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1 Introduction

What relates an earthquake, a drum, a 2-dimensional meso-

scopic cavity, a microwave oven and an optical fibre? The

equations governing wave propagation in these systems (seis-

mic, acoustic, electronic, microwave and optical) are linear.

As a result, the solutions of the wave equations can be de-

composed as a sum over vibrating eigenmodes (or stationary

modes). The discrete (or “quantum”) nature of this eigenmode

decomposition is due to the compact geometry of the above-

mentioned “cavities”. Mathematically, the latter are modelled

by compact, d-dimensional Riemannian manifolds (X ,g) with

or without boundaries.

To simplify the presentation, we will restrict ourselves to

scalar waves, described by a real wavefunction ψ(x,t). The

eigenmodes (ψn(x))n≥0 then satisfy Helmholtz’s equation

∆ψn + k2
n ψn = 0 , (1.1)

where ∆ : H2 → L2 is the Laplace-Beltrami operator on X and

kn ≥ 0 is the vibration frequency of the mode ψn. If the mani-

fold has a boundary (as is the case for an acoustic drum or for

electromagnetic cavities), the wavefunction must generally

satisfy specific boundary conditions, dictated by the physics

of the system: the simplest ones are the Dirichlet (ψ|∂X = 0)

and Neumann (∂νψ|∂X = 0) boundary conditions, where ∂ν is

the normal derivative at the boundary.

Our goal is to describe the eigenmodes, in particular the

high-frequency eigenmodes (kn ≫ 1). Specifically, we would

like to predict the localization properties of the modes ψn,

from our knowledge of the geometry of the manifold (X ,g).
Consider, for instance, the case of a bounded domain in

the Euclidean plane, which we will call a billiard. For some

very particular billiard shapes (e.g. a rectangle, a circle or an

ellipse), there exists a choice of coordinates allowing one to

separate the variables in Helmholtz’s equation (1.1), thereby

reducing it to a one-dimensional eigenvalue problem (of the

Sturm-Liouville type). In the high-frequency limit, the lat-

ter can be solved to arbitrarily high precision through WKB1

methods, or sometimes even exactly (see Figure 1). The high-

energy eigenmodes of such domains are hence very well-

understood.

This separation of variables can be interpreted as a partic-

ular symmetry of the classical dynamics of the billiard (the

motion of a point particle rolling frictionless across the bil-

liard and bouncing on its boundary). This dynamics is Liouville-
integrable, which means that there is a conserved quantity in

addition to the kinetic energy. For instance, in a circular bil-

liard the angular momentum of the particle is conserved. The

classical trajectories are then very “regular” (see Figure 1).

The same regularity is observed in the eigenfunctions and can

be explained by the existence of a non-trivial differential op-

erator commuting with the Laplacian.

Figure 1. Top: one orbit of the circular billiard. Bottom left and right:

two eigenmodes of that billiard, with their respective frequencies

As soon as an integrable billiard is slightly deformed, the

symmetry is broken: the geodesic flow is no longer integrable;

it becomes chaotic in some regions of phase space. We do

not have any approximate formula at hand to describe the

eigenmodes. The extreme situation consists of fully chaotic
billiards, like the “stadium” displayed in Figure 2 (the word

“chaotic” is a fuzzy notion; the results we present below will

always rely on precise mathematical assumptions).

We mention that the most recent numerical methods (the

boundary operator and the “scaling method”) allow one to

compute a few tens of thousands of eigenmodes for 2-dimen-

sional billiards, at most a few thousands in 3 dimensions and

much less if the metric is not Euclidean. The difficulty stems

from the fact that a mode of frequency kn ≫ 1 oscillates on a

scale ∼ 1/kn (the wavelength); one thus needs a finer and finer

mesh when increasing the frequency2. On the other hand, the

analytical methods and results we present below are espe-

cially fitted to describe these high-frequency modes.

Semiclassical methods

In the general case of a Riemannian manifold, the classical

dynamics (away from the boundaries) consists of the Hamil-

tonian flow gt on the cotangent bundle3 T ∗X , generated by

the free motion Hamiltonian

H(x,ξ ) =
|ξ |2

2
, (x,ξ ) ∈ T ∗X . (1.2)

The flow on the energy layer H−1(1/2) = S∗X = {(x,ξ ) :

|ξ | = 1} is simply the geodesic flow on the manifold (with

reflections on the boundary in the case ∂X 6= 0).



