks like

(1.21) ψ(x, t) ∼ exp

(

i
A(x, t)

~
+ C

)

+ small error.

To find the form of the equation satisfied by ψ, Schrödinger postulates that the
phase A must approximately satisfy the Hamilton-Jacobi equation (1.7), when the
wave length is very small (semiclassical approximation). In other words, we must
(almost) see the wave move according to the classical motion. Thus, the point
is to find an equation, looking like a wave equation, and such that (1.21) is an
approximate solution if ∂A∂t +H(x, dxA) = 0 (equation (1.7)) and ~ −→ 0.

To find such an equation, Schrödinger actually works with the stationary for-
mulation : this means that A(x, t) is of the form A(x, t) = −Et + S(x) where S
solves H(x, dxS) = E (equation (1.10)). If S satisfies (1.10), then the local speed
of propagation of ψ is

u(x) =
−∂A
∂t

|∇A| =
E

√

2(E − V (x))

and the wave length is λ(x) = h√
2(E−V (x))

. This encourages Schrödinger to propose

the equation

∂2ψ

∂t2
= u2△ψ.

From the expression of u, and since the formula (1.21) is supposed to give an

approximate solution when λ −→ 0, we find −~
2

2 △ψ + V ψ = Eψ.
Let us now consider the propagation of an arbitrary wave ψ, and let us try to

put Schrödinger’s discussion into mathematical words. At time t = 0, any initial
state ψ can be written as

(1.22) ψ(x) ∼
∫

a(x, θ) exp

(

i

~
A(x; θ)

)

dθ,

where θ varies in an open set ofRd, exp
(

i
~
A(x; θ)

)

is a generating family parametrized

by θ, and a is a distribution. In Rd, we can for instance take the plane waves
exp

(

i
~
A(x; θ)

)

= exp
(

i
~
〈x, θ〉

)

, and the decomposition (1.22) is the Fourier decom-
position. By linearity of the Schrödinger equation, and by the approximate form
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of the solutions (1.21), after time t the wave looks like

(1.23) ψ(t, x) ∼
∫

a(x, θ) exp

(

i

~
A(t, x; θ)

)

dθ,

where A(t, x; θ) is the solution of (1.7) with initial condition A(x; θ). If the oscil-
lations are very rapid (λ small) we expect all these waves to interfer destructively,
except at those points x where the phase has a stationary point,

∂θA(t, x, θ0) = 0

(for some θ0). At such a point, we see essentially the wave exp
(

i
~
A(t, x; θ0)

)

, with
the frequency vector ξ = ∂xA(t, x, θ0). Thus, the wave front at time t can be
represented by the subset of the cotangent space

(1.24) L(t) = {(x, ξ), there exists θ0, ∂θA(t, x, θ0) = 0, ξ = ∂xA(t, x, θ0)} .
Assuming each A(., ., θ) satisfies the Hamilton–Jacobi equation, one can check that
L(t) is precisely the image of L(0) under the hamiltonian flow (1.4) at time t (see
Exercise 12.9). In other words, the wave front is propagated according to the
classical hamiltonian flow.

“The point of phase agreement for certain infinitesimal manifolds of wave sys-
tems, containing n parameters, moves according to the same laws as the image
point of the mechanical system” [Schr26-II].

Recall that this is an approximation, valid when the wave length λ is very
small; for mathematicians, this is the same as letting ~ tend to 0, and this is called
the semiclassical limit. Schrödinger’s heuristic discussion already contain the seeds
of semiclassical analysis. Classical mechanics is obtained as a limiting case of wave
mechanics by a phenomenon of constructive or destructive interferences.

Schrödinger writes :“I consider it a very difficult task to give an exact proof that
the superposition of these wave systems really produces a noticeable disturbance
in only a relatively small region surrounding the point of phase agreement, and
that everywhere else they practically destroy one another through interference”
[Schr26-II]. As we shall see in Section 4.2, this problem can in fact be handled
by the stationary phase method, if we impose strong smoothness conditions on the
distribution a.

2. Weyl quantization.

In [Schr26-III], Schrödinger realizes, in the case ofX = Rd, that his “wave me-
chanics” is equivalent to the “quantum mechanics” introduced by Born, Heisenberg
and Jordan. The equivalence comes from the existence of an explicit quantization
procedure , that is, a way to associate, to every function on the classical phase
space T ∗X = Rd × Rd, an operator on the Hilbert space H = L2(Rd), so that the
commutation rules (1.13) hold. Schrödinger’s remark is that we can take the oper-
ators qk = (multiplication by qk) to the coordinate function qk, and the operator
pk = ~

i
∂
∂qk

to the function pk.

One must then decide of a convention to define the operator a(q,p) associated
to an arbitrary function a(q, p) of (q, p). For instance, the function pkqk could be
represented by the operator pkqk or by qkpk. Schrödinger leaves the issue open
for general a, but recommends to quantize a hamiltonian of the form

H(q, p) =
‖p‖2
2

+ V (q),
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where ‖.‖ is a riemannian metric, by the operator H = −~
2

2 △+ V , where △ is the
laplacian associated to the metric. In this representation, Heisenberg’s equation

(1.17), requiring to diagonalize the operatorH, can be written −~
2

2 △ψ+V ψ = Eψ,
which is exactly Schrödinger’s equation (1.19). Thus, the two theories will give
the same values of the energy spectrum. Schrödinger suggests, however, that two
theories can be mathematically equivalent without being physically equivalent.

Weyl quantization. Hermann Weyl [Weyl27] gave a quantization rule which
defines a(q,p) for any a(q, p). He first proposed to quantize the observable Up0,q0(q, p) =

e
i
~
(p0.q−q0.p) (with q0, p0 ∈ Rd) by the operator Up0,q0(q,p) = e

i
~
(p0.q−q0.p) (where

(q,p) are defined by Schrödinger’s prescriptions). Then, the Fourier transform
allows to quantize any observable : if a is decomposed into

a(q, p) =

∫

e
i
~
(p0.q−q0.p)ǎ~(q0, p0)

dq0dp0
(2π~)d

,

then the Weyl quantization is

a(q,p) =

∫

e
i
~
(p0.q−q0.p)ǎ~(q0, p0)

dq0 dp0
(2π~)d

=: OpW~ (a).

We used the “symplectic” Fourier transform,

ǎ~(q, p) =

∫

e
−i
~

(p0.q−q0.p)a(q, p)
dqdp

(2π~)d
.

One can also check that the following expression holds [Foll],

OpW
~
(a)f(x) =

1

(2π~)d

∫

a

(

x+ y

2
, ξ

)

e
i
~
ξ.(x−y)f(y)dy dξ.

The Schrödinger representation. For p = 0, we have U0,qu(x) = u(x− q),
so that U0,q corresponds to the translation of vector q in the position variable.
Similarly, Up,0 translates the Fourier transform F~u (defined in Section 4.1) by the
vector p, and Up,0 is interpreted as the translation of vector p in the momentum
variable. To interpolate between these two cases, one usually says that Up,q is the
operator corresponding to “translation of vector (q, p) in the phase space Rd×Rd”.
The caveat is that U0,q and Up,0 do not commute, in fact the operators Up,q obey
the following composition rule,

(2.1) Up,q.Up′,q′ = Up+p′,q+q′e
i
~

1
2 (pq

′−q′p).

Consider the Heisenberg group Hd with d degrees of freedom, defined as R2d+1

endowed with the composition rule

(p, q, t).(p′, q′, t′) =

(

p+ p′, q + q′, t+ t′ +
1

2
(pq′ − qp′)

)

, (p, p′, q, q′ ∈ R
d, t, t′ ∈ R).

Its Lie algebra is generated by P1, . . . , Pd, Q1, . . . , Qd, T with the relations

[Pj , Pk] = [Qj, Qk] = [Pj , T ] = [Qj , T ] = 0; [Pj , Qk] = δjkT.

The identity (2.1) can be reinterpreted by saying that

ρh(p, q, t) = e
it
~ Up,q
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defines a unitary representation from Hd into L2(Rd), called the Schrödinger rep-
resentation of parameter h. The associated infinitesimal representation is Pk 7→
∂
∂qk

= i
~
pk, Qk 7→ i

~
qk, T 7→ i

~
I.

Theorem 2.1. (Stone–von Neumann 1930 [St30, vN31], see [Foll]) Every
irreducible unitary representation of Hd is equivalent to exactly one of the following
representations :

(a) ρh (h ∈ R \ {0}) acting on L2(Rd);
(b) σab(p, q, t) = e2πi(ap+bq), (a, b ∈ Rd) acting on C.

3. Born’s probabilitic interpretation of the Schrödinger equation.

Born discovered that the square modulus |ψ|2 of the wave functions (satisfying
the Schrödinger equation) could be used to predict the probability of where the
“particle” would be found. More precisely, if ψ is normalized so that

∫

|ψ(t, x)|2dx =
1, then |ψ(t, x)|2 gives the probability density of finding, in an experiment, the
particle at x (at time t). This was the beginning of a tense philosophical (or
physical) debate on the correct interpretation of the wave/particle duality.

“Let me say at the outset, that in this discourse, I am opposing not a few
special statements of quantum physics held today (1950s), I am opposing as it were
the whole of it, I am opposing its basic views that have been shaped 25 years ago,
when Max Born put forward his probability interpretation, which was accepted by
almost everybody. (E. Schrödinger, The Interpretation of Quantum Physics. Ox
Bow Press, Woodbridge, CN, 1995).

“I don’t like it, and I’m sorry I ever had anything to do with it” (Erwin
Schrödinger talking about quantum physics).

4. The semiclassical limit.

Let us now turn to much more recent mathematical preoccupations. The main
subject of these notes is to try to describe the localization of the probability den-
sity |ψ(x)|2dx, for a Schrödinger eigenfunction, in the semiclassical limit ~ −→ 0.
The quantum/classical correspondence tells us, intuitively, that the eigenfunctions,
which are stationary solutions of the Schrödinger equation, should look like invari-
ant probability measures of the classical hamiltonian flow. In this section we give a
quick survey (without proofs) of the mathematical tools used to study this question.

It is not really satisfactory, and usually practically impossible, to study the
density |ψ(x)|2dx itself. This is because, when taking the modulus of ψ, we lose
some precious information on the frequency vector of ψ (related to its phase, or
complex argument). We need to study simultaneously the Fourier transform of ψ.
Of course, rigourously speaking, one cannot study at the same time the local prop-
erties of a function and of its Fourier transform around some point (x, ξ) ∈ T ∗X .
This is expressed by Heisenberg’s uncertainty principle, saying that one cannot lo-
calize a function around the point x without perturbing a lot the momentum (and
vice-versa). Microlocal analysis2 is a collection of mathematical techniques allowing
to study the joint localization of a function and its Fourier transform; because of
the uncertainty principle, this can only be meaningful asymptotically, in the limit
~ −→ 0.

2More precisely, we will present here its ~-dependent version, also called semiclassical analysis,
or “microlocal analysis with a small parameter”.
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4.1. Fourier transform. The Fourier transform

F~(u)(ξ) = û~(ξ) = (2π~)−d/2
∫

Rd

e−
i
~
ξ.xu(x)dx

allows to analyze a signal u in terms of its frequencies, at the scale ~. For u ∈ C∞
o ,

we have the decomposition

u(x) = (2π~)−d/2
∫

Rd

e
i
~
ξ.xû~(ξ)dξ .

4.2. The stationary phase method. This is a result describing the asymp-
totic behaviour, as ~ → 0, of an integral of the form :

I(~) =

∫

RD

e
i
~
S(x)a(x) dx

where a ∈ C∞
o (RD) and S ∈ C∞(RD,R) .

The interferences between the different terms e
i
~
S(x) are destructive, except at

the stationary points of the phase S. The precise statement is :

• If S has no critical/stationary point in the support of a, then I(~) =
O(~∞) (this notation means that, for all N > 0, we have I(~) = ON (~N )).

• If S has a unique critical point x0, supposed to be non–degenerate, in the
support of a, then there is an asymptotic development in powers of ~, up
to any order,

(4.1) I(~) ∼ (2π~)D/2
eiσπ/4

|detS′′(x0)| 12
eiS(x0)/~





∞
∑

j=0

~
jaj





where S′′(x0) is the hessian matrix of S at x0, σ = n+ − n− is the index of
S′′(x0) (the difference between the number of positive and negative eigenvalues),
and a0 = a(x0). More generally, aj can be expressed in terms of the derivatives of
a up to order 2j, at the point x0.

For technical developments, one usually needs to work with functions a which
are not necessarily compactly supported, but have a well behaved behaviour at
infinity, and can be allowed to depend on ~. The choice of a class of “symbols” is
a technical issue, which depends on the aims, but also on the tastes of the authors.
For the sake of completeness we give an example of a convenient class of symbols.
However, it is not required to understand all the technical issues to read the next
chapters.

Symbol spaces. Let D, d > 0 be two integers, and let U be an open subset
of RD. Let us define symbols of order m (independent of ~) :

Σm(U × R
d) :=

{

a ∈ C∞(U × R
d;C)/

for every compact K ⊂ U, there exists C such that

|Dα
zD

β
ξ a(z, ξ))| ≤ C(1 + |ξ|)m−|β| for all (z, ξ) ∈ K × R

d
}

.

For instance, this class contains functions which are homogeneous in a neighbour-
hood of infinity. We denote Σ−∞ = ∩m∈ZΣ

m — this class contains the smooth
compactly supported functions C∞

o (U × R
d).
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We also define semiclassical symbols of order m and degree l — thus called
because they depend on a parameter ~ :

(4.2) Σm,l = {a~(z, ξ) = ~
l

∞
∑

j=0

~
jaj(z, ξ), aj ∈ Σm−j}

This means that a~(x, ξ) as an asymptotic development in powers of ~; in the sense
that

a− ~
l
N−1
∑

j=0

~
jaj ∈ ~

l+NΣm−N

for all N , uniformly in ~. In this context, we denote Σ−∞,+∞ = ∩m≥0Σ
−m,m.

In these definitions, U × Rd can be replaced by a fiber bundle of rank d on a
D–dimensional manifold.

Fresnel integrals, generalized stationary phase method. We can now
describe the asymptotic behaviour, as ~ → 0, of the integral :

IS
~
(a) =

∫

U×Rd

e
i
~
S(z,ξ)a(z, ξ) dzdξ

where S is smooth, homogeneous of degree n > 0 near infinity with respect to
ξ, and without critical points outside a compact subset of U × Rd. The integral
IS
~
(a) is defined for a ∈ Σm,lo , by continuous extension of the case a ∈ C∞

o . Here,
the index ∗o in Σm,lo means that a is compactly supported with respect to z, with
support independent of ~. Such non absolutely convergent oscillatory integrals

are sometimes called Fresnel integrals, a well-known example is
∫

Rd e
i
2~‖ξ‖2

dξ =

(2π~)d/2eidπ/4.
The previous asymptotic behaviour still holds in this setting.

