Lasry-Lions regularization and a Lemma of Ilmanen

Patrick Bernard

December 2009

Let H be a Hilbert space. We define the following inf (sup) convolution operators acting on
bounded functions v : H — R:

Tou() 1=t (uly) + 7y — 2l

and

Tru(e) 1= sup (uly) = |y — ).

We have the relation
Tt(—u) = —Tt(u).

Recall that these operators form semi-groups, in the sense that
TioTs =T, s and Tt o Ts = TtJrS

for all £ > 0 and s > 0, as can be checked by direct calculation. Note also that

infu < Thu(z) < u(z) < Tyu(r) < supu

for each t > 0 and each x € H. A function u : H — R is called k-semi-concave, k > 0, if the
function 2 — u(x) — ||z||?/k is concave. The function u is called k-semi-convex if —u is k-semi-
concave. A bounded function w is t-semi-concave if and only if it belongs to the image of the
operator Tj, this follows from Lemma 1 and Lemma 3 below. A function is called semi-concave
if it is k-semi-concave for some k > 0. A function u is said CU! if it is Frechet differentiable
and if the gradient of w is Lipschitz. Note that a continuous function is C!' if and only if
it is semi-concave and semi-convex, see Lemma 6. Let us recall two important results in that
language:

Theorem 1. (Lasry-Lions, [6]) Let u be a bounded function. For0 < s < t, the function TysoTyu
is CYY and, if u is uniformly continuous, then it converges uniformly to v when t — 0.

Theorem 2. (llmanen, [7]) Let u > v be two bounded functions on H such that u and —v are
semi-concave. Then there exists a O function w such that uw > w > v.

Our goal in the present paper is to ”generalize” simultaneously both of these results as
follows:

Theorem 3. The operator R; := T, 0 Ty o T} has the following properties:
o Regularization : Ryf is CY' for all bounded f and all t > 0.

o Approximation : If f is uniformly continuous, then Rif converges uniformly to f as
t— 0.



e Pinching: If u > v are two locally bounded functions such that uw and —v are k-semi-
concave, then the inequality u > Ry f > v holds for each t < k ifu > f > v.

Theorem 3 does not, properly speaking, generalize Theorem 1. However, it offers a new
(although similar) answer to the same problem: approximating uniformly continuous functions
on Hilbert spaces by C1'! functions with a simple explicit formula.

Because of its symmetric form, the regularizing operator R; enjoys some nicer properties
than the Lasry-Lions operators. For example, if f is C1!, then it follows from the pinching
property that R,f = f for ¢ small enough.

Theorem 2, can be proved using Theorem 3 by taking w = Ryu, for ¢ small enough. Note,
in view of Lemma 3 bellow, that R;u = T, o Tyu when t is small enough.

Theorem 3 can be somehow extended to the case of finite dimensional open sets or manifolds
via partition of unity, at the price of loosing the simplicity of explicit expressions. Let M be
a paracompact manifold of dimension n, equipped once and for all with an atlas (¢;,i € )
composed of charts ¢; : B" — M, where B" is the open unit ball of radius one centered at
the origin in R™”. We assume in addition that the image ¢;(B™) is a relatively compact open
set. Let us fix, once and for all, a partition of the unity g; subordinated to the open covering
(¢i(B™),i € ¥). It means that the function g; is non-negative, with support inside ¢;(B"), such
that >, g; = 1, where the sum is locally finite. Let us define the following formal operator

Gi(u) ==Y [Ria; ((giu) 0 ¢)] 0 67,
i
where a;,7 € & are positive real numbers. We say that a function v : M — R is locally semi-
concave if, for each i € 3, there exists a constant b; such that the function u o ¢; — ||.||?/b; is
concave on B™.

Theorem 4. Let u > v be two continuous functions on M such that u and —v are locally semi-
concave. Then, the real numbers a; can be chosen such that, for each t €]0,1] and each function
f satisfying uw > f > v, we have:

e The sum in the definition of Gy(f) is locally finite, so that the function Gi(f) is well-
defined.

e The function Gif is locally C11.
o If f is continuous, then Gi(f) converges locally uniformly to f ast — 0.

o u>Gif 2.

Notes and Acknowledgements

Theorem 2 appears in Ilmanen’s paper [5] as Lemma 4G. Several proofs are sketch there but
none is detailed. The proof we detail here follows lines similar to one of the sketches of Ilmanen.
This statement also has a more geometric counterpart, Lemma 4E in [5]. A detailed proof of
this geometric version is given in [2], Appendix. My attention was attracted to these statements
and their relations with recent progresses on sub-solutions of the Hamilton-Jacobi equation
(see [1, 1, 7]) by Pierre Cardialaguet, Albert Fathi and Maxime Zavidovique. These authors
also recently wrote a detailed proof of Theorem 2, see [3]. This paper also proves how the
geometric version follows from Theorem 2. There are many similarities between the tools used
in the present paper and those used in [I]. Moreover, Maxime Zavidovique observed in [7]
that the existence of C'™! subsolutions of the Hamilton-Jacobi equation in the discrete case can
be deduced from Theorem 2. However, is seems that the main result of [1] (the existence of
C1! subsolutions in the continuous case) can’t be deduced easily from Theorem 2. Neither can
Theorem 2 be deduced from it.



