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Preface

The project of this book started from my work published in the
Comptes Rendus de I’Académie des Sciences, see [Fat97b, Fat97a,
Fat98a, Fat98b].

I gave several courses and lectures on the material presented
there.

The project went through several versions. The first version
was in French. It was produced for the Graduate course “Systéemes
lagrangiens et théorie d’Aubry-Mather”, that I gave at the Ecole
Normale Supérieure de Lyon during Spring Semester 1998. The
French set of notes has circulated widely. Daniel Massart and
FEzequiel Maderna caught up a large amount of mistakes in the
French version. The first set of notes in english were a translated
and improved version of lectures notes in French, and consited of
versions of chapter 1 to 5. It was done while I was on sabbatical
during Spring Semester 2000 at the University of Geneva. I wish to
thank the Swiss National Scientific foundation for support during
that time. This first version was distributed and used at the “Ecole
d’été en géométrie” held at “Université de Savoie” June, 15-22,
2000. A certain number of typing mistakes were found by people
attending the “Ecole d’été en géométrie”

After adding chapter 6, we incorporated some of the improve-
ments suggested by Alain Chenciner and Richard Montgomery.

The subsequent versions, besides improvements, contained a
couple of chapters on viscosity solutions of the Hamilton-Jacobi
equation, especially the connection with the weak KAM theorem,
and a last brief one making the connection with Mané’s point of
view. The opportunity to teach a course of DEA in Lyon in 2001-
2002 and 2002-2003 was instrumental in the expansions in this set
of notes.
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The seventh version was done in Pisa. I had the privilige of
giving a seires of Lectures in Winter 2005 in the Centro di Giorgi
at the Scuola Normale Superiore in Pisa. This seventh version is
a major revision of the sixth.

In this version 8, we have incorporated several typing mistakes
picked up by Maxime Zavidovique.

The present tenth version is prepared for a course given at the
Summer School “Dynamical Systems: Theoretical and Applied
Hamiltonian Dynamics” held at t Instituto Superior Técnico in
Lisbon 16-20 June 2008. It has gone through a major revision of
chapter 4. I have incorporated a new proof found in June 2008
of the Weak KAM Theorem that is more elementary than the
previous ones in that it only uses the order properties for the Lax-
Oleinik semi-group and some compacrness arguments. It avoids
any appeal to a fixed point theorem. We hope that the simple
arguments may be used in other contexts. We kept as a second
proof the one using a fixed point theorem, since we consider it as
much more natural and almost forced on us by the compactness
obtained from Fleming’s Lemma.

A lot of people have helped me for a better understanding
of the subject, it is impossible to mention them all, among the
ones that I can remember vividly in chronological order: John
Mather, Michel Herman, Nicole Desolneux, Daniel Massart, Denis
Serre (without whom, I would have never realized that there was
a deep connection with viscosity solutions), Jean-Christophe Yoc-
coz, Francis Clarke, Gabriel & Miguel Paternain, Gonzalo Con-
treras, Renato Itturiaga, Guy Barles, Jean-Michel Roquejofire,
Ezequiel Maderna, Patrick Bernard, Italo Capuzzo-Dolcetta, Pier-
marco Cannarsa, Craig Evans. Special thanks to Alain Chenciner
for his drive to understand and improve this subject. Last but not
least Antonio Siconolfi, we have been enjoying now a long a solid
collaboration, a large number of the improvements in these set of
notes is due to the numerous conversation that we have specialy
on the viscosity theory aspects.

Starting with the French notes, Claire Desecures helped a lot
in the typing.

Lyon, 14 June 2008



Introduction

The object of this course is the study of the Dynamical System
defined by a convex Lagrangian. Let M be a compact C*° manifold
without boundary. We denote by T'M the tangent bundle and by
m: TM — M the canonical projection. A point of T'M will be
denoted by (z,v) with z € M and v € T,M = 7 '(z). In the
same way, a point of the cotangent bundle 7% M will be denoted
by (x,p) with x € M and p € T;M a linear form on the vector
space T, M.

We consider a function L : TM — R of class at least C3.
We will call L the Lagrangian. As a typical case of L, we can
think of L(z,v) = %gx(v,fu) where ¢ is a Riemannian metric on
M. There is also the case of more general mechanical systems
L(z,v) = 2g,(v,v) = V(2), with g a Riemannian metric on M and
V : M — R a function.

The action functional IL is defined on the set of continuous
piecewise C! curves v : [a,b] — M,a < b by

We look for C! (or even continuous piecewise C!) curves ~ :
[a,b] — M which minimize the action L(v) = fab L(v(s),~(s))ds
among the C! curves (or continuous piecewise C!) 7 : [a,b] — M
with the ends 4(a) and 7(b) fixed. We will also look for curves 5
which minimize the action among the curves homotopic to v with
fixed endpoints or even for curves which achieve a local minimum
of the action among all curves homotopic with same endpoints.
The problem is tackled using differential calculus on a func-
tional space. We first look for the critical points of the action
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v — L(7) on the space of curves
Cry(la,b], M) = {7 [a,b] — M | of class C' and y(a) = ,7(b) = y}.

Such a curve which is a critical point is called an extremal curve
for the Lagrangian L. If an extremal curve ~ is C?, it is possible to
show that the curve - satisfies the Euler-Lagrange equation which,
in a system of coordinates, is written as

L (01,40) ~ S OE (3(0),4(1)) = 0.

If the second partial vertical derivative a%(x, v) is non-degenerate

at each point of TM we then see that we can solve for 4(t). It
results that there is a vector field

(z,v) — Xp(z,v)

on T'M such that the speed curves ¢t — (v(t),%(t)) of extremal
curves « for the Lagrangian are precisely the solutions of this vec-
tor field Xz. The (local) flow ¢s : TM — T'M of this vector field
X1, is called the Euler-Lagrange flow of the Lagrangian L. By
definition, a curve v : [a,b] — M is an extremal curve if and only
if (7(s),%(s)) = ds—a(v(a),¥(a)), for all s € [a, b].

As T'M is not compact, it may happen that ¢, is not defined
for all s € R, which would prevent us from making dynamics. It
will be supposed that L verifies the two following conditions

(1) with x fixed v — L(z,v) is C?-strictly convex, i.e. the sec-
ond partial vertical derivative %(m, v) is defined strictly positive,
as a quadratic form;

(2) L(z,v) is superlinear in v, i.e.

L(x,v)

Jol|—oco ||

— +00,

where ||-|| is @ norm coming from a Riemannian metric on M.
Since all the Riemannian metrics are equivalent on a compact
manifold, this condition (2) does not depend on the choice of the
Riemannian metric.
Condition (2) implies that the continuous function L : TM —
R is proper, i.e. inverse images under L of compact sets are com-
pact.
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Conditions (1) and (2) are of course satisfied for the examples
given above.

The function H(z,v) = g—ﬁ(az, v)v—L(z,v) is called the Hamil-
tonian of the system. It is invariant by ¢s. Under the assumptions
(1) and (2), this function H : TM — R is also proper (in fact su-
perlinear). The levels H~1(c),c € R are thus compact subsets of
TM. Aseach trajectory of ¢; remains in such compact set, we con-
clude from it that ¢; is defined for all s € R, as soon as L satisfies
conditions (1) and (2). We can, then, study the Euler-Lagrange
flow using the theory of Dynamical Systems.

0.1 The Hamilton-Jacobi Method

A natural problem in dynamics is the search for subsets invari-
ant by the flow ¢s. Within the framework which concerns us the
Hamilton-Jacobi method makes it possible to find such invariant
subsets.

To explain this method, it is better to think of the Hamiltonian
H as a function on cotangent bundle T*M. Indeed, under the
assumptions (1) and (2) above, we see that the Legendre transform
L:TM — T*M, defined by

L(z,v) = (z, g—i(x,v))a

is a diffeomorphism of T'M onto T*M. We can then regard H as
a function on T*M defined by

H(xz,p) =p(v) — L(x,v), where p = g—f(ac,fu).

As the Legendre transform L is a diffeomorphism, we can use it
to transport the flow ¢, : TM — T'M to a flow ¢f : T*M — T*M
defined by ¢f = Lo L7

Theorem 0.1.1 (Hamilton-Jacobi). Let w be a closed 1-form on
M. If H is constant on the graph Graph(w) = {(z,wy,) | © € M},
then this graph is invariant by ¢ .

We can then ask the following question:
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Given a fixed closed 1-form wg, does there exist w another
closed 1-form cohomologous with wgy such that H is constant on
the graph of w?

The answer is in general negative if we require w to be contin-
uous. It is sometimes positive, this can be a way to formulate the
Kolmogorov-Arnold-Moser theorem, see [Bos86].

However, there are always solutions in a generalized sense. In
order to explain this phenomenon, we will first show how to reduce
the problem to the 0 cohomology class. If wy is a fixed closed 1-
form, let us consider the Lagrangian L., = L — wy, defined by

Ly, (x,v) = L(x,v) — wo (v).

Since wy is closed, if we consider only curves v with the same fixed
endpoints, the map ~ +— fﬁ/ wp is locally constant. It follows that
L., and L have the same extremal curves. Thus they have also
the same Euler-Lagrange flow. The Hamiltonian H,,, associated
with L, verifies

Hwo(gjap) = H(:vao,m +p)

By changing the Lagrangian in this way we see that we have only
to consider the case wg = 0.

We can then try to solve the following problem:

Does there exist a constant ¢ € R and a differentiable function
u: M — R such that H(x,du) = ¢, for all x € M?

There is an “integrated” version of this question using the semi-
group T, : CO(M,R) — C°(M,R), defined for t > 0 by

Ty u(e) = imf{L(y) + u(3(0)) | 7 : [0,6] — M,y(t) = a}.

It can be checked that T, , = T, o T, and thus 7, is a (non-
linear) semigroup on C°(M,R).

A C! function v : M — R, and a constant ¢ € R satisfy
H(z,dyu) = ¢, for all x € M, if and only if T, v = u — ct, for each
t>0.

Theorem 0.1.2 (Weak KAM). We can always find a Lipschitz
function w : M — R and a constant c € R such that T, u = u —ct,
for allt > 0.
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The case M = T", in a slightly different form (viscosity solu-
tions) is due to P.L. Lions, G. Papanicolaou and S.R.S. Varadha-
ran 87, see [LPV87, Theorem 1, page 6]. This general version was
obtained by the author in 96, see [Fat97b, Théoremel, page 1044].
Carlsson, Haurie and Leizarowitz also obtained a version of this
theorem in 1992, see [CHL91, Theorem 5.9, page 115].

As u is a Lipschitz function, it is differentiable almost every-
where by Rademacher’s Theorem. It can be shown that H(x,du) =
¢ at each point where u is differentiable. Moreover, for such a func-
tion u we can find, for each x € M, a C! curve 7, :] — 00,0] — M,
with 7,(0) = z, which is a solution of the multivalued vector field
“grad; u”(x) defined on M by

“grad, u”(y) = L7 (y, dyu).

These trajectories of grad; u are minimizing extremal curves.
The accumulation points of their speed curves in T'M for t — —oco
define a compact subset of T'M invariant under the Euler-Lagrange
flow ¢;. This is an instance of the so-called Aubry and Mather
sets found for twist maps independently by Aubry and Mather in
1982 and in this full generality by Mather in 1988.

We can of course vary the cohomology class replacing L by
L, and thus obtain other extremal curves whose speed curves
define compact sets in T'M invariant under ¢;. The study of these
extremal curves is important for the understanding of this type of
Lagrangian Dynamical Systems.
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Chapter 1

Convex Functions:
Legendre and Fenchel

Besides some generalities in the first two sections, our main goal
in this chapter is to look at the Legendre and Fenchel transforms.
This is now standard material in Convex Analysis, Optimization,
and Calculus of Variations. We have departed from the usual
viewpoint in Convex Analysis by not allowing our convex functions
to take the value +o0o. We think that this helps to grasp things
on a first introduction; moreover, in our applications all functions
have finite values. In the same way, we have not considered lower
semi-continuous functions, since we will be mainly working with
convex functions on finite dimensional spaces.

We will suppose known the theory of convex functions of one
real variable, see for example [RV73, Chapter 1]or [Bou76, Chapitre
1].

1.1 Convex Functions: General Facts

Definition 1.1.1 (Convex Function). Let U be a convex set in
the vector space E. A function f : U — R is said to be convex if
it satisfies the following condition

Vae,y € UVt € [0,1], f(tx + (1 —t)y) <tf(x)+ (1 —1t)f(y).

1



The function f is said to be strictly convex if it satisfies the fol-
lowing stronger condition

Ve £y e UVt €0, 1], f(tx + (1 —t)y) <tf(z)+ (1 —1)f(y).

It results from the definition that f : U — R is convex if and
only if for every line D C FE the restriction of f on DNU is a
convex function (of one real variable).

Proposition 1.1.2. (i) An affine function is convex (an affine
function is a function which is the sum of a linear function and a
constant).

(i) If (f;): € I is a family of convex functions : U — R, and
sup;es fi(z) < 400 for each x € U then sup;cy f; is convex.

(iii) Let U be an open convex subset of the normed space E.
If f: U — R is convex and twice differentiable at x € U, then
D?f(x) is non-negative definite as a quadratic form. Conversely,
if g: U — R admits a second derivative D%g(x) at every point
xr € U, with D?g(z) non-negative (resp. positive) definite as a
quadratic form, then g is (resp. strictly) convex.

Properties (i) and (ii) are immediate from the definitions. The
property (iii) results from the case of the functions of a real vari-
able by looking at the restrictions to each line of E.

Definition 1.1.3 (C2-Strictly Convex Function). Let be a in the
vector space E. A function f : U — R, defined on the convex
subset U of the normed vector space E, is said to be C2-strictly
convex if it is C2, and its the second derivative D?f(x) is positive
definite as a quadratic form, for each x € U.

Exercise 1.1.4. Let U be an open convex subset of the normed
space E, and let f: U — R be a convex function.

a) Show that f is not strictly convez if and only if there exists a
pair of distinct points x,y € U such that f is affine on the segment
[z,y] ={te+ (1 —t)y |t € [0,1].

b) If [ is twice differentiable at every x € U, show that it
is strictly convex if and only if for every unit vector v € E the
set {x € U | D?*f(z)(v,v) = 0} does not contain a non trivial
segment parallel to v. In particular, if D?f(x) is non-negative
definite as a quadratic form at every point x € U, and the set of



points x where D% f(x) is not of mazimal rank does not contain a
non-trivial segment then f is strictly convex.

Theorem 1.1.5. Suppose that U is an open convex subset of
the topological vector space E. Let f : U — R be a convex
function. If there exists an open non-empty subset V. C U with
sup,cy f(z) < 400, then f is continuous on U.

Proof. Let us first show that for all x € U, there exists an open
neighborhood V;, of x, with V;, C U and sup,¢y, f(y) < +oo. In-
deed, if z ¢ V', we choose zy € V. The intersection of the open set
U and the line containing x and 2y is an open segment contain-
ing the compact segment [z, zp]. We choose in this intersection, a
point y near to x and such that y ¢ [z, zo], thus x €]y, zo[, see fig-
ure 1.1. It follows that there exists ¢t with 0 < tg < 1 and such that
x =toy+(1—1t9)z0. Themap H : F — E,z — x =toy+ (1 —tp)z
sends zq to x, is a homeomorphism of E, and, by convexity of U, it
maps U into itself. The image of V' by H is an open neighborhood
V. of x contained in U. Observe now that any point x’ of V,, can
be written as the form 2’ = toy + (1 — tp)z with z € V for the
same to €]0,1[ as above, thus

f(@') = fltoy + (1 —t)2)
<tof(y) + (1 —to)f(2)

<tof(y) + (1 —to)sup f(2) < +oo.
zeV

This proves that f is bounded above on V.

Let us now show that f is continuous at x € U. We can
suppose by translation that z = 0. Let Vj be an open subset of U
containing 0 and such that sup,cy, f(y) = M < +oc0. Since E is
a topological vector space, we can find an open set Vo containing
0, and such that tVy C Vp, for all t € R with |t < 1. Let us
suppose that y € eVp N (—6‘70), with € < 1. We can write y = ez
and y = —ez_, with z4,2z_ € Vo (of course z_ = —zy, but this
is irrelevant in our argument). As y = (1 — €)0 + €z, we obtain

fly) < (1 —¢€)f(0)+ ef(z4), hence

vy € Vo N (—€eVo), fly) — f(0) < e(M — f(0))-



Figure 1.1:
We can also write 0 = y+1+ , hence f(0) < 1 = fy )
e/ (2-) which gives (L5 OF0) < fly) +ef (=) < fly) +eM
Consequently

¥y € Vo N (=eVh), f(y) = F(0) = —eM +¢f(0).
Gathering the two inequalities we obtain

Vy € Vo N (—€Vp), |£(y) — f(0)] < e(M — £(0)). O

Corollary 1.1.6. A convex function f : U — R defined on an
open convex subset U of R™ is continuous.

Proof. Let us consider n+1 affinely independent points xg, - - , Zp €
U. The convex hull ¢ of xg,--- ,z, has a non-empty interior. By
convexity, the map f is bounded by max}" , f(z;) on o. O

Most books treating convex functions from the point of view of
Convex Analysis do emphasize the role of lower semi-continuous
convex functions. When dealing with finite valued functions, the
following exercise shows that this is not really necessary.



Exercise 1.1.7. Let U be an open subset of the Banach space E.
If f: U — R is convex, and lower semi-continuous show that it is
in fact continuous. [Indication: Consider the sequence of subsets
C,={xeU| f(z) <n},n e N. Show that one of these subsets
has non-empty interior./

We recall that a function f : X — Y, between the metric
spaces X,Y, is said to be locally Lipschitz if, for each x € X,
there exists a neighborhood V,, of x in X on which the restriction
fiv, is Lipschitz.

Theorem 1.1.8. Let E be a normed space and U C E an open
convex subset. Any convex continuous function f : U — R is a
locally Lipschitz function.

Proof. In fact, this follows from the end of the proof of Theorem
1.1.5. We now give a direct slightly modified proof.

We fix € U. Since f is continuous, there exists r €]0, +00]
and M < +oo such that

sup |f(y)] < M.
yEB(z,r)

We have used the usual notation B(z,r) to mean the closed ball
of center  and radius r.

Let us fix y,y’ € B(z,r/2). We call z the intersection point
of the boundary 0B(z,r) = {2’ € E'| |2’ — z|| = r} of the closed
ball B(xz,r) with the line connecting y and 3’ such that y is in the
segment [z, 1], see figure 1.2. We of course have ||z—y/|| > /2. We
write y =tz + (1 — t)y/, with ¢ € [0, 1], from which it follows that
y—y = t(z—y’). By taking the norms and by using ||z—1/|| > r/2,
we see that

, 2
t<|y -yl
r

The convexity of f gives us f(y) < tf(z)+(1—1t)f(y'), from which
we obtain the inequality f(y) — f(v') < t(f(2) — f(¥/)). It results
that

fly) = f(y) <2tM < %Hy -,

and by symmetry

Y.y € Bla,r/2), 1)~ f&) < Sy o). O



Figure 1.2:

Corollary 1.1.9. If f : U — R is convex with U C R" open and
convex, then f is a locally Lipschitz function.

We recall Rademacher’s Theorem, see [EG92, Theorem 2, page
81]or [Smi83, Theorem 5.1, page 388].

Theorem 1.1.10 (Rademacher). A locally Lipschitz function de-
fined on open subset of R" and with values in R™ is Lebesgue
almost everywhere differentiable.

Corollary 1.1.11. A convex function f : U — R, where U is
open convex of R"™, is Lebesgue almost everywhere differentiable.

It is possible to give a proof of this Corollary not relying on
Rademacher’s Theorem, see [RV73, Theorem D, page 116]. We
conclude this section with a very useful lemma.

Lemma 1.1.12. Let f : V — R be a convex function defined on
an open subset V' of a topological vector space.

(a) A local minimum for f is a global minimum.



(b) If f is strictly convex, then f admits at most one minimum.

Proof. (a) Let zp be a local minimum. For y € V and ¢ € [0, 1]
and close to 1 we have

fwo) < ftwo + (1 = t)y) < tf(xo) + (1 —1)f(y),

thus (1 —t)f(z9) < (1 —t)f(y) for t close to 1. It follows that
f(y) = f(zo).

(b) It results from the convexity of f that the subset {x |
f(z) < A} is convex. If A = inf f, we have {x | f(x) = inf f} =
{z | f(x) <inf f}. If f is strictly convex this convex set cannot
contain more than one point. O

1.2 Linear Supporting Form and Derivative

As is usual, if E as a vector space (over R) we will denote by
E* = Hom(FE,R) its algebraic dual space. We will indifferently
use both notations p(v) or (p,v) to denote the value of v € E
under the linear form p € E*.

Definition 1.2.1 (Supporting Linear Form). We say that the
linear form p € E* is a supporting linear form at zg € U for the
function f: U — R, defined on U C E, if we have

Vo e U, f(x) — f(xo) > p(xr — x0) = (p,x — x0)-

We will denote by SLF,(f) the set of supporting linear form at x
for f, and by SLF(f) the graph

SLE(f) = Ugep{z} x SLF,(f) C U x E*.

In the literature, the linear form p is also called subderiva-
tive of f at xg or even sometimes subgradient. We prefer to call
it supporting linear form to avoid confusion with the notion of
subdifferential that we will introduce in another chapter.

Example 1.2.2. a) If f: R — R, ¢+ |t| then SLFy(f) = [-1,1],
for t > 0,SLF.(f) = {1}, and for ¢ < 0,SLF;(f) = {—1}.
b) If g : R — R, ¢ — t3 then SLF(g) = 0, for every t € R.

The following Proposition is obvious.



Proposition 1.2.3. The set SLF,(f) is a convex subset of E*.
Moreover, if we endow E* with the topology of simple convergence
on E ("weak topology”) then SLF,(f) is also closed.

Here is the relation between supporting linear form and deriva-
tive.

Proposition 1.2.4. Let f : U — R be a function defined on an
open subset U of the normed space E.
a) If f is differentiable at some given x € U then SLF,(f) C
{Df(x)}, i.e. it is either empty or equal to the singleton {D f(x)}.
b) If E = R", and all partial derivatives 0 f /0x;(x),i = 1,...,n,
exist at some given x € U, then SLF,(f) is either empty or re-
duced to the single linear form (ay,...,an) — > i a;0f/0x;(x).

Proof. a) If SLF,(f) # 0, let p be a supporting linear form of f
at z. If v € E is fixed, for all € > 0 small we have x 4+ ev € U and
thus f(z + ev) — f(z) > ep(v). Dividing by € and taking the limit
as € goes to 0 in this last inequality, we find D f(z)(v) > p(v). For
linear forms this implies equality, because a linear form which is
> 0 everywhere has to be 0.

b) We denote by (eq,...,e,) the canonical base in R™. Let us
consider a point = = (z1,...,x,) € R™ where all partial deriva-
tives exist. This implies that the function of one variable h +—
flxy, .., xi-1,h, Tig1, ..., xy,) is differentiable at z;, hence by part
a), if p € SLF,(f), we have p(e;) = 9f/Ox;(z). Since this is true
for every i = 1,...,n, therefore the map p must be (aq,...,a,) —

Yo ai0f J0xi(x). 0

We have not imposed any continuity in the definition of a sup-
porting linear form for a function f. This is indeed the case under
very mild conditions on f, as we will see presently.

Proposition 1.2.5. Let U be an open subset of the topological
vector space E, and let f : U — R be a function. Suppose that
f is bounded from above on a neighborhood of xy € U, then any
supporting linear form of f at xq is continuous.