4.3. Pseudodifferential operators. As we have seen, a quantization pro-
cedure is a way to associate an operator to a classical observable a(p, q). Recall
Schrödinger’s prescriptions, qk = (multiplication by qk), and pk = ~

i
∂
∂qk

, compati-

ble with Heisenberg’s commutation relations (1.13). To extend this definition to an
arbitrary function of (p, q), we meet an obvious problem : to quantize the function
pkq

2
k, for instance, we could propose any of the operators pkq

2
k, q

2
kpk, or qkpkqk.

There are many quantization procedures. We already met the Weyl quantization,
which combines several remarkable features, like the fact that it associates a sym-
metric operator to a real symbol. Later on, we shall also define the anti-Wick
positive quantization, which associates a nonnegative operator to a nonnegative
symbol.

The theory of pseudodifferential operators with small parameter allows to de-
scribe the passage from the quantum theory to the classical theory when ~ −→ 0.
This is also called ~-dependent microlocal analysis, microlocal analysis with small
parameter, or semiclassical analysis. Pseudodifferential operators were first de-
veloped by Hörmander [Ho, Ho79] for the study of the regularizing properties of
partial differential equations (without any small parameter). Pseudodifferential op-
erators with small parameter, manipulated by Maslov [Masl65] in the framework of
semiclassical analysis, developed by Voros in mathematical physics [Vor, Vor78],
were perfectioned by Sjöstrand, Robert, Helffer, [DimSjo, Rob]... I advise to read
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[Helffer1] for a history of the first years of this theory in the seventies and an
exhaustive bibliography; see also [Helffer2] for a survey of applications.

Symbol spaces depend on authors, and can be extremely sophisticated. Hörmander’s
definition has no ~ and involves symbols which are homogeneous near infinity, allow-
ing to describe the regularizing properties of operators. The semiclassical symbol
classes of [DimSjo] are rather aimed at describing the behaviour of operators when
~ −→ 0, say in L2 norm. The symbols we use here combine both approaches (after
an idea of Y. Colin de Verdière) : taking ~ = 1 we would find (one of) Hörmander’s
symbol spaces.

Pseudodifferential operators. Let Ω be an open subset of Rd, and let
a = a~(x, y; ξ) ∈ Σm,lo (Ω×Ω×Rd). Here the index o means that for every compact
K ⊂ Ω, there exists a compactK ′ such that a(x, y, ξ) = 0 for x ∈ K, y 6∈ K ′, ξ ∈ Rd.
Let u be a smooth function. We define :

OP~(a)u(x) = (2π~)−d
∫

e
i
~
ξ.(x−y)a(x, y, ξ)u(y) dydξ,

the integral being well defined as a Fresnel integral. We denote ΨDOm,l(Ω) these
operators, called (proper) pseudodifferential operators of degree l and order m, on

Ω. The intersection ΨDO−∞,∞ of all the ΨDOm,l(Ω) are the negligible operators :
they are the operators with a smooth kernel K~, and such that all derivatives of
K~ are O(~∞) uniformly on compact sets.3

The class of pseudodifferential operators includes differential operators (corre-
sponding to a symbol which is polynomial in ξ), but has the advantage of being
stable under inversion, or more general smooth functional calculus.

Note that several symbols a(x, y, ξ) can give the same operator OP~(a). As a
simple example, we note that a(x, y, ξ) = V (x) and a(x, y, ξ) = V (y) both give the
operator of multiplication by V . It is often convenient to choose special represen-
tatives :

Weyl quantization. Left and right quantizations.
Here Ω = Rd.
We already met the Weyl quantization4, OpW

~
(a) = OP~

(

a(x+y2 , ξ)
)

. If a ∈
Σm,lo (Rd × Rd) is compactly supported with respect to the first variable, then

OpW~ (a) ∈ ΨDOm,l.
The inverse of Weyl quantization is explicit, given by the Wigner transform :

if K(x, y) is the kernel of the operator A, we let :

WA(x, ξ) = (2π~)−d/2
∫

e
ivξ
~ K

(

x+
v

2
, x− v

2

)

dv .

Then A = OpW
~
(WA). In particular, the Weyl symbol of an operator is unique.

Two other common quantizations are, the left quantization, defined by OpL
~
(a) =

OP~ (a(x, ξ)) where a ∈ Σm,lo (Rd × Rd) and the right quantization, OpR
~
(a) =

OP~ (a(y, ξ)). The left and right symbols are both uniquely determined by the
operator (there are explicit inversion formulas, too).

3Usually, in this theory, all the assertions about operators hold modulo negligible operators.
Likewise, the assertions about functions hold modulo negligible functions. These are the smooth
functions u~(x) such that all derivatives are O(~∞) uniformly on compact sets of X.

4I try to stick to the notation OP for symbols a ∈ Σ(Ω × Ω × Rd), and Op for symbols
a ∈ Σ(Ω× Rd).
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Example 4.1. To quantize the observable a(p, q) = pq2, the left quantization
chooses q2p, the right quantization chooses pq2, and the Weyl quantization forms
the combination 1

4 (pq
2 + 2qpq+ q2p) = 1

2 (pq
2 + q2p).

Exercise 4.2. On Rd×Rd, consider a lagrangian L(x, v) defined by a riemann-
ian metric,

L(x, v) =
1

2
gx(v, v) =

1

2

d
∑

i,j=1

gij(x)vivj .

Check that the corresponding hamiltonian is

H(x, ξ) =
1

2
gx(ξ, ξ) =

1

2

d
∑

i,j=1

gij(x)ξiξj ,

where (gij(x)) is the inverse of the matrix (gij(x)).
Write the explicit expression of the laplacian △ associated to the metric g.
Choose a quantization procedure Op~ = OpW

~
,OpL

~
or OpR

~
.

Show that

Op
~
(H) = −1

2
~
2 △+~

d
∑

j=1

bj(x)
~

i

∂

∂xj
+ ~

2c(x)

for certain functions bj, c, the expression of which depends on the choice of Op~.

Show that there are functions b̃j , c̃ such that

(4.3) −1

2
~
2△ = Op~



H(x, ξ) + ~

∑

j

b̃j(x)ξj + ~
2c̃(x)



 .

Compare with (4.2) to find the order and the degree of −~2△ (of course, differential
operators are pseudodifferential operators !).

The expression of bj, c, d depends on the choice of Op
~
. The first term H(x, ξ)

does not, it is called the principal symbol of − 1
2~

2△.

Principal symbol. Let a~ ∈ Σm,0o (Ω × Ω × Rd). Applying the operator
A~ = OP~(a~) ∈ ΨDOm,0 to a function of the form u(x)eiS(x)/~, where u and S
are smooth5, the method of stationary phase gives the following asymptotics :

A~

(

u(x)eiS(x)/~
)

= a0 (x, x, S
′(x)) u(x)eiS(x)/~ +O(~).

This shows that the function a0(x, x, ξ) on Rd × Rd = T ∗Rd does not depend on
the choice of the symbol a~(x, y, ξ), but only on the operator A~. It is called the
principal symbol of A~, denoted σ

0(A~). If σ0(A~) = 0, then A~ actually belongs
to ΨDOm−1,1 (and conversely).

Remark 4.3. For a ∈ Σm,0o , we note that OpW
~
(a), OpL

~
(a), OpR

~
(a) all have

the same principal symbol a0(x, ξ). In other words,

OpW~ (a)−Op
R/L
~

(a) ∈ ΨDOm−1,+1.

5Such a function is called a WKB state, see Section 14
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Product. If A~ ∈ ΨDOm1,0 and B~ ∈ ΨDOm2,0, then the product A~B~

belongs to ΨDOm1+m2,0
o , and the principal symbols are multiplied : σ0(A~B~) =

σ0(A~)σ
0(B~). This is proved by the stationary phase method.

An equivalent statement : if a ∈ Σm1,0
o (Rd×Rd) and b ∈ Σm2,0

o (Rd×Rd), then
Op~(a)Op~(b) ∈ ΨDOm1+m2,0(Rd), and

(4.4) Op~(ab)−Op~(a)Op~(b) ∈ ΨDOm1+m2−1,1(Rd).

Thanks to Remark 4.3, this statement does not depend on the choice of OpW , OpL

or OpR.

Brackets. If A~ ∈ ΨDOm1,0 and B~ ∈ ΨDOm2,0, then the bracket [A~, B~]
belongs to ΨDOm1+m2−1,1, and

σ0
(

~
−1[A~, B~]

)

=
1

i

{

σ0(A~), σ
0(B~)

}

;

where {., .} is the Poisson bracket.
Equivalently : if a ∈ Σm1,0

o (Rd × Rd) and b ∈ Σm2,0
o (Rd × Rd), we have

(4.5) [Op
~
(a),Op

~
(b)]−Op

~

(

~

i
{a, b}

)

∈ ΨDOm1+m2−2,2

and again this statement does not depend on the choice of OpW , OpL or OpR.

Remark 4.4. There is also an integrated version of this result, called the
Egorov Theorem. We will use it in the following form : assume the pseudodifferen-
tial operator A~ is self–adjoint. Define the Schrödinger flow (U t

~
) = (exp− it

~
A~).

Let a ∈ C∞
c (T ∗Rd). Then, for any given t in R,

(4.6) U−t
~

Op~(a)U
t
~
−Op~(a ◦ φtσ0(A~)

) ∈ ΨDO−∞,1 .

Here φtσ0(A~)
is the hamiltonian flow defined by the hamiltonian σ0(A~). The

estimate is usually not uniform in t, so that one cannot invert the limits ~ −→ 0
and t −→ ∞. This is a notorious source of problems when one tries to use the
semiclassical approximation to understand the large time behaviour of solutions of
the Schrödinger equation.

Pseudodifferential operators on a compact manifold. Let X be a com-
pact C∞ manifold of dimension d. Let (Ωi, ϕi) be a finite atlas of X (X = ∪Ωi,
ϕi : Ωi −→ Rd). We use the ϕi to define local coordinates Φi : T

∗Ωi −→ Rd × Rd

on T ∗X as follows :
Φi(x, p) = (ϕi(x), (dϕi(x))

−1p).

These are symplectic (Darboux) coordinates on T ∗X , i.e. the canonical symplectic
form reads ω =

∑

dxj ∧ dpj in these coordinates. Introduce a finite partition of
unity χi ∈ C∞

o (Ωi) such that
∑

χ2
j = 1. For a ∈ Σm,lo (T ∗X), we let :

(4.7) Op~(a)u =
∑

i

χi
[

OP~

(

a ◦ Φ−1
i

)

(χiu ◦ ϕ−1
i )
]

◦ ϕi .

The map a 7→ Op~(a) thus defined depends on the partition of unity and on the
local coordinates; but its range does not, modulo negligible operators. The algebra
ΨDOm,l(X) of pseudodifferential operators on X (modulo negligible operators) is
thus well defined.

All the properties stated above can be extended to this case.
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Continuity. Trace class and Hilbert-Schmidt operators. The domain of
an operator in ΨDOm,0(Ω) depends a lot on m, that is, on the growth of the symbol
when ξ −→ ∞. When m decreases, the regularizing properties of the operator are
improved. Without proof, let us mention that an operator in ΨDO0,0(Ω) is bounded
from L2(Ω) to L2

loc(Ω), uniformly with respect to ~. On a compact manifold X , an

operator in ΨDOm,0 is

• Hilbert-Schmidt if m < −d/2
• trace class if m < −d

In this latter case, the trace of Op(a) is given by the convergent integral,

(4.8) TrOp(a) = (2π~)−d
∫

T∗X

a(x, ξ)dxdξ .

5. Semiclassical measures, microlocal lifts.

A quantization procedure Op is said to be nonnegative if Op(a) is a nonnegative
operator as soon as a is a nonnegative function. The usual quantization procedures
do not have this property.

Positive quantization on Rd.

Definition 5.1. (Coherent states) The coherent state (of size ~) centered at
(x0, ξ0) is defined as the normalized gaussian state

ex0,ξ0(x) =
1

(π~)d/4
e

i
~
ξ0.xexp

(

−‖x− x0‖2
2~

)

For (x, ξ) ∈ Rd × Rd, we shall denote Π(x,ξ) the orthogonal projector onto
Ce(x,ξ).

Theorem 5.2. Let a ∈ C∞
o (T ∗Rd). The operator defined by

Op+(a) = (2π~)−d
∫

a(x, ξ)Πx,ξ dxdξ

belongs to the class ΨDO−∞,0, it is self–adjoint if a is real valued, and non-negative
if a is non-negative. Its principal symbol is a(x, ξ).

We have Op+(1) = I, which allows to extend the definition of Op+ to the case
when a is constant in a neighbourhood of infinity in T ∗X.

This quantization is called the anti–Wick quantization.
To define a positive quantization procedure on a compact manifoldX , we choose

an atlas of X and a non-negative subordinate partition of unity,
∑

χ2
j = 1. For

a ∈ C∞
o (T ∗X), we let Op+X(a) =

∑

j χj Op+
Rd(a)χj — where Op+

Rd(a) is defined

using local coordinates in the support of χj (see (4.7)). We can extend this definition
to the case when a is constant in a neighbourhood of infinity in T ∗X , by letting
Op+X(1) = I .

Semiclassical measures. Let X be a compact riemannian manifold; we
denote Vol the riemannian volume on X . To a family (u~) of normalized ele-
ments of L2(X,Vol), we can associate a family of distributions µ~ by the formula
µ~(a) =

〈

u~,Op+
~
(a)u~

〉

L2(X,Vol)
. They are in fact probability measures on T ∗X .

To be able to take weak limits when ~ −→ 0, we see them as probability measures
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on the compactification T ∗X of T ∗X obtained by adding a sphere bundle at infinity.
We will call the measures µ~ the Husimi measures associated to the family (u~). The
termWigner transform will be exclusively used in the caseX = Rd, for the distribu-
tions a 7→

〈

u~,OpW~ (a)u~
〉

defined thanks to the Weyl quantization. These distri-

butions are also called microlocal lifts of the probability measures |u~(x)|2dVol(x).
This means that their projection down to X is |u~(x)|2dVol(x) +O(~).

Due to the uncertainty principle, these objects are not really meaningful for
fixed ~ > 0. In fact, their definition depends on a certain number of arbitrary
choices, coming into play in the definition of Op : local coordinates, partition of
unity, choice of the quantization procedure... However, the semiclassical limits
of these distributions do not depend on all these arbitrary conventions : if a ∈
Σ0,0
o (T ∗X), two definitions of Op(a) only differ by O(~) in L2 operator norm.

We shall call any limit point of the sequence (µ~) in the weak topology a
semiclassical measure associated to the family (u~).

Example 5.3. (Coherent states)

u~(x) = ex0,ξ0(x) =
1

(π~)d/4
e

i
~
ξ0.xexp

(

−‖x− x0‖2
2~

)

Then there is a unique semiclassical measure, the Dirac mass at (x0, ξ0).