1 The operators T; and 7, on Hilbert spaces

The proofs of the theorems follow from standard properties of the operators T; and 7} that we
now recall in details.

Lemma 1. For each bounded function u, the function Tyu is t-semi-concave and the function
Tyu is t-semi-convex. Moreover, if u is k-semi-concave, then for each t < k the function Tyu is
(k — t)-semi-concave. Similarly, if u is k-semi-convex , then for each t < k the function Tiu is
(k — t)-semi-convez.

PROOF. We shall prove the statements concerning 7;. We have
Tyu(a) — [l«]?/t = inf (u(y) + ly — 2|/t = || /t) = inf (uy) + llyl?/t = 2 - y/t),
this function is convex as an infimum of linear functions. On the other hand, we have

Tyu(@) + ||2l|*/ = inf (u(y) + |y — =|*/t + [l2]/1).

Setting f(z,y) :=u(y) + ||y — z||*/t + ||z||?/l, the function inf, f(z,y) is a convex function of x
if f is a convex function of (z,y). This is true if u is k-semi-convex, ¢ < k, and [ = k —t because
we have the expression

) = uly) + =l + VL= (o) + Lol )+ [ =Rl
0

Given a uniformly continuous function v : H — R, we define its modulus of continuity
p(r) : [0,00) — [0,00) by the expression p(r) = sup, . u(z +re) —u(x), where the supremum is
taken on all x € H and all e in the unit ball of H. The function p is non-decreasing, it satisfies
p(r +7") < p(r) + p(r'), and it converges to zero in zero (this last fact is equivalent to the
uniform continuity of u). We say that a function p : [0, 00) — [0, 00) is a modulus of continuity
if it satisfies these properties. Given a modulus of continuity p(r), we say that a function u is
p-continuous if |u(y) — u(z)| < p(||ly — z||) for all z and y in H.

Lemma 2. If u is uniformly continuous, then the functions Tyu and Tyu converge uniformly
to u when t — 0. Moreover, given a modulus of continuity p, there exists a non-decreasing
function €(t) : [0,00) — [0, 00) satisfying lim;—,g €(t) = 0 and such that, for each p-continuous
bounded function u, we have:

o Tyu and Tyu are p-continuous for each t > 0.
o u—¢€(t) < Twu(r) <uandu < Tou <u+ €(t) for each t > 0.

PROOF. Let usfix y € H, and set v
Applying the operator T} gives Tiu
have

—

) = u(z+y). We have u(x)—p(|y[) < v(z) <u(z)+p(lyl)-
z) — p(y) < Tyo(z) < Tiu(z) + p(y). On the other hand, we

—~

Tiv(z) = inf (u(z +y) + ||z = 2)|*/t) = inf (u(z) + ||z = (= + 9)|*/t) = Tu(z +y),

so that
Tiu(z) — p([lyll) < Tiw(z +y) < Tu(z) + p((yl)-

We have proved that Tyu is p continuous if u is, the proof for Tju is the same.



In order to study the convergence, let us set €(t) = sup,~o(p(r) — r?/t). We have

e(t) = sup (p(rv/t) — r?) < sup ((r+ Dp(Vt) — %) = p(Vt) + p* (V) /4.

r>0
We conclude that lim;—, e(t) = 0. We now come back to the operator T}, and observe that
u(y) = lly — =)/t > u(z) — p(lly — ) + ly — 2|*/t > u(z) — (t)

for each x and y, so that
u—€(t) < Tyu < u.

O
Lemma 3. For each locally bounded function u, we have T} o Ti(u) < u and the equality T; o

Ti(u) = u holds if and only if u is t-semi-convex. Similarly, given a locally bounded function v,
we have Ty o Ty(v) = v, with equality if and only if v is t-semi-convex.

PROOF. Let us write explicitly

Ty o Tyu(w) = supinf (u(2) + |z — yl*/t - lly — z[*/1).
Y z

Taking z = z, we obtain the estimate T} o Tyu(z) < sup, u(z) = u(2). Let us now write

Ty o Tuu(z) + o/t = supint (u(z) + 121 o + (2u/9) - (2 = )

which by an obvious change of variable leads to

Ty o Tyu(x) + |l2]|*/t = Sup inf (u(z) + 1217/t +y - (z = 2)).

We recognize here that the function Ty o Tyu(x) + ||z|/t is the Legendre bidual of the function
u(z) + ||x||?/t. Tt is well-know that a locally bounded function is equal to its Legendre bidual if
and only if it is convex. 0

Lemma 4. If u is locally bounded and semi-concave, then Ty o Tyu is CY' for each t > 0.