Proof. Let V be a neighborhood of 0 such that V = —V, and f is
defined and bounded from above by K < 400 on g+ V. Since V



is symmetrical around 0, for each v € V', we have

p(v) < fzo+v) — f(z0) < 2K
—p(v) = p(—v) < flzg —v) — flzo) < 2K,

hence the linear form p is thus bounded on a nonempty open sub-
set, it is therefore continuous. O

As is customary, if E is a topological vector space, we will
denote by E’ C E* the topological dual space of F, namely F’
is the subset formed by the continuous linear forms. Of course
E' = E* if F is finite-dimensional. If E is a normed space, with
norm ||-||, then E’ is also a normed space for the usual norm

Ipll = sup{p(v) | v € E, |v]| < 1}.
In the case of continuous map, we can improve Proposition 1.2.3.

Proposition 1.2.6. Suppose that f : U — R is a continuous
function defined on the topological vector space E. If we endow E’
with the topology of simple convergence on E ("weak topology”),
then the graph SLF(f) is a closed subset of U x E'.

The proof of this Proposition is obvious.

Exercise 1.2.7. Let f : U — R be a locally bounded function
defined on the open subset U of the normed space E. (Recall that
locally bounded means that each point in U has a neighborhood on
which the absolute value of f is bounded)

a) Show that for every x € U, we can find a constant K, and a
neighborhood V' such that for every y € V' and every p € SLF,(f)
we have ||p|| < K. [Indication: see the proof of Theorem 1.4.1]

b) If E is finite dimensional, and f is continuous, show the
following continuity property: for every x € U, and every neigh-
borhood W of SL¥,(f) in E' = E*, we can find a neighborhood V
of x such that for every y € V we have SLF,(f) C W.

As we will see now the notion of linear supporting form is
tailored for convex functions.

Proposition 1.2.8. If the function f : U — R, defined on the
convex subset U of the vector space F, admits a supporting linear
form at every x € U, then f is convex.
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Proof. Let us suppose that xg = y + (1 — t)z with y,z € U and
t € [0,1]. If p is a supporting linear form at x(, we have

f(y) — f(zo) = p(y — wo) and  f(2) — f(x0) > p(z — x0),

hence

tf(y) + (1 =1)f(2) = f(zo) = p(t(y — z0) + (1 = 1)(z — 20))
:p(ty—i—(l—t)z—xo)zo. ]

The following theorem is essentially equivalent to the Hahn-
Banach Theorem.

Theorem 1.2.9. Let U be a convex open subset of the locally
convex topological vector space E. If f : U — R is continuous and
convex, then we can find a supporting linear form for f at each
zel.

Proof. As f is continuous and convex, the set
O={(z,t) |z elU, f(z) <t}

is open, non-empty, and convex in E x R. Since (zg, f(z¢)) is not
in O, by the Hahn-Banach Theorem, see [RV73, Theorem C, page
84] or [Rud91, Theorem, 3.4, page 59|, there exists a continuous
and non identically zero linear form « : £ x R — R and such that

V(x,t) € O, a(z,t) > a(xg, f(xg))-

We can write a(z,t) = po(z) + kot, with po : E — R a continuous
linear form and ky € R. Since a(zo,t) > a(xg, f(zg)) for all
t > f(xzo), we see that kg > 0. If we define py = ko_lpo, we get
po(x)+t > po(xo)+f(xg), forall t > f(x), therefore f(z)— f(zo) >
(—=po)(x — zp). The linear form —py is the supporting linear form
we are looking for. O

The following Proposition is a straightforward consequence of
Theorem 1.2.9 and Proposition 1.2.4
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Proposition 1.2.10. Let f : U — R be a continuous convex
function defined on an open convex subset U of the normed space
E. If f is differentiable at xo then the derivative D f(x) is the
only supporting linear form of f at xg. In particular, we have

Ve e U, f(z) — f(zo) > Df(zo)(xz — 20).

Corollary 1.2.11. Let f : U — R be a continuous convex func-
tion defined on an open convex subset U of a normed space. If f
is differentiable at x(, then x( is a global minimum if and only if
Df(xo) = 0.

Proof. Of course, if the derivative exists at a minimum it must be
0, this is true even if f is not convex. The converse, which uses
convexity, follows from the inequality

fy) = f(z0) = Df(20)(y — z0) =0
given by Proposition 1.2.10 above. O

Corollary 1.2.12. If U C R" is open and convex and f: U — R
is a convex function, then, for almost all x, the function f admits
a unique supporting linear form at x.

Proof. This is a consequence of Proposition 1.2.10 above and Rade-
macher’s Theorem 1.1.10. O

Exercise 1.2.13. Let U be an open and convexr subset of R™.
Suppose that f : U — R is convex and continuous. Show that if
f admits a unique supporting linear form py at xo then D f(xq)
exists, and is equal to py. [Indication: For each x € U \ 0, choose
Pz € SLF.(f), and prove that

po(z —z0) < f(x) — f(20) < pa(x — T0).

Conclude using exercise 1.2.7.

1.3 The Fenchel Transform

Recall that for a topological vector E, we denote its topological
dual by E'.
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Definition 1.3.1 (Fenchel Transform). If L : E — R is function,
the Fenchel transform of L, denoted by H (or L* if we want to
refer explicitly to L), is the function H : E' —] — 00, +00] defined
by

H(p) = igg(wﬁ — L(v).

We will call Fenchel’s formula the relation between H and L.
The everywhere satisfied inequality

(p,v) < L(v) + H(p),
is called the Fenchel inequality.

It is easily seen that H(0) = —inf,cp L(v) and that H(p) >
—L(0), for all p € F'.

We have not defined H on E* because it is identically +o0c on
E*\ E' under a very mild hypothesis on L.

Exercise 1.3.2. If L : E — R is bounded on some non-empty
open subset of the normed space E, show that if we extend the
Fenchel H to E*, using the same definition, then H is identically
+o00 on E*\ E'.

Usually H assumes the value 400 even on E’. To give a case
where H is finite everywhere, we must introduce the following
definition.

Definition 1.3.3 (Superlinear). Let E be a normed space. A map
f+ E —] — 00, +0o0] is said to be superlinear, if for all K < +oo0,
there exists C'(K) > —oo such that f(z) > K|jz|| + C(K), for all
r e L.

When FE is finite-dimensional, all norms are equivalent hence
the notion of superlinearity does not depend on the choice of a
norm.

Exercise 1.3.4. 1) Show that f : E — R, defined on the normed
space E, is superlinear if and only if lim ;o % = 400 and f
1s bounded below.
2) If f: E — R is continuous on the finite dimensional vector
space E, show that it is superlinear if and only if
G

v—oo ||z
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Proposition 1.3.5. Let L : E — R be a function, defined on the
normed space E, and let H be its Fenchel transform.

(1) If L is superlinear, then H is finite everywhere. It is even
bounded on bounded subsets of E.

(2) If H is finite everywhere, it is convex.

(3) If L is bounded on bounded subsets of E, then H is su-
perlinear. In particular, if L is continuous, and F is finite-
dimensional, then H is superlinear.

Proof. Let us show (1). We know that H is bounded below by
—L(0). It remains to show it is finite an bounded from above on
each subset {p € E' | ||p|| < K}, for each K < 4o00. By the
superlinearity of L, there exists C'(K) > —oo such that L(v) >
K|v| + C(K), for all v € E, and thus for p € E’ such that
llpll < K, we have

{p,v) = L(v) <|lpll lz]] = Kl = C(llpll) < =C(lpll) < +o0.

From which follows sup,|<x H(p) < —C(|[p|]) < +o0.

Property (2) results from the fact that H is an upper bound
of a family of functions affine in p.

Let us show (3). We have

H(p) > sup (p,v) — sup L(v).
lvll=K lvll=K
But supj, =k (p,v) = Kllpl, and supj,j—x L(v) < +oco by the
hypothesis, since the sphere {v € E | ||v|| = K} is bounded. If E
is finite dimensional, bounded sets are compact, and therefore, if
L is continuous, it is bounded on bounded subsets of F. O

Theorem 1.3.6 (Fenchel). Let us suppose that L : E — R is
superlinear on the normed space E.

(i) The equality (po,vo) = H(po) + L(vg) holds if and only if p
is a supporting linear form for L at vy.

(ii) If L is convex and differentiable everywhere then (p,v) =
H(p) + L(v) if and only if p = DL(v). Moreover

Vv € E,H o DL(v) = DL(v)(v) — L(v).
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(iii) If we have L(v) = sup,¢ g/ (p,v) — H(p), for each v € E, then
L is convex. Conversely, if L is convex and continuous then
L(v) = sup,cp/(p,v) — H(p), for each v € E.

Proof. Let us show (i). If L(v) — L(vg) > (po,v — vo), we find
(po,vo) — L(vg) > (po,v) — L(v), for all v € E, and thus H(pg) =
(po,vo) — L(vg). Conversely, by Fenchel’s inequality (pp,v) <
H(po) + L(v), for all v € E. If we subtract from this inequal-
ity the equality (po,vo) = H(po) + L(vg), we obtain (pg,v — vg) <
L(v) — L(vo).

Part (ii) follows from part (i) since for a differentiable func-
tion the only possible supporting linear form is the derivative, see
Proposition 1.2.4.

Let us show (iii). If L(v) = sup,ep (p,v) — H(p), then, the
function L is convex as a supremum of affine functions. Conversely,
by (i) we always have L(v) > (p,v) — H(p). Therefore L(v) >
sup,epr (p,v) — H(p). If L is convex, let pg be a linear supporting
form for L at v, by (ii), we obtain L(v) = (pg,v) — H(pp) and thus

L(v) = suppep(p,v) — H(p). O

Exercise 1.3.7. Let L : E — R be superlinear on the normed
space B, and let H be its Fenchel transform. Denote by Ay the
set of affine continuous functions v — p(v)+c,p € E',c € R, such
that L(v) > p(v) +¢, for eachv € E. If L** : E — R is defined by
L™ (v) = supgey, f(v), show that
L™ (v) = sup (p,v) — H(p).

peE’
[Indication: An affine function f =p+c,p € E',c € R, is in AL
if and only if c < —H(p).]

Proposition 1.3.8. Suppose that L : E — R is continuous and
superlinear on the finite-dimensional linear space £, and H : E* —
R is its Fenchel transform.

(i) H is everywhere continuous, and superlinear.

(ii) For every p € E*, there exists v € E such that (p,v) =
H(p) + L(v).

(iii) If L is convex, for every v € E, there exists p € E* such that
{p,v) = H(p) + L(v).
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Proof. We are assuming that F is finite-dimensional, and that L
is continuous. Therefore, in part (i), the continuity follows from
the convexity of H, see 1.1.6, and the superlinearity follows from
part (iii) of Theorem 1.3.6.

We now prove part (ii). Since limjj,|— o0 L(x,v)/||v|| = +o0,
and [p(v)| < |[p|||v]|, we see that
L) L)
Jol| —-+o0 o]l

Hence the supremum H(x,p) of the continuous function p(:) —
L(z,-) is the same as the supremum of its restriction to big enough
bounded sets. Since bounded sets in E are compact, the supremum
H(z,p) is achieved.

For part (iii), we remark that £ = E** and that L is the
Fenchel transform of H, by part (ii) of Fenchel’s Theorem 1.3.6,
therefore we can apply part (ii) of the present Proposition. O

Corollary 1.3.9. If F is finite-dimensional and L : E — R is
everywhere differentiable and superlinear, then DL : E — E* is
surjective.

Proof. This follows from part (i) of Fenchel’s Theorem 1.3.6 to-
gether with part (ii) of Proposition 1.3.8 (note that L is continuous
since it is differentiable everywhere). O

We will need some fibered version of the results in this section.

We will have to consider locally trivial finite-dimensional vector
bundle 7 : E — X, where X is a Hausdorff topological space. We
will use the notation (x,v) for a point in E to mean z € X and
v € B, = n~!(x), with this notation 7 : E — X is the projection
on the first coordinate (z,v) — x.

We denote, as is customary by 7* : E* — X the dual vector
bundle.

We recall that a continuous norm on 7 : £ — X is a continuous
function (x,v) — |jv||, such that v — |jv]|; is a norm on the
fiber E,, for each x € X. Such a norm induces a dual norm on
m* : E* — X defined, for p € £, in the usual way by

Iple = sup{p(v) | v € Eq, |v] < 1}.

The following result is classical.



16

Proposition 1.3.10. Let 7 : E — X be a locally trivial vector
bundle with finite-dimensional fibers over the Hausdorff topologi-
cal space X, then all continuous norms on this bundle are equiva-
lent above compact subsets of X. This means that for each com-
pact subset C' C X, and each pair ||-||,||-||" of continuous norms,
there exists constants «, 3, with o > 0, and such that

V(z,v) € E,x € C = oz_1||v||w < |lls, < aljv||e- O

Proof. We do it first for the case of the trivial bundle z x R" — X,
with X compact. It is not difficult to see that it suffices to do it
with ||| a fixed norm independent of x, for example the Euclidean
norm on R", which we simply denote by ||-||. Theset S = X x{v €
R™ | |lv|| = 1} is compact and disjoint from x {0}, therefore by
continuity the two bounds o = inf(, )es|vlz; 3 = sup(y v)eslvll;
are attained, hence they are finite and # 0. It is not difficult to
see by homogeneity that

V(z,v) € X xR, afv] < [loll; < vl

For the case of a general bundle, if C' C X is compact, we can
find a finite number Uy, ..., U, of open subsets of X such that the
bundle is trivial over each U;, and C C U; U --- U U,. Since X is
Hausdorff, we can write C = C; U---U (), with C; compact, and
included in U;. From the first part of the proof two norms on the
bundle are equivalent above each C;, hence this is also the case of
their (finite) union C. O

Definition 1.3.11 (Superlinear Above Compact subsets). Sup-
pose that 7 : F — X is a finite-dimensional locally trivial vec-
tor bundle over the topological space X. We say that a function
L : F — X is superlinear above compact subsets if for every com-
pact subset C' C X, and every K > 0, we can find a constant
A(C,K) > —oo such that

V(z,v) € E,x € C = L(z,v) > K|jv||, + A(C, K),

where |||, is a fixed continuous norm on the vector bundle E.
When X is compact we will say that L is superlinear instead

of superlinear above compact subsets. Of course in that case, it

suffices to verify the condition of superlinearity with K = X.
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Of course, the condition above is independent of the choice
of the continuous norm on the vector bundle, since all norms are
equivalent by Proposition 1.3.10. We have not defined the concept
of uniform superlinearity for a general X because it depends on
the choice of the norm on the bundle, since if X is not compact
not all norms are equivalent.

Theorem 1.3.12. Suppose L : E — R is a continuous function
on the total space of the finite-dimensional locally trivial vector
bundle 7 : E — X. We consider n* : E* — X, the dual vector
bundle and define H : E* — R by

H(x,p) = sup p(v) — L(z,v).
'UGECL‘
If L is superlinear above compact subsets of X, and X is a Haus-
dorff locally compact, topological space, then H is continuous and
superlinear above compact subsets of X.

Proof. Since continuity is a local property, and X is Hausdorff lo-
cally compact, without loss of generality, we can assume X com-
pact, and 7 : E — X trivial, therefore F = X x R". We choose a
norm ||-|| on R™.

Fix K > 0, we can pick C' > —oo such that

V(z,v) € X x R", L(xz,v) > (K + 1)|jv|| + C.

If we choose R > 0 such that R + C > sup,cx L(x,0) (this is
possible since the right hand side is finite by the compactness of
X), we see that for each z € X, v € R" and each p € R™ satisfying
Ipll < K, ||v|| > R, we have

p(v) — L(z,v) < [[pllvf|=l = (K + Djo| = C
< —-R—-C < —sup L(z,0)
reX

< —L(l‘,O) = p(O) - L(ﬂj‘,O)
Therefore for [|p[| < K, we have H(z,p) = supjy<g p(v) — L(z,v).
Since {v € R™ | ||v|| < R} is compact, we see that H is continuous
on the set X x {p € R™ | ||p|| < K}. But K > 0 is arbitrary,
therefore the function H is continuous everywhere.
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We prove superlinearity above compact subsets of X. Us-
ing the same argument as in final part the proof of Proposition
1.3.10 above, we can without loss of generality suppose that X
is compact, and that the bundle is the trivial bundle X x R™ —
X. For a fixed K, remark that by compactness, and continuity
A = sup{L(z,v) | z € X,v € R",|jv|]| < K} is finite. Therefore
H(z,p) > p(v) — A, for each v € R", satisfying ||v]| < K. If we
take the supremum over all such v’s, since K||p|| = sup{p(v) | v €
R™, o] < K}, we get H(z,p) > K[| — A O

Definition 1.3.13 (Convex in the Fibers). Let L : E — R be
a continuous function on the total space of the finite-dimensional
locally trivial vector bundle 7 : E — X, where X is a Hausdorff
space. We will say that a Lagrangian L on the manifold M is
convex in the fibers, if the restriction L, is convex for each z € X.

In fact, for convex functions superlinearity above compact sets
is not so difficult to have, because of the following not so well
known theorem.

Theorem 1.3.14. Suppose L : E — R is a continuous function
on the total space of the finite-dimensional locally trivial vector
bundle 7 : E — X, where X is a Hausdorff space. If L is convex
in the fibers, then L is superlinear above each compact subsets of
X if and only if L g, is superlinear, for each x € X.

Proof. Of course, it is obvious that if L is superlinear above each
compact subset, then each restriction Lg, is superlinear.

Suppose now that L g, is convex and superlinear for each z €
X, to prove that L is linear above compact subsets of X, again by
the same argument as in final part the proof of Proposition 1.3.10
above, we can without loss of generality that X is compact, and
that the bundle is the trivial bundle X x R" — X.

We choose a fixed norm ||-|| on R™. For given xy € X, and
K > 0, we will show that there exists a neighborhood V;, of zg
and C(xg, K) > —oo such that

Vi € Vi, Yo € R™, L(z,v) > K|[v|| + C(x0, K). (*)

A compactness argument finishes the proof.
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We now prove (*). We choose C7 > —oo such that
Vv € R", L(xg,v) > (K + 1)||v|| + Ci.

We then pick R > 0 such that R+ Cy > L(z0,0) + 1. Now if p €
R™, and v € R™ satisfy respectively ||p|l, < K, and ||v|z, = R,
we see that

L(zo,v) —p(v) > (K + D)v[| + C1 — K]|lv||
>R+ C
> L(z,0) + 2.

Since the set {(v,p) € R" x R™ | ||v|lzy = R,||plley < K} is
compact, and L is continuous, we can find a neighborhood V,, of
xo in X such that for each x € V,,,,v € R”, and each p € R™*, we
have

[oll = R, |lpll < K = L(z,v) — p(v) > L(z,0).

This implies that for fixed z € V,,,, and p € R™ satisfying ||p|| <
K, the convex function L(z,-) — p(-) achieves its minimum on
the compact set {v € R" | |[v]| < R} in the interior of that set.
Therefore, the convex function L(z,-) — p(-) has a local minimum
attained in {v € R™ | ||v|]| < R}. By convexity this local minimum
must be global, see 1.1.12. Therefore, defining C' = inf{L(z,v) —
p(v) |z € X, ||v|le <R, ||p|ls < K}, we observe that C' is finite by
compactness, and we have

V(2,v,p) € Vg x R" x R™,|[p|| < K = L(x,v) — p(v) > C.

Taking the infimum of the right hand side over all ||p|l, < K, we
get
V(z,v) € Vg x R, L(z,v) — Kljv|| > C. O

1.4 Differentiable Convex Functions and Le-
gendre Transform

Theorem 1.4.1. Let U be an open convex subset of R". If f :
U — R is convex and differentiable at each point of U, then f is

ch.
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Proof. We fix € U. Let r €]0,00[ be such that the closed ball

B(z,r) is contained in U. Let us set M = sup,cp,) |[f(y)| <
+o00. For h,k € B(0, 5), we have

fle+h+k)— flz+k) = Df(x+k)(h), (*)

taking the supremum over all h such that ||| = r/2, we obtain
|Df(z + k)|| <4M/r. Since the ball {p € R™ | |p|| < 4M /r} is
compact, it is enough to see that if k, — 0 and Df(z + k,,) — p,
then p = D f(x). But taking the limit in the inequality (), we get

Vk € B(0,r/2), f(x+h) — f(z) > (p,h).

It results that Df(z) = p, since we have already seen that at a
point where a function is differentiable only its derivative can be
a supporting linear form, see Proposition 1.2.4. ]

Exercise 1.4.2. Let K be a compact topological space and U an
open convex subset of R™. If L : K x U — R is continuous and
such that for each k € K, the map U — R : v — L(k,v) is convex
and everywhere differentiable, then g—% K xU — (R, (k,v) —
%(k,v) is continuous. [Indication: Adapt the proof of Theorem

1.4.1]

Definition 1.4.3 (Legendre Transform). Let L : U — R be a C!
function, with U C R™ open. The Legendre transform associated
with L is the map £: U — R™, v +— DL(v).

We can rephrase part (ii) of Fenchel’s Theorem 1.3.6 and Corol-
lary 1.3.9 in the following way:

Proposition 1.4.4. Let L : R® — R be C!, convex and super-
linear, then its Legendre transform L : R" — R™ is surjective.
Moreover, if we denote by H : R™ — R its Fenchel transform
then (p,v) = H(p)+ L(v) if and only if p = DL(v), and we have

Vv € R",H o L(v) = DL(v)(v) — L(z,v).

In particular, the surjectivity of £ is a consequence of super-
linearity of L.

We are interested in finding out, for a C!' convex function L :
R™ — R, when its Legendre transform £ : R® — R™ is bijective.
It is easy to understand when L is injective.
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Theorem 1.4.5. Suppose L : U — R is a C! convex function,
defined on an open subset U of R". Its associated Legendre trans-
form L is injective if and only if L is strictly convex.

Proof. Let p € R™. We have p = DL(z) if and only if DL,(z) =0
where L,(x) = L(z) —p(z). Hence x is a point where the function
L, reaches its minimum, see 1.2.11. If L is strictly convex so is
L,. However a strictly convex function can achieve its minimum
at most at one point.

Conversely, if £ is injective, the convex function L(x)—DL(x¢)(x)
has only xg as a critical point and hence, and again by Corollary
1.2.11, it reaches its minimum only at z¢. If 29 = tx + (1 —t)y
with t €]0, 1], © # z¢ and y # xo, we therefore have

L(z) — DL(x0)(z) > L(xo) — DL(x0)(x0)
L(y) — DL(x0)(y) > L(wo) — DL(o)(wo)-

Since t > 0 and (1 —t) > 0, we obtain

tL(z)+(1—t)L(y) — DL(xo)(tz + (1 — t)y)) > L(xo)—DL(x0)(x0),

zo
hence tL(z) + (1 —t)L(y) > L(xo). O
We would like now to prove the following theorem.

Theorem 1.4.6. Let L : R” — R be C', and convex. If L is its
Legendre transform, then the following statements are equivalent:

(1) The function L is strictly convex, and superlinear.
(2) Its Legendre transform £ : R™ — R™ is a homeomorphism.
(3) Its Legendre transform L : R™ — R"™ is bijective.

Proof. We first show that (1) implies (3). If (1) is true then from
Proposition 1.4.4, we know that £ is surjective, and from Theorem
1.4.5 it is injective.

The fact that (3) implies (2) follows from Brouwer’s Theo-
rem on the invariance of the domain see [Dug66, Theorem 3.1,
page 358]. (Note that one can obtain a proof independent from
Brouwer’s Theorem by using Theorem 1.4.13 below.)
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We now prove that (2) implies (1). Another application of
Theorem 1.4.5 shows that L is strictly convex. It remains to show
the superlinearity. Since £ is a homeomorphism, the set Ax = {z |
IDL(z)| = K} is compact, and £(Ax) = {p € R™ | |p| = K},
thus

Vv e R", K|jv|| = sup DL(x)(v).