Example 5.4. (Lagrangian states/WKB states) Let u~(x) = b(x)e
i
~
S(x) where

b and S are of class C∞. In Section 14, we will call such functions lagrangian states
associated to the lagrangian manifold L = {(x, dS(x))}.

There is a unique semiclassical measure associated to (u~), it is carried by the
lagrangian L and projects to X as the measure |b(x)|2 dVol(x).

Exercise 5.5. You have noted that we sometimes omit to indicate the depen-
dence on ~ in the definition of Op (which should be denoted Op~). The choice
of scaling is, nevertheless, very important, and the properties observed vary a lot
according to the scaling.

In the previous example, show that the measures defined by

µ~,α(a) = 〈u~,Op+
~α(a)u~〉

concentrate to the 0-section in T ∗X if α > 1, but concentrate to the sphere bundle
at infinity T ∗X \ T ∗X if α < 1.

When the u~ are the eigenfunctions of a hamiltonian operator as in (1.19), one
can apply the following theorem :

Theorem 5.6. Let P be a self–adjoint pseudodifferential operator, denote p0
its principal symbol. Let (u~) be a family of tamed6 smooth functions, such that
Pu~ = O(~∞) and ‖u~‖L2 = 1. Let µ~ be the Husimi measures associated to (u~).
Then, every weak limit µ0 of the measures µ~ on T ∗X

(1) is a probability measure on T ∗X.
(2) projects on X to a weak limit of the measures |u~(x)|2dVol(x).
(3) is invariant under the hamiltonian flow of p0.
(4) its restriction to T ∗X is carried by the energy level {p0 = 0}.
(5) If p0 is elliptic at infinity, then µ0 is carried by T ∗X.

6meaning that, for all N ∈ N, for any compact K, there exists k ∈ N such that the CN norm
of u~ on K is O(~−k)
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The first two items have already been explained.

Exercise 5.7. Prove the third item by using the relation σ0
(

~
−1[P,Op(a)]

)

=

−i{p0, a} to show that
∫

{p0, a}dµ0 = 0 for any a ∈ C∞
o (T ∗X).

Prove the fourth item by using the relation σ0 (Op(a)P ) = a p0 to show that
∫

a p0 dµ0 = 0 for any a ∈ C∞
o (T ∗X).

We do not give here the precise definition of “elliptic at infinity”. It implies
that P is invertible in a neighbourhood of infinity in the class of pseudodifferential
operators. More precisely, there exists a smooth a, taking the constant value 1 in
a neighbourhood of infinity in T ∗X , and a pseudodifferential operator Op(b) such
that

Op(a) = Op(b)P +R

where R ∈ ΨDO−∞,∞ is a negligible operator. From this fact, the last item
follows easily. The ellipticity criterion is satisfied by the Schrödinger operator
(

−~
2△
2 + V − E

)

on a compact manifold X .

Eigenfunctions of the laplacian. Let (X, g) be a compact riemannian man-
ifold, and △ the laplacian on X associated to the metric. If (−~2 △ −1)u~ = 0,
and if we denote µ~ the corresponding Husimi measures, then every limit point
of the family (µ~)~−→0 is a probability measure µ0 carried by the unit cotangent
bundle S∗X , invariant under the geodesic flow (apply Theorem 5.6 and remember
Exercise 4.2). It is a widely open problem to find all the possible limits µ0 among
the invariant measures on S∗X .

In the case of the round sphere or a flat torus, it is easy to construct families
of eigenfunctions (u~) for which µ~ converges to the uniform measure on any given
invariant lagrangian torus. On the flat torus Td = Rd/Zd for instance, the family

(e
i
~
ξ0.x), where ξ0 is a unit vector (and of course ξ0

~
∈ 2πZd), has a unique semi-

classical measure, the uniform measure on the lagrangian torus {(x, ξ0), x ∈ T
d}.

More generally, for a completely integrable system, one can use WKB methods
[Brill26, Kr26, Wtz26, Kell58, Masl65] to build quasimodes, in other words
solutions of ‖(−~2△−1)u~‖ = O(~∞), the Husimi measures of which concentrate to
any given invariant torus7. Historically, the case of completely integrable systems,
or perturbations thereof, was the most important, since it is related to the study
of small atoms and ions. The “opposite” case of chaotic systems has been studied
only more recently [Berr77, Vor77, Bo91], but the question of the localization
of stationary motions in ergodic systems was already asked explicitly by Einstein
[Ein17].

In these notes, we shall focus on the case where the geodesic flow has a very
chaotic behaviour. When the geodesic flow is ergodic, the semiclassical measures
are essentially described by the Snirelman theorem [Sn74, Ze87, CdV85] (see
Section 6). Let X be a compact riemannian manifold; call 0 < λ1 ≤ λ2 ≤ · · · the
eigenvalues of the laplacian, and let (ψj) be an orthonormal basis of eigenfunctions :
−△ ψj = λjψj . Denote µj the corresponding Husimi measures (the semiclassical

parameter is ~ = λ
−1/2
j ). We shall call (LE)E the disintegration of the Liouville

measure dxdξ with respect to the value E of the hamiltonian ‖ξ‖2

2 . We normalize

7Note that ‖(−~2 △−1)u~‖ ≤ ε‖u~‖ implies that 1 is an ε–neighbourhood of the spectrum
of −~2△, but does not imply that u~ is close to an eigenfunction of the laplacian.
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LE to be a probability measure on the energy layer { ‖ξ‖2

2 = E}. If the geodesic
flow on S∗X is ergodic with respect to L 1

2
, then there is a “density 1” subsequence

of the family (µj) converging to L 1
2
:

Theorem 5.8 (Snirelman theorem). [Sn74, Ze87, CdV85] Assume that the
action of S∗X is ergodic, with respect to the Liouville measure L 1

2
. Then, there

exists a subset S ⊂ N of density 1, such that

µj −→
j−→+∞,j∈S

L 1
2
.

In specific examples, what we would like to know is whether the whole sequence
µj converges to the Liouville measure, or if there can be exceptional subsequences
converging to other invariant measures. In the case of nonpositively curved surfaces
with flat cylinders, it is believed that certain sequences of eigenfunctions concen-
trate asymptotically on these cylinders. But in (strictly) negative curvature, it
was conjectured by Rudnick and Sarnak [RudSa94] that the Liouville measure is
the unique limit point of the µjs. It would imply, in particular, that the sequence
of probability measures |ψj(x)|2dVol(x) on X converges weakly to the riemannian
volume measure Vol.

Entropy and localization of eigenfunctions.

6. Motivations.

The field of quantum chaos tries to understand how the chaotic behaviour of
a classical hamiltonian system is translated in quantum mechanics. For instance,
let X be a compact riemannian C∞ manifold, with negative sectional curvature.
The geodesic flow has the Anosov property, which is considered as the ideal chaotic
behaviour in the theory of dynamical systems. The corresponding quantum dy-
namics is the unitary flow generated by the Laplace-Beltrami operator on L2(X).
One expects that the chaotic features of the geodesic flow can be seen in the spec-
tral properties of the laplacian. The Random Matrix conjecture [Bo91] asserts
that the large eigenvalues should, after proper renormalization, statistically resem-
ble those of a large random matrix, at least for a generic Anosov metric. The
Quantum Unique Ergodicity conjecture [RudSa94] (see also [Berr77, Vor77])
deals with the corresponding eigenfunctions ψ: it claims that the probability den-
sity |ψ(x)|2dx should approach (in a weak sense) the riemannian volume, when the
eigenvalue tends to infinity. In fact, a corresponding (stronger) property should
hold for the microlocal lift of this measure to the cotangent bundle T ∗X , which de-
scribes the distribution of the wave function ψ on the classical phase space (position
and momentum).

To describe the problem, we will adopt a semiclassical point of view, that is,
consider the eigenstates of eigenvalue 1 of the semiclassical laplacian −~2△, in
the semiclassical limit ~ → 0. We denote by (ψk)k∈N an orthonormal basis of
L2(X) made of eigenfunctions of the laplacian, and by (− 1

~2
k

)k∈N the corresponding

eigenvalues:

(6.1) −~
2
k△ψk = ψk, with ~k+1 ≤ ~k .

We are interested in the high-energy eigenfunctions of −△, in other words the
semiclassical limit ~k → 0.
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To an eigenfunction ψk corresponds a distribution on T ∗X defined by

µk(a) = 〈ψk,Op~k
(a)ψk〉L2(X), a ∈ C∞

o (T ∗X) .

Here Op~k
is a quantization procedure, set at the scale ~k, which associates a

bounded operator on L2(X) to any smooth phase space function a with nice
behaviour at infinity. If a is a function on the manifold X , we have µk(a) =
∫

X a(x)|ψk(x)|2dx+O(~): the distribution µk is a microlocal lift of the probability

measure |ψk(x)|2dx into a phase space distribution. It contains the information
about the frequency vector of ψk (in other words, the momentum), in addition
to the position distribution |ψk(x)|2dx. The definition of µk is not canonical, it
depends on a certain number of choices, like the choice of local coordinates, or of
the quantization procedure (Weyl, anti-Wick, “right” or “left” quantization...); this
somehow reflects the fact that, for ~ > 0, it does not really make sense to study
simultaneously the position and frequency of a wave. Mathematically speaking, one
cannot study simultaneously the local properties of a function and of its Fourier
transform around some point (x, ξ) ∈ T ∗X . But the asymptotic behaviour of µk
when ~k −→ 0 does not depend on the arbitrary conventions involved in its defini-
tion. We saw that it is possible to construct Op+

~k
so that the µk are probability

measures, in which case we call them Husimi measures associated to the eigenfunc-
tions ψk. We call semiclassical measures the limit points of the sequence (µk)k∈N,
in the distribution topology.

The quantum hamiltonian −~
2△
2 generates the Schrödinger flow

(U t
~
) = (exp(it~

△
2
))

acting unitarily on L2(X). A solution of (6.1) is an invariant state of the flow
(U t

~
), corresponding to the energy 1

2 of the hamiltonian. In the semiclassical limit
~ −→ 0, “quantum mechanics converges to classical mechanics”. We will denote |·|x
the norm on T ∗

xM given by the metric. The geodesic flow (gt)t∈R is the hamiltonian

flow on T ∗X generated by the hamiltonian H(x, ξ) =
|ξ|2x
2 . In the previous chapter

we saw the following :

Proposition 6.1. Any semiclassical measure is a probability measure carried
on the energy layer H−1(12 ), that is, the unit cotangent bundle S∗X. This measure
is invariant under the geodesic flow.

If the geodesic flow has the Anosov property — for instance if X has negative
sectional curvature — then there exist many invariant probability measures on
S∗X , in addition to the Liouville measure. The geodesic flow has countably many
periodic orbits, each of them carrying an invariant probability measure. There
are still many others, like the equilibrium states obtained by variational principles
[KH].

For manifolds with an ergodic geodesic flow (with respect to the Liouville mea-
sure), it has been known for some time that almost all eigenfunctions become uni-
formly distributed over S∗X , in the semiclassical limit. This property is dubbed as
Quantum Ergodicity :

Theorem 6.2. [Sn74, Ze87, CdV85] Let X be a compact riemannian man-
ifold, and assume that the action of the geodesic flow on S∗X is ergodic with re-
spect to the Liouville measure L 1

2
. Let (ψk)k∈N be an orthonormal basis of L2(X)



22 NALINI ANANTHARAMAN

consisting of eigenfunctions of the laplacian (6.1), and let (µk) be the associated
distributions on T ∗X.

Then, there exists a subset S ⊂ N of density 1, such that

µk −→
k−→∞,k∈S

L 1
2
.

Proof: Let us give the main lines of the argument, and see where the ergodicity
comes into play. For all a ∈ C∞

o (T ∗X), one first shows, without using any assump-
tion on the dynamics, that

(6.2)
∑

j, λj≤E

∫

a dµj ∼
E−→+∞

bd
(2π)d

V ol(X)

∫

S∗X

a dL 1
2
× Ed/2.

The constant bd is the volume of the euclidean d-dimensional ball. The idea is to
express in two different ways the trace of Op√E(a) : the trace can be expressed
either as a spectral sum

∑

k〈ψk,Op(a)ψk〉 or as the integral of the kernel on the
diagonal (4.8). There are some technical details that we skip here.

From (6.2) one can deduce the Weyl asymptotics :

N(E) = ♯{j, λj ≤ E} ∼ bd
(2π)d

V ol(X)Ed/2

Thus, we have a Cesaro convergence :

(6.3)
1

N(E)

∑

j, λj≤E

∫

a dµj −→
E−→+∞

∫

S∗X

a dL 1
2
.

Using the ergodicity assumption, one can do better :

(6.4)
1

N(E)

∑

j, λj≤E

∣

∣

∣

∣

∫

a dµj −
∫

S∗X

a dL 1
2

∣

∣

∣

∣

2

−→
E−→+∞

0.

Here is how. We know from Theorem 5.6 (3) that

|
∫

a dµj −
∫

a ◦ gt dµj | −→ 0

as j −→ +∞, for any fixed t. Thus, we can write, for any given T ,

lim sup
E−→∞

1

N(E)

∑

j, λj≤E

∣

∣

∣

∣

∫

a dµj −
∫

S∗X

a dL 1
2

∣

∣

∣

∣

2

= lim sup
1

N(E)

∑

j, λj≤E

∣

∣

∣

∣

∫

MTa dµj −
∫

S∗X

a dL 1
2

∣

∣

∣

∣

2

≤ lim sup
1

N(E)

∑

j, λj≤E
µj

(

(MTa−
∫

S∗X

a dL 1
2
)2
)

= L 1
2

(

(MTa−
∫

S∗X

adL 1
2
)2
)

.

We denoted MTa = T−1
∫ T

0 a ◦ gtdt the time average of a on the interval [0, T ].
We used the Cauchy-Schwartz inequality, which requires to know that the µj can
be assumed to be probability measures (see §5; this was the missing argument in
Snirelman’s original paper). In the last line, we used the Cesaro convergence (6.3)
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of the sequence (µj). Letting at the end T tend to +∞, the ergodicity assumption
means that

L 1
2

(

(MTa−
∫

S∗X

a dL 1
2
)2
)

−→
T→∞

0;

which proves (6.4).
Finally, the Snirelman theorem results from the classical lemma :

Lemma 6.3. Let (un) be a sequence of nonnegative numbers. If

1

n

n
∑

k=0

uk −→ 0

then there exists S ⊂ N of density 1 such that un−→
n∈S

0.

For each a ∈ C∞
o (T ∗X), the lemma yields the Snirelman theorem for some

density one set S ⊂ N, possibly depending on a. Using the fact that C∞
o (T ∗X) has

a countable dense subset, one can find some S ⊂ N that works for all a ∈ C∞
o (T ∗X).