Figure 2. Top left: one typical “ergodic” orbit of the “stadium”: it equidistributes across the whole billiard. The three other plots feature eigenmodes

of frequencies kn ≈ 39. Bottom left: a “scar” on the (unstable) horizontal periodic orbit. Bottom right: a “bouncing ball” mode.

The high-frequency regime allows us to use the tools of

semiclassical analysis. Indeed, the Helmholtz equation (1.1)

can be interpreted as a stationary Schrödinger equation: tak-

ing h̄n = k−1
n as an “effective Planck’s constant”, the eigen-

mode ψn satisfies

−
h̄2

n∆

2
ψn =

1

2
ψn. (1.3)

The operator− h̄2∆
2

on the left-hand side is the quantum Hamil-

tonian governing the dynamics of a particle moving freely in-

side the cavity; it is the quantization of the classical Hamilto-

nian (1.2). The above equation describes a quantum particle

in a stationary state of energy E = 1/2 (in this formalism, the

energy is fixed but Planck’s “constant” is the running vari-

able). The high-frequency limit kn → ∞ exactly corresponds

to the semiclassical regime h̄ = h̄n → 0. In the following, the

eigenmode will be denoted by ψn or ψh̄.

The correspondence principle provides a connection be-

tween the Schrödinger propagator, namely the unitary flow

U t = eith̄ ∆
2 acting on L2(X) and the geodesic flow gt acting

on the phase space T ∗X . The former “converges” towards the

latter in the semiclassical limit h̄→ 0, in a sense made explicit

below. The aim of semiclassical analysis is to exploit this cor-

respondence and use our understanding of the geodesic flow

in order to extract properties of the Schrödinger flow.

To analyse the eigenmodes we need to observe them by

using quantum observables. For us, an observable is a real

function A ∈ C∞(T ∗X) that will be used as a test function to

measure the phase space localization of a wavefunction. One

can associate to this function a quantum observable Oph̄(A),
which is a selfadjoint operator on L2(X) obtained from A
through a certain (h̄-dependent) quantization procedure. For

instance, on X = R
d a possible procedure is the Weyl quanti-

zation

OpW
h̄ (A) f (x)

=
1

(2π h̄)d

∫

A

(

x + y
2

,ξ

)

e
i
h̄ ξ .(x−y) f (y)dydξ . (1.4)

The simplest case consists of functions A(x,ξ ) = A(x) inde-

pendent of the momentum; OpW
h̄ (A) is then the operator of

multiplication by A(x). If A = A(ξ ) is a polynomial in the

variable ξ then OpW
h̄ (A) is the differential operator A

(

h̄
i

∂
∂x

)

.

The role of the parameter h̄ in the definition of OpW
h̄ (A) is to

adapt that operator to the study of functions oscillating on a

spatial scale ∼ h̄. On a general smooth manifold X , one can

define a quantization Oph̄(A) by using the formula (1.4) in

local charts and then glue together the charts using a smooth

partition of unity.

A mathematical version of the correspondence principle

takes the form of an Egorov theorem. It states that quanti-

zation (approximately) commutes with evolution for observ-

ables:

‖e−ith̄ ∆
2 Oph̄(A)eith̄ ∆

2 −Oph̄(A◦ gt)‖
L (L2)

= OA,t(h̄) . (Egorov) (1.5)

Semiclassical measures

In quantum mechanics, the function |ψ(x)|2 describes the

probability (density) of finding the particle at the position

x ∈ X . A measuring device will only be able to measure

the probability integrated over a small region (a “pixel”)
∫

B |ψ(x)|2 dx, which can be expressed as a diagonal matrix

element 〈ψ ,1lBψ〉. Here 1lB is the multiplication operator (on

L2(X)) by the characteristic function on B.