TE€EAK
As L(v) > DL(x)(v) + L(z) — DL(z)(x) we see that

L(v) = Kol + inf [L(@) - DL(x)(x))

but inf,ea, [L(x) — DL(x)(z)] > —o0, because A is compact and
L is of class CL. O

When it comes to Lagrangians, Analysts like to assume that
they are superlinear, and Geometers prefer to assume that its as-
sociated Legendre transform is bijective. The following Corollary
shows that for C2-strictly convex Lagrangians, these hypothesis
are equivalent.

Corollary 1.4.7. Let L : R® — R be a C? convex function. Its
associated Legendre transform L is a C! diffeomorphism from R"
onto its dual space R™ if and only if L is superlinear, and C?-
strictly convex.

Proof. Suppose that £ = DL is a C' diffeomorphism. By the
previous Theorem 1.4.6, the map L is superlinear. Moreover, the
derivative DL(v) = D?L(v) is an isomorphism, for each v € R™.
Therefore D?L(v) is non degenerate as a bilinear form, for each
v € R™. Since, by the convexity of L, the second derivative D2L(v)
is non negative definite as a quadratic form, it follows that D?L(v)
is positive definite as a quadratic form, for each v € R™.
Conversely, suppose L superlinear, and CZ-strictly convex .
Then DL : R® — R™ is a homeomorphism by Theorem 1.4.6.
Moreover, since DL(v) = D?L(v), the derivative DL(v) is thus
an isomorphism at every point v € R™. By the Local Inversion
Theorem, the inverse map £ is also C!. O

In the sequel of this section, we will discuss some aspects of
the Legendre transform that will not be used in this book. They
nonetheless deserve to be better known.
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We start with the notion of proper map.

Definition 1.4.8 (Proper Map). A map f : X — Y, between
the topological spaces X and Y, is said to be proper if for ev-
ery compact subset K of the target space Y, the inverse image
f~HK) C X is also compact.

The main properties of proper maps are recalled in the follow-
ing exercise.

Exercise 1.4.9. Let f : X — Y be a proper continuous map
between metric spaces.

1) Show that for each closed subset F' C X, the image f(F) is
closed in'Y . [Indication: Use the fact that if a sequence converges,
then the subset formed by this sequence together with its limit is
compact.

2) Conclude that f is a homeomorphism as soon as it is bijec-
tive.

3) Show that a continuous map f : R™ — R™ is proper if and
only if

im [ f(z)] = +o0.
llzl|—+o0
Theorem 1.4.10. Let L : U — R be a C! convex function, where
U is an open convex subset of R™. If its associated Legendre
transform L : U — R™ is proper, then L is surjective.

We need some preliminaries in order to prove the theorem.

Lemma 1.4.11 (Of the Minimum). Let f : B(x,r) — R be a
function which has a derivative at each point of B(x,r). If f
achieves its minimum at xo € B(w,r), a closed ball in a normed
space, then D f(xzo)(zo —x) = —||D f(zo)|r = —||D f(xo)||[|zo — |-

Proof. Without loss of generality, we can suppose x = 0. For all
y € B(0,7) and for all ¢ € [0,1], we have

flty + (1 —t)zo) > f(z0),

thus, the function ¢, : [0,1] — R,t — f(ty + (1 — t)xo) has a
minimum at ¢ = 0, its derivative at 0, namely D f(xo)(y — o), is
thus > 0. Hence Df(z0)(y — wo) > 0, for each y € B(0,7), and
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consequently D f(xq)(xg) < Df(z0)(y), for each y € B(0,r). It
follows that

Df(xo)(zo) = yegl(g ) Df(xo)(y) = —|IDf(zo)|r.

If Df(xzo) = 0, we also have the second part of the required equal-
ities. If Df(xg) # 0, then x must be on the boundary 9B(0,r) of

B(0,r) and we again have the second part of the equalities. O

Corollary 1.4.12. Let f : U — R be a C! convex function defined
on the open convex subset U of R". If the derivative D f(x) is never
the 0 linear form, for x € U, then for each compact subset K C U,
we have

D IDf@) = inf [1DF)]

Proof. The inequality inf,ep||Df(z)|| < infepn g ||Df(2)] is ob-
vious. If we do not have equality for some compact subset K,
then

inf | D inf ||D
inf |Df ()] < _inf |DF ()]

and therefore
inf [|Df(z)|| = inf ||D f(x

If we set Ko = {z € U | |Df(z)|| = inf.cv||Df(2)|}, it follows
that Ky is closed, non-empty, and contained in K, therefore Ky is
compact. Moreover

Vo € U\ Ko, [|Df ()l > inf [Df(2)]].

Since Kj is compact there exists r > 0 such that the closed set
Vi (Ko) = {z | d(z, Ky) < r} is contained in the open set U. As
this set V,.(Kj) is also compact, there exists xg € V,.(Kjp) such

that f(zo) = inf,cy; (k) f(2). Necessarily z is on the boundary of

‘Z,(Ko), because otherwise xg would be a local minimum of f and
therefore D f(zg) = 0, which is excluded. Hence d(x¢, Ky) = 7.
By compactness of Ky, we can find x € Ky such that d(zg,z) = r.
Since B(z,7) C V,(Ko) and 79 € B(w,r), we also have f(z¢) =
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Inf e gz f(y). By the previous Lemma 1.4.11, we must have
Df(xzo)(xg —x) = —||Df(x0)||r. The convexity of f gives

f(z) = f(z0) > Df(wo)(x — z0)
f(zo) = f(z) > Df(x)(z0 — 7),

hence Df(x)(x — xo) = Df(wo)(x — xo) = [|Df(xo)|r. As [lx -
xo|| = r, we get

Df(x)(z —zo) < |Df(2)||lz — zol = [ Df ()]

This implies ||Df(z)|| > ||Df(zo)||, which is absurd. In fact, we
have ||Df(z)| = inf,eu||Df(2)]], since 2 € Ko, and ||Df(zo)|| >
inf,c||Df(2)||, because zg ¢ K. O

Proof of theorem 1.4.10. Fix p € R™, the Legendre transform of
L, = L—pis L—p, it is thus also proper. By the previous Corollary,
it must vanish at some point in U, because inf ¢ 5 ) | DLp(2)|| —
oo, when r — oo. O

Theorem 1.4.13. Let L : R” — R be a C! convex function. Its
associated Legendre transform L : R™ — R™ is proper if and only
if L is superlinear.

Proof. Let us suppose L superlinear. By convexity we have L(0)—
L(z) > DL(x)(0—z) and thus DL(x)(z) > L(x)—L(0) from which

we obtain
\WMMEDM@G%>Z%%_%$

by the superlinearity of L, we do have || DL(x)|| — oo, when ||z| —
00.

The proof of the converse is very close to the end of the proof of
Theorem 1.4.6. If £ is proper, the set Ax = {x | |DL(z)|| = K}
is compact. Moreover, since L is necessarily surjective, see 1.4.10,
we have L(Ag) = {p € R™ | ||p| = K}, and thus

Vo e R", K|jv|| = sup DL(x)(v).

TEAK
As L(v) > DL(x)(v) + L(x) — DL(x)(x) we see that
D) 2 Kol + inf [L() ~ DL()@))



26

but infea, [L(x) — DL(x)(z)] > —o0, because A is compact and
L is of class CL. O

We would like to conclude this section with a very nice theorem
due to Minty see [Min64, Min61] (see also [Gro90, 1.2. Convexity
Theorem]). In order to give the best statement, we recall some
notions about convex subsets of a finite-dimensional vector space
E. If C C F is a convex subset, we will denote by Aff(C) the
affine subspace generated by C, the relative interior relint(C) of
C is its interior as a subset of Aff(C).

Theorem 1.4.14 (Minty). If L : R® — R is a C! convex function,
then the closure of the image L(R™) = DL(R™) of its associated
Legendre transform L is convex. Moreover L contains the relative
interior of its closure.

In order to prove this theorem, we will need the following
lemma.

Lemma 1.4.15. Let L : R® — R be a C! convex function. If
p ¢ L(R™), then there exists v € R™\ {0} such that L(x)(v) > p(v)
for all z € R™. If p is not in the closure of L(R™), then, moreover,
there exists € > 0 such that L(z)(v) > e+ p(v) for all z € R™.

Proof of Theorem 1.4.14. To simplify notations, we call C' the clo-
sure of L(R™). Observe that a linear form on R™ is of the form
p +— p(v), where v € R™. Therefore the Lemma above 1.4.15 shows
that a point in the complement of C, can be strictly separated by
a hyperplane from L£(R"™), and hence from its closure C. This
implies the convexity of C.

It remains to prove the second statement.

We first assume that the affine subspace generated by L£(R")
is the whole of R™. We have to prove that the interior of C is
contained in L(R™). Suppose that py € C is not contained in
L(R™), by Lemma 1.4.15 above we can find v € R™\ {0} with
L(z)(v) > po(v) for all z € R™, therefore p(v) > po(v) for all p in
the closure C' of L(R™). This is clearly impossible since py € C
and v # 0.

To do the general case, call E the affine subspace generated
by L(R™). Replacing L by L — DL(0), we can assume that 0 € E,
and therefore F is a vector subspace of R™*. Changing bases, we
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can assume that E = R¥* x {0} ¢ R™. Since DL(z) € E =
R** x {0}, we see that OL/Ox; is identically 0 for i > 0, and
therefore L(z1,...,x,) depends only on the first k variables, so we
can write L(x1,...,zy,) = ﬂ(azl, ..., xp), with L :RF = R convex
and C!. Tt is obvious that DL and DL have the same image in
RF* = R*¥ x {0} C R™, therefore the image of DL generates
affinely R¥*. We can therefore apply the first case treated above

to finish the proof. O

Proof of Lemma 1.4.15. We fix pg ¢ L(R™) = DL(R™). The func-
tion Ly, = L — po is convex. As its derivative is never the 0 linear
map, it does not have a local minimum. To simplify the notations
let us set f = L — pg. For each integer k£ > 1, by Lemma 1.4.11
applied to f, and to the ball B(0, k), we can find xy, with ||z;| = k
such that

Df(zg)(zr) = =D f(xi) |||zl

The convexity of f gives

Vy € R", Df(y)(y — xx) > f(y) — f(xr) = Df(zp)(y — 1),

hence
Vy € R", Df(y)(y — k) = D f(xx)(y — zp). (*)

In particular, we have D f(0)(—xy) > Df(xk)(—xk) = [|Df(zi)|||zk ]|,
and thus || Df(0)|| > ||[Df(zy)||. Taking a subsequence, we can
suppose that ||zg| — oo, that D f(xx) — poo, and that x /||xk| —
Voo, With v of norm 1. Dividing both sides the inequality (x)
above by ||zx||, and using the equality

Df(zp)(xr) = =D f (@) lllzell,
and taking limits we obtain
Vy € R", Df(y)(—voo) 2 [IPooll;
we rewrite it as
Vy € R"DL(y)(—vos) = Po(—voo) + [[Poc]|-

It then remains to observe that p,, = 0 implies that Df(xy) =
D L(xy)—po tends to 0 and thus py is in the closure of DL(R™). O
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Exercise 1.4.16. Suppose that L : R* — R is C', and strictly
convez. Show that the image L(R™) is a conver open subset of
R™.

Does this result remain true, for L : U — R C, and strictly
convex, on the open subset U C R"?

1.5 Quasi-convex functions

At some point, we will need a class of functions more general than
the convex ones.

Definition 1.5.1 (Quasi-convex). Let C' C E be a convex subset
of the vector space E. A function f : C' — R is said to be quasi-
convex if for each t € R, the subset f~1(] — co,]) is convex.

Proposition 1.5.2. Let f: C' — R be a function defined on the
convex subset C of the vector space E.

1 The function f is quasi-convex if and only

Ve, y € C,\Va € [0,1], f(az + (1 — a)y) < max(f(z), f(y))-

2 If f is quasi-convex then for every x1,- - ,x, € C and every
ai, -+, op €100,1], with Y1 o = 1, we have

f(Zaixi) < max f(z;).
i=1

1<i<n

Proof. We prove (2) first. Suppose f is quasi convex. Since f~!(]—
00, max<i<n f(2;)]) is convex and contains z,- - , z, necessarily
Yim iy mi € fH(—oo, max<i<y f(:)].

To finish proving (1), suppose conversely that

Ve, y € C,\Va € [0,1], f(ax + (1 — a)y) < max(f(z), f(y))-

If 2,y are in f~%(] — 0o,t]), then f(z) and f(y) are < t. Therefore
any convex combination a4 (1 — )y satisfies f(az+ (1 —a)y) <
max(f(z), f(y)) <t, and hence az+(1—a)y € f~1(]—o0,t]). O
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Example 1.5.3. 1) Any convex function is quasi-convex.
2) Any monotonic function ¢ : I — R, where I is an interval
in R, is quasi-convex.

We need a slight generalization of property (2) of Proposition
1.5.2. We start with a lemma. Although we do not need it in its
full generality, it is nice to have the general statement.

Lemma 1.5.4. Suppose that (X, A, u) is a probability measure,
and that ¢ : X — C is a measurable function with value in
a convex subset C of a finite-dimensional normed space E. If
Jxlle(@)|| di(x) < 400, then [y @(x)du(x) is contained in C.

Proof. We will do the proof by induction on dimC. Recall that
the dimension of a convex set is the dimension of the smallest
affine subspace that contains it. If dim C' = 0, then by convexity
C' is reduced to one point and the result is trivial.

We assume now that the result is true for every n < dimC.
Replacing E by an affine subset we might assume that C has a
non empty interior. Therefore the convex set C' is contained in
the closure of its interior C' , see Lemma 1.5.5 below. Let us define
vg = [y p(@)dp(z). If vy ¢ C, since C is open and convex, by
Hahn-Banach Theorem there exists a linear form 6 : E — R such
that 6(v) > 6(vg), for each v € C. Since C is contained in the
closure of C , we obtain

Yo e C,0(v) > 0(vp).
Therefore, we have the inequality
Va € X,00p(x) > (). ()

If we integrate this inequality we get [y 0o (x) du(z) > 0(v). By
linearity of #, the integral [ fop(z)du(z) is equal to O( [y p(x) du(x)),
hence to 6(vg), by the definition of vg. This means that the in-
tegration of the inequality (f) leads to an equality, therefore we
have 6 o p(x) = 0(vg), for p-almost every x € X. It follows that,
on a set of full y-measure p(z) € 671(0(vg)) N C. But the subset
6=1(0(vo)) N C is convex and has a dimension < dim C' = dim E,
because it is contained in the affine hyperplane 6~!(6(vg)). By
induction [y p(x)du(x) € 671(8(vg)) N C. O
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Lemma 1.5.5. If C is a convex subset of the topologmal vector
space E, then its interior C is convex. Moreover if C' is non- empty,
then C is contained in the closure of C.

Proof. Suppose x € é, and y € C. For t > 0, the map H; : £ —
E,z — tz+ (1 — t)y is a homeomorphism of E. Moreover, for
if 0 < t < 1, by convexity of C, we have H;(C) C C, therefore
tr + (1 —t)y = Hy(z) € Ht(C’) C C. Since Hy(C) is open, we
obtain that tz + (1 —t)y € C, for 0 < ¢t < 1. This implies the
convexity of C. Now, if C is non- empty, we can find xg € C for
y € C,and 0 < t <1, we know that txg+ (1 — t)y € C. Since
y = limy_,o txg + (1 — t)y. Therefore C is contained in the closure
of C. O

Proposition 1.5.6. Suppose that f : C' — R is a quasi-convex
function defined on the convex subset C of the finite dimensional
normed space E. If (X, A, n) is a probability space, and ¢ : X —
C is a measurable function with [y |¢(x)|| du(z) < 400, then

£ ola) duta)) < sup (o(a))
X zeX
Proof. The set D = {c € C' | f(c) < sup,ex f(p(z))} is convex,
and, by definition, contains ¢(x) for every x € X. Therefore by
Lemma 1.5.4, we obtain [ ¢(z)du(z) € D. O

1.6 Exposed Points of a Convex Set

Let us recall the definition of an extremal point.

Definition 1.6.1 (Extremal Point). A point p in a convex set C'
is said to be extremal if each time we can write p =tz + (1 — t)y,
with z,y € C' and t € [0,1], then p = x or p = y.

Theorem 1.6.2 (Krein-Milman). If K is a convex compact subset
of a normed space, then K is the closed convex envelope of its
extremal points.

The proof of the Krein-Milman Theorem can be found in most
books on Functional Analysis, see [Bou81, Théoreme 1, page 11.59],
[RV73, Theorem D, page 84] or [Rud91, Theorem 3.23, page 75]
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D C

Figure 1.3: Stadium: The four points A, B, C, D are extremal but
not exposed.

Let us recall that an affine hyperplane in a R-vector space F,
determines two open (resp. closed) half-spaces. If H is the set of
points where the affine function a : £ — R is 0, then the two
open (resp. closed) half-spaces are given by a > 0 and a < 0 (resp.
a > 0and a <0). An hyperplane H is said to be an hyperplane of
support of a subset A C F if ANH # () and A is entirely contained
in one of the two closed half-spaces determined by H.

We will need a concept a little finer than that of extremal
point, it is the concept of exposed point.

Definition 1.6.3 (Exposed Point). Let C' be a convex subset of a
normed space. A point p of C' is exposed, if there is a hyperplane
H of support of C with HNC = {p}.

An exposed point is necessarily an extremal point (exercise).
The converse is not necessarily true, as it can be seen on the
example of a stadium, see figure 1.3.

Theorem 1.6.4 (Straszewicz). If C' is a convex compact subset
of R™, then C' is the closed convex envelope of its exposed points.

Proof. We will use the Euclidean norm on R". Let us denote by
(' the closure of the convex envelope of the set of the exposed
points of C. Let us suppose that there exists x € C'\ Cy. As
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Figure 1.4: Proof of Straszewicz’s Theorem.

closed subset of C, the set C is also compact. By the Theorem
of Hahn Banach, we can find a hyperplane H strictly separating
z from C7. We consider the line D orthogonal to H and passing
through . We denote by a the intersection D N H, see figure 1.4.
If ¢ € R™, we call ¢p the orthogonal projections of ¢ on D. We
set d = sup.cc, |lc — cp||. By compactness of Cy, and continuity
of ¢ +— cp, this sup d is finite.

Let us fix y a point in D on the same side of H as C1, we can
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write

d(y,c) =/ lly — cpll? + e — ep|?

<V ly—al?+ d?

22
<y —al 1+W
d2
<lo=all (1+ 55 %5)
2
=|\ly—al|l+ 77—
by =al+ s —a

Since x ¢ H, we get x # a, and 0 < ||a — z||. Therefore, since d
is finite, for y far away on D so that d?/[2|ly — al|] < ||a — ||, we
obtain

d(y,c) <lly —al + lla —z].

But x,a,y are all three on the line D, and a is between = and v,
hence ||y — al|| + || — z|| = ||y — z||. It follows that for y far away
enough

Ve e Oy, d(y, o) <y — || (*)

Let us then set R = sup.cc d(y, c). We have R > ||y — z|| because
x € C. This supremum R is attained at a point e € C. By (x)
we must have e ¢ C7. The hyperplane H tangent, at the point
e, to the Euclidean sphere S(y,R) = {x € R" | ||z — y| = R}
is a hyperplane of support for C' which cuts C only in e, since
C C B(y, R). Therefore e is an exposed point of C' and e ¢ Cj.
This is a contradiction since Cy contains all the exposed points of
C. O

Theorem 1.6.5. Suppose L : R" — R is convex and superlinear.
We consider the graph of L

Graph L = {(z,L(x)) |z € R"} C R" x R.

Any point of Graph L belongs to the closed convex envelope of the
exposed points of the convex set

Graphs, L = {(z,t)|t > L(x)},
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formed by the points of R™ x R which are above Graph L.

In fact, for each x € R™ we can find a compact subset C' C
R™ x R such that (x, L(x)) is in the closed convex envelope of the
exposed points of Graphs, L which are in C.

Proof. Let p be a linear form of support for L at xg. Since L(x) —
L(xg) > p(z — o), the function L defined by L(v) = L(v 4 ) —
p(v)—L(xp) is > 0 everywhere and takes the value 0 at 0. It is also
superlinear, since L is so. Moreover Graph L is obtained starting
from Graph L using the affine map (v,t) — (v—xg, t—p(v)—L(zg)),
therefore the exposed points of Graph L are the images by this
affine map of the exposed points of Graph L. From what we have
just done without loss of generality, we can assume that zg =
0,L(0) =0,L > 0, and that we have to show that the point (0, 0)
is in the closure of the convex envelope of the exposed points of
Graph. L. For this, we consider the convex subset

C={(z,t) eR" xR | L(z) <t < 1}.

The exposed points of C' are either of the form (z,1) or of the
form (z, L(x)) with L(z) < 1. These last points are also exposed
points of Graphs, L, see Lemma 1.6.6 below. By the superlinearity
of L, the subset C' is compact. We apply Straszewicz Theorem to
conclude that (0,0) is in the closure of the convex envelope of the
exposed points of C. We can then gather the exposed points of C
of the form (z,1) and replace them by their convex combination.
This allows us to find, for each n > 1, exposed points of C of the
form (z; ., L(xip)), 1 < i < £y, with L(z;,) < 1, a point y, with
(yn, 1) € C, and positive numbers aq 5, ..., &y, », and G, such that
Bn+ 3 @i =1 and

In
(0,0) = lim Br(yn, 1) + Y @in(@in, Lzin))-
1=1

As L(x;,) > 0 we see that 3, — 0 and Zfi1 a;nL(xin) — 0. It
follows that o, = Zf;l a;n — 1, since ay, + B, = 1. Moreover,
since C' is compact, the y,, are bounded in norm, therefore G,y, —
0, because 3, — 0. It results from what we obtained above that
. o 7%
(0,0) = lim > =% (ion, L(win))-

=1
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This is the required conclusion, because Zf;l a;n/a™ =1 and the
(%in, L(2i 7)) are exposed points of Graph L. O

Lemma 1.6.6. Let C be a convex subset in the topological vector
space E. Suppose H is a hyperplane containing xg € C. If there
exists a neighborhood V of xg such that H is a hyperplane of
support of C NV, then H is a hyperplane of support of C.

Moreover, if HNC NV = {xg} then x( is an exposed point of
C.

Proof. This is almost obvious. Call H; is a closed half-space de-
termined by H and containing C N'V. If v € E, then the open
ray D;f = {xo+tv | t > 0} is either entirely contained in H; or
disjoint from it. Now if x € C, by convexity of C, for ¢ > 0 small
enough tz + (1 —t)xg = o + t(x — x9) € CNV C Hy, therefore
the open ray D, C Hy. But x =z + 1(z — xo) € D, .

Suppose HNC NV = {xp}. If y # xp and y € C N H then
the ray D;_xo is contained in H, therefore for every ¢t € [0,1]
small enough ty + (1 —t)zg € HNCNV. This is impossible since

ty + (1 —t)xg # xo for t > 0. O
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Chapter 2

Calculus of Variations

Our treatment of the Calculus of Variations is essentially the clas-
sical treatment (up to Tonelli) of the one-dimensional setting in
a modern setting. We have mainly used [Cla90], [Mn] and the
appendix of [Mat91]. After most of it was typed we learned from
Bernard Dacorogna the existence of an excellent recent introduc-
tion to the subject [BGH98].

In this chapter, we treat general Lagrangians (i.e. not neces-
sarily convex in the fibers). In the second chapter, we will treat the
Lagrangians convex in fibers, therefore all properties concerning
existence of minimizing curves will be in next chapter.