�

Remark 6.4. The result was subsequently extended to more general hamilto-
nians [HelMR87], to ergodic billiards [GL93, ZeZw96], and to certain discrete
time symplectic dynamical systems.

The question of knowing, in particular cases, if there can exist “exceptional”
subsequences with a different behaviour is widely open. On a negatively curved
manifold, the geodesic flow satisfies the ergodicity assumption, and in fact much
stronger properties : mixing, K–property,... In this case, the Quantum Unique
Ergodicity conjecture [RudSa94] expresses the belief that there exists a unique
semiclassical measure, namely the Liouville measure on S∗X : the whole sequence
(µk) converges to L 1

2
. In other words, in the semiclassical régime all eigenfunctions

should become uniformly distributed over S∗X .
So far the most precise results on this question were obtained for manifolds X

with constant negative curvature and arithmetic properties: see Rudnick–Sarnak
[RudSa94], Wolpert [Wol01]. In that very particular situation, there exists a
countable commutative family of self–adjoint operators commuting with the lapla-
cian : the Hecke operators. One may thus decide to restrict the attention to bases of
common eigenfunctions, often called “arithmetic” eigenstates, or Hecke eigenstates.
A few years ago, Lindenstrauss [Li06] proved that the arithmetic eigenstates be-
come asymptotically equidistributed (Arithmetic Quantum Unique Ergodicity). If
there is some degeneracy in the spectrum of the laplacian, it could be possible that
the Quantum Unique Ergodicity conjectured by Rudnick and Sarnak holds for one
orthonormal basis but not for another. In the arithmetic case, it is believed that
the spectrum of the laplacian has bounded multiplicity, in which case it would be
a harmless assumption to consider only Hecke eigenstates.

Nevertheless, one may be less optimistic about the general conjecture. Faure–
Nonnenmacher–De Bièvre exhibited in [FNDB03] a simple example of a symplectic
Anosov dynamical system, namely the action of the linear hyperbolic automorphism
(

2 1
1 1

)

on the 2-torus, the Weyl–quantization of which does not satisfy the

Quantum Unique Ergodicity conjecture. In this model, it is known [KurRud00]
that there is one orthonormal family of eigenfunctions satisfying Quantum Unique
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Ergodicity, but, due to high degeneracies in the spectrum, one can also construct
eigenfunctions with a different behaviour. Precisely, [FNDB03] construct a family
of eigenstates for which the semiclassical measure consists in two ergodic compo-
nents: half of it is the Liouville measure, while the other half is a Dirac peak on
a single unstable periodic orbit. It was also shown that this half-localization on a
periodic orbit is maximal for this model [FN04] : a semiclassical measure cannot
have more than half the mass carried by a finite union of closed orbits. Another
type of semiclassical measure was recently obtained by Kelmer for a quantized au-
tomorphism on a higher-dimensional torus [Kelm05]: it consists in the Lebesgue
measure on some invariant co-isotropic subspace of the torus. For these torus au-
tomorphisms, the existence of exceptional eigenstates seems to be due to some
nongeneric algebraic properties of the classical and quantized systems. It has been
believed for a while that any perturbation of the system which lifts the degenera-
cies in the spectrum will also destroy the counterexamples to Quantum Unique
Ergodicity. However, Kelmer has recently disproved this belief : he showed that a
non-linear perturbation of his previous construction [Kelm05], if it is done so as to
preserve the invariant co-isotropic subspaces, will still contradict Quantum Unique
Ergodicity [Kelm06], in the same way as before the perturbation. Moreover, the
spectrum of the perturbed quantum model is simple [Kelm08].

7. Main result.

We wish to consider the Kolmogorov–Sinai entropy of semiclassical measures.
We work on a compact manifold X of arbitrary dimension, and assume that the
geodesic flow has the Anosov property. In fact, our method is very general, and
can without any doubt be adapted to more general Anosov hamiltonian systems.

The Kolmogorov–Sinai entropy, also called metric entropy, of a (gt)-invariant
probability measure µ is a nonnegative number hKS(µ) that describes, in some
sense, the complexity of a µ-typical orbit of the flow. The precise definition will
be given later, but for the moment let us just give a few facts. A measure carried
on a closed geodesic has zero entropy. In constant curvature, the entropy is known
to be maximal for the Liouville measure. More generally, an upper bound on the
entropy is given by the Ruelle inequality: since the geodesic flow has the Anosov
property, the energy layer S∗X is foliated into unstable manifolds of the flow, and
for any invariant probability measure µ one has

(7.1) hKS(µ) ≤
∣

∣

∣

∣

∫

S∗X

log Ju(ρ)dµ(ρ)

∣

∣

∣

∣

.

In this inequality, Ju(ρ) is the unstable Jacobian of the flow at the point ρ ∈ S∗X ,
defined as the Jacobian of the map g−1 restricted to the unstable manifold at the
point g1ρ. The average of log Ju over any invariant measure is negative. In fact, if
µ is an invariant probability measure,

∫

S∗X

log Ju(ρ)dµ(ρ) = −
∫

S∗X

∑

λ+j (ρ)dµ(ρ)

where λ+j (ρ) are the positive Lyapunov exponents of ρ. If X has dimension d and

has constant sectional curvature −1, (7.1) just reads hKS(µ) ≤ d − 1. Equality
holds in (7.1) if and only if µ is the Liouville measure on S∗X [LY85].
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Let µ be a (gt)–invariant probability measure on S∗X . According to the
Birkhoff ergodic theorem, for µ–almost every ρ ∈ S∗X , the weak limit

µρ = lim
|t|−→∞

1

t

∫ t

0

δgsρds

exists, and is an ergodic probability measure. We can then write

µ =

∫

S∗X

µρdµ(ρ),

which is called the ergodic decomposition of µ. One can prove that the ergodic
probability measures are the extremal points of the compact convex set of (gt)–
invariant probability measures.

To understand the connection of our results with the previous discussion, it
is important to know that the entropy if an affine functional on the convex set of
(gt)–invariant probability measures :

hKS(µ) =

∫

S∗X

hKS(µ
ρ)dµ(ρ).

In what follows, we consider a certain subsequence of eigenstates (ψkj )j∈N of
the laplacian, such that the corresponding sequence (µkj ) converges to a certain
semiclassical measure µ (see the discussion preceding Proposition 6.1). The subse-
quence (ψkj ) will simply be denoted by (ψ~)~→0, using the slightly abusive notation
ψ~ = ψ~kj

for the eigenstate ψkj . Each state ψ~ satisfies

(7.2) (−~
2 △−1)ψ~ = 0 .

It is proved in [A05] that the entropy of any semiclassical measure associated with
eigenfunctions of the laplacian is strictly positive. In [AN07] more explicit lower
bounds were obtained. We shall prove here the following lower bound :

Theorem 7.1. Let µ be a semiclassical measure associated to the eigenfunctions
of the laplacian on X. Then its metric entropy satisfies

(7.3) hKS(µ) ≥
∣

∣

∣

∣

∫

S∗X

log Ju(ρ)dµ(ρ)

∣

∣

∣

∣

− (d− 1)

2
λmax ,

where d = dimM and λmax = limt→±∞
1
t log supρ∈S∗X |dgtρ| is the maximal expan-

sion rate of the geodesic flow on S∗X.
In particular, if X has constant sectional curvature −1, this means that

(7.4) hKS(µ) ≥
d− 1

2
.

The bound (7.4) in the above theorem is much sharper than the bound proved
in [A05] in the case of constant curvature. On the other hand, if the curvature
varies a lot (still being negative everywhere), the right hand side of (7.3) may be
negative, in which case the above bound is trivial and the result of [A05] is better.
We believe this to be but a technical shortcoming of our method, and would actually
expect the following bound to hold:

(7.5) hKS(µ) ≥
1

2

∣

∣

∣

∣

∫

S∗X

log Ju(ρ)dµ(ρ)

∣

∣

∣

∣

.

Our result is compatible with the kind of counter-examples obtained by Faure–
Nonnenmacher–De Bièvre [FNDB03]. It allows certain ergodic components to
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be carried by closed geodesics, but says that others must have positive entropy.
Compare with the much stronger result obtained in the arithmetic case by Bourgain
and Lindenstrauss :

Theorem 7.2. [BLi03] Let X be a congruence arithmetic surface, and (ψj)
an orthonormal basis of eigenfunctions for the laplacian and the Hecke operators.

Let µ be a corresponding semiclassical measure, with ergodic decomposition µ =
∫

S∗X
µρdµ(ρ). Then for almost all ergodic components we have hKS(µ

ρ) ≥ 1
9 .

Quantum Unique Ergodicity would mean that hKS(µ) =
∣

∣

∫

S∗X
log Ju(ρ) dµ(ρ)

∣

∣

[LY85]. We believe however that (7.5) is the optimal result that can be obtained
without using more precise information, like for instance upper bounds on the
multiplicities of eigenvalues. Indeed, in the above mentioned examples of Anosov
systems where the Quantum Unique Ergodicity conjecture is wrong, the bound (7.5)
is actually sharp [FNDB03, Kelm05, AN06]. In those examples, the spectrum
has very high degeneracies, which allows for much freedom to select the eigenstates,
and could be responsible for the failure of Quantum Unique Ergodicity. Such high
degeneracies are not expected to happen in the case of the laplacian on a negatively
curved manifold. For the moment, however, there is no clear understanding of
the precise relation between spectral degeneracies and failure of Quantum Unique
Ergodicity. As explained above, at the time of revision of these notes, Kelmer
had found a model (a non-linear symplectic diffeomorphism of T2d, d ≥ 2 and its
quantization), for which the spectrum is simple but Quantum Unique Ergodicity
does not hold [Kelm08].

8. Definition of entropy, and main idea of the proof.

Let µ be a probability measure on T ∗X . Let (P1, . . . , PK) be a finite measurable
partition of the unit tangent bundle : T ∗X = P1 ⊔ ... ⊔ PK . The Shannon entropy
of µ with respect to the partition P is

(8.1) hP (µ) = −
K
∑

k=1

µ(Pk) log µ(Pk).

Assume now that µ is (gt)–invariant. For any integer n, denote P∨n the partition
formed by the sets Pα0 ∩ g−1Pα1 ... ∩ g−n+1Pαn−1 . Denote

(8.2) hn(µ, P ) = hP∨n(µ)

= −
∑

(αj)∈{1,...,K}n

µ(Pα0∩g−1Pα1 ...∩g−n+1Pαn−1) logµ(Pα0∩g−1Pα1 ...∩g−n+1Pαn−1).

If µ is (gt)–invariant, it follows from the concavity of x 7→ −x log x that

(8.3) hn+m(µ, P ) ≤ hn(µ, P ) + hm(µ, P ),

in other words the sequence (hn(µ, P ))n∈N is subadditive. The entropy of µ with
respect to the action of geodesic flow and to the partition P is defined by

(8.4) hKS(µ, P ) = lim
n−→+∞

hn(µ, P )

n
= inf

n∈N

hn(µ, P )

n
.

The existence of the limit, and the fact that it coincides with the infimum, follow
from a standard subadditivity argument. Note that µ(Pα0∩g−1Pα1 ...∩g−n+1Pαn−1)
measures the µ–probability to visit successively Pα0 , Pα1 ,..., Pαn−1 at times 1, 2,...,
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n− 1 of the geodesic flow. The entropy measures the average exponential decay of
these probabilities when n gets large. In particular, if there is a uniform exponential
decay, that is, if there exists C, β ≥ 0 such that µ(Pα0 ∩ g−1Pα1 ... ∩ g−nPαn

) ≤
Ce−βn, for all n and all α0, . . . , αn, then it is easy to see that hKS(µ, P ) ≥ β .

The entropy of µ with respect to the action of the geodesic flow is defined as

(8.5) hKS(µ) = sup
P
hKS(µ, P ),

the supremum running over all finite measurable partitions P . Assume µ is carried
on the energy layer S∗X . Due to the Anosov property of the geodesic flow on S∗X ,
it is known that the supremum (8.5) is reached as soon as the maximum diameter
of the sets Pk ∩ S∗X is small enough.

We will restrict our attention to partitions P which are actually partitions of
the base X (lifted to T ∗X) : X = ⊔Kk=1Pk. This choice is not crucial, but it
simplifies certain aspects of the analysis.

The fact that the limit in (8.4) coincides with the infimum has a crucial con-
sequence, the upper semicontinuity property of hKS(., P ) : if (µk) is a sequence of
(gt)–invariant probability measures converging weakly to µ, then

(8.6) hKS(µ, P ) ≥ lim sup
k

hKS(µk, P )

(provided µ does not charge the boundary of P ).

Since our semiclassical measure µ is defined as a limit of Husimi measures
associated to ψ~, a naive idea would be to estimate from below the entropy of ψ~

and then take the limit.
A first issue is to decide how to define the ψ~–probability to visit successively

Pα0 , Pα1 ,..., Pαn−1 at times 1, 2,..., n− 1.
From the definition of the Husimi measures, a first idea could be to consider

(8.7)
〈

ψ~,Op~

(

(1lPα0
) (1lPα1

◦ g1) . . . (1lPαn−1
◦ gn−1)

)

ψ~

〉

.

To avoid dealing with characteristic functions (which are not quantized to pseu-
dodifferential operators), we can smooth them by convolution and try replacing
1lPk

by a smooth 1lsmPk
. Even so, studying the large–n behaviour of (8.7) is very

problematic. In fact, the derivatives of (1lsmPα0
) (1lsmPα1

◦ g1) . . . (1lsmPαn−1
◦ gn−1) grow

like en, so that when n reaches the size | log ~| this function no longer belongs to
any reasonable symbol space (the operator is not a pseudodifferential operator).

We also note that an overlap of the form (8.7) is a hybrid expression: this is
a quantum matrix element, but the operator is defined in terms of the classical
flow ! From the point of view of quantum mechanics, it is more natural to con-
sider, instead, the operator obtained as the product of Heisenberg-evolved quantized
functions, namely

(8.8) P̂αn−1(n− 1)P̂αn−2(n− 2) . . . P̂α1(1)P̂α0 .

Here we used the shorthand notation P̂k
def
= Op(1lsmPk

), k ∈ [1,K], and P̂k(t) =

U−t
~
P̂kU

t
~
. Instead of (8.7), a second idea is to consider

(8.9)
〈

ψ~, P̂αn−1(n− 1) . . . P̂α1(1)P̂α0ψ~

〉

.
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as the ψ~–probability to visit successively Pα0 , Pα1 ,..., Pαn−1 at times 1, 2,...,
n− 1. However, the scalar product is a complex number, and can not be directly
manipulated as a probability.