More generally, for a nontrivial observable A(x,ξ ) sup-

ported in a small phase space region, the matrix element

〈ψ ,Oph̄(A)ψ〉 provides information on the probability of the

particle lying in this region. From the linearity of the quan-

tization scheme A 7→ Oph̄(A), this matrix element defines a

distribution µψ on T ∗X :

µψ(A)
def
= 〈ψ ,Oph̄(A)ψ〉, ∀A ∈C∞

0 (T ∗X).

This distribution (which depends on the state ψ but also on

the scale h̄) is called the Wigner measure of the state ψ . The

projection of µψ on X is equal to the probability measure

|ψ(x)|2 dx; for this reason, µψ is also called a microlocal lift
of that measure. Still, µψ contains more information: it takes

the phase of ψ into account and thereby also describes the

local momentum of the particle (measured at the scale h̄).

In order to study the localization properties of the eigen-

modes ψn, we will consider their Wigner measures µψn = µn

(constructed with the adapted scales h̄n). It is difficult to state

anything rigorous about the Wigner measures of individual

eigenmodes so we will only aim to understand the limits of

(subsequences of) the family (µn)n≥0 in the weak topology



on distributions. Such a limit µ is called a semiclassical mea-

sure of the manifold X . Basic properties of the quantization

scheme imply that:

– µ is a probability measure supported on the energy shell

S∗X .

– µ is invariant through the geodesic flow: µ = (gt)∗(µ),
∀t ∈ R.

– The collection of semiclassical measures µ does not de-

pend on the choices of local symplectic coordinates in-

volved in the definition of the quantization scheme A 7→
Oph̄(A).

The second property is a direct consequence of the Egorov

theorem (1.5).

Starting from the family of quantum stationary modes

(ψn)n, we have constructed one or several probability mea-

sures µ on S∗X , invariant through the classical flow. Each of

them describes the asymptotical localization properties of the

modes in some subsequence (ψn j) j≥1.

Is any invariant measure a semiclassical measure?

On a general Riemannian manifold X , the geodesic flow ad-

mits many different invariant probability measures. The Liou-

ville measure, defined as the disintegration on the energy shell

S∗X of the symplectic volume dxdξ , is a “natural” invariant

measure on S∗X . We will denote it by L in the following. Fur-

thermore, each periodic geodesic carries a unique invariant

probability measure. The chaotic flows we will consider ad-

mit a countable set of periodic geodesics, the union of which

fills S∗X densely.

Given a manifold (X ,g), we are led to the following ques-

tion: Among all gt-invariant probability measures on S∗X ,

which ones do actually appear as semiclassical measures?

Equivalently, to which invariant measures can the Wigner

measures (µn) converge to in the high-frequency limit?

At the moment, the answer to this question for a general

manifold X is unknown. We will henceforth be less ambi-

tious and restrict ourselves to geodesic flows satisfying well-

controlled dynamical properties: the strongly chaotic systems.

2 Chaotic geodesic flows

The word “chaotic” is quite vague so we will need to provide

more precise dynamical assumptions. All chaotic flows we

will consider are ergodic with respect to the Liouville mea-

sure. This means that S∗X cannot be split into two invari-

ant subsets of positive measures. A more “physical” defini-

tion is the following: the trajectory starting on a typical point

ρ ∈ S∗X will cover S∗X in a uniform way at long times (see

Figure 2) so that “time average equals spatial average”.

The “stadium” billiard (see Figure 2) enjoys a stronger

chaoticity: mixing, meaning that any (small) ball B ⊂ S∗X
evolved through the flow will spread uniformly throughout

S∗X for large times. The strongest form of chaos is reached

by the geodesic flow on a manifold of negative curvature;

such a flow is uniformly hyperbolic or, equivalently, it has the

Anosov property [3]. All trajectories are then unstable with

respect to small variations of the initial conditions. Paradoxi-

cally, this strong instability leads to a good mathematical con-

trol on the long time properties of the flow. Such a flow is fast

mixing with respect to L.

Numerical computations of eigenmodes are easier to per-

form for Euclidean billiards than on curved manifolds; on the

other hand, the semiclassical analysis is more efficient in the

case of boundary-free compact manifolds so most rigorous

results below concern the latter.