2.1 Lagrangian, Action, Minimizers, and Ex-
tremal Curves

In this chapter (and the following ones) we will us the standard
notations that we have already seen in the introduction, namely:

If M is a manifold (always assumed C*°, and without bound-
ary), we denote by T'M its tangent bundle, and by 7 : TM — M
the canonical projection. A point of TM is denoted by (z,v),
where € M, and v € T,M = 7~ '(x). With this notation, we
of course have m(z,v) = z. The cotangent bundle is 7* : T*M —
M. A point of T*M is denoted by (x,p), where x € M, and
peTiM = L(T,M — R).

37
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Definition 2.1.1 (Lagrangian). A Lagrangian L on the manifold
M is a continuous function L : TM — R.

Notice that although L is a function on T'M, we will nonethe-
less say that L is a Lagrangian on M.

Definition 2.1.2 (Action of a Curve). If L is a Lagrangian on
the manifold M, and ~ : [a,b] — M is a continuous piecewise C*
curve, with a < b, the action L(v) of 7 for L is

We are interested in curves that minimize the action.

Definition 2.1.3 (Minimizer). Suppose L is a Lagrangian on M.
If C is some set of (parametrized) continuous curves in M, we will
say that « : [a,b] — M is a minimizer for the class C if for every
curve ¢ : [a,b] — M, with d(a) = v(a),d(b) = ~v(b), and § € C, we
have L(v) < L(9).

If C is the class of continuous piecewise C! curves, then mini-
mizers for this class are simply called minimizers.

It should be noticed that to check that v : [a,b] — M is a
minimizer for some class, we only use curves parametrized by the
same interval, and with the same endpoints.

In order to find minimizers, we will use differential calculus so
that minimizers are to be found among citical points of the action
functional L. In section 2.2 we will first treat the linear case, i.e.
the case where M is an open subset of R™. In section 2.3 we will
treat the case of a general manifold.

We conclude this section with some definitions that will be
used in the following sections.

Definition 2.1.4 (Non-degenerate Lagrangian). If L is a C? Lag-
rangian on the manifold M, we say that L is non-degenerate if for
each (x,v) € TM the second partial derivative §*L/0v*(z,v) is
non-degenerate as a quadratic form.

Notice that the second partial derivative 0?L/0v?(z,v) makes
sense. In fact, this is the second derivative of the restriction of L to
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the vector space T, M, and defines therefore a quadratic form on
T, M. In the same way, the first derivative OL/0v(z,v) is a linear
form on T, M, and therefore OL/0v(z,v) € (T,M)* =T M.

Definition 2.1.5 (Global Legendre Transform). If L is a C! Lag-
rangian on the manifold M, we define the global Legendre trans-
form £ : TM — T*M associated to L by

L(z,v) = (x, g—i(x,v))

Of course, if L is C", then £ is C"L.

Proposition 2.1.6. If L is a C" Lagrangian, with r > 2, on the
manifold M, then the following statements are equivalent

(1) the Lagrangian L is non-degenerate;

(2) the global Legendre transform £ : TM — T*M is a C"~!
local diffeomorphism;

(3) the global Legendre transform £ : TM — T*M is a C"~!
local diffeomorphism.

Moreover, the following statements are equivalent
(i) the Lagrangian L is non-degenerate, and L is injective;

(ii) the global Legendre transform L : TM — T*M is a (global)
Cr—1 diffeomorphism onto its image;

(iii) the global Legendre transform £ : TM — T*M is a (global)
Cr—! diffeomorphism onto its image.

Proof. Statements (1), (2), and (3) above are local in nature, it
suffices to prove them when M is an open subset of R"™.We use the
canonical coordinates on M C R*, TM = M x R™, and T*M =
M x R™. In these coordinates , at the point (z,v) € T M, the
derivative DL(z,v) : R” x R® — R™ x R™ of the global Legendre
transform £ has the following matrix form

N L
DL(z,v) = [ Id(]f %%_ai}(a;,v) ]
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therefore DL(z,v) is invertible as a linear function R” x R —
R™ x R™ if and only if ?;T%(a:, v) is non-degenerate as a quadratic
form. The equivalence of (1), (2), and (3) (resp. (i), (ii), and (iii))
is now a consequence of the inverse function theorem. O

Finally a last definition for this section.

Definition 2.1.7 (C" Variation of a Curve). Let M be an ar-
bitrary differentiable manifold. Let us consider a C" curve « :
[a,b] — M. A variation of class C" of v isamap I : [a, b] x| —¢, €[—
M of class C", where ¢ > 0, such that I'(¢,0) = ~(¢), for all
t € [a,b]. For such a variation, we will denote by I'y the curve
t — I'(t, s) which is also of class C".

2.2 Lagrangians on Open Subsets of R”

We suppose that M is an open subset contained in R™. In that
case TM = M x R™, and the canonical projection 7 : TM — M
is the projection on the first factor.

We study the differentiability properties of L, for this we have
to assume that L is C!.

Lemma 2.2.1. Suppose that L is a C' Lagrangian the open subset
M of R™. Let 7, : [a,b] — R™ be two continuous piecewise C*
curves, with y([a,b]) C M. The function — L(vy + tv1) is defined
for t small. It has a derivative at t = 0, which is given by

d b : .
GL+ time = [ DL A (s).a(s) ds

b
-/ [‘;—’;h<sm<s>]m<s>>+g—ﬁ[ws),ws)m(s)) ds.

Proof. Both v, and ~; are continuous, hence the map T : [a, b] X
R — R™(s,t) — ~(s) + ty1(s) is continuous, and therefore uni-
formly continuous on [a, b] x [—1,1]. Since I'(s,0) = v(s) is in the
open subset M, for every s € [a,b], we conclude that there exists

e > 0 such that I'([a, b] X [—€,€]) C M. Therefore the action of the
curve I'(-,t) = v + t; is defined for every t € [—e, €.
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Pick F a finite subset of [a,b] such that both v, and ~; are
differentiable at each point of [a,b] \ F. The function A : ([a,b] \
F') x R defined by

A(s,t) = L(v(s) + tn(s),¥(s) + t31(s)),
has a partial derivative with respect to t given by

oA

3¢ (18) = DLIv(s) +t71(s), 7(s) + t31.(5))(72(5), F1.(5))-

Moreover, this partial derivative is uniformly bounded on ([a,b] \
F) x [-1,1], because DL is continuous, and the curves ~,~; are
continuous, and piecewise C'. Therefore we can differentiate L(y+
ty) = f;L(y(s)ﬁ(s)) dt under the integral sign to obtain the de-
sired result. O

Exercise 2.2.2. Suppose that L is a C' Lagrangian on the open
subset M of R™. If v : [a,b] — M is a Lipschitz curve, then 7(s)
exists almost everywhere. Show that the almost everywhere defined
function s — L(v(s),7(s)) is integrable. If v1 : [a,b] — M is also
Lipschitz, show that L(y + ty1) is well defined for t small, finite,
and differentiable.

Definition 2.2.3 (Extremal Curve). An extremal curve for the
Lagrangian L is a continuous piecewise C! curve v : [a,b] — M
such that %L(y +ty1)t=0 = 0, for every C*> curve v, : [a,b] — R"
satisfying v; = 0 in the neighborhood of a and b.

By lemma 2.2.1, it is equivalent to say that

b
[ [5206 3600 + 06306 )] ds o

for each curve 7 : [a,b] — M of class C*° which satisfies v; = 0
in the neighborhood of a and b.

Remark 2.2.4. If 7 is an extremal curve, then for all a’, b’ € [a, 1],
with @’ < ¥/, the restriction ~v|[a’, ] is also an extremal curve.

The relationship between minimizers and extremal curves is
given by the following proposition.
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Proposition 2.2.5. If L is a Lagrangian on M, and 7y : [a,b] — M
is a C" curve, with r > 1 (resp. continuous piecewise Ct ) curve,
which minimizes the action on the set of C" (resp. continuous
piecewise C!), then v is an extremal curve for L.

Proposition 2.2.6 (Euler-Lagrange). Let us assume that L is
a Lagrangian is of class C? on the open subset M of R". If ~ :
[a,b] — M is a curve of class C?, then v is an extremal curve if
and only if it satisfies the Fuler-Lagrange equation

LI (30),500) = P2 301,400, (B1)

for all t € [a,b].

Proof. Since L and 7 are both C2, if v; : [a,b] — M is C* and
vanishes in the neighborhood of a and b, then the map

e T2 (), 40 (1)

is C! and is 0 at @ and b. It follows that

b
| 4 |5e00. 50l 0)] @t =o
which implies

b b
"G = - [ 4 FEa0.a0)] o)

We thus obtain that v is an extremal curve if and only if

/ab {g_i(v(t)ﬁy(t)) - % [g—f(’y(t),"y(t))} } (1(t)) ds = 0,

for every C* curve 7 : [a,b] — M satisfying 41 = 0 in the neigh-
borhood of a and b. It is then enough to apply the following
lemma:

Lemma 2.2.7 (Dubois-Raymond). Let A : [a,b] — L(R™,R) =
R™ be a continuous map such that f; A(t)(71(t))dt = 0, for each

C® curve v : [a,b] — R™ which vanishes in the neighborhood of
a and b, then A(t) =0, for all t € [a,b].
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Proof. Suppose that there exists tg €la,b[ and vy € R™ such that
A(to)(vo) # 0. Replacing vy by —vg if necessary, we can sup-
pose that A(tg)(vg) > 0. We fix € > 0 small enough so that
A(t)(vg) > 0, for all t € [ty — €,tp + €] Cla,b]. We then choose
C curve ¢ : [a,b] — [0,1] with ¢ = 0 outside of the inter-
val [tg — €,tg + €] and ¢(tp) = 1. Of course ff A(t)(p(t)vg)dt =
0, but [ A(t)(¢(t)vo)dt = [{°F $(t)A(t)(vo) dt and the function
¢(t)A(t)(vo) is continuous, non-negative on [ty — €,tg + €| and
o(to)A(to)(vo) > 0, since ¢(tg) = 1, hence its integral cannot
vanish. This is a contradiction. O

In the remainder of this section, we show that, under natural
assumptions on the Lagrangian L, the extremal curves which are
C! or even continuous piecewise C! are necessarily of class C2, and
must thus verify the Euler-Lagrange equation.

Lemma 2.2.8. Let L be a Lagrangian on the open subset M of
R", and let 7y : [a,b] — M be an extremal curve of class C' for L,
then there exists p € R™ such that

e ol GE0A0) =+ [ SE(s)() ds.

Proof. If 71 : [a,b] — M is C* and vanishes in the neighborhood
of a and b, then the map

tOL ,
e | [ G206 as] ()
. Ox
is C! and is 0 at @ and b. It follows that

[ [ Sew 5] caon far=o

which implies

b b ot
i g—i(v(t),ﬁ(t))(%(t))dt: —/a [ i g—i(y(s),y(s))dg] (31 (1)) dt.

Thus the condition

b
[ 15200500 0) + SE60. 4w )] @ =0
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is equivalent to

b t
/ [g—f(y(t),v'(t)]— g—i(v(sm(s))ds (9n(t)) dt = 0.

It is then enough to apply the following lemma:

Lemma 2.2.9 (Erdmann). If A : [a,b] — R™ is a continuous
function such that fab A(t)(A1(t))dt = 0, for every curve 7 :
[a,b] — R™ of C* class and vanishing in the neighborhood of
a and b, then, the function A(t) is constant.

Proof. Let us choose ¢y : [a,b] — R of class C*> with ff ¢o(t)dt =
1 and ¢p = 0 in a neighborhood of a and b. Let 71 : [a,b] — R"
be a C* curve which is 0 in the neighborhood of a and b, then, if
we set C' = fab A1(s) ds, the curve 7 : [a,b] — R"™, defined by

() = / 51(s) — Coo(s) ds

is C* and is 0 in a neighborhood of a and b. Therefore, since
A1 (t) = F1(t) — Co(t), we have

b
/ A1) () — Cot)] dt = 0,

consequently
b b
/ A(t) (6t — / 6o AB)(C)dt = 0. (+)

If we define p = [ ¢o(t) A(t)dt € R™, then [’[¢o(t)A(t))](C) dt is
nothing but p(C). On the other hand by the definition of C' and
the linearity of p, we have that p(C) = f;p(’yl (t))dt. We then can
rewrite the equation (x) as

b
/ [A(t) — p](F1()) dt = 0.

Since 41 : [a,b] — R™ is a map which is subject only to the two
conditions of being C* and equal to 0 in a neighborhood of a and
b, Dubois-Raymond’s Lemma 2.2.7 shows that A(t) —p = 0, for
all t € [a,b]. O
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Remark 2.2.10. Of course, the proofs of both the Dubois-Raymond
and the Erdmann lemmas are reminiscent of now classical proofs
of analogous statements in Laurent Schwartz’s Theory of Distri-
butions, but these statements are much older.

Corollary 2.2.11. If L is a non-degenerate, C" Lagrangian, with
r > 2, on the open subset M of R, then every extremal C' curve

is C".

Proof. Let v : [a,b] — M be a C! extremal curve. Let us fix
to and consider (zg,v9) = (v(to),¥(to)) € T M. From proposi-
tion 2.1.6, the Legendre transform £ : (z,v) — (w,%—ﬁ(m,v)) is
a local diffeomorphism Let us call K a local inverse of £ with
K(mo,g—i(xo,vo)) = (w0,v0). The map K is of class C"~!. By

continuity of v and #, for ¢ near to tg, we have

But, by lemma 2.2.8, we have

DA =p+ [ r(s), () ds.

o Oz

It is clear that the right-hand side of this equality is of class C!.
Referring to () above, as K is C" !, we see that (y(t),¥(t)) is also
of class C!, for ¢ near to to. We therefore conclude that v is C2.
By induction, using again (x), we see that v is C". O

Corollary 2.2.12. Suppose that the Lagrangian L on M is of
class C", r > 2, and that its global Legendre transform L : TM —
T*M is a diffeomorphism on its image L£(TM)), then every con-
tinuous piecewise C! extremal curve of L is in fact C", and must
therefore satisfy the Euler-Lagrange equation.

Proof. The assumption that £ is a diffeomorphism implies by
proposition 2.1.6 that L is non-degenerate. Therefore by corollary
2.2.11, we already know that the extremal C' curves are all C".
Let 7 : [a,b] — M be a continuous piecewise C! extremal curve.
Let us consider a finite subdivision ag = a < a1 < - < ap, = b
such that the restriction 7|[a;, a;41] is C'. Since 7|[a;, a;41] is also
an extremal curve, we already know that v|[a;, aj+1] is C". Using
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that v is an extremal curve, for every C* curve v; : [a,b] — M
which is equal to 0 in a neighborhood of a and b, we have

boL : oL s

) 5, V07O (1) + 2=y (0), 4O (€) dt = 0. (%)
Since 7|[a;, a;11] is of class at least C%, we can integrate by parts
to obtain

/ Bl A0 = i) - ()| i)

~Gebta) sl [ 1S | ot as

where 4_(t) is the left derivative and 4 (t) is the right derivative
of v at t € [a,b]. Using this, we conclude that

[ SE00 0101 (0) + SE @01 (1) de =

[ Gen a0 o) - {§ | 5E0 56 o) ds

+ O i), - () () — S (an), A (00)) o (00)

= I b acsn), A Gasen ) (@) — (), 3 ()] on ()

where the last equality holds, because 7/|[a;, a;41] is a C? extremal
curve, and therefore must satisfy the Euler-Lagrange equation (E-
L) on the interval v|[a;, a;+1]. Summing on 4, and using (*), we
get that

n—1
> | Seblasn) il (e) - 5@, i@l (e)] =0,
i=1

for every C* curve 71 : [a,b] — M which vanishes in a neighbor-
hood of a and b. For 1 <7 < n — 1, we can choose the C* curve
71, vanishing in a neighborhood of the union of the two intervals
[a,a;—1] and [a;41,b], and taking at a; an arbitrary value fixed in
advance. This implies that

Vim 1N, SE ), - (00) = e (r(ar), 3 (00).
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The injectivity of the Legendre transform gives v_(a;) = Y4 (a;).
Hence, the curve 1 is in fact of class C! on [a, b] and, consequently,
it is also of class C". O

The proof of following lemma is essentially the same as that of
lemma 2.2.1.

Lemma 2.2.13. IfT is a C? variation of the C? curve v : [a,b] —
M with values in the open subset M of R™, then the map s —
IL(T's) is differentiable and its derivative in 0 is

d b ar T

—L(Ts)seo = [ DL[(v®#), %) (=(t,0), —(¢,0)) dt.

FLI)m0 = [ DLGOAON (G0 55 (0)

We now obtain a characterization of extremal curves that does
not use the fact that M is contained in an open subset of an
Euclidean space.

Lemma 2.2.14. A C? curve v : [a,b] — M is an extremal curve
of the Lagrangian L if and only if %L(Fs)szo = 0, for any C?
variation I' of v such that I'(a,s) = v(a),T'(b,s) = v(b) for s in a
neighborhood of 0.

Proof. The variations of the type (t) + by (t) with 1 of C* class
are particular variations of class C2.

It thus remains to be seen that, if v is a C? extremal curve,
then we have %L(FS)SZO = 0 for variations of class C? of v such
that T'(a,s) = 7y(a) and T'(b,s) = ~(b). That results from the
following theorem.

Theorem 2.2.15 (First Variation Formula). If v : [a,b] — M is
a C? extremal curve, then for any variation I' of class C? of vy, we
have

L)oo = TR0 4B G 0:0) = 2 [y (a), (@) (5 0,0)).

Proof. We have

b 2
Lo = [ DLB@)AO)(G(40) 5 (00) d

b 2
/a [g—i[fy(t),"y(t)](g—l;(t,O))+g—€h(t)="¥(t)](%(tao)) dt.
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As 7 is a C? extremal curve, it satisfies the Euler-Lagrange equa-
tion

SEh@.40] = 4 | Fr00.50)].
plugging in, we find
%L(PS)SZO =

b 2
/a [% B_ﬂ (), ’y(t))} (G 0,00) + 221 (1), (0] (= (1, 0) .

However the quantity under the last integral is nothing but the
derivative of the function t — g—ﬁ[y(t),ﬁ(t)](g—l;(t,O)) which is of
class C! thus

d oL . or oL . or
Lm0 = 5 B0),A0)] (5 (0,0) = 5 @), (@) (5 (a,0)).

O

v

2.3 Lagrangians on Manifolds

We consider an arbitrary C* manifold M endowed with a Lag-
rangian L of class C", with r > 2.

Lemma 2.3.1. Consider I : [a,b] x [c,d] — M of class C2. Define
[y :la,b] — M by I's(t) =T'(t,s). The map s — L(T'y) is CL.

Proof. To simplify notation we assume that 0 € [c, d] and we show
that s — L(I's) is C! on some interval [—n,7], with n > 0. We can
cover the compact set I'([a, b] x {0}) by a finite family of coordinate
charts. We then find a subdivision ag = a < a1 < --- < a, = b
such that I'([a;,a;4+1] x {0})) is contained in a U; the domain of
definition of one of these charts. By compactness, for 7 small
enough, we have I'([a;, a;4+1] X [-1,7n]) C U;, for i = 0,...,n — 1.
Transporting the situation via the chart to an open set in R, we
can apply 2.2.13 to obtain that s — fa“ii“ L[T(t,s), %I; (t,s)]dt is
C! on some interval [—n,7]. It is now enough to notice that

n—1

L) =3 [ LG, G s ]ae

i=0 Y %
to be able to finish the proof. O
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We can then introduce the concept of an extremal curve for
the C? Lagrangian L in the case of C? curves v : [a,b] — M with
values in arbitrary manifold M.

Definition 2.3.2 (Extremal C? Curve). A C2? curve v : [a,b] —
M is an extremal curve for the C? Lagrangian L, if for each C?
variation I' : [a,b]x] — €,¢[— M of ~, with I'(t,s) = y(t) in the
neighborhood of (a,0) and (b,0), we have LL(I's)s—o = 0.

Remark 2.3.3. By lemma 2.2.14, if the curve and the Lagrangian
are of class C2, this definition coincides with the definition given
for the case where the manifold is an open subset of R™.

Lemma 2.3.4. If v : [a,b] — M is a C? extremal curve and
[a',b/] C [a,b] then, the restriction v|[a’,V] is also an extremal
curve

Proof. For any C? variation I : [a/,b']x] — €,e[— M of ~|[a’,V],
with T'(¢,s) = 7(¢) in the neighborhood of (a’,0) and (V/,0), we
find € with 0 < ¢ <e¢, and § > 0 such that with T'(¢,s) = (¢) for
every (t,s) € ([@/,a' + 6] UV —08,V]) x [—€,€]. We can therefore
extend T|[a’, 0] x [—€, €] to T[a,b] x [—€, €] by T'(t,s) = ~(t), for
t ¢ [a, V] x [=€,€]. Ttis clear that T is a C? variation, with
I'(t,s) = v(t) in the neighborhood of (a,0) and (b,0). Moreover,
for s € [—€, €], the difference IL(I's) —IL(T';) is equal to IL(y|[a, a'])+
L(y|I¥, 8. .

Theorem 2.3.5 (Euler-Lagrange). Suppose L is a C? Lagrangian
on the manifold M. Let v : [a,b] — M, be a C? curve. If v
is extremal, then, for each subinterval [a/,b'] C [a,b] such that
v([a’,b]) is contained in a domain U of a coordinate chart, the
restriction v|[a’,b] satisfies (in coordinates) the Euler-Lagrange
equation.

Conversely, if for every to € [a,b], we can find an € > 0 and a
domain U of a coordinate chart such that v([to—¢€, to+€|N[a,b]) C
U and v|[to—¢, to+€]N]a, b] satisfies in the chart the Euler-Lagrange
equation, then the curve vy is an extremal curve.

Proof. If v is an extremal curve, then v|[d’, '] is also an extremal
curve. Since y([a’,b']) € U, where U is a domain of a coordi-
nate chart, we can then transport, via the coordinate chart, the
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situation to an open subset of R™ hence v|[a’,b’] must verify the
Euler-Lagrange equation.

To prove the second part, we remark that by compactness s,
we can find a subdivision ¢g = a < a1 < -+ < a, = b, and a
sequence Uy, ...,U,_1 of domains of coordinate charts such that
Y([ai, a;+1]) C U;. T T is a variation of class C? of v, we can find
n > 0 such that I'([a;, a;+1] X [-n,n]) C Ui = 1,--- ,n). The
first variation formula 2.2.15 shows that

d
%L(Ps“ai: ait1])s=0 =

L y(asen). 3 o] (G (051)) — P blan). 3 (@) (G (e0)-

Adding these equalities, we find

d oL . or oL or

o bs)s=0 = %[V(b)w(b)](g(b, 0))—%[7(0),1(@)](@(%0))-

If I'(a,s) = v(a) and I'(s,b) = ~(b) in a neighborhood of s = 0,
we get that both %(a, 0), and %(b, 0) are equal to 0,therefore the
second member of the equality above is 0. U

The previous proof also shows that the first variation formula
is valid in the case of arbitrary manifolds.

Theorem 2.3.6 (First Variation Formula). Let L be a C? Lag-
rangian on the manifold M. If v : [a,b] — M is a C? extremal
curve, for each C? variation I : [a,b]x] — €, e[— M, (t,s) — T'(t, s)
of v, we have

LT om0 = SEL 0 AD) (G B:0) ~ 2 b a). (@] (G (0, 0).

By the same type chart by chart argument, using proposition
2.2.12, we can show the following proposition.