Our third and final try is to consider

(8.10) ‖P̂αn−1(n− 1) . . . P̂α1(1)P̂α0ψ~‖2.
In fact, if we do the smoothing of 1lPk

so that
∑

k

(1lsmPk
)2 ≡ 1

then the norms (8.10) can actually be manipulated like probability measures :

(8.11)
∑

α0,...,αn−1

‖P̂αn−1(n− 1)P̂αn−2(n− 2) . . . P̂α1(1)P̂α0ψ~‖2 = 1,

and
∑

αn−1

‖P̂αn−1(n− 1)P̂αn−2(n− 2) . . . P̂α1(1)P̂α0ψ~‖2

= ‖P̂αn−2(n− 2) . . . P̂α1(1)P̂α0ψ~‖2.
Finally, using the Egorov theorem (4.6), we see that, for fixed n,

‖P̂αn−1(n− 1) . . . P̂α1(1)P̂α0ψ~‖2 −→
~−→0

µ
(

(1lsmPα0
)2 (1lsmPα1

◦ g1)2 . . . (1lsmPαn−1
◦ gn−1)2

)

if the Husimi measures of ψ~ converge to µ. Apart from the smoothing, this is the
quantity we are interested in when computing entropy of µ (8.2).

It is proved in [A05] that

‖P̂αn−1(n− 1) . . . P̂α1(1)P̂α0ψ~‖2 ≤ C

~d
e−(d−1)n,

say, in dimension d and constant curvature −1, and assuming the diameter of the
Pk is small enough8. From this, it would be tempting to deduce that the entropy
of the ψ~–Husimi measures is bounded below by d− 1, then use the semicontinuity
property (8.6) to deduce that hKS(µ) ≥ d − 1 (thus proving quantum unique
ergodicity).

Of course, we can not apply (8.6), since we are not in the situation of a sequence
(µk) of g

t–invariant probability measures converging to µ. To use (8.6) we need to
know if a similar property holds in our quantum framework, using expressions such
as (8.10) to evaluate entropies. This is, in fact, NOT the case : a factor of 2 is lost
somewhere in the proof, and we will end up proving

hKS(µ) ≥
d− 1

2
.

As we shall see, this is due to the fact that the operators P̂α(t) appearing in (8.10)

do not commute : for non commuting operators, the interpretation of ‖P̂αn−1(n−
1) . . . P̂α1(1)P̂α0ψ~‖2 as “the probability to visit successively Pα0 , Pα1 ,..., Pαn−1 at
times 1, 2,..., n− 1” is not allowed. It is only acceptable for a time n small enough
so that the operators almost commute (up to some small error). This restriction of
the time range is responsible for the loss of a factor 2.

8To prove this estimate, we assume, without any loss of generality, that the injectivity radius
of X is larger than 1.
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The entropic uncertainty principle.

In this chapter, we give the steps of the proof of our main result, inequality
(7.3). To simplify the presentation we restrict ourselves to the case of constant
curvature ≡ −1.

We start with a functional inequality called the “entropic uncertainty princi-
ple”.

9. The abstract result...

We consider a complex Hilbert space (H, 〈., .〉), and denote ‖ψ‖ =
√

〈ψ, ψ〉 the
associated norm. The same notation ‖.‖ will also be used for the operator norm on
L(H).

We define the following family of lp norms onHN : for Ψ = (Ψ1, . . . ,ΨN ) ∈ HN ,
we let

(9.1) ‖Ψ‖p def
=

(

N
∑

k=1

‖Ψk‖p
)1/p

, 1 ≤ p <∞ , and ‖Ψ‖∞ def
= max

k
‖Ψk‖ .

For p = 2, this norm coincides with the Hilbert norm deriving from the scalar
product

〈Ψ,Φ〉HN =
N
∑

k=1

〈Ψk,Φk〉H.

We can define similarly a family of lp norms on HM ∋ Φ = (Φ1, . . . ,ΦM ):

(9.2) ‖Φ‖p
def
=





M
∑

j=1

‖Φj‖p




1/p

, 1 ≤ p <∞ , and ‖Φ‖∞
def
= max

j
‖Φj‖ .

For Ψ ∈ HN with ‖Ψ‖2 = 1, we define its entropy,

h(Ψ) = −
N
∑

k=1

‖Ψk‖2 log ‖Ψk‖2 ;

(and we define similarly the entropy of a normalized vector Φ ∈ HM ). The entropy
is related to the lp norms by the fact that − 1

4h(Ψ) is the derivative of ‖Ψ‖p at
p = 2.

Consider the action of a bounded operator T : HN → HM , which we present
as a M ×N matrix (Tj k) of bounded operators on H. We denote ‖T ‖p,q the norm

of T from lp(HN ) to lq(HM ), for 1 ≤ p, q ≤ ∞.

Theorem 9.1 (Riesz interpolation theorem). [DunSchw, Section VI.10] The
function log ‖T ‖1/a,1/b is a convex function of (a, b) in the square 0 ≤ a, b ≤ 1.

From this theorem, Maassen and Uffink derived a new form of uncertainty
relations [MaaUff88].

Theorem 9.2. Assume that ‖T ‖2,2 = 1, which implies in particular that

‖Tjk‖ ≤ 1 for all j, k. Introduce the real number c(T ) = maxj,k‖Tjk‖ , where the
norm is the operator norm in L(H).

For all Ψ ∈ H such that ‖Ψ‖2 = 1 and ‖TΨ‖2 = 1, we have

h(TΨ)+ h(Ψ) ≥ −2 log c(T ) .
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Remark 9.3. The theorem proved in [MaaUff88] deals with H = C. The
operator T is then simply represented by an M × N complex matrix, and c(T )
is the supremum of its entries. According to the theorem, if a matrix has small
entries, then either h(TΨ) or h(Ψ) must be large. Here h(Ψ) = −∑|Ψk|2 log|Ψk|2
measures the entropy of the probability vector (|Ψk|2), given by the coordinates of
Ψ in the canonical basis of CN .

Proof: In the case a = 1, b = 0, we have for any Ψ,

‖TΨ‖∞ = sup
j

‖(TΨ)j‖ ≤ sup
j,k

‖Tj,k‖
∑

k′

‖Ψk′‖ = sup
j,k

‖Tj,k‖ ‖Ψ‖1 ,

which can be written as ‖T ‖1,∞ ≤ supj,k ‖Tj,k‖
def
= c(T ).

Let us assume that T is contracting on l2 : ‖T ‖2,2 ≤ 1. We take t ∈ [0, 1]

and at =
1+t
2 , bt =

1−t
2 to interpolate between (1/2, 1/2) and (1, 0); Theorem 9.1

implies that

‖T ‖1/at,1/bt ≤ c(T )t .

Corollary 9.4. Let the operator T : HN −→ HM satisfy ‖T ‖2,2 ≤ 1 and call

c(T )
def
= supj,k ‖Tj,k‖. Then, for all t ∈ [0, 1], for all Ψ ∈ HN ,

‖TΨ‖ 2
1−t

≤ c(T )t ‖Ψ‖ 2
1+t

.

We define for any r > 0 or −1 < r < 0 the “moments”

Mr(Ψ)
def
=





∑

j

‖Ψj‖2+2r





1/r

.

Corollary 9.4 leads to the following family of “uncertainty relations”:

(9.3) ∀t ∈ (0, 1), ∀Ψ ∈ C
N , M t

1−t
(TΨ)M −t

1+t
(Ψ) ≤ c(T )2 .

In the case ‖Ψ‖2 = 1, we notice that the moments converge to the same value when
r → 0 from above or below:

lim
r→0

Mr(Ψ) = e−h(Ψ) , where h(Ψ) = −
∑

j

‖Ψj‖2 log ‖Ψj‖2 .

If, furthermore, ‖TΨ‖2 = 1, then the limit t → 0 of the inequalities (9.3) yield the
Entropic Uncertainty Principle stated in Theorem 9.2. �

We shall use Theorem 9.2 in the following particular case :

Example 9.5. Suppose we have two partitions of unity (πk)
N
k=1 and (τj)

M
j=1,

that is, two families of operators on H such that

(9.4)

N
∑

k=1

πkπ
∗
k = Id,

M
∑

j=1

τjτ
∗
j = Id.

Let U be a unitary operator on H. We can take Tj k = τ∗j Uπk.

Lemma 9.6. Let Tjk = τ∗j Uπk, for some bounded operator U : H → H. Then
we have the identity

‖T ‖2,2 = ‖U‖L(H) .
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Proof. The operator T may be described as follows. Consider the following
row and column vectors of operators on H:

L
def
= (π1, . . . , πN ) , as well as C =





τ∗1
. . .
τ∗M



 .

We can write T = CUL. We insert this formula in the identity

‖T ‖22,2 = ‖T ∗T ‖L(HN ) =
∥

∥L†U∗C†CUL
∥

∥

L(HN )

Using (9.4) for the τj , we notice that C†C = IdH, so that the norm above reads

∥

∥L†U∗UL
∥

∥

L(HN )
.

Then, we use the identities
∥

∥(UL)†(UL)
∥

∥

L(HN )
=
∥

∥(UL)(UL)†
∥

∥

L(H)
=
∥

∥(UL)L†U∗∥
∥

L(H)
= ‖UU∗‖L(H) ,

where we used (9.4) for the πk. �

Therefore, if U is contracting (resp. ‖U‖L(H) = 1) one has ‖T ‖2,2 ≤ 1 (resp.

‖T ‖2,2 = 1).
We also specify the vector Ψ by taking Ψk = π∗

kψ for some normalized ψ ∈ H.
From (9.4), we check that ‖Ψ‖2 = ‖ψ‖, and also that (TΨ)j = τ∗j Uψ. Thus, if

‖Uψ‖ = 1, the relation (9.4) also implies ‖TΨ‖2 = ‖Uψ‖ = 1. With this choice for
T and Ψ, Theorem 9.2 reads as follows:

Theorem 9.7. Let U be an isometry on H, and let π, τ be two quantum parti-
tions of unity as in (9.4).

Define cτ,π(U)
def
= supj,k‖τ∗j U πk‖L(H).

Then, for any normalized ψ ∈ H, we have

hτ (Uψ) + hπ(ψ) ≥ −2 log cτ,π(U)

where hπ(ψ) = −∑N
k=1 ‖π∗

kψ‖2 log ‖π∗
kψ‖2 and hτ (ψ) = −∑M

j=1 ‖τ∗j ψ‖2 log ‖τ∗j ψ‖2.

Note that the definition hπ(ψ) = −∑N
k=1 ‖π∗

kψ‖2 log ‖π∗
kψ‖2 is somewhat anal-

ogous to (8.1), π playing the role of the partition P and ψ the role of the measure
µ. The quantity hπ(ψ) may be called the “Shannon entropy” of the state ψ with
respect to the partition π.

10. ... applied to eigenfunctions of the laplacian...

In this section we define the data to input into Theorem 9.7, in order to obtain
information on the eigenstates ψ~ (7.2) and the semiclassical measures µ consid-

ered in the previous chapters. Only the Hilbert space is fixed, H def
= L2(X). All

other data depend on the semiclassical parameter ~: the quantum partitions π, τ ,
the unitary operator U . Besides, we will need yet another technical variant of
Theorem 9.7.
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10.1. Smooth partition of unity. To evaluate the Kolmogorov–Sinai en-
tropy of a semiclassical measure, we must start by decomposing T ∗X into a finite
partition. We actually specify the form of the partition we want to use. We work
with a measurable partition (Pk)k=1,...,K of the base X : X = ⊔Pk, that we lift to
a partition of the phase space T ∗X .

For semiclassical methods we actually need to work with smooth functions,
and so we introduce a smooth partition of unity (1lsmPk

), obtained by smoothing
the characteristic functions (1lPk

) with a convolution kernel. We require that the

smoothing be done so that
∑K
k=1(1l

sm
Pk

)2 ≡ 1.

We finally denote P̂k = Op(1lsmPk
) : it is simply the operator of multiplication

by 1lsmPk
. We have

(10.1)

K
∑

k=1

P̂ 2
k = I ,

which means that these operators form a quantum partition of unity as in (9.4),
which we will call P(0).

10.2. Refinement of the partition under the Schrödinger flow. We
denote by U t = exp(it~△ /2) the quantum propagator. With no loss of generality,
we will assume that the injectivity radius of X is much greater than 1, and work
with the propagator at time one, U = U1. This propagator quantizes the geodesic
flow at time one, g1. The ~-dependence of U will be implicit in our notations.

As one does to compute the Kolmogorov–Sinai entropy of an invariant measure,
we define a new quantum partition of unity by evolving and refining the initial
partition P(0) under the quantum evolution. For each time n ∈ N and any sequence
of symbols α = (α0 · · ·αn−1), αi ∈ [1,K] (we say that the sequence α is of length
|α| = n), we define the operators

P̂α = P̂αn−1(n− 1)P̂αn−2(n− 2) . . . P̂α0 .(10.2)

We keep using the notation A(t) = U−tAU t for the quantum evolution of an

operator A. From (10.1) and the unitarity of U , the family of operators
{

P̂α

}

|α|=n
obviously satisfies the relation

∑

|α|=n P̂α P̂
∗
α
= IdL2 , and therefore forms a quan-

tum partition which we call P(n). We also have
∑

|α|=n P̂
∗
α
P̂α = IdL2 , and we

denote T (n) the partition of unity given by the family of operators
{

P̂ ∗
α

}

|α|=n
.

10.3. In the entropic uncertainty principle, Theorem 9.7, we shall input the
following data :

• the quantum partition π = P(n) is given by the family of operators
{P̂α, |α| = n}. The quantum partition τ = T (n) is given by the family of

operators {P̂ ∗
α
, |α| = n}. The integer n will always be of order K| log ~|,

where K will be determined later.
• the isometry will be U = Un.

To apply Theorem 9.7 we will need an upper bound on

cT (n),P(n)(U) = max
|α|=|α′|=n

‖P̂α
′ Un P̂α‖.
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We remark that P̂α
′ Un P̂α can be developed as

U−n+1P̂α′
n−1

U · · ·UP̂α′
1
UP̂α′

0
UP̂αn−1 · · ·UP̂α1UP̂α0

or equivalently

UnP̂α′
n−1

(2n− 1) · · · P̂α′
1
(n+ 1)P̂α′

0
(n)P̂αn−1(n− 1) · · · P̂α1(1)P̂α0 .

10.4. The main estimate. Let us assume (without loss of generality) that
the injectivity radius of X is greater than 1; and that the diameter of each Pk is
small enough so that, for every j, k, for every x, y ∈ Pj , Pk, there is at most one
unit speed geodesic joining x and y in time 1.

The estimate essentially proven in [A05] is :

Theorem 10.1. Let χ be an energy cut-off, that is, a smooth compactly sup-
ported function vanishing outside H−1([1/2− ε, 1/2 + ε]).

Given K > 0 and a partition P(0), there exists ~K,P(0),χ such that, for any
~ ≤ ~K,P(0),χ, for any positive integer n ≤ K| log ~|, and any pair of sequences α,
α

′ of length n,

(10.3) ‖P̂α
′ Un P̂α Op(χ)‖ ≤ C ~

−d
2 e−(d−1)n(1 +O(ε))n .