Quantum ergodicity

Ergodicity alone already strongly constrains the structure of

the high-frequency eigenmodes: almost all of these eigen-

modes are equidistributed on S∗X .

Theorem 2.1 (Quantum ergodicity). [22, 24, 9] Assume the
geodesic flow on (X ,g) is ergodic with respect to the Liouville
measure on S∗X.

Then, there exists a subsequence (n j) ⊂ N of density 1

such that the Wigner measures of the corresponding eigen-
modes satisfy

µn j −→j→∞
L .

The phrase “of density 1” means that
#{n j≤N}

N
N→∞
→ 1. There-

fore, if there exists a subsequence of eigenmodes converg-

ing towards a semiclassical measure µ 6= L, this subsequence

must be sparse and consist of exceptional eigenmodes.

“Scars” and exceptional semiclassical measures

Numerical computations of eigenmodes of some chaotic bil-

liards have revealed interesting structures. In 1984, Heller [15]

observed that some eigenmodes of the “stadium” billiard (the

ergodicity of which had been demonstrated by Bunimovich)

are “enhanced” along some periodic geodesics. He called such

an enhancement a “scar” of the periodic geodesic upon the

eigenmode (see Figure 2). Although it is well-understood that

an eigenmode can be concentrated along a stable periodic

geodesic, the observed localization along unstable geodesics

is more difficult to justify. The enhancement observed by

Heller was mostly “visual”; the more quantitative studies that

followed Heller’s paper (e.g. [5]) seem to exclude the possi-

bility of a positive probability weight remaining in arbitrary

small neighbourhoods of the corresponding geodesic. Such

a positive weight would have indicated that the correspond-

ing semiclassical measures “charge” the unstable orbit (a phe-

nomenon referred to as “strong scar” in [21]). Contrary to the

case of Euclidean billiards, numerical studies on surfaces of

constant negative curvature have not shown the presence of

“scars” [4].

On the mathematical level, the most precise results on the

localization of eigenmodes are obtained in the case of cer-

tain surfaces of constant negative curvature enjoying specific

arithmetic symmetries, called “congruence surfaces”. A fa-

mous example is the modular surface (which is not compact).

For these surfaces, there exists a commutative algebra of self-

adjoint operators on L2(X) (called Hecke operators), which

also commute with the Laplacian. It is then reasonable to fo-

cus on the orthonormal bases formed of joint eigenmodes of

these operators (called Hecke eigenmodes). Rudnick and Sar-

nak have shown [21] that semiclassical measures associated

with such bases cannot charge any periodic geodesic (“no

strong scar” on congruence surfaces). This result, as well as

the numerical studies mentioned above, suggested to them the

following



Conjecture 2.2 (Quantum unique ergodicity). Let (X ,g) be
a compact Riemannian manifold of negative curvature. For
any orthonormal eigenbasis of the Laplacian, the sequence of
Wigner measures (µn)n≥0 admits a unique limit (in the weak
topology), namely the Liouville measure.

This conjecture goes far beyond the non-existence of “strong

scars”. It also excludes all the “fractal” invariant measures.

This conjecture has been proved by E. Lindenstrauss in

the case of compact congruence surfaces, provided one only

considers Hecke eigenbases [18]. The first part of the proof

[7] (which relies heavily on the Hecke algebra) consists of es-

timating from below the entropies of the ergodic components

of a semiclassical measure. We will see below that the entropy

is also at the heart of our results.

The role of multiplicity?

A priori, there can be multiple eigenvalues in the spectrum of

the Laplacian, in which case one can make various choices of

orthonormal eigenbases. On a negatively curved surface, it is

known [6] that the eigenvalue k2
n has multiplicity O

(

kn
logkn

)

but this is far from what people expect, namely a uniformly

bounded multiplicity. One could modify Conjecture 2.2 so

that the statement holds for a given basis (e.g. a Hecke eigen-

basis in the case of a congruence surface) but may be false for

another basis.