Proposition 2.3.7. Suppose the C" Lagrangian L, with r > 2,
on the manifold M is such that its global Legendre transform L
TM — T*M is a diffeomorphism onto its image. If v : [a,b] — M
is a C* curve, with k > 1, (resp. a continuous piecewise Ct curve)
which is a minimizer for the class of C* curves (resp. of continuous
piecewise C! curves), then v is an extremal of class at least C".
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2.4 The Euler-Lagrange Equation and its
Flow

We will first consider an open subset M of R™ and a non-degenerate
C" Lagrangian L : TM — R, with » > 2. We will assume that
for each (z,v) € TM the bilinear form 9*L/0v?(z,v) is non-
degenerate. It follows from 2.2.11 that every C! (locally) extremal
curve 7 : [a,b] — M is necessarily of class C2?, and satisfies the
Euler-Lagrange equation

O (0. 40) = 222 (50 40),

and hence by differentiation we obtain

0L oL 0L

— 7)), Y)Y (@), ) ===|7(),¥()](-)— t),¥(@)](Y(), -
5oz (0, 1OIGF (@), ) =7 [v(1), 4 (O] () =5 -1 (), 7O (2), ),
where this is to be understood as an equality between elements
of R™. Since 9>L/0v?(z,v) is non-degenerate, we can in fact
solve for 4(t), and therefore we see that  satisfies a second order

differential equation. This suggests to define a vector field X, on
TM = M x R™ by

Xr(z,v) = (v, Xp(x,v)) € o) (T M),

where, due to the non-degeneracy of 0?L/0v*(z,v) , the function
X1, is uniquely defined by

9L . OL 9L
W(x>v)[XL($vv)v ] = %(JE,’L))() - %(l‘ﬂ})(’u’ )

This function X7, is Cr=2 if Lis C".

From our previous computation, if v is a curve satisfying the
Euler-Lagrange equation, its speed curve t — (y(t),7(t)) is an
integral curve of X7. Conversely, since the first of the coordinates
of Xy (x,v), (v, Xy (x,v)) is v, the solutions of this vector field are
curves of the form ¢t — (y(t),%(t)) with v : [a,b] — M of class
C2, and 5(t) = X1,(7(t),5(t)), and therefore ~y satisfies the Euler-
Lagrange equation. Thus, these integral curves are the curves of
the form ¢ +— (y(t),5(t)) with 7 : [a,b] — M of class C? which
satisfy the Euler-Lagrange equation, in other words with ~ an
extremal curve.
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Theorem 2.4.1. Let L be a C" Lagrangian on M, with r > 2.
Assume that for each (x,v) € TM the bilinear form 0L /0v?(x,v)
is non-degenerate. Then for every (x,v) € TM, we can find an
extremal 7 : [—€,¢] — M with v(0) = x, and 4(0) = v; moreover,
if L is at least C3, then any two such extremals coincide on their
common domain of definition.

Proof. Suppose (x,v) € TM is given. Since X is at least con-
tinuous, we can apply the Cauchy-Peano theorem, see [Bou76], to
find an integral curve I' of X defined on some interval [—¢, €],
with € > 0 and passing through (z,v) at time t = 0. But as we
have seen above such a solution if of the form I'(t) = (y(¢),¥(t)),
with v an extremal. This « is obviously the required extremal.

If Lis C3, then X, is C', and we therefore have uniqueness
of solution by the Cauchy-Lipschitz theorem. Therefore, if ~; :
[[—€,€'] — M is another extremal with 1(0) = x, and 41(0) = v,
then 'y (¢) = (71(¢),41(t)) is another solution of X, with the same
initial condition as I', therefore I' = I on the intersection of their
domain of definition. O

We can, then, summarize what we obtained in the following
theorem.

Theorem 2.4.2 (Euler-Lagrange). Let M be an open subset of
R™. If L is a Lagrangian on M of class C", withr > 2, and for every
(z,v) € TM the quadratic form ?;Tg(x, v)) is non-degenerate, then
there exists one and only one vector field Xy, on T'M such that the
solutions of X, are precisely the curves the form t — (v(t),(t))
where v : [a,b] — M is an extremal curve of L. This vector field
is of class C"~2. The vector field X[, is called the Euler-Lagrange

vector field of the Lagrangian L.

Everything in this theorem was proved above, but maybe we
should say a word about the uniqueness. In fact, we can obtain
X1 (x,v) from the extremals of L. In fact, if we choose an extremal
v : [—€,€] = M with v(0) = z, and 4(0) = v (this is possible by
theorem 2.4.1), then X (z,v) is nothing but the speed at 0 of the

curve ¢ — (y(t),7(t)).
Let us extend this result to the case of an arbitrary manifold

M.
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Theorem 2.4.3 (Euler-Lagrange). Let M be a differentiable man-
ifold. If L : TM — R is a C" Lagrangian, with r > 2, and for
every (x,v)

inT' M the quadratic form %(m, v)) is non-degenerate, then there
exists one and only one vector field Xy on T'M such that the
solutions of X, are precisely of the form t — (vy(t),5(t)) where
v : a,b] — M is an extremal curve of L. This vector field is of

class CT2,

Proof. By theorem 2.4.2 above, for every open subset U C M
which is contained in the domain of a coordinate chart, we can
find such a vector field XLU on TU for which the solutions are
precisely of the form t — (y(t),7(t)) where v : [a,b] — U with
~v an extremal curve having values in U. But if U and V are
two such open subsets, for both restrictions XY|[U NV, XY |UNV,
the solution curves are the curves t — (y(t),7(t)) where v is an
extremal curve of L whose image is contained in U NV, so they
both coincide with XYV O

Definition 2.4.4 (The Euler-Lagrange Vector Field and its Flow).
If L: TM — R is a C" Lagrangian, with r > 2, and for every
(z,v) € TM the quadratic form %(x,v)) is non-degenerate, the
vector field X, defined by theorem 2.4.3 above is called the Euler-
Lagrange vector field of the Lagrangian L. If L is C" with r > 3,
then, by the Cauchy-Lipschitz theorem, the field X generates a
partial flow on T'M of class C"~2. We will denote this partial flow
by ¢ and we will call it the Euler-Lagrange flow of the Lagrangian
L.

In fact, under the stronger hypothesis that the global Legendre
transform £ : TM — T*M, defined by

E(m,v)(aj,fu) = (a:, g—i(&@%

is a C! diffeomorphism onto its image, we will see in Theorem 2.6.5
that the partial flow is of class C"~! and that, even if L is only of
class C?, the vector field X7, is uniquely integrable and generates
a partial flow ¢f of class C! which is also called in that case the
Euler-Lagrange flow of the Lagrangian L.
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2.5 Symplectic Aspects

Let M be differentiable manifold of class C*>°, denote by 7* :
T*M — M the canonical projection of the cotangent space T*M
onto M and denote by T'7* : TT*M — TM the derivative of 7*.
On T* M, we can define a canonical differential 1-form « called the
Liouville form. Thus the value this form at a given (x,p) € T*M
is a linear map oy p) @ Tz p)(T*M) — R. To define it, we just
remark that the two linear maps T(, 7" : T(y ) (T* M) — T, M,
and p : T, M — R can be composed, and thus we can define o/, ;)
by
VW € Tiap) (T M), Qe ) (W) = p[T (e pym" (W]

To understand this differential 1-form « on the 7™M manifold, we
take a chart 6 : U — 6(U) C R", we can consider the associated
chart 7% : T*U — T*(0(U)) = 0(U) x R™. In these charts the
canonical projection 7* is nothing but the projection §(U) x R™ —

6(U) on the first factor. This gives us coordinates (x1,...,2,) on
U, and therefore coordinates (z1,- - ,Zpn,p1, - ,Pn) on T*U such
that the projection 7* is nothing but (z1, -+ ,xn,p1, - ,Pn) —

(w1, ,2n). Avector W € T(, (T M) has therefore coordinates
(X1, ,Xpn, P1,--- , Py), and the coordinates of T(, y7*(W) €
T,U are (X1,---,X,). It follows that o, (W) = >0 piX;.
Since X; is nothing but the differential form dz; evaluated on W,
we get that

n

a|T*U = Zpi dx;.

i=1

We therefore conclude that « is of class C*.
Let w be a differential 1-form defined on the open subset U of

M. This 1-form is a section w : U — T*U, x — w,. The graph of
w is the set

Graph(w) = {(z,w) |z € U} C T* M.

Lemma 2.5.1. Let w be a differential 1-form defined on the open
subset U of M. We have

wa = w,

where w*« is the pull-back of the Liouville form oo on T*M by the
map w: U — T*U
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Proof. Using coordinates charts, it suffices to verify in the case
where U is an open subset of R™. Using the canonical coordinates
on U C R™, we can write wy = Y 1 | wi(x)dz;. Asamap w:U —
T*U it is thus given in these coordinates by

(X1, yxn) = (21, T, w1 (), ..o, wi(X)).

But in these coordinates, it is clear that the pull-back w*« is
Yo wi(z)dr; = w. O

By taking, the exterior derivative €2 of o we can define a sym-
plectic structure on T*M. To explain what that means, let us
recall that a symplectic form on a vector space E is an alternate
(or antisymmetric) bilinear form a : E x E — R which is non-
degenerate as a bilinear form, i.e. the map af : E — E* 2 —
a(x,-) is an isomorphism.

Lemma 2.5.2. If the finite dimensional vector space E admits a
symplectic form, then its dimension is even.

Proof. We choose a basis on E. If A is the matrix of a in this
base, its transpose A is equal to —A (this reflects the antisymme-
try). Therefore taking determinants, we get det(A4) = det(*A) =
det(—A) = —19mF det(A). The matrix of a* : E — E*, using
on E* the dual basis, is also A. the non degeneracy of af gives
det(A) # 0. It follows that —19™% = 1 and therefore dim E is
even. ]

Definition 2.5.3 (Symplectic Structure). A symplectic structure
on a C* differentiable manifold V' is a C* closed differential 2-
form ©Q on V such that, for each x € V, the bilinear form €, :
T,V x T,V — R is a symplectic form on the vector space T, V.

As an exterior derivative is closed, to check that Q = —da is a
symplectic form on T* M, it is enough to check the non-degeneracy
condition. We have to do it only in an open subset U of R", with
the notations introduced higher, we see that

QA =—da= —idpi ANdzx; = En:dxi A dp;,
i=1 i=1
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it is, then, easy to check the non-degeneracy condition. In fact,
using coordinates we can write a W € T(, ,)(T*M) as

- 0 - 0
W=2 Xigo +2 Py
Therefore Q, ) (W, -) = 31 Xodpi—) 7| Pidx;, and Q, ) (W, ) =
0 implies X; = P, = 0, for ¢ = 1,...,n, by the independence of
the family (dzq,...,dx,,dp1,...,dp,).

In the following, we will suppose that V' is a manifold provided
with a symplectic structure . If H is a C" function defined on
the open subset O of V', By the fact that Qﬁx is an isomorphism,
we can associate to H a vector field Xz on O well defined by

O (Xp(z),-) =dH(").

Since 2 is non-degenerate, the vector field Xy is as smooth as
the derivative of H, therefore it is C"~'. In particular, if H is
C?, then the solutions of the vector field Xy define a partial flow
o0 — 0.

Definition 2.5.4 (Hamiltonian Flow). Suppose H : O — R is
a C! function, defined on the open subset O of the symplectic
manifold V. The Hamiltonian vector of H is the vector field Xg
on O, uniquely defined by

QI(XH(‘T)7 ) = dﬂCH()?

where (2 is the symplectic form on V. If, moreover, the function
H is C", the vector Xp field is C"~!. Therefore for r > 2, the
partial flow ¢f! generated by H exists, it is called the Hamitonian
flow of H, and H is called the Hamiltonian of the flow ¢{.

Lemma 2.5.5. H : O — R is a C? function, defined on the open
subset O of the symplectic manifold V', then H is constant on the
orbits of its Hamiltonian flow ¢{.

Proof. We must check that d,H(Xg(x)) is 0, for all z € O. But
d.H(Xp(x)) is Qu(Xg(x), Xg(x)) vanishes because the bilinear
form €2, is alternate. O
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Definition 2.5.6 (Lagrangian Subspace). In a vector space E en-
dowed with a symplectic bilinear form a : ExXE — R, a Lagrangian
subspace is a vector subspace F of E with dim £ = 2dim F' and
a is identically 0 on F' x F.

Lemma 2.5.7. Let I' be a subspace of the vector space E which
is Lagrangian for the symplectic form a on E. If x € FE is such
that a(x,y) =0, for all y € F, then, the vector z is itself in F'.

Proof. Define F+ = {z € E |Vy € F,a(z,y) = 0}. We have F- D
F, since a is 0 on F x F. Since af : E — E* is an isomorphism, the
dimension of F- is the same as that of its image af(F) = {p €
E* | p|F = 0}. This last subspace can be identified with the dual
(E/F)* of the quotient of E by F. Therefore dim F*+ = dim F —
dim F' = 2dim F — dim F = dim F.. Therefore F+ = F. O

Definition 2.5.8 (Lagrangian Submanifold). If V' is a symplectic
manifold, a Lagrangian submanifold of V' is a submanifold N of
class at least C!, and such that the subspace T, N of T,V is, for
each € N, a Lagrangian subspace for the symplectic bilinear
form €.

By the lemma 2.5.7 above, if z € N, any vector v € T,V such
that Q. (v,v") =0, for all ' € TN, is necessarily in T, N.

Lemma 2.5.9. If w is a C' differential 1-form on the manifold
M, then the graph Graph(w) of w is a Lagrangian submanifold of
T*M if and only if w is a closed form.

Proof. Indeed,by lemma 2.5.1, we have w = w*a, and thus also
dv = w*da = —w*Q). However, the form w regarded as map
of M — T*M induces a diffecomorphism of C! class of M on
Graph(w), consequently dw = 0 if and only if Q| Graph(w) = 0.

O

Theorem 2.5.10 (Hamilton-Jacobi). Let H : O — R be a C?
function defined on the open subset O of the symplectic manifold
V. If N C O is a connected C' Lagrangian submanifold of V', it is
locally invariant by the partial low ¢! if and only if H is constant
on N.



58

Proof. If H is constant on N, we have
V. € N, d,H|T,N =0,

and thus Qg (Xg(x),v) = 0, for all v € T, N, which implies that
Xu(z) € T,N. By the theorem of Cauchy-Peano [Bou76], if N is
of class C! (or Cauchy-Lipschitz, if N is of C? class), the restric-
tion Xp|N has solutions with values in N. By uniqueness of the
solutions of Xz in O (which holds because Xy is C! on O), the
solutions with values in N must be orbits of ¢ff. We therefore
conclude that N is invariant by ¢{ as soon as H is constant on
N. Conversely, if N is invariant by ¢f?, the curves t — ¢ ()
have a speed Xj(x) for ¢ = 0 which must be in T, N, therefore
Xn(x) € TN and dyH|N = Q(Xg(x),-) vanishes at every point
of N, since N is a Lagrangian submanifold. By connectedness of
N, the restriction H|N is constant. O

2.6 Lagrangian and Hamiltonians

Definition 2.6.1 (Hamiltonian). If L is a C! Lagrangian on the
manifold M, its Hamiltonian H : TM — R is the function defined
by
A L
Ae,v) = 2 (@, 0)0) — Lia,v).
ObViAously, if L is C*, with k > 1, then, its associated Hamil-

tonian H is of class CF—1,

Proposition 2.6.2. Suppose that L is a C?> Lagrangian on the
manifold M. If v : [a,b] — M is a C? extremal curve then the
Hamiltonian H is constant on its speed curve t — (y(t),7(t)).

In particular, the Hamiltonian H is invariant under the Euler-
Lagrange flow ¢ when it exists.

Proof. We have

H(y(t),4(t) = g—ﬁ(’v(t)d(t))("v(t)) — L((1),7(1),

We want to show that its derivative is zero. This is a local result,
we can suppose that ~ takes its values in a chart on M, and there-
fore use coordinates. Performing the differentiation with respect
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to t in coordinates, after simplifications, we get

SHOO40) = | £ (Ge00.50) | 60)-5E60AO)60).

This last quantity is zero since ~ satisfies the Euler-Lagrange equa-
tion, see 2.2.6. O

Suppose that the restriction of the global Legendre transform
L to some open subset O C M is a diffeomorphism onto its image
O = L(0), we will define the function Hp - O — R by Hpy = Ho
L£]|0)~t, where (£]0)~! : O — O is the inverse of the restriction
L£]O. This function H, o is also called the (associated) Hamiltonian.

—~

Proposition 2.6.3. Let L be a C* Lagrangian, with k > 2, on
a manifold M. Suppose that the restriction £~|O of the global
Legendre transform to the open O C M is a diffeomorphism onto
its image O. Then the Hamiltonian Hpy = H o (£|0)™! is also
of class C* on the open subset O C T*M. If M = U is an open
subset of R™, then, in the natural coordinates on TU and T*U,
we have

with L(z,v) = p.

Proof. To simplify notations we will set H = H5. We know that L
is CF—1. Tt follows that the diffeomorphism (£|0)~! is also CF~1,
and hence H is CF~1, since obviously H is C*~1. therefore H is
at least C! We then take coordinates to reduce the proof to the
case where M = U is an open subset of R™. Using the canonical
coordinates on R", we write (x,v) = (z1,--- ,Zp,v1, -+ ,Vy). By
definition of H, and H, we have

H (e, % 2,0)) =~ L) + Y g—% oo ()
j=1
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If we differentiate both sides with respect to the variable v;, we
find

62L n 62L oL
Z ap] ’U ’U))M(:Eav) = Z;U]m(iﬂ, %(gj’v)%

1=

foralli=1,...,n. Since we have

; Idgn 2k
DL(z,v) = [ déR a’éa”((; :))
vz

the matrix [ 6?@_2;%} is invertible, for (z,v) € O. Thereore we

obtain . oL
@ (x, %(x, v)) = vj.

If p = g—ﬁ(x,v) = L(x,v), we indeed found the first equation. If
we differentiate both sides of the equality (*) with respect to the
variable x;, using what we have just found, we obtain

OH , 0L " %L
a—xi(l‘> %(l‘av)) + ]Z:;,Uj 8:@61@- (l‘,U) -

~ 0’L (2. 0y — O
= 8:@61@- ’ J al‘l

(x7 v)?

hence
O0H_ 0L oL

8—%['%'7 %(‘T,’U)] = _axl

As L]0 is a diffeomorphism of class C¥~! and L is of class C¥,
writing the formulas just obtained as

OH =
a—p(w,p) =p2 L7 (x, p)
%(%p)——%[ﬁ (ib",p)]

where po is the projection of TU = U x R" on the second factor,
we see that the derivative of H is C¥~1, and thus H is CF. O
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Let us recall that, for U an open subset of R", the Euler-
Lagrange flow is the flow of the vector field Xy, on TU = U x R"
defined by X (x,v) = (z,v1,v, X1 (z,v)) with

2 R 2
O fw0) = O w 0)(Rale ), ) + o)) ()

Suppose now that E\O is a diiffeomorphism onto its image for the
open subset O C TM. Since the diffeomorphism £ is CF~1, with
k > 2, we can transport by this diffeomorphism the vector field
X1|0 to a vector field defined on O.

Theorem 2.6.4. Let L be a CF Lagrangian, with k > 2, on
a manifold M. Suppose that the restriction EN\O of the global
Legendre transform to the open O C M is a diffeomorphism onto
its image O. If we transport on O = £~(O) the Fuler-Lagrange
vector field Xy, using the diffeomorphism £~|O, we find on O the
Hamiltonian vector field Xp,, associated to Ho = H o (L|0)~".
In particular, even if k = 2, the Euler-Lagrange vector field Xp,
is uniquely integrable on O, therefore the partial Euler-Lagrange
flow ¢} is defined and C' on O. More generally, for every r > 2,
the Euler-Lagrange flow ¢ on O is of class C" 1.

Proof. Let us fix (z,v) € O. We set p = g—ﬁ(x,v). As the Euler-
Lagrange vector field is of the form Xy (x,v) = (z,v,v, X (x,v)),
we have

T(LU)E(XL(x,v)) = (x,p,v, g—f(az,v)(XL(x,v)) + g—i(az,v)(v))

But g—f(x,v) = ?;Té et ‘g—§ = g;aLv. Using equation (#x), we then
find

Ao oL 0OH O0H
TL(X(z,v)) = (2.p,v, a—x(l’a”)) = (z,p, 8—p’_8—x)’
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this is precisely Xp,,, because

(PHo 0 _9Ho D |
A Ox Op’

ey PHo O Mo D
_(;d%/\dpl)( Op Ox oz Z?p’)

"\ 9Ho OH
=) S dpi+ S —du;
Op; pi 0x; v

=1
— dHo.

Since the Hamiltonian is C*, the vector field X H, 1s of class Cck-1,
its local flow qbf © is, by the theorem of Cauchy-Lipschitz, well
defined and of class C*~!. However, the diffeomorphism EN\O is of
class C*~! and sends the vector field X on X Ho» consequently
the local flow of X7 |0 is well defined and equal to (£]|0)~1¢0 £
which is C" 1. ]

The following theorem is clearly a consequence of 2.6.4, propo-
sitions 2.6.3 and 2.1.6.

Theorem 2.6.5. Suppose that L is a non-degenerate C" Lagran-
gian, with v > 2, on the manifold M. Then for r = 2, the the
Euler-Lagrange vector field Xy, is uniquely integrable and defines
a local flow ¢ which is of class C'. More generally, for every
r > 2, the Euler-Lagrange flow ¢} is of class C" 1.

Remark 2.6.6. When L is non degenerate of class C", with r > 2,
we can define QL~: Lx), where € is the canonical symplectic form
on T*M. Since L is a local diffeomorphism, for each (x,v) € T M,

the bilinear form Qéﬁ ) is non-degenerate. Obviously, the 2-form is

of class C"72. To be able to say that QF is closed, we need to have
r > 3. Under this condition QF defines a symplectic structure
of class C"72 on TM, and we can interpret what we have done
by saying that Xy is the Hamiltonian flow associated to H by
QL. Notice however that we cannot conclude from this that X is
uniquely integrable because H is only C"~!, and we do not gain
one more degree of differentiabilty, like in proposition 2.6.3, for
the Hamiltonian. Note that this also gives an explanation for the
invariance of H by the Euler-Lagrange flow.
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2.7 Existence of Local Extremal Curves

We will use the following form of the inverse function theorem.

Theorem 2.7.1 (Inverse Function). Let U be an open subset of
R™ and K a compact space. We suppose that ¢ : K x U — R™
is a continuous map such that

(1) for each k € K, the map ¢y : U — R™ x — o(k, x) is Ct,

(2) The map g—i : K xU — LR™R™), (k,z) — g—i(k,a:) is

continuous.
If C C U is a compact subset such that

(i) for each k € K, and each x € C, the derivative g—i(k,;v) is
an isomorphism,

(ii) for each k € K, the map yy, is injective on C,
then there exists an open subset V such that
(a) we have the inclusions C C V C U,

(b) for each k € K, the map ¢y, induces a C' diffeomorphism of
V on an open subset of R™.

Proof. Let ||-|| denote a norm on R™, and let d denote its associ-
ated distance. Let us show that there is an integer n such that, if
we set

Vo, = {a: | d(z,C) < %},

then, the restriction ¢y |V}, is injective, for each k € K. We argue
by contradiction. Suppose that for each positive integer n we can
find vy, v, € U and k,, € K with

1 1
vp # v, d(vy, C) < E,d(v;,C) < - and @ (kn,vyn) = @(kn,v),).