The constant C only depends on the riemannian manifold.

Remark 10.2. The best bound we can hope for on the norm of the operators
P̂α

′ Un P̂α is certainly the trivial one : cT (n),P(n)(U) ≤ 1. We can only improve
this bound if we insert the energy cut-off Op~(χ), which has the effect of restricting
our operators to functions oscillating at a certain (high) frequency. In fact, if we
take χ of the form f((2H − 1)), where f is a smooth function on R, supported in
[1−2ε, 1+2ε], we can take Op(χ) to be the corresponding function of the laplacian,
obtained by functional calculus, f((−~2△−1)). Thus, Op(χ) is a smoothed version
of the projection to the spectral window [ 1−2ε

~2 , 1+2ε
~2 ] of the laplacian.

Since we have no good estimate on ‖P̂α
′ Un P̂α‖, but only on ‖P̂α

′ Un P̂α Op(χ)‖,
we will need to modify accordingly the statement of the entropic uncertainty prin-
ciple : see later Theorem 10.5

Remark 10.3. If we were in variable curvature, instead of the exponent d− 1
we would have a variable exponent depending on the local Lyapunov exponents.

The proof of Theorem 10.1 will be given in Section 15. The idea is rather
simple, although the technicalities may seem difficult. We first show that any
state in the image of Op(χ) may be decomposed as a superposition of essentially

~−
d
2 normalized lagrangian states, supported on lagrangian manifolds transverse

to the stable foliation. The lagrangian states we work with are truncated δ–
functions, supported on spheres S∗

zX . The action of the operator Un−1P̂α
′ Un P̂α =

P̂α′
n−1

U · · ·UP̂α′
0
UP̂αn−1 · · ·UP̂α0 on such lagrangian states is translated, by the

theory of Fourier integral operators (WKB methods), into a classical picture : an
application of U corresponds, classically, to applying g1, so that it stretches the
lagrangian in the unstable direction. Each multiplication by P̂α corresponds to
cutting out a small piece of lagrangian. This iteration of stretching and cutting is
responsible for the exponential decay.

In [AN07] the estimate of Theorem 10.1 is modified by optimizing the shape
of the cutoff χ. We want to take into account the fact that we are dealing with
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eigenfunctions of the laplacian, and not merely spectral packets in the window
[ 1−2ε

~2 , 1+2ε
~2 ]. But we also want Op(χ) to stay in a reasonable class of pseudodiffer-

ential operators. We consider a smooth function χ ∈ C∞(R; [0, 1]), with χ(t) = 1
for |t| ≤ 1 and χ(t) = 0 for |t| ≥ 2. Then, for some fixed δ ∈ (0, 1), we rescale that
function to obtain an ~-dependent cutoff near S∗X :

(10.4) ∀~ ∈ (0, 1), ∀n ∈ N, ∀ρ ∈ T ∗X, χδ(ρ; ~)
def
= χ

(

~
−1+δ(H(ρ)− 1/2)

)

.

The cutoff χδ is localized in a tubular neighbourhood of S∗X of width 2~1−δ

Theorem 10.4. [AN07] Given K > 0 a partition P(0) and δ > 0 small enough,
there exists ~K,P(0),δ such that, for any ~ ≤ ~K,P(0),δ, for any positive integer n ≤
K| log ~|, and any pair of sequences α, α′ of length n,

(10.5) ‖P̂α
′ Un P̂α Op(χδ)‖ ≤ C ~

− d−1
2 −δ e−(d−1)n(1 +O(~δ))n .

The constant C only depends on the riemannian manifold (M, g).

Theorem 10.4 essentially improves the prefactor ~−
d
2 of Theorem 10.1. Its proof

is similar, the main difficulty being to define Op(χδ) — the function χδ does not
fall into one of the usual “nice” classes of symbols, since its derivatives explode
quite fast when ~ −→ 0. To define Op(χδ) would be much beyond the scope of
these notes (see [SZ99, AN07]). We shall admit Theorem 10.4, and only prove
the simpler version of Theorem 10.1.

10.5. Technical variant of the entropic uncertainty principle. As ex-
plained in Remark 10.2, we cannot apply Theorem 9.7 directly, because we need
to insert our energy cut-off Op(χ). On the other hand, this frequency cut–off does
not really bother us, since it hardly modifies our eigenfunctions.

We generalize the statement of Theorem 9.7 by introducing an auxiliary oper-
ator O.

Theorem 10.5. [AN07] Let O be a bounded operator on H. Let U be an
isometry on H.

Define cτ,πO (U) def
= supj,k‖τ∗j U πkO‖L(H).

Then, for any θ ≥ 0, for any normalized ψ ∈ H satisfying

∀k = 1, . . . ,N , ‖(Id−O)π∗
kψ‖ ≤ θ ,

the entropies hτ
(

Uψ
)

, hπ
(

ψ
)

satisfy

hτ
(

Uψ
)

+ hπ
(

ψ
)

≥ −2 log
(

cπ,τO (U) +N θ
)

.

10.6. Applying the entropic uncertainty principle. We now precise all
the data we will use in the entropic uncertainty principle, Theorem 10.5:

• the quantum partition π = P(n), τ = T (n) have already been defined
in 10.3. The integer n will be of order K| log ~|, where the choice of K
will be determined later. In the semiclassical limit, these partitions have
cardinality N = Kn ≍ ~−K0 for some fixed K0 > 0.

• the isometry will be U = Un.
• the operator O is O = Op(χδ). Since we are, at the end, interested in
eigenfunctions of the laplacian, we need to know that this operator hardly
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modifies them. In fact, for any L > 0, there exists ~L such that, for any
~ ≤ ~L, any solution of (−~2 △−I)ψ~ = 0 satisfies

(10.6) ∀α, |α| = n ≤ K| log ~|, ‖
(

Op(χδ)− Id
)

P̂ ∗
α
ψ~‖ ≤ ~

L‖ψ~‖ .
This means that, for an eigenfunction ψ~, all the states P̂ ∗

α
ψ~ are very

sharply microlocalized near the energy layer S∗X .
• θ = ~L, and L will be chosen very large.

All these quantities are defined for n = K| log ~|, K will be determined
later, but fixed.

The entropies associated with a state ψ ∈ H are given by

hP(n)(ψ) = −
∑

|α|=n
‖P̂ ∗

α
ψ‖2 log

(

‖P̂ ∗
α
ψ‖2

)

and

hT (n)(ψ) = −
∑

|α|=n
‖P̂αψ‖2 log

(

‖P̂αψ‖2
)

.

We may apply Theorem 10.5 to any sequence of states satisfying (10.6).

Corollary 10.6. Define

(10.7) cOpχδ
(Un)

def
= max

|α|=|α′|=n
‖P̂α

′ Un P̂α Op(χδ)‖ .

Then for any normalized state φ satisfying (10.6),

hT (n)(Un φ) + hP(n)(φ) ≥ −2 log
(

cOpχδ
(Un) + hL−K0

)

.

We now apply Corollary 10.6 to the particular case of the eigenstates ψ~. The
estimate (10.5) can be rewritten as

cOpχδ
(Un) ≤ C ~

−d−1
2 −δe−(d−1)n(1 +O(~δ))n .

We choose L large enough such that ~L−K0 is negligible in comparison with

~−
d−1
2 −δe−(d−1)n.

Proposition 10.7. Let (ψ~)~→0 be any sequence of eigenstates (7.2). Then,
in the semiclassical limit, we have

(10.8) hT (n)(ψ~) + hP(n)(ψ~) ≥ 2(d− 1)n+ (d− 1 + 2δ) log ~+O(1) .

This holds for n ≤ K| log ~| (K arbitrary) and ~ ≤ ~K,P(0),δ.

11. ...and the conclusion.

Before taking the limit ~ → 0, we prove that a similar lower bound holds if we
replace n ≍ | log ~| by some fixed no, and P(n) by the corresponding partition P(no).
Proposition 11.1 below is the semiclassical analogue of the classical subadditivity
(8.3) of entropy for invariant measures.

We introduce the Ehrenfest time nE(~) = (1−δ′)| log ~|
λmax

(δ′ fixed, arbitrarily

small). In constant curvature −1, the maximal expansion rate of the geodesic flow
on S∗X is λmax = 1. The Ehrenfest time is the main limitation to use semiclassical
methods to understand the large time behaviour of the Schrödinger flow : roughly

speaking, we have U−tOp~(a)U
t ∼ Op(a ◦ gt) for |t| ≤ nE(~)

2 , but for larger t we
can no longer refer to the classical dynamics to understand U−tOp~(a)U

t.
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Proposition 11.1 (Subadditivity). Let δ′ > 0. There is a function R(no, ~)
such that, for all integer no,

lim
~−→0

|R(no, ~)| = 0

and such that, for all no, n ∈ N with no + n ≤ nE(~), for any (ψ~) normalized
eigenstates satisfying (7.2), the following inequality holds:

hP(no+n)(ψ~) ≤ hP(no)(ψ~) + hP(n)(ψ~) +R(no, ~) .

We do not prove this proposition in these notes, but just make a few more
comments. The non–commutative dynamical system formed by (U t) acting on
pseudodifferential operators is (approximately) commutative on time intervals of
length nE(~) :

‖[Op
~
(a)(t),Op

~
(b)(−t)]‖L2(X) = O(~cδ

′

),

for any time |t| ≤ nE(~)
2 , or equivalently (using the unitarity of U t)

‖[Op~(a)(t),Op~(b)]‖L2(X) = O(~cδ
′

),

for any time |t| ≤ nE(~). On such a time interval, we almost have a commutative
dynamical system, up to small errors tending to 0 with ~. This roughly explains
why the quantum entropy hP(no+n)(ψ~) has the same subadditivity property as the
classical entropy (8.3), up to small errors, as long as no + n remains bounded by
the Ehrenfest time.

Thanks to this subadditivity, we may finish the proof of Theorem 7.1. Although
Proposition 10.7 holds for n ≤ K| log ~| and K arbitrary, we are now limited by

Proposition 11.1 to K = 1−δ′
λmax

. For n = nE(~), Proposition 10.7 can be written

(11.1) hP(n)(ψ~) + hT (n)(ψ~) ≥ 2(d− 1)n− (d− 1 + 2δ)λmax

(1 − δ′)
n+O(1) .

Let no ∈ N be fixed and n = nE(~). Using the Euclidean division n = qno + r
(with r ≤ no), Proposition 11.1 implies that for ~ small enough,

hP(n)(ψ~)

n
≤ hP(no)(ψ~)

no
+
hP(r)(ψ~)

n
+
R(no, ~)

no
.

A similar inequality holds with P replaced by T .
Using (10.8) and the fact that hP(r)(ψ~) stays uniformly bounded (by a quantity

depending on no) when ~ → 0, we find

(11.2)
1

2

[

hP(no)(ψ~)

no
+
hT (no)(ψ~)

no

]

≥ (d− 1)− (d− 1 + 2δ)λmax

2(1− δ′)
n

+O(1)− R(no, ~)

no
+Ono

(1/n) .

We are now dealing with the partition P(no), n0 being fixed.

11.1. End of the proof. Let us take a subsequence of (ψ~k
) such that the

Husimi measures µk = µψ~k
converge to a semiclassical measure µ on S∗X , invari-

ant under the geodesic flow (see Prop. 6.1). We may take the limit ~k → 0 (so



EIGENFUNCTIONS OF THE LAPLACIAN ON NEGATIVELY CURVED MANIFOLDS 37

that n → ∞) in the expression above. The norms appearing in the definition of
hP(no)(ψ~k

) and hT (no)(ψ~k
)can be written as

‖P̂α ψ~k
‖ = ‖P̂αno

(no) · · · P̂α1(1)P̂α0 ψ~k
‖(11.3)

‖P̂ ∗
α
ψ~k

‖ = ‖P̂α0P̂α1(1) · · · P̂αno
(no)ψ~k

‖ .(11.4)

For any sequence α of length no, the laws of pseudodifferential calculus imply the
convergence of ‖P̂ ∗

α
ψ~k

‖2 and ‖P̂α ψ~k
‖2 to the same quantity µ({α}), where {α}

is the function (1lsmPα0
)2 (1lsmPα1

)2 ◦g1 . . . (1lsmPαno−1
)2 ◦gno−1 on T ∗X . Thus hP(no)(ψ~k

)

and hT (no)(ψ~k
) both semiclassically converge to the classical entropy

hno
(µ) = hno

(µ, (1lsmPk

2
)) = −

∑

|α|=no

µ({α}) logµ({α}) .

We have thus obtained the lower bound

(11.5)
hno

(µ)

no
≥ (d− 1)− (d− 1 + 2δ)λmax

2(1− δ′)
.

δ and δ′ could be taken arbitrarily small, and at this stage they can be let vanish.
Remember also that λmax = 1 for constant sectional curvature −1.

The Kolmogorov–Sinai entropy of µ (with respect to the partition X = ⊔Pk) is
by definition the limit of the first term

hno (µ)
no

when no goes to infinity (8.2) (8.4),

with the notable difference that the smooth functions (1lsmPk
)2 should be replaced by

the characteristic functions (1lPk
). We note, however, that the lower bound (11.5)

does not depend on the derivatives of (1lsmPk
)2: as a result, the same bound carries

over to the characteristic functions (1lPk
).

We can finally let no tend to +∞, to obtain (7.4).
�

The proof is finished, save for Theorem 10.1.

WKB methods.

To prove our main estimate (Theorem 10.1), we need to describe the action of

the operator U t = exp(it~△
2 ) on “rapidly oscillating” functions, in the limit ~ −→ 0.

The idea, already used by Schrödinger, is to describe the action of exp(it~△
2 ) on

functions of the form e
i
~
S(x), called WKB functions or lagrangian functions; and

to use the fact that all the functions we consider can be represented as integral
combinations of lagrangian functions.

12. Lagrangian submanifolds of T ∗X and generating functions.

We have seen that T ∗X is endowed with a “canonical” symplectic form ω,
defined as follows. Let Ω ⊂ X be an open subset of X , endowed with a coordinate
chart φ : X −→ Rd. Then T ∗Ω ⊂ T ∗X can be endowed with the coordinate chart

Φ : T ∗Ω −→ Rd × (Rd)∗(12.1)

(x, p) 7→ (φ(x), (dφ∗x)
−1p).(12.2)

On T ∗Ω, ω is defined as the pullback by Φ of the symplectic form
∑d

i=1 dqi ∧dpi of
Rd× (Rd)∗. We leave it to the reader to check that this definition does not depend
on the choice of local coordinates. Thus, by choosing an atlas of X , one can define
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ω on T ∗X , and the definition does not depend on the atlas. In fact, ω can also be
defined in an intrinsic way, as was done in Section 1 by formula (1.5).