In parallel with the study of chaotic geodesic flows, peo-

ple have also considered toy models of discrete time symplec-

tic transformations on some compact phase spaces. The most

famous example of such transformations is better known as

“Arnold’s cat map” on the 2-dimensional torus. It consists of

a linear transformation (x,ξ ) → M(x,ξ ), where the unimod-

ular matrix M ∈ SL(2,Z) is hyperbolic, i.e. it satisfies |trM| >
2. The “Anosov property” then results from the fact that no

eigenvalue of M has modulus 1. That transformation can be

quantized to produce a family of unitary propagators, depend-

ing on a mock Planck parameter h̄N = (2πN)−1, where N is

an integer [14]. Such propagators have been named “quan-

tum maps” and have served as a “laboratory” for the study of

quantum chaotic systems, both on the numerical and analyti-

cal sides.

Concerning the classification of semiclassical measures,

the “quantized cat map” has exhibited unexpectedly rich fea-

tures. On the one hand, this system enjoys arithmetic symme-

tries, allowing one to define “Hecke eigenbases” and prove

the quantum unique ergodicity for such eigenbases [16]. On

the other hand, for some (scarce) values of N the spectrum of

the quantum propagator contains large degeneracies. This fact

has been exploited in [10] to construct sequences of eigen-

functions violating quantum unique ergodicity: the correspond-

ing Wigner measures µN converge to the semiclassical mea-

sure

µ =
1

2
δO +

1

2
L, (2.1)

where L = dxdξ is now the symplectic volume measure and

δ0 is the M-invariant probability measure supported on a pe-

riodic orbit of M.

This result shows that the quantum unique ergodicity con-

jecture can be wrong when extended to chaotic systems more

general than geodesic flows. More precisely, for the “cat map”

the conjecture holds true for a certain eigenbasis but is wrong

for another one.

Another result concerning the “cat map” is the following:

the weight 1/2 carried by the scar in (2.1) is maximal [11].

In particular, no semiclassical measure can be supported on a

countable union of periodic orbits. In the next section, dealing

with our more recent results on Anosov geodesic flows, we

will see this factor 1/2 reappear.

3 Entropic bounds on semiclassical measures

In this section, we consider the case of a compact manifold

(without boundary) of negative sectional curvature. As men-

tioned earlier, the corresponding geodesic flow has many in-

variant probability measures. The Kolmogorov-Sinai

entropy associated with an invariant measure is a number

hKS(µ)≥ 0, defined below. We stress a few important proper-

ties:

– A measure supported by a periodic trajectory has zero en-

tropy.

– The maximal entropy hmax is reached for a unique invariant

measure, called the Bowen-Margulis measure, of support

S∗X .

– According to the Ruelle-Pesin inequality,

hKS(µ) ≤

∫ d−1

∑
k=1

λ +
k dµ , (3.1)

where the functions λ +
1 (ρ) ≥ λ +

2 (ρ) ≥ ·· · ≥ λd−1(ρ) >
0, defined µ-almost everywhere, are the positive Lyapunov

exponents of the flow. Equality in (3.1) is reached only if µ
is the Liouville measure [17].

– On a manifold of constant curvature −1, the inequality

reads hKS(µ)≤ d−1. The Bowen-Margulis measure is then

equal to the Liouville measure.

– The functional hKS is affine on the convex set of invariant

probability measures.

These properties show that the entropy provides a quantita-

tive indication of the localization of an invariant measure. For

instance, a positive lower bound on the entropy of a measure

implies that it cannot be supported by a countable union of

periodic geodesics. This is precisely the content of our first

result.

Theorem 3.1. (1) [1] Let X be a compact Riemannian mani-
fold such that the geodesic flow has the Anosov property. Then
every semiclassical measure µ on S∗X satisfies

hKS(µ) > 0.

(2) [2] Under the same assumptions, let λ +
j (ρ) be the positive

Lyapunov exponents and λmax = limt→∞
1
t logsupρ∈S∗X ||dgt

ρ ||
be the maximal expansion rate of the geodesic flow. Then the
entropy of µ satisfies

hKS(µ) ≥

∫ d−1

∑
k=1

λ +
k dµ −

d−1

2
λmax . (3.2)

In constant curvature −1, this bound reads hKS(µ) ≥ d−1
2

.