By the compactness of C' and K, we can extract subsequences

Up,;, vy, and ky, which converge respectively to veo, v, € C and
keo € K. By continuity of ¢, we see that p(keo, Vo) = @ (Koo, Uiy, )-

From (ii), it results that v, = v.,. Since v, # v),, we can set u,, =
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Un—Ul,
llvn—v7, I
that u,, — Us. This limit us is also of norm 1. As v,, and v},
both converge to ve, = v, for i large, the segment between vy,
and v;h_ is contained in the open set U. Hence for ¢ big enough we
can write

Extracting a subsequence if necessary, we can suppose

0= @(knivvni) - C,D(k’nl,’U;h)
1
— g—(p(knl, svp, + (1 — s)v;i)(vm - U;h) ds,
0 [

dividing by ||v;,, — vy, || and taking the limit as n; — oo, we obtain
o= [ %
0 ov

_ 9y
= %(k‘w,vm)(uo@).

(Koos Voo ) (Ueo) ds

However g—f(k‘oo,voo) is an isomorphism, since (koo,Vs0) € K X

C. But |lus|l = 1, this is a contradiction. We thus showed the
existence of an integer n such that the restriction of ¢ on V,, is
injective, for each k € K. The continuity of (k,v) — g—f(k,v)
and the fact that g—f(k‘, v) is an isomorphism for each (k,v) in the
compact set K x C, show that, taking n larger if necessary, we can
suppose that g—f(kz, v) is an isomorphism for each (k,v) € K x V,.
The usual inverse function theorem then shows that ¢y restricted
to V, is a local diffeomorphism for each k € K. Since we have
already shown that oy is injective on V,,, it is a diffeomorphism of
V,, on an open subset of R™. O

The following lemma is a simple topological result that de-
serves to be better known because it simplifies many arguments.

Lemma 2.7.2. Let X be a topological space, and let Y be a
locally compact locally connected Hausdorff space. Suppose that
@ : X xU — Y is continuous, where U is an open subset of Y
, and that, for each x € X, the map ¢, : U — Y,y — p(z,y)
is a homeomorphism onto an open subset of Y. Then, the map
O: X xU — X xY,(z,y) — (z,p(x,y)) is an open map, i.e. it
maps open subsets of X x U to open subsets of X x Y. It is thus
a homeomorphism onto an open subset of X x Y.
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Proof. 1t is enough to show that if V' is open and relatively com-
pact in Y, with V C U, and 29 € X,y € Y are such that
Yo € z,(V), then, there exists a neighborhood W of zp in X
and a neighborhood N of yp in Y, such that ¢, (V) D N, for each
x € W. In fact, this will show the inclusion W x N C &(W x V).
As ¢, (V) is an open set containing v, there exists N, a compact
and connected neighborhood of yp in Y, such that N C ¢z, (V).
Since V = V' \ V is compact and N N, (0V) = ), by continuity
of ¢, we can find a neighborhood W of xg such that

Vo e W, 0, (0V) NN = 0. (*)

We now choose gp € V, such that ¢.,(90) = yo. Since N is
a neighborhood of yy and ¢ is continuous, taking W smaller if
necessary we can assume that

Va € W, ¢z (fo) € N. (**)
By condition (), for # € W, we have ¢, (V) NN = ¢,.(V)N N,
therefore the intersection ¢, (V)N N is both open and closed as a
subset of the connected space IN. This intersection is not empty
because it contains ¢, (o) by condition (xx). By the connectedness
of N, this of course implies that ¢, (V)N N = N. O

Lemma 2.7.3 (Tilting). Let ||-|| be a norm on R™. We denote
by é||.||(0,R) (resp. By (0, R)) the open (resp. closed) ball of R™
of center 0 and radius R for this norm. We suppose that K is a
compact space and that e€,n,Cy and Csy are fixed > 0 numbers,
with C1 > Cs.

Let 0 : Kx] — e,e[xl%H.H(O,C’l + 1) — R™ be continuous map
such that

(1) for each fixed k € K, the map (t,v) — 0(k,t,v) has every-

where a partial derivative %, and this partial derivative is

itself C';

90 9%0 0%0 _ 9 [@]
ot> 9t2’ ovdt — Ov Lot
are continuous on the product space K x| —e, e[xB“.” (0,C1+

n);

(2) the map 0 and its partial derivatives
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(3) for each k € K and each v € By.(0,Cy + 1), we have

00
E(k’ 0,v) = v;

(4) for each (k,v) € K x B(0,Cy +n), we have
0(k,0,v) = 0(k,0,0).
Then, there exists § > 0 such that, for each t € [—6,0[U]0, ]

and each k € K, the map v — 0(k,t,v) is a diffecomorphism of
By(0,C1 +n/2) onto an open subset of R", and moreover

{9(k7t¢v) | CAS B||||(0701)} ) {l‘ eR” | H:E - e(kaO,O)H < C2|t|}
Proof. Let us consider the map

0(k,t,v) —6(k,0,v)

@(k,t,'l)) = + )

defined on K x ([—¢, 0[U]0, €]) x I§||,||(0, Cy +n). We can extend it
by continuity at ¢ = 0 because

1
@(k:,t,v):/ @(k,st,v)ds (%)
o Ot

The right-hand side is obviously well-defined for ¢t = 0, and equal
to 00 /0t(k,0,v) = v. Moreover, upon inspection of the right-hand
side of (%), the extension © : K x] — e,e[xé”,”(o, Ci+n) — R"is
such that for each fixed k € K, the map (¢,v) — O(k,t,v) is C!,
with

00 1 920
E(k‘,t,fu) —/0 ﬁ(kz,st,v)s ds,
00 1 920
%(lﬁ,t,v) = ) m(k},st,’u) ds.

Therefore both the partial derivatives 90 /0t,00/0v are continu-
ous on the product space K x| — ¢, e[x B |(0,C1 +n). Let us then

define the map © : K'x] — e,e[xé”,”(O,C’l +n) — R xR" by

O(k,t,v) = (t,0(k,t,v)).
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To simplify, we will use the notation x = (t,v) to indicate the
point (t,v) € RxR" = R"*!. The map O is obviously continuous,
and the derivative 9O /Ox is also continuous on the product space
Kx]—g¢, e[x§||,||(0, C1+mn). Since O(k,0,v) = v, for each (k,v) €
K x é“.”(o, C1 + 1), we find that

00 1 0

ax (k,O,U) = %_?(kjoyv) Ian )

where we used a block matrix to describe a linear map from the
product R x R™ into itself. It follows that %(l@, 0,v) is an isomor-
phism for each (k,v) € K x é||.||(0, Ci1+1n).

Since K and B (0,Cy +n/2) are compact, using the inverse
function theorem 2.7.1, we can find §; > 0 and 7’ €]n/2,n[ such
that, for each k € K, the map (¢,v) — O(k,t,v) is a C! diffeomor-
phism from the open set | — 51,51[xé||,||(0, C1 + 1) onto an open
set R x R™. Tt follows that, for each (k,t) € K x]—d1,d1[, the map
v O(k,t,v) is a C' diffeomorphism §||.||(O, C1 +1/2) onto some
open subset of R"™. By lemma 2.7.2, we obtain that the image of
Kx|— 51,61[Xé||,||(0, C1) by the map (k,s,v) — (k,O(k,s,v)) is
an open subset of K x R x R™. This open subset contains the
compact subset K x {0} x By (0,C2), since O(k,0,v) = (0,v).
We conclude that there exists § > 0 such that the image of K x]—
51,51[xé||.||(0, C1) by map the (k,s,v) — (k,O(k,s,v)) contains
K x[—6,6] x By (0,C2). Hence, for (k,t) € K x [~4,d], the image
of éll'l|(07 C1) by the map v — O(k,t,v) contains B (0, ).

Since we have

0(k,s,v) = sO(k,s,v) + 0(k,0,v)
0(k,0,v) = 0(k,0,0),

we can translate the results obtained for © in terms of 6. This
gives that, for s # 0, and |s| < ¢, the map v — 6(k, s,v) is also
a diffeomorphism of lf3||.l|(0, Cy +n/2) on an open subset of R™
and that the image of By (0,C1) by this map contains the ball
B(0(k,0,0),Css). O

Theorem 2.7.4 (Existence of local extremal curves). Let L :
TM — M be a non-degenerate C" Lagrangian, with r > 2. We
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fix a Riemannian metric g on M. For x € M, we denote by ||||»
the norm induced on T, M by g. We call d the distance on M
associated with g.

If K ¢ M is compact and C € [0,40c0[, then, there exists
€ > 0 such that for z € K, and t € [—¢,0[U]0, €], the map 7o ¢F is
defined, and induces a diffeomorphism from an open neighborhood
of {v € T,M | |[v|l. < C} onto an open subset of M. Moreover,
we have

mo ¢ ({ve TM | |v]. <C}) D {y e M |d(y,x) < Clt]/2}.

To prove the theorem, it is enough to show that for each
xg € M, there exists a compact neighborhood K, such that the
conclusion of the theorem is true for this compact neighborhood
K. For such a local result we can assume that M = U is an
open subset of R”, with g € U. In the sequel, we identify
the tangent space TU with U x R" and for x € U, we identify
T,U = {z} x R" with R". We provide U x R"™ with the natu-
ral coordinates (z,v) = (21, ,Zp,v1, -+ ,U,). We start with a
lemma which makes it possible to replace the norm obtained from
the Riemannian metric by a constant norm on R".

Lemma 2.7.5 (Distance Estimates). For each a > 0, there exists
an open neighborhood V' of xy with V' compact C U and such that

(1) for each v € T,U = R" and each x € V we have

(1 = a)l[vllzy < [lvlle < (1 + @)[0]la;

(2) for each (z,2') € V we have

1= a)llz = 2oy < d(x,2") < (1+ )|z = 2|lap-
Proof. For (1), we observe that, for z — z, the norm |[|v||, tends
uniformly to 1 on the compact set {v | ||v||z, = 1}, by continuity
of the Riemannian metric. Therefore for x near to x(y, we have

Vo eR", (1—a)< < (14 a).

T

10|z

For (2), we use the exponential map exp, : T,U — U, induced
by the Riemannian metric. It is known that the map exp : TU =
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UxR"™ — UxU, (z,v) — (x,exp, v) is a local diffeomorphism on a
neighborhood of (¢, 0), that exp,(0) = z, and D[exp,](0) = Idgn.
Thus, there is a compact neighborhood W of xg, such that any pair
(z,2') € W x W is of the form (z, exp, [v(z,2")]) with v(z,2') — 0
if z and 2’ both tend to z9. The map (z,v) — exp,(v) is C,
therefore, using again exp,(0) = x, Dlexp,](0) = Idgn, we must
have
exp, v = + v + ||v]|g k(z,v),

with lim,_o k(z,v) = 0, uniformly in x € W. Since d(z,exp, v) =
||v||, for v small, it follows that for z, 2z’ close to

|z =2l _ o, 2")+o, 2) |l k(2 v(2, 27)||2

d(z, z') [o(2; )|

We can therefore conclude that ”(j(;x:;,”)’” — 1, when z,2' — .

But we also have ””f__;/”””” — 1 when x — xg, we conclude that
o
% is close to 1, if  and 2’ are both in a small compact
o
neighborhood of x. O

Proof of the theorem 2.7.4. Let us give a and n two > 0 numbers,
with a enough small to have

C - C L0

l-a 14+a 2
1 1

2(1 — «) < 1+a

We set C1 = C/(1 + ). Let W C U be a compact neighborhood
of zy. Since W x B”,”zo (0,Cy + n) is compact, there exists € > 0
such that ¢} is defined on W x B”,HZO(O, Cy +n) for t €] — ¢, €.
We then set 0(z,t,v) = 7o ¢l (z,v). The map 6 is well defined on
W x [—e¢, €] x B”.”xo (0, C1 +n). Moreover, since t — ¢F(z,v) is the
speed curve of its projection t +— 6(t, x,v), we have

00
(ﬁf(ﬂ?,v) = (0($7tav)7 E($atav))a
and

0(x,0,v) =z, and %(m,O,v) =.
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Since the flow ¢} is of class C"~!, see theorem 2.6.5, both maps
0 and % are of class C"~!, with respect to all variables. Since r >
2, we can then apply the tilting lemma 2.7.3, with C; = C/(1+«)
and Cy = C/2(1 — a), to find § > 0 such that, for each x € W,
and each t € [—6,0[U]0, ], the map (z,v) + 7 o ¢ (x,v) induces
a Cl diffeomorphism from {v | ||v|lz, < 1/2+ C/(1 + a)} onto an
open subset of R™ with

Ct

C
{mogf (@,0) | vlley < ==} D {y €R" | lly—2lap < m}-

T 14«

Since 7 o ¢f(z,v) = z, taking W and § > 0 smaller if necessary,
we can assume that W C V and

{moE(x,v) |t € [<6,0],2 € W,ve B0,C/(1+a)+n)}CV,

where V is given by lemma 2.7.5. Since W C V, by what we
obtained in lemma 2.7.5, for x € W, for every R > 0, we have

R
{UETSL‘U’”UHIOSH—Q}C{UETSL‘U’”U”xSR}
C e Tl | Jolle < ——1
vela Ulleo = 7750

As W is compact and contained in the open set V, for ¢ > 0 small
and x € W, we have

{yGM!d(y,w)é%}CV,

hence again by lemma 2.7.5

Ct

(e Ml dwa) < Grc e VIly=aln < 5o

Therefore by the choices made, taking § > 0 smaller if necessary,
fort € [~6,6], and x € W, the map moa} is a diffeomorphism from
a neighborhood of {v € T,U | ||v||z < C} onto an open subset of
U such that

mo¢l({ve T,U | Jull, <CH D {y eV |dy,z) < @m
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2.8 The Hamilton-Jacobi method

We already met an aspect of the theory of Hamilton and Jacobi,
since we saw that a connected Lagrangian submanifold is invariant
by a Hamiltonian flow if and only if the Hamiltonian is constant
on this submanifold. We will need a little more general version for
the case when functions depend on time.

We start with some algebraic preliminaries.

Let a be an alternate 2-form on a vector space . By definition,
the characteristic subspace of a is

kera ={¢ € E | a(,) =0},

i.e. kera is the kernel of the linear map a” : E — E* &+ a(g, ).
If E is of finite dimension, then Ker(a) = 0 if and only if a is a
symplectic form. Since a space carrying a symplectic form is of
even dimension, we obtain the following lemma.

Lemma 2.8.1. Let a be an alternate 2-form on the vector space
FE is provided with the alternate bilinear 2-form. If the dimension
of E is finite and odd, then Ker(a) is not reduced to {0}.

We will need the following complement.

Lemma 2.8.2. Let a be an alternate bilinear 2-form on the vec-
tor space E of finite odd dimension. We suppose that there is a
codimension one subspace Ey C E such that the restriction a|E)y
is a symplectic form, then, the dimension of the characteristic sub-
space Ker(a) is 1.

Proof. Indeed, we have Ey N Ker(a) = 0, since Ey is symplectic.
As Ej is a hyperplane, the dimension of Ker(a) is < 1. But we
know by the previous lemma that Ker(a) # 0. O

Definition 2.8.3 (Odd Lagrangian Subspace). Let E be a vector
space of dimension 2n + 1 provided with an alternate 2-form a,
such that the dimension of Ker(a) is 1. A vector subspace F of E
is said to be odd Lagrangian if dim /' = n + 1 and the restriction
a|F is identically 0.

Lemma 2.8.4. Let E be a vector space of dimension 2n + 1
provided with an alternate 2-form a, such that the dimension of
Ker(a) is 1. If F' is an odd Lagrangian subspace, then Ker(a) C F'.
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Proof. We set F- = {¢ € E | Vf € F, a(§, f) = 0}. We have
F+ > F + Ker(a), therefore dima®(F+) = dim F*+ — 1, since
Ker(a)” = Ker(a), where a” : E — E* £+ a(€,-). But a? (F*) C
{¢ € E* | ¢(F) = {0}} which is of dimension n. It follows that
dim F+ —1 < n and thus dim F+ < n+1. Since F+ > F + Ker(a)
and dim F = n + 1, we must have F* = F and Ker(a) C . O

In the sequel of this section, we fix a manifold M and O an open
subset of its cotangent space T*M. We denote by n* : T*M — M
the canonical projection.

We suppose that a C? Hamiltonian H : O — R is given. We
denote by Xp the Hamiltonian vector field associated to H, and
by ¢ the local flow of Xz. We define the differential 1-form ay
on O x R by

ag = o — Hdt,

where « is the Liouville form on T*M. More precisely, we should
write
ag =pja— (H op)dt,

where p; : T*M x R — T*M is the projection on the first factor
and dt is the differential on T* M xR of the projection T*M xR —
R on the second factor. The exterior derivative Qg = —dag
defines a differential 2-form which is closed on O x R. We have

Qu = piQ+ (pjdH) A dt,

where ) = —da is the canonical symplectic form on T*M. If
(z,p,t) € (O x R), then, the tangent space T, (O x R) =
Top)(T*M) x R is of odd dimension. Since, moreover, the re-
striction () (z,p,4)|T(z,p) T M is nothing but the symplectic form
Q) = —da, the lemmas above show that the characteristic space of
() (2,p,1) is of dimension 1, at each point (z,p,t) € O x R,

Lemma 2.8.5. At a point (x,p,t) in O x R, the characteristic
subspace of Qp is generated by the vector X g + %, where Xy is
the Hamiltonian vector field on O associated with H.

Proof. The vector field Xg + % is never 0, because of the part %,
it is then enough to see that

0

QH(XH + E,’

) =0.
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But, we have

0 0
QH(XH + a,) = Q(XH,') + (dH/\dt)(XH + a,)
=dH + dH(Xg)dt —dH
=0,
since dH (Xpg) = U Xy, Xg) =0. O

Definition 2.8.6 (Odd Lagrangian Submanifold). We say that a
C! submanifold V of O x R is odd Lagrangian for Qp, if dimV =
dim M + 1 and the restriction Q|V is identically 0. This last
condition is equivalent to the fact that the restriction ay|V is
closed as differential 1-form.

Lemma 2.8.7. If the C' submanifold V of O x R is odd Lagran-
gian for Qp, then, the vector field X + % is tangent everywhere
to V.

It is not difficult to see that the local flow of X g + % on O xR
is
o (z,p,t) = (¢F (2, p), t + 9.
Corollary 2.8.8. If the C' submanifold V of O x R is odd Lag-
rangian for Qp, then, it is invariant by the local flow ®1.

Proof. Again since we are assuming that V is only C!, the re-
striction of Xz + % to V which is tangent to V is only C°, as
a section V' — T'V. We cannot apply the Cauchy-Lipschitz theo-
rem. Instead as in the proof of 2.5.10, if (x,p,t) € V, we apply the
Cauchy-Peano [Bou76] to find a a curve in V' which is a solution
of the vector field. Then we apply the uniqueness in O where the
vector field to conclude that this curve in V' is a part of an orbit
of the flow. O

Lemma 2.8.9. the form Qp is preserved by the flow ®I,

Proof. By the Cartan formula, a closed differential form [ is pre-
served by the flow of the vector field X, if and only if the exterior
derivative d[3(X,-)] of the form B(X,-) is identically 0. However

in our case
0

QH(XH + E,) =0.0
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Let us consider U, an open subset of M, and a local C! section
s: Ux]a,b[— T*M xR of projection 7* x Idg : T*M xR — M xR
such that s(x,t) € O, for each (x,t) € Ux]|a,b|. If we set s(x,t) =
(x,p(z,t),t), then the image of the section s is an odd Lagrangian
submanifold for Qg if and only if the form: s*[a— H (z, p(z,t)) di]
is closed. If we choose coordinates x1, ... ... , T, in a neighborhood
of a point in U, we get

8*[0é - H(l‘,p(:ﬂ, t)) dt] = —H(ZE,p(l‘, t)) dt + Zpi(xa t) dxz
i=1
and thus the image of the section s is an odd Lagrangian sub-
manifold if and only if the differential 1-form —H (z,p(z,t))dt +
S pi(x,t)dr; is closed. If this is the case and U is simply

connected, this form is then exact and there is a C? function
S : Ux]a,b[— R such that

dS = —H(l‘,p(iﬂ, t)) dt + Zpi(:Ev t) d$i7
i=1

which means that we have

a8 a8
% _p(a;,t) and a = —H(a;,p(x,t))

This brings us to the Hamilton-Jacobi equation
—) =0. (H-J)

Conversely, any C? solution S : Ux]a,b[— R of this equation
gives us an invariant odd Lagrangian submanifold, namely the
image of the section s : Ux]a,b[— T*M x R defined by s(z,t) =
(:17, ‘g—i(x, t), t). Indeed, with this choice and using coordinates, we

find that

s*(ag) = Z S—Z(x,t) dx; — H(z,p(z,t))dt.

Since S satisfies the Hamilton-Jacobi equation, we have

. 0S8 " 08
s"(ap) = E(az,t) dt + ; oz, (x,t) dz;,
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which implies that s*(ag) = dS is closed.
The following theorem partly summarizes what we obtained:

Theorem 2.8.10. Let H : O — R be a C?> Hamiltonian, defined
on the open subset O of the cotangent space T* M of the manifold
M. We denote by ¢ the local flow of the Hamiltonian vector field
Xy associated with H. Let U be an open subset of M and a,b € R,
with a < b. Suppose that the C? function S : Ux]a, b[— R is such
that

(1) for each (z,t) € Ux]a,b[, we have (z, g—i(:n,t)) € 0;
(2) the function S satisfies the Hamilton-Jacobi equation

oS oS

) =0.

We fix (x0,tp) a point in Ux]a,b], and to simplify notations we
denote the point ¢f! (zo, ‘g—i(xo,to)) by (z(t),p(t)). If o, B[C]a, b]
is the maximum open interval such that ¢{* (o, ‘g—i(:no, to)) is de-
fined, and its projection z(t) is in U, for each t €]w, 3], then, we
have

08
T ox
Moreover, for t tending to « or 3, the projection x(t) leaves every
compact subset of U.

vt el B, p(t) = oo (@(t), ¢ + to).

Proof. By what we have already seen, the image of the section
s: Ux]a,b[— T*M x R, (z,t) defined by s(z,t) = (z, g—i(az,t),t)
is odd Lagrangian for Qy, it is thus invariant by the local flow ®}
of Xy + %. If we denote by |ay, fp[ the maximum open interval
such that ®f7 (mo, g—i(:no, to), to) is defined and in the image of the
section s, it results from the invariance that

oS
vt G]Oéo,ﬁo[, p(t) = %

(z(t),t + to).

We of course have Jag, Bo[Cla, B]. If we suppose that fy < S,
then x(fy) € U and, by continuity of the section s, we also have
@g) (20, g—‘g(:no, to),to) = s(z(6o)). By the invariance of the image
of s by ®f1, we then find € > 0 such that ®{ (o, %(mo,to),to) =
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o1 5o (s(z(Bo))) is defined and in the image of the section s, for
each t € [y, Bo + €]. This contradicts the definition of /.

It remains to see that x(t) comes out of every compact sub-
set of U, for example, when ¢t — (. Indeed if this would not be
the case, we could find a sequence t; — 3 such that x(¢;) would
converge to a point zo, € U, but, by continuity of s, the se-
quence ¢f (zo, g—i(xo, to)) = s[z(t;)] would converge to a point in
T*U, which would make it possible to show that qﬁ{{ (mo, g—i(xo, to))
would be defined and in T*U for t near to § and t > 3. This con-
tradicts the definition of j3. O

We know consider the problem of constructing (local) solu-
tions of the Hamilton-Jacobi equation. We will include in this
construction a parameter that will be useful in the sequel.