Definition 12.1. In the 2d-dimensional symplectic manifold (T ∗X,ω), a la-
grangian submanifold is a d-dimensional submanifold on which the restriction of ω
vanishes.

Equivalently, a submanifold L ⊂ T ∗X is lagrangian if and only if, for all ρ ∈ L,
TρL is its own ω-orthogonal in Tρ(T

∗X).

Example 12.2. On T ∗Rd = Rd × (Rd)∗ endowed with the symplectic form
∑d
i=1 dqi ∧ dpi, affine subspaces of the form Rd × {ξ0} or {x0} × Rd are examples

of lagrangian submanifolds. More generally, for any manifold X , the zero section
{(x, 0), x ∈ X} ⊂ T ∗X is a lagrangian submanifold of T ∗X . For any x ∈ X , the
fiber T ∗

xX is also lagrangian.

Generating functions.

Exercise 12.3. In R
d×(Rd)∗ endowed with the symplectic form

∑d
i=1 dqi∧dpi,

consider an linear subspace of the form GraphA = {(x,Ax)} where A is a linear
operator from Rd to itself. Show that GraphA is lagrangian if and only if A is
symmetric for the canonical euclidean structure on Rd : 〈Ax, y〉 = 〈x,Ay〉.

The following gives us many examples of lagrangian submanifolds.

Exercise 12.4. Let X be a smooth manifold and consider T ∗X endowed with
its usual symplectic structure. Let Ω ⊂ X be an open subset of X , and let a be a
smooth 1–form on Ω. Consider the graph Grapha = {(x, ax)} ⊂ T ∗Ω. Show that
Grapha is lagrangian if and only if the 1–form a is closed : da = 0.

In particular, if Ω is simply connected, this implies the existence of a smooth
function S : Ω −→ R such that a = dS. The function S is called a generating
function of the lagrangian manifold Grapha.

We denote π : T ∗X −→ X the canonical projection.

Definition 12.5. Let L ⊂ T ∗X be a lagrangian submanifold. The caustic
of L is the set of points ρ ∈ L such that the restriction of π to L is not a local
diffeomorphism at ρ.

In Example 12.2, the zero section in T ∗X has empty caustic, whereas the case
L = T ∗

xX gives an example of a lagrangian submanifold for which the caustic is all
of L.

If ρ does not belong to the caustic, Exercise 12.4 shows there is a neighbourhood
of ρ in which L is the graph of the differential dS, for some function S defined locally
up to an additive constant. We say S is a generating function of L near ρ.

What happens on the caustic ?
Let S(x, θ) be a real–valued function on ΩX×ΩRN where ΩX is an open subset

of X and ΩRN an open subset of RN . Let CS =
{

(x, θ), ∂S∂θ = 0
}

. On CS we assume

that all the differentials d(x,θ)
∂S
∂θi

(i = 1, . . . , N) are linearly independent : then CS
is a smooth d–dimensional submanifold of ΩX × ΩRN (recall d = dimX). Define
jS : CS −→ T ∗X by jS(x, θ) = (x, ∂xS(x, θ)).

Proposition 12.6. The map jS is an immersion. Its image,

LS = {(x, ξ) ∈ T ∗X, there exists θ with ∂θS(x, θ) = 0 and ξ = ∂xS(x, θ)}
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is a lagrangian submanifold of T ∗X.

One calls S(., θ) a generating family (or generating function) of LS . Compare
with (1.24).

Theorem 12.7. Every lagrangian submanifold L of T ∗X admits, locally, a
generating family. More precisely : for ρ0 ∈ L, let N = dimKer dπρ0 . Then there
is a neighbourhood Ω of ρ0 in T ∗X, there are open subsets ΩX ⊂ X and ΩRN ⊂ RN ,
and a function S : ΩX ×ΩRN −→ R satisfying all the required conditions, such that

L ∩ Ω = LS .

Proof: Using (12.1) we see it is enough to consider the case X = Rd. Let ρ0 =
(x0, ξ0) ∈ T ∗Rd = Rd × (Rd)∗ and let L = Tρ0L. It is a lagrangian linear subspace
of Rd × (Rd)∗. Let π : Rd × (Rd)∗ −→ Rd be the projection on the first coordinate.
By assumption, F = π(L) is a linear subspace of Rd of dimension d − N . Let G
be a supplementary subspace of F in Rd : Rd = F ⊕G. We have a corresponding
decomposition of the dual space, R∗

d = G◦ ⊕ F ◦, where F ◦ is the space of linear
forms vanishing on F , and similarly for G◦. We leave it to the reader to check that
the projection P : L −→ F × F ◦ is an isomorphism.

Since L is tangent to L at ρ0, there is a neighbourhood Ω of ρ0 such that
P : L −→ F × F ◦ is a diffeomorphism. In other words, there is a smooth map
ϕ : (F × F ◦)∩Ω −→ G×G◦ such that L∩Ω is the graph of ϕ. Writing ϕ = (f, g)
we have

L ∩ Ω = {(xF , f(xF , ξF◦), g(xF , ξF◦), ξF◦), xF ∈ F, ξF◦ ∈ F ◦} .
For L to be lagrangian we must have df ∧ dξF◦ + dxF ∧ dg = 0, in other words
d(fdξF◦ −gdxF ) = 0. This means there exists, in a neighbourhood of ρ0, a function
S(xF , ξF◦) such that dS = fdξF◦ − gdxF (equivalently, f = ∂ξF◦S, g = −∂xF

S).
Consider the function

S(xF , xG, ξF◦) = ξF◦ .xG − S(xF , ξF◦)

defined on an open subset of F ×G× F ◦ = Rd × F ◦. It is now straightforward to
check that this is a generating function of L ∩ Ω, and dimF ◦ = N as announced.
�

Example 12.8. Here is a fundamental example : in T ∗Rd = Rd × (Rd)∗ en-

dowed with the canonical symplectic form
∑d

i=1 dqi∧dpi, a generating function for

T ∗
xR

d = {x} × (Rd)∗ is S(y, θ) =
∑d

i=1 θi(yi − xi) = 〈θ, y − x〉 (here N = d and θ

varies in Rd).

Exercise 12.9. A crucial thing : (i) Show that a (connected) lagrangian sub-
manifold L is invariant under the hamiltonian flow of H if and only if it is contained
in some fixed energy layer {H = E}.

(ii) As a particular case, deduce that if H(x, dxS(x, θ)) = E for any (x, θ), then
the lagrangian manifold LS generated by S is invariant under the hamiltonian flow
(φtH).

(iii) Assume now that S is a smooth function of (t, x, θ), and assume that

∂S

∂t
+H(x, dxS) = 0
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for all (t, x, θ). Denote St(x, θ) = S(t, x, θ). Show that the lagrangian manifold LSt

is the image of LS0 under φtH . Hint : reduce the problem to the previous one by

considering the hamiltonian H(x, t, ξ, E) = H(x, ξ) + E on T ∗(X × R).

13. Lagrangian distributions.

Let L be a lagrangian submanifold of T ∗X . For our applications we shall only
be interested in the case where L is relatively compact and where it has a global
generating function S : L = LS , S being defined on ΩX × ΩRN . In this case we
define the (semiclassical) notion of a lagrangian function associated to L as follows :

Definition 13.1. We denote Om(X,LS) the space of functions of the form

u~(x) =
eiα(~)

(2π~)N/2

∫

Ω
RN

ei
S(x,θ)

~ a~(x, θ)dθ

where
– α(~) is a real number that may depend on ~,
– the function a defined on ΩX ×ΩRN is smooth and has an asymptotic devel-

opment when ~ −→ 0,

a ∼
∞
∑

j=0

~
j+maj+m,

the asymptotic development holds in all Ck–norms on compact subsets,
– we assume that a is compactly supported with respect to the variable θ.

As usual, the class Om(X,LS) should actually be defined modulo negligible
functions, which, we recall, are smooth functions u~ for which all the Ck–norms
on compact sets are O(~∞). Then, one can prove [GS94] that the definition of
Om(X,LS) does not depend on the choice of the generating function S :

Theorem 13.2. If LS = LS′ then Om(X,LS) = Om(X,LS′).

Example 13.3. On X = Rd, the Dirac mass at x

δx(y) =
1

(2π~)d

∫

Rd

e
〈ξ,y−x〉

~ dξ

can be seen as a lagrangian distribution associated with the lagrangian submanifold
T ∗
xR

d ( S(y, ξ) = 〈ξ, y − x〉), save for the fact that the symbol a(y, ξ) ≡ 1 is
not compactly supported. Let χ(y, ξ) be a smooth, positive, compactly supported
function, call Ω a bounded open set containing the support of χ. Then the function

δχx (y) =
1

(2π~)d

∫

e
〈ξ,y−x〉

~ χ(y, ξ)dξ

falls into the class O−d/2(Rd, T ∗
xR

d ∩ Ω). Assume χ takes the constant value 1 in
a neighbourhood of a certain compact subset E ⊂ T ∗Rd. Then δχx is often called a
“delta–function truncated away from E” : it is a Dirac mass whose frequencies near
E have not been touched, while the frequencies out of Ω have been suppressed.
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14. WKB description of the operator U t = exp(it~△
2 ).

Remark 14.1. The initials WKB stand for Wentzel, Kramers and Brillouin,
who independently proposed this method to find approximate solutions of a 1-d sta-
tionary Schrödinger equation — in other words, to find approximate eigenfunctions
[Wtz26, Kr26, Brill26]. The method was later generalized by Keller and Maslov
to find approximate eigenfunctions (quasimodes) of higher dimensional, completely
integrable systems [Kell58, Masl65].

Here we present the WKB method applied to the evolutive Schrödinger equa-
tion. It was first used by Van Vleck [VV28].

Recall that we are interested in the hamiltonian flow generated by H(x, ξ) =
‖ξ‖2

x

2 , namely the geodesic flow, denoted gt in Section 6. We wish to study the

Schrödinger flow U t = eit~
△
2 and to relate it to the geodesic flow as ~ −→ 0.

Consider an initial state u(0) of the form u(0, x) = a~(0, x) e
i
~
S(0,x), where

S(0, •), a~(0, •) are smooth functions defined on a subset of Ω ⊂ X , a~ has a fixed
compact support in Ω and has an asymptotic development a~ ∼ ∑

k ~
k ak, valid

in all Cn–norms. This represents a WKB (or lagrangian) state, supported on the
lagrangian manifold L(0) = {(x, dxS(0, x)), x ∈ Ω}.

The WKB method consists in looking for an approximate expression9 for the

state ũ(t)
def
= U tu(0), in the form

(14.1) u(t, x) = e
iS(t,x)

~ a~(t, x) = e
iS(t,x)

~

N−1
∑

k=0

~
kak(t, x)

where N is a fixed, arbitrarily large integer. We want u(t) to solve ∂u
∂t = i~△xu

2

up to a remainder of order ~N . Computing explicitly both sides of the equation,
and identifying the successive powers of ~, we see that the functions S and ak must
satisfy the following partial differential equations:

(14.2)































∂S
∂t +H(x, dxS) = 0 (Hamilton-Jacobi equation)

∂a0
∂t = −〈dxa0, dxS(t, x)〉 − a0

△xS(t,x)
2 (0-th transport equation) ,

∂ak
∂t =

i△ak−1

2 − 〈dak, dS〉 − ak
△S
2 (k-th transport equation) .

Assume that, on a certain time interval — say s ∈ [0, 1] — the above equations have
a well defined smooth solution S(s, x), meaning that the transported lagrangian
manifold L(s) = φsHL(0) is of the form L(s) = {(x, dxS(s, x))}, where S(s) is a
smooth function defined on the open set πL(s). Under these conditions, we denote
as follows the induced flow on X :

(14.3) Gts : x ∈ πL(s) 7→ πgt−s
(

x, dxS(s, x)
)

∈ πL(t) ,
In the first chapter we introduced the exponential map associated to Ls : we have
Gts = expt−sLs

◦π−1. Note that Gss = I and that the following composition rule

holds : Gt2t1 ◦G
t1
t0 = Gt2t0 .

9often called an Ansatz
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We then introduce the following unitary operator T ts , which transports func-
tions on πL(s) into functions on πL(t):
(14.4) T ts (a)(x) = a ◦Gst (x) Jst (x)1/2 .

Here Jst (x) is the Jacobian of the map Gst at the point x, measured with respect
to the riemannian volume on X . It is given by

(14.5) J ts(x) = exp
{

∫ t

s

△S
(

τ,Gτs (x)
)

dτ
}

.

We leave it as an exercise to check this formula, and to deduce that the 0-th
transport equation in (14.2) is explicitly solved by

(14.6) a0(t) = T t0 a0 , t ∈ [0, 1] .

The higher-order terms k ≥ 1 are given by

(14.7) ak(t) = T t0ak +

∫ t

0

T ts

(

i△ ak−1

2
(s)

)

ds .

The function u(t, x) defined by (14.1) satisfies the approximate equation

∂u

∂t
= i~

△u
2

− i~N e
i
~
S(t,x)△aN−1

2
(t, x) .

By Duhamel’s principle, the difference between u(t) and the exact solution ũ(t) is

u(t)− ũ(t) = −i~N
∫ t

0

U t−s
(

e
i
~
S(s,x)△aN−1

2
(s, x)

)

ds,

and from the unitarity of U t, this is bounded, for t ∈ [0, 1], by

(14.8) ‖u(t)− ũ(t)‖L2 ≤ ~N

2

∫ t

0

‖△aN−1(s)‖L2 ds ≤ C t ~N
(

N−1
∑

k=0

‖ak(0)‖C2(N−k)

)

.

The constant C is controlled by the volumes of the sets πL(s) (0 ≤ s ≤ t ≤ 1), and
by a certain number of derivatives of the flow Gst (0 ≤ s ≤ t ≤ 1).

Remark 14.2. Elaborating on these methods, one proves the following : if u
is a lagrangian state in Om(X,L), then U tu is a lagrangian state in Om(X, gtL).
We have proved it in the particular case when gtL is a graph over X for all t. The
operator U t is called a Fourier Integral Operator associated with the transformation
gt.

This is the property Schrödinger had looked for when introducing his equation.
We have, in addition, found the explicit formula for all the ak(t). For k = 0,
equation (14.6) is called the Van Vleck formula.

15. Proof of the main estimate.

15.1. Decomposition of Op(χ)u into truncated delta–functions. We
can now prove Theorem 10.1, which estimates the norm of the operator

P̂αn
(n)P̂αn−1(n− 1)...P̂α0 Op(χ) = U−nP̂αn

UP̂αn−1 ...UP̂α0 Op(χ)

(where we denote U t = exp(ith△
2 ) and U = U1). Since U t is unitary, the norm of

this operator is also the same as the norm of P̂αn
UP̂αn−1 ...UP̂α0 Op(χ).
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The pseudo-differential operator Op(χ) is defined in §4.3 :

Op(χ) =
∑

l

ϕl OP(χ) ϕl

where (ϕl) is an auxiliary partition of unity on X (i.e.
∑

l ϕl(x)
2 ≡ 1) such that

the support of each ϕl is endowed with local coordinates in Rd. In local coordinates
in the support of ϕl, OP(χ) is then defined by the usual formula,

(15.1) OP(χ)u(x) = (2π~)−d
∫

u(z)ei
〈ξ,x−z〉

~ χ(z, ξ)dzdξ.