Corollary 1. [1] Let X be a compact manifold of dimension d
and constant sectional curvature −1. Then, for any semiclas-

sical measure µ , the support of µ has Hausdorff dimension

≥ d.



In constant negative curvature, the lower bound hKS(µ)≥
d−1

2
implies that at most 1/2 of the mass of µ can consist of a

scar on a periodic orbit. This is in perfect agreement with the

similar result proved for “Arnold’s cat map” (see §2).

The right-hand side of (3.2) can be negative if the curva-

ture varies a lot, which unfortunately makes the result trivial.

A more natural lower bound to hope for would be

hKS(µ) ≥
1

2

∫ d−1

∑
k=1

λ +
k dµ . (3.3)

This lower bound has been obtained recently by G. Rivière for

surfaces (d = 2) of nonpositive curvature [20]. B. Gutkin has

proved an analogous result for certain quantum maps with a

variable Lyapunov exponent [12]; he also constructed eigen-

states for which the lower bound is attained.

From the Ruelle–Pesin inequality (3.1), we notice that

proving the quantum unique ergodicity conjecture in the case

of Anosov geodesic flows would amount to getting rid of the

factor 1/2 in (3.3).

We finally provide a definition of the entropy and a short

comparison between the entropy bound of Bourgain-Linden-

strauss [7] and ours.

Definition 1. The shortest definition of the entropy results

from a theorem due to Brin and Katok [8]. For any time T > 0,

introduce a distance on S∗X ,

dT (ρ ,ρ ′) = max
t∈[−T/2,T/2]

d(gtρ ,gtρ ′),

where d is the distance built from the Riemannian metric. For

ε > 0, denote by BT (ρ ,ε) the ball of centre ρ and radius ε
for the distance dT . When ε is fixed and T goes to infinity, it

looks like a thinner and thinner tubular neighbourhood of the

geodesic segment [g−ε ρ ,g+ερ ] (this tubular neighbourhood

is of radius e−T/2 if the curvature of X is constant and equal

to −1).

Let µ be a gt–invariant probability measure on S∗X . Then,

for µ-almost every ρ , the limit

lim
ε−→0

liminf
T−→+∞

−
1

T
log µ

(

BT (ρ ,ε)
)

= lim
ε−→0

limsup
T−→+∞

−
1

T
log µ

(

BT (ρ ,ε)
) def

= hKS(µ ,ρ)

exists and it is called the local entropy of the measure µ at the

point ρ (it is independent of ρ if µ is ergodic). The Kolmogo-

rov-Sinai entropy is the average of the local entropies:

hKS(µ) =
∫

hKS(µ ,ρ)dµ(ρ).

Remark 3.2. In the case of congruence surfaces, Bourgain

and Lindenstrauss [7] proved the following bound on the mi-

crolocal lifts of Hecke eigenbases: for any ρ , and all ε > 0

small enough,

µn
(

BT (ρ ,ε)
)

≤Ce−T/9,

where the constant C does not depend on ρ or n. This imme-

diately yields that any semiclassical measure associated with

these eigenmodes satisfies µ(BT (ρ ,ε)) ≤Ce−T/9, which im-

plies that any ergodic component of µ has entropy ≥ 1
9
.

In [2], we work with a different, but equivalent, definition

of the entropy. On a manifold of dimension d and constant

curvature −1, the bound we prove can be (at least intuitively)

interpreted as

µn
(

BT (ρ ,ε)
)

≤C k
d−1

2
n e−

(d−1)T
2 , (3.4)

where k2
n is the eigenvalue of the Laplacian associated with

ψn. This bound only becomes non-trivial for times T > logkn.

For this reason, we cannot directly deduce bounds on the

weights µ(BT (ρ ,ε)); the link between (3.4) and the entropic

bounds of Theorem 3.1 is less direct and uses some specific

features of quantum mechanics.

Notes

1. Wentzel-Kramers-Brillouin.

2. The code used to compute the stadium eigenmodes featured in

this article was written and provided by Eduardo Vergini [23].

3. This bundle is often called “phase space”. It consists of the pairs

(x,ξ ), where x ∈ X and ξ ∈ R
d is the coordinate of a covector

based at x, representing the momentum of the particle.
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