Theorem 2.8.11 (Method of Characteristics). Let H : O — R
be a C? Hamiltonian, defined on the open subset O of cotangent
space T*M of the manifold M. We denote by ¢! the local flow
of the Hamiltonian vector field Xy associated with H. Let U
be open in M and let K be a compact space. We suppose that
So : K x U — R is a function such that

(1) for each k € K, the map Sy : U — R is C?;

(2) the map (k,x) — (=, %(k‘, x)) is continuous on the product
K x U with values in T* M, and its image is contained in the
open subset O C T*M;

(3) the derivative with respect to x of (k,z) — (x, %(k‘,:n)) is
also continuous on the product K x U (this is equivalent to

the continuity of the (k,x) — %2520 (k,z) in charts contained

inU).
Then, for each open simply connected subset W, with W compact
and included in U, there exists § > 0 and a continuous map S :
K x Wx] —6,0[ satisfying
(i) for each (k,x) € K x W, we have S(k,x,0) = So(k,x);

(ii) for each k € M, the map S : Wx] — 6,0[— R, (z,t) —
S(k,xz,t) is C?, and satisfies the Hamilton-Jacobi equation

a5, 0Sk.
a7 +H(‘T7 8—$) - 07

ot
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(iii) both maps (k,z,t) — DSk(z,t), (k,z,t) +— D?Si(x,t) are
continuous on the product K x Wx] —4,4].

Proof. We want to find a function S(k,z,t) such that S(k,z,0) =
So(k,x), and Si(z,t) = S(k,z,t) is a solution of the Hamilton-
Jacobi equation, for each k£ € K. As we already know the graph
{(z, %,t) | 2 € U} € T*M x R must be invariant by the local
flow ®7. This suggests to obtain this graph like a part of the
image of the map o} defined by

050
Or
The map o(k,z,t) = og(z,t) is well defined and continuous on
an open neighborhood Y of K x U x {0} in K x O x R. The
values of ¢ are in O x R. Moreover, the map oy, is C!' on the open
subset Uy, = {(z,t) | (k,x,t) € U}, and both maps (k,z,t)
%(k,a;,t), (k,x,t) — %(;’“ (k,z,t) are continuous on Y.

Given its definition, it is not difficult to see that oy is injec-
tive. Let us show that the image of o) is a C! odd-Lagrangian
submanifold of O x R. Since oy(z,t) = ®f(z, %(k‘,x),O) and
®! is a local diffeomorphism which preserves 2y, it is enough to
show that the image of the derivative of o, at a point of the form
(z0,0) is odd Lagrangian for Qp (and thus of dimension n+ 1 like
U;). Since we have

0S50

O'k(xat) = (IDtH(x7 (k,:L‘),O) = ((b{{[*% %(k,a:)],t).

O-k(:Ev 0) = (337 %(k‘,fﬂ),()),

O-k(x07 t) = q>;fH (O'k(ﬂf(), 0))7
we see that the image of Doy(zg,0) is the sum of the subspace

E=T oas,
o

(00,250 (b, zgy) CTAPR(dzS0) X {0} C T, (2 0) (Tr M X R)

and the subspace generated by X (xo, %(kz, x0)) + %. Note now
that the restriction Qg |TxM x {0} is 2, and that Graph(d,Sp) is a
Lagrangian subspace for €2. Moreover the vector X g (mo, % (k, 3:0)) +
% is not in F and generates the characteristic subspace of Qp.
Therefore the image of Doy (xg,0) is indeed odd Lagrangian for
Qpg. This image is the tangent space to the image oy at the point

ok (x0,0). We thus have shown that the whole image of oy, is an odd
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Lagrangian submanifold for Q7. In the remainder of this proof, we
denote by 7* the projection 7* x Idg : T*"M xR — M x R. Let us
show that the derivative of 70y, : Uy, — M X R is an isomorphism
at each point (z,0) € U x{0}. Indeed, we have 7*oy(z,0) = (z,0),
for each z € U, and 7*o(x,t) = (7% ¢! (, %(k‘,:n)),t), therefore,
by writing the derivative D(7*oy)(x,0) : T,M xR — T, M xR in
matrix form, we find a matrix of the type

D(#a)(x,0) = [Idf;M ﬂ

which is an isomorphism. As K x W x {0} is a compact subset of I
and the derivative of 7*0y, is an isomorphism at each point (z,0) €
U x {0}, we can apply the inverse function theorem 2.7.1 to find
an open neighborhood W of W in U and € > 0 such that, for each
k € K, the map 7*0y, induces a C! diffeomorphism of Wx] — €€
onto an open subset of M x R. Since moreover m*oy(x,0) = x,
we can apply lemma 2.7.2 to obtain § > 0 such that 7*oy,(W x| —
e,€[) D W x [~4,6], for each k € K. Let us then define the
C! section G : Wx| — §,0[— T*M x R of the projection 7* :
T*M xR — M x R by

&k(x> t) = Ok [(ﬁ-*ak)_l($v t)]
Since 6}, is a section of 7%, we have
o (v, t) = (z,p(z,1),1),

with pg(z,t) € TyM, and pg(z,0) = %(k‘,x). Moreover, the
image of 61 is an odd Lagrangian submanifold for €y, since it is
contained in the image of oy, consequently, the differential 1-form

Grog = pr(z,t) — H(x, pp(x,t))dt

is closed on W x| — §,0[. However, the restriction of this form
to W x {0} is %(k,x) = dSp, which is exact, therefore, there
exists a function Sy, : W x| — 6, §[— R such that Si(x,0) = Sor(x)
and dSy = p(x,t) — H(x,pg(z,t))dt. We conclude that ‘9{% =
pr(z,t) and 88% = —H(x,pr(z,t)). Consequently, the function
Sk is a solution of the Hamilton-Jacobi equation and Si(z,t) =
So(k,x) — fot H(z,pi(x,s))ds, which makes it possible to see that
(k,z,t) — Sg(z,t) is continuous. The property (iii) results from

the two equalities % = pi(z,t) and % = —H(z,pg(x,t)). O
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Corollary 2.8.12. Let H : O — R be a C?> Hamiltonian, defined
on the open subset O of the cotangent space T* M of the manifold
M. Call ¢! the local flow of the Hamiltonian vector field Xy
associated to H. Denote by d a distance defining the topology of
M. The open ball of center x and radius r for this distance will
be denoted by By(x, 7).

For every compact C C O, we can find §,¢ > 0 such that, for
each (x,p) € C, there exists a C? function S, By(z,€)x] —

5,6[— R, with 855;”’) (z,0) = p, and satisfying the Hamilton-
Jacobi equation

IS (@p) 95 p)
ot —I—H(:E,i&l7 ) =0
Proof. Since we do not ask that S, ;) depends continuously on
(z,p), it is enough to show that, for each point (xg,pp) in O,
there is a compact neighborhood C' of (zg,pg), contained in O,
and satisfying the corollary. We can of course assume that M
is an open subset of R™. In this case T"M = M x R™. To
begin with, let us choose a compact neighborhood of (zg,pg) of
the foom U x K C O, with U € M and K C R™. The function
So : K x U — R defined by

So(p, z) = p(x),

is C* and verifies (z, %) = (z,p) € U x K C O. Let us choose

a neighborhood compact W of x¢ with W C U. By the previous
theorem, there exists § > 0, and a function S : K x W x]|—4,d[— R
satisfying the following properties

e S(p,x,0) = Sy(p,z) = p(x), for each (p,z) € K x W;

e for each p € K, the map S, : Wx| — §,5[— R is C%, and is
a solution of the Hamilton-Jacobi equation.
We now choose V' a compact neighborhood of z contained in W.
By compactness of V, we can find € > 0 such that By(z,e) C W,
for each « € V. It then remains to take C = V x K and to define,
for (z,p) € C, the function S, ;) : Ba(x,€)x] — 0,0[— R by

S(m,p) (yv t) = Sp(ya t)'

It is not difficult to obtain the required properties of S(, ) from
those of S,. O
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Chapter 3

Calculus of Variations for

a Lagrangian Convex in
the Fibers: Tonelli’s
Theory

The goal of this chapter is to prove Tonelli’s theorem which estab-
lishes the existence of minimizing extremal curves. This theory
requires the convexity of the Lagrangian in the fibers, and the use
of absolutely continuous curves.

Another good reference for this chapter is [BGH98]. Again, we
have mainly used [Cla90], [Mn] and the appendix of [Mat91]. How-
ever, we have departed from the usual way of showing minimizing
properties using Mayer fields. Instead we have systematically used
(local solutions) of the the Hamilton-Jacobi equation, since this is
the main theme of this book.

3.1 Absolutely Continuous Curves.

Definition 3.1.1 (Absolutely Continuous Curve). A curve 7 :
[a,b] — R™ is said to be absolutely continuous, if for each € > 0,
there exists § > 0 such that for each family |a;, b;[;en of disjoint
intervals included in [a,b], and satisfying > ;. n b —a; < 6, we
have 3, l7(b1) — (ai) | < e

81



82

It is clear that such an absolutely continuous map is (uni-
formly) continuous.

Theorem 3.1.2. A curve v : [a,b] — R™ is absolutely continuous
if and only if the following three conditions are satisfied

(1) the derivative 4(t) exists almost everywhere on [a, bl;

(2) the derivative  is integrable for the Lebesgue measure on
[a,b].

(3) For each t € [a,b], we have y(t) —v(a) = fj A(s) ds.

Proofs of this theorem can be found in books on Lebesgue’s
theory of integration, see for example [WZ77, Theorem 7.29, page
116]. A proof can also be found in [BGH98, Theorem 2.17]

Lemma 3.1.3. Suppose that v : [a,b] — RF is an absolutely
continuous curve. 1) If f : U — R™ is a locally Lipschitz map,
defined on the neighborhood U of the image ([a,b]), then f o~y :
[a,b] — R™ is also absolutely continuous.

2) We have

tl
Vtvt/ S [a7 b]vt < tlv H’Y(t/) - ’Y(t)” < ”’Y(s)” ds.
t

Proof. To prove the first statement, since «([a, b]) is compact, we
remark that, cutting down U if necessary, we can assume that f is
(globally) Lipschitz. If we call K a Lipschitz constant for f, then
for each family ]a;, b;[;en of disjoint intervals included in [a, b], we
have

SO ov®i) = fova)] < KD ydi) — v(ai)lle.

1eEN 1€EN

Therefore the absolute continuity of f o v follows from that of ~.

To prove the second statement, we choose some p € R* with
llp]l = 1. The curve p o~ : [a,b] — R is absolutely continuous
with derivative equal almost everywhere to p(%(t)). Therefore by
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theorem 3.1.2 above

p(v(t") = v(t) =por(t') —por(t))

- / p(i(s)) ds
lea | Iplli(e)l ds

= [ Ireas.
It now suffices to observe that
Iy(t) = )]l = ”i}glp(v(t') —(t))
to finish the proof. O

The following proposition will be useful in the sequel.

Proposition 3.1.4. Let v, : [a,b] — R* be a sequence of abso-
lutely continuous curves. We suppose that the sequence of deriva-
tives 4y, : [a,b] — RF (which exist a.e.) is uniformly integrable for
the Lebesgue measure m on [a,b], i.e. for each € > 0, there exists
d > 0, such that if A C [a,b] is a Borel subset with its Lebesgue
measure m(A) < 0 then [,||4n(s)||ds < €, for each n € N.

If for some t( € [a,b] the sequence ~y,(ty) is bounded in norm,
then there is a subsequence 7,, : [a,b] — R* which converges
uniformly to a curve v : [a,b] — R¥. The map v is absolutely
continuous, and the sequence of derivatives 7y, converges to the
derivative % in the weak topology o(L', L°°), which means that
for each function ® : [a,b] — R¥* measurable and bounded, we
have

b b
[ 26 ds i [ B ()) ds.

Proof. We first show that the sequence ~, is equicontinuous. If
€ > 0is fixed, let § > 0 be the corresponding given by the condition
that the sequence v, is uniformly integrable. If ¢ < ¢’ are such that
t' —t < 6 then, for each n € N

() = m(®)]] < / Fim(s)] ds

< €.
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Since the 7, (tg) form a bounded sequence, and the ~,, are equicon-
tinuous, by Ascoli’s theorem, we can find a subsequence 7, such
that v, converges uniformly to 7 : [a,b] — R", which is therefore
continuous. Let us show that « is absolutely continuous. We fix
€ > 0, and pick the corresponding § > 0 given by the condition
that the sequence 7, is uniformly integrable. If (Ja;, b;[)ien is a se-
quence of disjoint open intervals, and such that ) ; (b; —a;) <6,
we have

e N, S () — @l <3 / [ (s)]] ds

ieN €N

- / ()l ds
UscnJas b

ieN 134,04

<,

Taking the limit we also get
D () = (@) < e
1€EN

The curve v is thus absolutely continuous. The derivative 7 :
[a,b] — R™ therefore exists, for Lebesgue almost any point of
[a,b], and we have

Vi, € [a,b],7(t) — A(t') = / 3(s) ds.

It remains to show that ¥, tends to 7 in the o(L', L>) topology.
The convergence of 7, to v shows that for any interval [t,t'] C
[a,b] we have

/t Sy (5) s = o, () — s () — () — (1) = / i(s) ds.

If U is an open subset of [a,b] let us show that f[;;gn;(s)ds —
Jr3(s)ds. We can write U = (J; ]as, bi[ with the Ja;, b; [ dlSJOlIlt,
where [ is at most countable. If the set of the indices I is finite, we
apply what precedes each interval |a;, b;[, and adding, we obtain

the convergence
[ s = [ 4s)ds
U U



85

To deal with the case were [ is infinite and countable, we fix € > 0
and choose the corresponding § > 0 given by the fact that the
sequence 7, is uniformly integrable. We can find a finite subset
Io C I such that 3, f (b — a;) < 5. We have

¥ eN, Y [l (bi) — Yala)] <e.
ieI\Iop

Taking limits, we then obtain

D @) = (el < e

STAVL)

We pose Uy = U1, )ai, bil, so we can write

H / $)dsl = 'S An®i) = vn(an)]

SIAVL)

Z H’Yn z — Y al)”

ZEI\IQ
<€,

and also

| Y(s)ds| < e
U\Uo

As I is finite, we have

lim Yn; (8) ds = / A(s) ds.
Uo

J—=0 JUy

We conclude that

lim supl| %As)ds—/ﬁ(s)dsH < 2e.
U U

Jj—00

Since € is arbitrary, we see that

/U%j(s)ds—>/Uﬁ(s)ds

If we take now an arbitrary measurable subset A of [a,b], we
can find a decreasing sequence (Uy)pen of open subset with A C
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(Neen Ue and the Lebesgue measure m(Uy) decreasing to m(A),
where m is the Lebesgue measure. We fix € > 0, and we choose
the corresponding § > 0 given by the fact that the sequence 7,
is uniformly integrable. As the U, form a decreasing sequence of
sets of finite measure and m(U;) \, m(A), by Lebesgue’s theorem
of dominated convergence, we have

/Ueﬁ(s)ds—>/Aﬁ(s)ds.

We now fix an integer ¢ big enough to satisfy
1 sts)ds— [ 3tps] < e
Uy A

and m(Uy \ A) < ¢. By the choice of d, we have

\meN,n/ Suls) ds]| < / Ha(s)llds < c.
U\A Up\A

Since Uy is a fixed open set, taking the limit for j — oo, we obtain
/ Yn;(8)ds — | (s)ds.
Uy Uy
We conclude that

timsupl| [ 3, (5)ds = [ 4(s)ds] < 26
A A

J—00

and thus, since € > 0 is arbitrary

/A S (5) ds — /A 4(s) ds.

We then consider the vector space L>([a,b], R¥*), formed by the
® : [a,b] — R** measurable bounded maps, and provided with
the standard norm ||®||cc = supycpqp)||®(t)[|. The subset £ formed
by the characteristic functions x 4, where A C [a, b] is measurable,
generates a vector subspace £ which is dense in L ([a, b], RF*), see
exercise 3.1.5 below. The maps 6,, : L>([a,b],R*¥*) — R defined
by

b
0(®) = / B(5)(An(s)) ds
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are linear and continuous on L*([a, b], R¥* m), with

b
16, < / () 1 ds.

We also define 6 : L ([a, b], R**,m) — R by

which is also linear and continuous on L*([a, b], R**, m). We now
show that the sequence of norms ||6,| is bounded. Applying the
fact that the sequence of derivatives 7, is uniformly integrable
with € = 1, we find the corresponding d; > 0. We can then cut the
interval [a,b] into [(b — a)/d1] + 1 intervals of length < 1, where
[] indicates the integer part of the real number x. On each one
of these intervals, the integral of ||4,|| is bounded by 1, hence

b
Vi€ N, [6,] < / ()] ds < [(b— a)/8] + 1.

As 0,,(®) — 0(®), for @ € &, by linearity the same conver-
gence is true for ® € £. As £ is dense in L>([a,b],R¥*, m) and
sup,enl|fnl| < 400, a well-known argument of approximation (see
the exercise below 3.1.6) shows, then, that

V® € L*([a, b], R¥*,m), 6,,,(®) — 6(2).0

Exercise 3.1.5. Consider the vector space L*([a, b], R**), formed
by the measurable bounded maps ® : [a,b] — R¥*, and provided
with the standard norm [|®|lc = supscioyl|P@#)|.  The subset
E formed by the characteristic functions xa, where A C [a,b]
1s measurable, generates a vector subspace which we will call E.
Show that € which is dense in L ([a,b],RF*). [Indication: Con-
sider first ¢ : [a,b] —] — K, K[, with K € Ry, and define ¢, =
St o(iK/n)x4,,, where A;y is the set {t € [a,b] | iK/n <
(@) < (i + DE/n} ]

Exercise 3.1.6. Let 0,, : E — F be a sequence of continuous
linear operators between normed spaces. Suppose that the sequence
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of the norms |0, is bounded, and that there exists a continuous
linear operator 0 : E — F and a subset £ C E generating a dense
subspace of E such that 0,,(x) — 0(x) for every x € €. Show then
that 0, (x) — 0(x) for every x € E

We can replace in the definition of an absolutely continuous
curve, the norm by any distance Lipschitz-equivalent to a norm.
This makes it possible to generalize the definition of absolutely
continuous curve to a manifold.

Definition 3.1.7 (Absolutely continuous Curve). Let M be a
manifold, we denote by d the metric obtained on M from some
fixed Riemannian metric.

A curve vy : [a,b] — M is said to be absolutely continuous if, for
each ¢ > 0, there exists § > 0 such that for any countable family
of disjoint intervals (Ja;, b;[)ien all included in [a,b] and satisfying
Yien(bi —ai) <6, we have Y, d(v(i),v(a;)) < e.

Definition 3.1.8. We denote by C%([a,b], M) the space of ab-
solutely continuous curves defined on the compact interval [a,b]
with values in the manifold M. This space C*([a,b], M) is pro-
vided with the topology of uniform convergence.

Lemma 3.1.9. If v : [a,b] — M is absolutely continuous, then,
the derivative ¥(t) € Ty M exists for almost every t € [a,b]. If
v([a’,b']) € U, where U is the domain of definition of the coordi-
nate chart 6 : U — R", then, we have

vt € [d V], 0ov(t) —0ory(d) = / M(s) ds.

L dt

Exercise 3.1.10. Suppose that the manifold M is provided with
a Riemannian metric. We denote by d the distance induced by
this Riemannian metric on M, and by ||-||. the norm induced on
the fiber T,M, for x € M. If v : [a,b] — M is an absolutely
continuous curve, show that

b
d(v(b).7(a)) < / 14(3)11- o) ds-

[Indication: Use lemmas 2.7.5, and 3.1.5.]
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Definition 3.1.11 (Bounded Below). Let L : TM — R be a
Lagrangian on the manifold M. We will say that L is bounded
below above every compact subset of M, if for every compact
K C M, we can find a constant Cx € R such that

Y(z,v) € 7 (K), L(z,v) > Cr,
where m : TM — M is the canonical projection.

If the Lagrangian L : TM — R is bounded below above every
compact subset of the manifold, we can define the action of the
Lagrangian for an absolutely continuous curve admitting possibly
+oo as a value. Indeed, if v € C*([a,b], M), since y([a,b]) is
compact, there exists a constant Cy € R such that

Vt € [a,b],Yv € Ty M, L(v(t),v) > C,,.

In particular, the function ¢t — L(~(t),¥(t))—C, is well defined and
positive almost everywhere for the Lebesgue measure. Therefore
f; [L(v(t),5(T")) — C,] ds makes sense and belongs to [0, +o00]. We
can then set

b
szjmewm@

b
=/wmmﬂm—@w+@wﬂu

This quantity is clearly in RU {+o00}. It is not difficult to see that
the action L(v) is well defined (i.e. independent of the choice of
lower bound C).

3.2 Lagrangian Convex in the Fibers

In this section, we consider a manifold M provided with a Rie-
mannian metric of reference. For # € M, we denote by |||, the
norm induced on T, M by the Riemannian metric. We will denote
by d the distance induced on M by the Riemannian metric. The
canonical projection of TM on M is as usual 7 : TM — M.

We will consider a C!' Lagrangian L on M which is convex in
the fibers, and superlinear above every compact subset of M, see
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definitions 1.3.11 and 1.3.13. Note that, for Lagrangians convex in
the fibers, the superlinearity above compact subset is equivalent to
the restriction L|T, M : T, M — R is superlinear, for each x € M,
see 1.3.14. It is clear that a Lagrangian superlinear above every
compact subset of M is also bounded below above every compact
subset of M, therefore we can define the action for absolutely
continuous curves.

Theorem 3.2.1. Suppose that L : TM — R is a C' Lagrangian
convex in the fibers, and superlinear above compact subsets of M.
If a sequence of curves 7, € C*([a,b], M) converges uniformly to
the curve v : [a,b] — M and

lim inf L(7,) < 400,

n—oo

then the curve v is also absolutely continuous and

liminf L(~,) > L(7).
n—oo
Proof. Let us start by showing how we can reduce the proof to the
case where M is an open subset of R*, where k = dim M.
Consider the set K = 7([a,b]) U U,, " ([a,b]), it is compact
because 7, converges uniformly to v. By superlinearity of L above
each compact subset of M, we can find a constant Cj such that

Ve € K,Yv € T, M, L(z,v) > C.

If [@/,b'] is a subinterval of [a,b], taking Cj as a lower bound of
L(v1(8),%n(s)) on [a,b] \ [d’,b], we see that

vn, L(ynl[a’,b']) < L(v,) — Col(b —a) — (V' = a')].
It follows

V[d', V'] C [a,b], liminf L(v,|[a’,b]) < +o0. (*)

By continuity of v : [a,b] — M, we can find a finite sequence ay =
a<ap <---<a,=>and asequence of domains of coordinate
charts Uy, ...,U, such that y([a;—1,a;]) C U;, for i = 1,...,p.
Since 7, converges uniformly to ~, forgetting the first curves =, if
necessary, we can assume that v, ([a;—1,a;]) C U;, for i =1,...,p.
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By condition (x), we know that liminf,, o L(vn|[ai—1, a;]) < oo, it
is then enough to show that this condition implies that v|[a;—1, a;]
is absolutely continuous and that

L(f}/’[ai—la az]) < linnl)gfﬂ“(’yn“ai—lv ai])?

because we have liminf(c,, + 3,) > liminf o, + liminf 3,, for
sequences of real numbers «,, and G,. As the U; are domains of
definition of coordinates charts, we do indeed conclude that it is
enough to show the theorem in the case where M is an open subset
of R¥.

In the sequel of the proof, we will thus suppose that M = U is
an open subset of R¥ and thus TU = U x R¥ and that +([a, b]) and
all the 7, ([a, b]) are contained in the same compact subset Ko C U.
Let us set £ = liminf,, o L(v,). Extracting a subsequence such
that L(v,) — ¢ < +oo and forgetting some of the first curves -,
we can suppose that

L(y,) — £ and Vn € N, L(7y,) < {41 < +o0.

We denote by ||-|| a norm on R”.

Lemma 3.2.2. If C > 0 is a constant, K C U is compact, and
€ > 0, we can find n > 0 such that for each z,y € U with x € K
and |ly — z|| < n, and for each v,w € R¥ with |Jv|| < C, we have

L(y,w) > L(x,v) + g—i(:n,v)(w —v) — €.