The function χ will be chosen of the form χ(z, ξ) = χ1(|ξ|z) where χ1 is a smooth
function on R+ supported in [1 − ε/2, 1 + ε/2] with χ1 ≡ 1 in a neighbourhood of
1. For x ∈ Ωα0 , we can write

(15.2) Op(χ)u(x) =
∑

l

∫

u(z)δlz(x)dz,

where we denote δlz the truncated δ-function

(15.3) δlz(x) = ϕl(x)ϕl(z)

∫

e
i〈ξ,x−z〉

~ χ(z, ξ)
dξ

(2π~)d
.

Each δlz is a lagrangian state associated with the lagrangian manifold T ∗
zX ∩

H−1
(

(12 − ε, 12 + ε)
)

. Equation (15.2) means that every state in the image of Op(χ)

can be decomposed as an integral combination of the lagrangian states δlz. We shall

first estimate the norm of P̂αn
UP̂αn−1 ...UP̂α0δ

l
z for any z, and then use (15.2) to

write, for an arbitrary function u,

‖P̂αn
UP̂αn−1 ...UP̂α0 Op(χ)u‖ ≤

∑

l

sup
z

‖P̂αn
UP̂αn−1 ...UP̂α0δ

l
z‖
∫

X

|u(y)|dy

≤
∑

l

sup
z

‖P̂αn
UP̂αn−1 ...UP̂α0δ

l
z‖
√
VolX‖u‖L2(X)

The estimates will be done by induction on n: we will propose an Ansatz –
that is, an approximate expression – for P̂αn

UP̂αn−1 ...UP̂α0δ
l
z, valid for “large” n.

In what follows we omit the l superscript and just write δz.

15.2. The Ansatz for n = 1. At n = 0 we know that P̂α0δz(x) is a lagrangian
state associated with the lagrangian manifold L0 = T ∗

zX ∩H−1
(

(12 − ε, 12 + ε)
)

, a

union of spheres H−1(12 + η) ∩ T ∗
zX .

From Remark 14.2, we know that U tP̂α0δz is a lagrangian state associated to

L0(t) = gt
(

T ∗
zX ∩H−1((

1

2
− ε,

1

2
+ ε))

)

.

If we assume that the injectivity radius of X is greater than 1 + 100ε, then this
is a graph over X for 0 < t < 1 + ε. This is just saying that the exponential
map exptz is a diffeormorphism from T ∗

zX∩H−1
(

(12 − ε, 12 + ε)
)

onto its image, for
0 < t < 1 + ε.

This means we have an Ansatz

(15.4) U tP̂α0δz ∼ (2π~)−d/2e
iS0(t,x|z)

h

(

∞
∑

k=0

~
kb0k(t, x|z)

)

,



44 NALINI ANANTHARAMAN

where the function S0(t, x|z) is a generating function of the lagrangian manifold
L0(t).

We denote

v0(t;x|z) = e
iS0(t,x|z)

~ b0
~
(t, x|z),(15.5)

b0~(t, x|z)
def
=
(
∑N−1
k=0 ~kb0k(t, x|z)

)

(15.6)

For t = 1, the function v0(1;x|z) gives us an approximation to UP̂α0δz, the differ-

ence being bounded in L2–norm by O(~N− d
2 ).

15.3. Iteration of the WKB Ansätze. In this section we will obtain an
approximate Ansatz for P̂αn

. . . UP̂α1UP̂α0δz. Above we have already performed

the first step, obtaining an approximation v0(1, . |z) of UP̂α0δz. Until Lemma 15.1
we will fix the base point z, and omit it in our notations when no confusion may
arise; at the end we will obtain an estimate which is uniform in z.

Applying the multiplication operator P̂α1 to the state v0(1, x) := v0(1, x|z), we
obtain another WKB state which we denote as follows:

v1(0, x) = b1
~
(0, x) e

i
~
S1(0,x) , with

{

S1(0, x) := S0(1, x|z) ,
b1
~
(0, x) := P̂α1(x) b

0
~
(1, x|z) .

This state is associated with the lagrangian manifold

L1(0) = L0(1) ∩ T ∗Ωα1 .

If this intersection is empty, then v1(0) = 0, which means that P̂α1v
0(1) = O(~N )

in L2 norm. In the opposite case, we can evolve v1(0) following the procedure
described in §14. For t ∈ [0, 1], and up to an error OL2(~N ), the evolved state
U tv1(0) is given by the WKB Ansatz

v1(t, x) = b1~(t, x) e
i
~
S1(t,x) , b1~(t) =

N−1
∑

k=0

b1k(t) .

The state v1(t) is associated with the lagrangian L1(t) = gtL1(0), and the function
b1
~
(t) is supported inside πL1(t).
15.3.1. Evolved lagrangians. We can iterate this procedure, obtaining a se-

quence of approximations
(15.7)

vj(t) = U t P̂αj
vj−1(1)+O(~N ) , where vj(t, x) = vj(t, x|z) = bj

~
(t, x|z) e i

~
Sj(t,x|z) .

(Again, the initial position z is fixed for the moment, and we do not always indicate
in the notations the z-dependence). To show that this procedure is consistent, we
must check that the lagrangian manifold Lj(t) supporting vj(t) does not develop
caustics through the evolution (t ∈ [0, 1]), and that the projection π : Lj(t) → X
remains injective. These were the two conditions required to apply the method
of §14. We now show that these properties hold, due to our assumption that the
curvature is negative (in fact, it is enough to assume that the geodesic flow has the
Anosov property).

The manifolds Lj(t) are obtained by the following procedure. Knowing Lj−1(1),
which is generated by the phase function Sj−1(1), we take for Lj(0) the intersection

Lj(0) = Lj−1(1) ∩ T ∗Ωαj
.
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If this set is empty, then we stop the construction. Otherwise, this lagrangian
is evolved into Lj(t) = gtLj(0) for t ∈ [0, 1]. Notice that the lagrangian Lj(t)
corresponds to evolution at time j+ t of a piece of L0(0): it is made up of the image
under the geodesic flow of a compact piece of the fiber T ∗

zX . If the geodesic flow
is Anosov, the geodesic flow has no conjugate points — by a result of Klingenberg
[Kl74]. This means precisely that gtL0(0) will not develop caustics.

On a negatively curved manifold, there cannot be two homotopic geodesics
joining two points x and z. As a consequence, there cannot be two geodesics
joining x and z in time j + t and which fall in the same Ωαk

for all integer times k
(this holds if the injectivity radius is larger than 1 and if the diameter of the Ωαk

is small enough). This means that, for any j ≥ 1, 0 ≤ t ≤ 1, the manifold Lj(t)
projects injectively to πLj .

Finally, we recall that L0(0) was obtained by propagating a piece of T ∗
zX ∩

H−1(12 − ε, 12 + ε). Since the geodesic flow on each energy layer H−1(1/2 + η) is

Anosov, the sphere bundle H−1(1/2+η)∩T ∗
zX is uniformly transverse to the stable

foliation in H−1(1/2+η) — also a result of [Kl74]. As a consequence, the action of
the geodesic flow carries a piece of sphere H−1(1/2+ η)∩ T ∗

zX exponentially close
to a piece of unstable leaf of H−1(1/2 + η) when t → +∞. This transversality of
spheres with the stable foliation is crucial in our choice of the “basis” δz.

15.3.2. Exponential decay. We now analyze the behaviour of the symbols bj
~
(t, x)

appearing in (15.7), when j → ∞. These symbols are constructed iteratively: start-

ing from the function bj−1
~

(1) =
∑N−1

k=0 b
j−1
k (1) supported inside πLj−1(0), we define

(15.8) bj
~
(0, x) = P̂αj

(x) bj−1
~

(1, x) , x ∈ πLj(0) .
The WKB procedure of §14 shows that for any t ∈ [0, 1],

(15.9) U t vj(0) = vj(t) +RjN (t) ,

where the transported symbol bj−1
~

(t) =
∑N−1

k=0 ~k bj−1
k (t) is supported inside πLj(t).

The remainder satisfies

(15.10) ‖RjN(t)‖ ≤ C t ~N
(

N−1
∑

k=0

‖bjk(0)‖C2(N−k)

)

.

To control this remainder when j → ∞, we need to bound from above the deriva-
tives of bj

~
. Lemma 15.1 below shows that all terms bjk(t) and their derivatives decay

exponentially when j → ∞, due to the Jacobian appearing in (14.4).
To understand the reasons of the decay, we first look at the principal symbol

bj0(1, x). It satisfies the following recurrence:

(15.11) bj0(1, x) = T j+1
j (P̂αj

× bj−1
0 (1))(x) = (P̂αj

× bj−1
0 (1)) ◦Gjj+1(x)

√

Jjj+1(x) ;

using similar notations as above, the transport map Gs,t is defined, for j ≤ s, t ≤
j + 1, by Gs,t := expt−sLj(s−j) ◦π−1, and maps πLj(s − j) to πLj(t − j). We denote

J ts the jacobian of Gts. We recall that Gnn−1G
n−1
n−2 . . .G

2
1 = Gn1 , where both sides are

defined.
Iterating this expression, and using the fact that 0 ≤ P̂αj

≤ 1, we get at time
n and for any x ∈ πLn(0):

(15.12) |bn0 (0, x)| ≤ |b00(1, G1
n(x))| ×

(

Jn−1
n (x)Jn−2

n−1 (G
n−1
n x) . . . J1

2 (G
2
3(x))

)1/2

.
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By the chain rule, this product of jacobians is simply J1
n(x)

1/2 = Jn1 (G
1
n(x))

−1/2.
Recall that L0(0) intersected with each energy layer S1+ηX := {ξ ∈ T ∗X, ‖ξ‖ =

1 + η} is just a piece of the sphere S1+η
z X . Thus, if d(x, z) = 1 + η, the jacobian

Jn1 (G
1
n(x)) measures the expansion rate of the sphere gn(S1+η

z X) : in dimension
d and curvature ≡ −1, it grows asymptotically like e(d−1)(1+η)n when n → ∞. If
x ∈ πL1(0) (and if this last set is non-empty) we have d(x, z) ≥ 1 − ε (because
L0(0) is contained in H−1(12 − ε, 12 + ε)). We obtain the following estimate on the
principal symbol bn0 (0):

(15.13) ∀n ≥ 1 ‖bn0 (0)‖∞ ≤ ‖b00(1)‖∞ [exp(−n(d− 1)(1− ε)]1/2

The following lemma, which we shall not prove here, shows that the upper
bound extends to the full symbol bn

~
(0, x) and its derivatives.

Lemma 15.1. Take any index 0 ≤ k ≤ N and m ≤ 2(N −k). Then there exists
a constant C(k,m) such that

(15.14) ∀n ≥ 1, ∀x ∈ πLn(0),
|dmbnk (0, x|z)| ≤ C(k,m)nm+3k [exp(−n(d− 1)(1− ε))]1/2 .

This bound is uniform with respect to the initial point z. For (k,m) 6= (0, 0), the
constant C(k,m) depends on the partition P(0), while C(0, 0) does not.

Taking into account the fact that the remainders RjN (1) are dominated by the

derivatives of the bjk (see (15.10)), the above statement translates into

∀j ≥ 1, ‖RjN (1)‖L2 ≤ C(N) j3N [exp(−n(d− 1)(1− ε))]1/2 ~N .

A crucial fact for us is that the above bound also holds for the propagated remainder
P̂αn

U · · ·UP̂αj+1R
j
N (1), due to the fact that the operators P̂αj

U have norms less
than 1. As a result, the total error at time n is bounded from above by the sum of
the errors ‖RjN(1)‖. We obtain the following estimate for any n > 0:
(15.15)

‖P̂αn
UP̂αn−1 · · · P̂α1 v

0(1|z)−vn(0|z)‖ ≤ C(N) ~N
n
∑

j=0

j3N [exp(−n(d−1)(1−ε))]1/2.

The last term is bounded by C(N)~N . This bound is uniform with respect to the
initial point z.

15.4. Conclusion. From (15.15), we see that we can use our Ansatz vn(0|z)
to estimate the norm of P̂αn

UP̂αn−1 · · · P̂α1 v
0(1|z), up to an error O(~N ). From

(15.14) and the definition (15.7) of vn(0|z), we have

(15.16) ‖vn(0|z)‖L2(X) ≤ [exp(−n(d− 1)(1− ε))]1/2
N−1
∑

k=0

C(k, 0)~kn3k.

As required in Theorem 10.1, let us now take an arbitrary large K, and n =
K| log ~|. In the inequalities (15.13) and (15.16), the right hand term is bounded

below by a fixed power of ~ (more precisely, ~−
1
2K(d−1)). Thus, we will choose N ,

the order of our WKB expansion, large enough so that the remainder (15.15) is

negligible compared to ~
− 1

2K(d−1).
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Now, remember the relation (15.4) between v0(1|z) and UP̂α0δz : note in par-
ticular the normalization factor (2π~)−d/2. The combination of (15.15) and (15.16)
gives us

(15.17) ‖P̂αn
UP̂αn−1 · · · P̂α1U P̂α0δz‖L2(X) ≤

2

(2π~)d/2
[exp(−n(d− 1)(1− ε))]1/2

for n = K| log ~| and ~ ≤ ~K.
Combined with (15.2) and the subsequent discussion, we find

‖P̂αn
UP̂αn−1 ...UP̂α0 Op(χ)u‖ ≤ 2l

√
VolX

(2π~)d/2
‖u‖L2(X)[exp(−n(d− 1)(1− ε))]1/2

which is the announced result.
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Ann. Math.

[AN06] N. Anantharaman, S. Nonnenmacher, Semi-classical entropy of the Walsh-quantized
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[FNDB03] F. Faure, N, Nonnenmacher, S. De Bièvre, Scarred eigenstates for quantum cat maps
of minimal periods, Comm. Math. Phys. 239 no. 3, 449–492, (2003).

[FN04] F. Faure, N, Nonnenmacher, On the maximal scarring for quantum cat map eigen-
states, Comm. Math. Phys. 245 no. 1, 201–214 (2004).

[Foll] G. B. Folland, Harmonic analysis in phase space, Princeton University Press 1989.
[GL93] P. Gérard and E. Leichtnam, Ergodic properties of eigenfunctions for the Dirichlet

problem, Duke Math. J. 71(2), 559–607 (1993).
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cyclopedia of Mathematical Physics.

[HelMR87] B. Helffer, A. Martinez, D. Robert Ergodicité et limite semi-classique, Comm. Math.
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