PRrROOF. Let us assume that u is k-semi-concave. Then u = T}, oTku, by Lemma 3. We conclude
that TyoTyu = TyoTyy i f, with f = Tiu. By Lemma 1, the function T3 f is (t+k)-semi-concave.
Then, the function 73T}, f is k-semi-concave. Since it is also ¢-semi-convex, it is C11. 0

2 Proof of the main results

PROOF OF THEOREM 3: For each function f and each t > 0, the function T} o Th o T3 f is C'b1.
This is a consequence of Lemma 4 since

TyoToy oTif =T, 0 Ty(Ty o T f)

and since the function T} o T} f is semi-concave.
Assume now that both v and —v are k-semi-concave. We claim that

u}f}v:>u>Ttoth>vandu2Ttoth>v



for t < 1/k. This claim implies that u > T, 0Ty 0 th > v when u > f > v. Let us now prove
the claim concerning T o T;, the other part being similar. Since v is k-semi-convex, we have
Ti o Tiv = v for t < k, by Lemma 3. Then,

uzf2ToTif 2T 0Tw=uv

where the second inequality follows from Lemma 3, and the third from the obvious fact that the
operators T; and T} are order-preserving.
The approximation property follows directly from Lemma 2. 0

PROOF OF THEOREM 4: Let a; be chosen such that the functions (g;u) o ¢; and —(g;v) o ¢;
are a;-semi-concave on R"™. The existence of real numbers a; with this property follows from
Lemma 5 below. Given u > f > v, we can apply Theorem 3 for each 4 to the functions

(giu) 0 @i = (gif) o i = (giv) © ¢;

extended by zero outside of B™. We conclude that, for ¢ €]0, 1], the function Ry, ((g:f) o ¢i) is
CY! and satisfies

(giu) o i = Ria,((9if) 0 ¢i) = (giv) © .
As a consequence, the function
[Ria; ((9:.f) 0 ¢1)] 0 67!
is null outside of the support of g;, and therefore the sum in the definition of G, f is locally

finite. The function G4(f) is thus locally a finite sum of C*! functions hence it is locally O
Moreover, we have

u=>Y gu=G(f)=> gw=u

We have used:

Lemma 5. Let u : B — R be a bounded function such that u — ||.||?/a is concave, for some
a > 0. For each compactly supported non-negative C? function g : B® — R, the product gu
(extended by zero outside of B™) is semi-concave on R™.

PROOF. Since u is bounded, we can assume that v > 0 on B". Let K C B" be a compact
subset of the open ball B™ which contains the support of g in its interior. Since the function
u — ||.||?/a is concave on Bj it admits super-differentials at each point. As a consequence, for
each x € B™, there exists a linear form [, such that

0 <u(y) <u(@)+lo-(y—a)+lly - 2l*/a
for each y € B'. Moreover, the linear form I, is bounded independently of z € K. We also have
0 < g(y) < g(x) +dgs - (y —2) + Clly — ||
for some C' > 0, for all z,y in R”. Taking the product, we get, for x € K and y € B",
u(y)9(y) < ule)g(z) + (9(x)ls + u(x)dgs) - (y — ) + Clly — z|* + Clly — 2|® + Clly — =|*

where C' > 0 is a constant independent of x € K and y € B™, which may change from line to
line. As a consequence, setting L, = g(x)l, + u(z)dg,, we obtain the inequality

(9u)(y) < (gu)(x) + Lo - (y —2) + Clly — | (L)



for each z € K and y € B™. If we set L, = 0 for z € R" — K, the relation (L) holds for each
z € R" and y € R™. For z € K and y € B", we have already proved it. Since the linear forms
L., x € K are uniformly bounded, we can assume that L, - (y —2)+Clly—z|?> > 0forallz € K
and y € R™ — B™ by taking C large enough. Then, (L) holds for all x € K and y € R". For
x € R" — K and y outside of the support g, the relation (L) holds in an obvious way, because
gu(z) = gu(y) =0, and L, = 0. For z € R"” — K and y in the support of g, the relation holds
provided that C' > max(gu)/d?, where d is the distance between the complement of K and the
support of g. This is a positive number since K is a compact set containing the support of g in
its interior. We conclude that the function (gu) is semi-concave on R". 0

For completeness, we also prove, following Fathi:

Lemma 6. Let u be a continuous function which is both k-semi-concave and k-semi-convex.
Then the function u is C*', and 6/k is a Lipschitz constant for the gradient of wu.

PROOF. Let u be a continuous function which is both k-semi-concave and k-semi-convex. Then,
for each x € H, there exists a unique [, € H such that

u(z +y) —u(z) — Lo -yl < |yl /k.

We conclude that [, is the gradient of u at x, and we have to prove that the map x — [, is
Lipschitz. We have, for eah =, y and z in H:

Lo (y+2) = |y + 2| /k Swlz +y + 2) —u(@) <l (y+2) + [ly + =) /k
Ly (=) = Ik < (@) = u(e + ) < gy - () + Iyl2/k
L)+ (=2) = 212/ <l + ) = ulw+y+2) <y - (=2) + 212k,
Taking the sum, we obtain
oy = L) - (y+ 2| < lly + 2l /k + [yl ?/k + 121 /.
By a change of variables, we get

|(oy = L) - ()| < N21P/K + MlylP/k + |2 =yl /&

Taking ||z|| = ||y||, we obtain
oty = o) - (2)] < 6ll2]lllyll/%
for each z such that ||z]| = ||y||, we conclude that
Loty — Lall < 6llyll/k
O
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