Proof. Let us choose 19 > 0 such that the set

Vio(K) ={y e R" |3z € K, |ly — z|| < o}

is a compact subset of U.
We denote by A the finite constant

oL
A = supi|5—(z,0)] | 2 € K, [|v]| < C}.

Since L is uniformly superlinear above every compact subset of
M = U, we can find a constant C'; > —oo such that

Vy € Vo (K),Yw € R¥, L(y,w) > (A + 1)||w| + C1.
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We then set
oL
Cy = sup{L(z,v) — %($7v)(v) |z € K, [jv]| < C}.

By compactness the constant Cs is finite. We remark that if ||w|| >
Cs — (1, then for y € V (K),z € K and |jv|]| < C, we have

Ly,w) > (A+ 1)l + O,
> Al + (G~ C) + Gy
= Al|lw|| + Co
L )w) + (L) — 92, 0)(0)

>
v

0
oL
L(z,v)+ %(x,v)(w —v).
It then remains to find n < 79, so that we satisfy the sought
inequality when ||w|| < Cy — Cy. But the set

{(z,0,w) |z € K[| < C,[lw[| < Cy - C1}

is compact and L(x,w) > L(z,v) + g—%(x,v)(w —v) by convexity
of L in the fibers of the tangent bundle TU. It follows that for
€ > 0 fixed, we can find n > 0 with n < 79 and such that, if
z e K, |ly—z| <n,lv|] <Cetl|w|]| <Cy—Ch, we have

L(y,w) > L(z,v) + g—i(:n,v)(w —v) —e O
We return to the sequence of curves v, : [a,b] — U which
converges uniformly to v : [a,b] — U. We already have reduced
the proof to the case where ¥([a, b]) U J,cn Vn([a,b]) is included
in a compact subset Ky C U with U an open subset of R¥. We
now show that the derivatives 7, are uniformly integrable. Since
L is superlinear above each compact subset of U, we can find a
constant C'(0) > —oo such that

Vz € Ko,Yv € R¥, L(z,v) > C(0).
We recall that

Vn e N,L(y,) <2+ 1< +oc.
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We then fix € > 0 and we take A > 0 such that

0+1-C0)(b—a)
A

< €/2.

Again by the superlinearity of L above compact subsets of the
base M, there exists a constant C'(A) > —oo such that

Vr € Ko, Yo € R¥, L(z,v) > Aljv|| + C(A).

Let E C [a,b] be a measurable subset, we have
CAm(E) + 4 [ In()ds < [ (). 5us)) ds

and also

C(O)(b— a— m(E)) < /[ RCAEROIR

Adding the inequalities and using L(7,,) < ¢+ 1, we find
(C(A) — CO)m(E) + CO0)(b—a) + A/ n(s)llds < £+ 1,
E

this in turn yields

/E\I%(s)llds L LH1=COb—a) | [CO-CAL

<e€/2+

If we choose 6 > 0 such that w5 < €/2, we see that

m(E) <d=Vne N,/ 19m ()] ds < e.
E

This finishes to proves the uniform integrability of the sequence 7,,.
We can then conclude by proposition 3.1.4 that ~,, converges to ~
in the (L', L>) topology. We must show that lim,, . L(v,) >
L(y)-

Let C be a fixed constant, we set

Eo ={t€la,0] | [[7®)] < C}.
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We fix € > 0 and we apply lemma 3.2.2 with this €, the constant C
fixed above and the compact set K = Ko D v([a, b])UU,,cn Tnla, 0]
to find n > 0 as in the conclusion of the lemma 3.2.2. Since v, —
uniformly, there exists an integer ng such that for each n > ny,
we have ||v,(t) — v(¢)|| < n, for each t € [a,b]. Lemma 3.2.2 then
shows that for each n > ng and almost all t € E¢, we have

Ly (), n(t)) = L(¥(t),7(t)) + g—i(v(t)d(t))(%(t) —7(t) —e

hence using this, together with the inequality L(vyy,(t),n(t)) >
C'(0) which holds almost everywhere, we obtain

L(y) > /E L(y(t), 4(8)) dt + C(0)[(b — a) — m(Eo))

oL

+ -
Ec (%

(@), (@) (n(t) = ¥(2)) dt — em(Ec).  (¥)
Since [|5(t)]| < C, for t € Ec, the map ¢ — xg. (£S5 (4(1),4(t))
is bounded. But 4, —  for topology o (L', L°°), therefore

oL . . .
3, (1), 1) (3 (8) = 4(t)) dt — 0, when n — co.
Ec v
Going to the limit in the inequality (*), we find

(= lim L(vyy,)

n—~o0

> [ L0040)dt +COlb @) = m(Fe)] - am(Fo).
C
We can then let € — 0 to obtain
02 [ LOW AW+ O -0 - m(Ee) ()
Since the derivative 4(t) exists and is finite for almost all t € [a, b],
we find Ec /" Ey, when C' /' +oo, with [a,b] \ Es of zero

Lebesgue measure. Since L(7(t),¥(t)) is bounded below by C(0),
we have by the monotone convergence theorem

b
| to@swd— [ La®.50)d. when € - o,
Ec a
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If we let C' /" 400 in (*%), we find

b
£= 1l L) = [ LOO.5(0)dt =L0),

n—oo
O

Corollary 3.2.3. Suppose L : TM — R is a C' Lagrangian
convex in the fibers, and superlinear above every compact sub-
set of M. Then the action L : C*([a,b], M) — R U {400} is
lower semi-continuous for the topology of uniform convergence on
C*([a,b], M). In particular, on any compact subset of C**([a,b], M),
the action 1L achieves its infimum.

Proof. It is enough to see that if v, — + uniformly, with all the
Yn and 7y in C*([a, b], M), then, we have

liminf L(~,) > L(y).
Yn—00
If liminf, . L(y,) = 400, there is nothing to show. The case

where we have liminf, .. L(v,) < +oo results from theorem
3.2.1. |

3.3 Tonelli’s Theorem

Corollary 3.3.1 (Compact Tonelli). Let L : TM — R be a C!
Lagrangian convex in the fibers, and superlinear above every com-
pact subset of the manifold M. If K C M is compact, and C' € R,
then the subset

Yo ={y €C*[a,b], M) [ y([a,b]) C K, L(y) < C}

is a compact subset of C*([a,b], M) endowed with the topology of
uniform convergence.

Proof. By the compactness of K, and theorem 3.2.1, the subset
Y k,c is closed in the space C([a, b], M) of all the continuous curves,
for the topology of uniform convergence. Since y([a,b]) C K, for
each v € ¥k ¢, by Ascoli’s theorem, it is enough to see that the
family of the v € Y ¢ is equicontinuous. Let us then fix some
Riemannian metric on M. We denote by d the distance induced
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on M, and by ||-|| the norm induced on T, M, for x € M. Using
the superlinearity of L above the compact the compact set K, for
each A > 0, we can find C(A) such that

Vg e K,Vv € T,M,C(A) + Al|jv||z < L(q,v).

Applying this with (q,v) = (7v(s),7(s)), and integrating, we see
that for each v € X ¢, we have
t/ t/
COE -0+ 4 [ 1Ol ds < [ L66).3() ds
t t
COMb-a)~@-01< [ L)) ds.
[a,b]\[£,t']
Adding these two inequalities and using the following one
t/
d(y(t),~(t)) < t [15(5)lly(s) ds,

we obtain

Ad(y(t'),~(t)) < [L(y) = C(0)(b — a)] + (C(0) = C(A)(t' —1).

If € > 0 is given, we choose A such that [C'—C(0)(b—a)]/A < €/2.
It follows that for v € Xk ¢ and t,t' € [a,b], we have

ar(#). 40 < § + SOy

We therefore conclude that the family of curves in ¥ ¢ is equicon-
tinuous. ]

Definition 3.3.2. We will say that the Lagrangian L : TM — R
is bounded below by the Riemannian metric ¢ on M, if we can
find a constant C' € R such that

V(az,v) S TM7L(‘T7U) 2 HUHSL‘ + Ca

where ||| is the norm on T, M obtained from the Riemannian
metric.

This is a global condition which is relevant only when M is not
compact and the Riemannian metric g is complete.
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Theorem 3.3.3 (Non Compact Tonelli). Let L be a C' Lagran-
gian on the manifold M. Suppose that the Lagrangian L is convex
in fibers, superlinear above every compact subset of M, and that
it is bounded below by a complete Riemannian metric on M. If
K C M is compact and C' € R, then the subset

S ={yec®(a,b], M) | v([a,0])) N K #0,L(7) < C}

is a compact subset of C*([a,b], M) for the topology of uniform
convergence.

Proof. We denote by d the distance on M obtained from the Rie-
mannian metric, and, for € M, by |||z the norm induced on
T,.M by this same Riemannian metric. We first show that there
exists a constant r < 4oco such that

vy € Ek,0,7([a,b]) C Vi (K),

where V,(K) = {y € M | 3z € K,d(y,z) < r}. Indeed, there
exists a constant Cy € R such that

V(z,v) € TM, L(z,0) = ||o]l. + Co.
Therefore for every absolutely continuous curve v : [a,b] — M,
and every t,t' € [a,b], with ¢t </, we have

t,

Co(t' —t) + t 15 ($)]l(sds < L(),

For v € ¥k ¢, it follows that
d(y(t'),~(t)) < C +|Col(b - a).
If we set r = C' + |Cp|,we get
vy € Sk e, 7([a,b]) C Vi(K).

Since the Riemannian metric on M is complete, the d-balls of M
of finite radius are compact, and thus V,(K) is also a compact
subset of M. By the compact case of Tonelli’s Theorem 3.3.1, the
set Xy, (k)¢ 1s compact in C*([a, b], M). Since Y k¢ is closed, and
contained in Xy, () ¢, it is thus also compact in C*([a,b], M). O



98

Corollary 3.3.4 (Tonelli Minimizers). Let M be a connected
manifold. Suppose L : TM — R is a C' Lagrangian convex in
fibers, superlinear above every compact subset of M, and bounded
below by a complete Riemannian metric on M. Then, for each
x,y € M, and each a,b € R, with a < b, there exists an absolutely
continuous curve 7 : [a,b] — M with vy(a) = z,7v(b) = y which is
a minimizer for C*([a,b], M).

Proof. Let us set Cips = inf (1), where the infimum is taken on
the absolutely continuous curves v, : [a,b] — M with v1(a) = x
and 71 (b) = y, Cinr < +00. This quantity makes sense since there
exists a C! curve between z to y. For each integer n > 1, we define
the subset C,, of C%([a,b], M) formed by the curves v : [a,b] — M
such that

1
y(a) = z,v(b) =y and L(y) < Cins + —.

This set is by definition a nonempty subset of Ci,s. It is also
compact in C%([a, b], M) by the previous theorem 3.3.3. Since the
sequence C,, is decreasing, the intersection (,~; C, is nonempty.
Any curve v : [a,b] — M in this intersection is such that v(a) =
z,7(b) =y and L(7y) = Cins. O

3.4 Tonelli Lagrangians

Definition 3.4.1 (Tonelli Lagrangian). A Lagrangian L on the
manifold M is called a Tonelli Lagrangian if it satisfies the follow-
ing conditions:

(1) L: TM — R is of class at least C2.

(2) For each (z,v) € TM, the second partial derivative §°L/0v?(z,v)
is positive definite as a quadratic form.

(3) L is superlinear above compact subset of M.
Condition (2) is equivalent to:
(2’) L non-degenerate and convex in the fibers.

Theorem 3.4.2. If L is a C" Tonelli Lagrangian on the manifold
M, then we have the following properties:
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(1) For each x € M, the restriction L|T,M is strictly convex.

(2) The Legendre transform
L:TM — T*M, (z,v) — (z, %(x,v))

is a diffeomorphism of class C"~ 1.

(3) The Euler-Lagrange vector field Xy, on TM is well defined,
of class C"~! and uniquely integrable, and the(local) flow ¢}
of Xy, is of class CT~1.

(4) The extremal curves are C".

(5) The (continuous) piecewise C' minimizing curves are ex-
tremal curves, and therefore of class C.

(6) The Hamiltonian associated with L, denoted H : T*M — R,
is well-defined by
OL

V(z,v) € TM, H(L(z,v)) = %(az,fu)(v) — L(z,v).

It is of class C". We have the have the Fenchel inequality
p(v) < L(z,v) + H(z,p),

with equality if and only if p = OL/0v(x,v), or equivalently
(x,p) = L(x,v). Therefore

V(z,p) € T°M, H(z,p) = sup p(v) — L(z,v).
’UETxM

(7) The (local) Hamiltonian flow ¢ of H is conjugated by L to
the Euler-Lagrange flow ¢f.

Proof. (1) This is clear since 0?L/0v?(z,v) is positive definite, see
Proposition 1.1.2.

(2) Note that, by the superlinearity and the strict convex-
ity of L|T,M, for each x € M the Legendre transtorm T, M —
Ty M, v+ OL/Ov(z,v) is bijective, see 1.4.6. Therefore the global

Legendre transform £ : TM — T*M is bijective, and we obtain
from Proposition 2.1.6 that it is a diffeomorphism.
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(3) See Theorem 2.6.5.

(4) In fact, if 7 is an extremal, its speed curve t — (v(t),%(t))
is a piece of an orbit of ¢¥, and is therefore of class C"~1.

(5) See Proposition 2.3.7.

(6) See Proposition 2.6.3, and Fenchel’s Theorem 1.3.6.

(7) See Theorem 2.6.4. O

Lemma 3.4.3. Suppose that L is a Tonelli Lagrangian on the
manifold M. Its associated Hamiltonian H : T*M — R is also
superlinear above each compact subset of M. In particular, if
C € R and K C M is compact, the set

{(z,p) eT°M |z € K, H(z,p) < C},
is a compact subset of T* M.

Proof. We know that in this case

H(z,p) = sup (p,v) — L(z,v).
VET M
Therefore we can apply theorem 1.3.12 to conclude that H is su-
perlinear above compact subset. In particular, if KX C M is com-

pact, and we fix Riemannian metric g on M, we can find a constant
C1(K) > —oo such that

V(z,p) € Ty M, H(z,p) > |pll. + C1(K),

where ||| is the norm on T M obtained from g. Therefore the
closed set {(x,p) € T*M | v € K,H(z,p) < C} is contained in
{(z,p) e T*M |z € K,||p|l. < C — C1(K)}. But this last set is a
compact subset of T*M. O

Corollary 3.4.4. Let L be a C? Lagrangian on the manifold
M which is non-degenerate, convex in the fibers, and superlin-
ear above every compact subset of M. If (z,v) € TM, denote
by |0(z,0), Bz, | 18 the maximal interval on which t — oF (x,v) is
defined. If B, ,) < +00 (Tesp. a(z,) > —o0), then t — 7ok (z,v)
leaves every compact subset of M ast — B,y (resp. t — a(z.))-
In particular, if M is a compact manifold, the Euler-Lagrange vec-
tor field Xy, is complete, i.e. the flow ¢F : M — M is defined for
each t € R.
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Proof. We know that the global Legendre transform £ : TM —
T*M is a diffeomorphism, and it conjugates ¢ to the Hamil-
tonian flow ¢{ of the Hamiltonian associated to L. Therefore
HL(¢¢(x,v)) = HL(x,v) by conservation of the Hamiltonian. Let
us suppose that there exists 3; — [(;.) such that quéi (x,v) —
ZToo. The set K = {2} U {m;ﬁéi (x,v) | i € N} is then a compact
subset of M. The sequence ¢g,(x,v) is contained in the subset
{(y,w) |y € K, HL(y,w) < HL(x,v)} of TM. But this last set is
compact by lemma 3.4.3, and the fact that £ is a diffeomorphism.
Therefore, extracting a subsequence if necessary, we can suppose
that (J%’i (,v) — (Too,Vs0). By the theory of differential equa-
tions, the solution ¢ (x,v) can be extended beyond B(z,v), Which
contradicts the maximality of the interval o, 4, Bz v) |- O

Definition 3.4.5 (Lagrangian Gradient). Let L : TM — R be a
C" Tonelli Lagrangian, with » > 2, on the manifold M. Suppose
©:U — R bea CF k>1 function, defined on the open subset U
of M, we define the Lagrangian gradient of ¢ as the vector field
grad; ¢ on U given by

Vo e U, a—L(:E,gradL o(x)) = dyp.
ov

Note that is well-defined, because the global Legendre transform
L:TM — T*M is a C"! diffecomorphism, and (z, grad; ¢(z)) =
LYz, dyu). Tt follows that grad; ¢ is of class C™n(mk)—1,

More generally, for a function S :]a, b[xU — R of class C¥, k >
1, where ]a, b[ is an open interval in R, we define its Lagrangian
gradient as the vector field grad; S;, where we Si(z) = S(t,x).
It is a vector field grad; Sy defined on U and dependent on time
t €]a,b[. As a function defined on ]a,b[xU, it is of class C*¥~1.

3.5 Hamilton-Jacobi and Minimizers

Theorem 3.5.1 (Lagrangian Gradient and Hamilton-Jacobi). Let
L:TM — R be a C" Tonelli Lagrangian. If S :]a,b[xU — R is a
C! solution of the Hamilton-Jacobi equation

oS oS
E +H(.Z', %) = O,
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then, for every absolutely continuous curve 7 : [a, ] — U, with
[a, 8] Cla, b], we have

B
L(v) = / L(y(s),7(s)) ds = S(8,7(8)) — S(ev, v(ex)).
The inequality above is an equality if and only if v is a solution of
the time dependent vector field gradj, S;.

The solutions of the vector field grad; S; are necessarily ex-
tremal curves of L. If vy : [, 8] — U is such a solution, then
for every absolutely continuous curve v; : C%(|a,],U), with
7(e) =v(a),1(8) =(B), and y1 # v, we have L(y1) > L(7).

The vector field grad; S; is uniquely integrable, i.e. if v; : I; —
U are 2 solutions of grad; Sy and 7, (ty) = 7v2(to), for some ty €
I NIy, then y; = 2 on Iy N Is.

Proof. Let v : [a, 8] — U be an absolutely continuous curve. Since
S is C!, by lemma 3.1.3 the map [o, 3] — R,t — S(t,7(t)) is
absolutely continuous and thus by theorem 3.1.2

B
$(3.9(8) - Star(@) = [ { S tean+ e}

By the Fenchel inequality, for each ¢ where 7(t) exists, we have

O (A OIEW] < H (300, O (1) + L0, 5(0). ()

Since S satisfies the Hamilton-Jacobi equation, and +(t) exists for
almost all ¢ € [a,b], adding 0S/0t(t,~(t)) to both sides in (x), we
find that for almost all ¢ € [«, ]

O A0 + 2 () 0] < L1 1), 5(0)

By integration, we then conclude that

B
S(B:(0) - San(@) < [ Lo @) ()
We have equality in this last inequality if and only if we have
equality almost everywhere in the Fenchel inequality (x), therefore
if and only if 4(t) = grad, S¢(7(¢)).
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But the right-hand side of this last equality is continuous and
defined for each t € [a, f]. It follows that §(¢) can be extended by
continuity to the whole interval [, 8], hence that v is C! and that
it is a solution of the vector field grad; S;. To sum up we have
shown that (##) is an equality if and only if  is a (C') solution
of the time dependent vector field grad; S;.

If a curve 7 : [a, ] — U satisfies the equality

S(a,y(a)) = S(8,7(8)) = L(v),

we have already shown that v is C!. Moreover, for every curve
M ¢ o, f] = U with 31 (a) = y(a) and 71 (8) = 7(8), we have

L(m) = S(a,y(a)) = 5(8,7(8)) = L(7)-

It follows that + is an extremal curve (and thus of class C").

Suppose now that for 71, and 7 as above we have L(vy;) =
L(y). Therefore L(y1) = S(a,v(v)) — S(B,7(5)). By what we
already know, the curve 7 is also an extremal curve and 4 («a) =
grad;, So(y()). However, we have §(a) = grad; S, (7y(«)). The
two extremal curves v and ~; go through the same point with the
same speed at t = «. Since the Euler-Lagrange vector field X, is
uniquely integrable, these two extremal curves are thus equal on
their common interval of definition [«, (].

The last argument also shows the unique integrability of the
vector field grad; S;. O

In fact, it is possible to show that, under the assumptions
made above on L, a C! solution of the Hamilton-Jacobi equation
has a derivative which is Lipschitzian, see [Lio82, Theorem 15.1,
page 255] or [Fat03, Theorem 3.1]. The proof uses the Lagran-
gian gradient of the solution. Consequently, note that we are a
posteriori in the situation of uniqueness of solutions given by the
Cauchy-Lipschitz theorem, since grad; Sy is Lipschitzian.

3.6 Small Extremal Curves Are Minimizers

In this section, we will suppose that our manifold M is provided
with a Riemannian metric g. We denote by d the distance on
M associated to g. If z € M, the norm |||, on T, M is the one
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induced by g. The projection TM — M is denoted by w. We
suppose that L : TM — M is a C? bounded below, such that,
for each (z,v) € TM, the second vertical derivative ?;Té(x,v) is
positive definite as a quadratic form, and that L is superlinear in
each fiber of the tangent bundle 7w : TM — M.

Theorem 3.6.1. Suppose that L is a Tonelli Lagrangian on the
manifold M, and that inf , ,)erar L(x,v) is finite. Then for each
compact subset K C T'M there exists a constant ég > 0 such that

— For (z,v) € K, the local flow ¢.(x,v) is defined for |t| < dy.

— For each (z,v) € K and for each § €)0,dy], the extremal
curve Yz v.5) : [0,0] — M,t +— w¢y(x,v) is such that for any
absolutely continuous curve v : [0,0] — M, with v1(0) =
z,71(0) = 7¢s(x,v), and y1 # v we have L(v1) > L(Y(z,,5))-

Proof. By the compactness of K, we can find a é; > 0, such that
o¢(x,v) is defined for (x,v) € K and |t| < d;.

Since Usepo,5, 9¢(K) is compact, we can find a constant Co,
which is an upper bound for L on the set Ute[o,al} &1 (K). With
the notations of the statement, we see that

V(x,v) € K,Vi € [0751]7 L(V(w,v,&)) < Cpo.

In the sequel of the proof, we consider Ay a compact neighborhood
of W(Utem 5, Pt (K )) in M. Since L is superlinear above compact
subsets of M, we can find C7 > —oo such that

Vo € Ao, Yv € T, M, L(z,v) > ||v||z + Ch. (*)

Therefore d(7(z,0,5)(0), ) < L(Y(g0,5)) — C10 < (Co — C1)d, and
consequently, applying this for each ¢’ < §, we find that the diam-
eter diam (’y(x,v,(;)([o, d])) of the image of V(zw,5) Satisties

V(z,v) € K,V € [0,6], diam (7(z,4.6)([0,0])) < 2(Co — C)d.

By the corollary 2.8.12 and the compactness of K, we can find
d2 €]0,01] and € > 0 such that for each (z,v) € K

— we have By(x,¢) C Ay;



105

— there exists a function S@) ;] — 8y, §2[x By(z, €) — R, which
is a solution of the Hamilton-Jacobi equation

dS@v) dS @)
ot + iz, or

. (z,v)
with asax (x,0) = ‘g—ﬁ(az,v).

In particular, we have v = grady, Séx’v) (x), where we set S,Fx’v) (x) =
S@v) (t,z). Consequently, the solution of the vector field grad; S,
going through x at time ¢t = 0, is ¢ — w¢y(z,v), see theorem
3.5.1. Since for d3 < d9, such that (Cy — C1)d3 < €, the curve
Y(zw,5) takes its values in By(z,€) for each (z,v) € K and all
0 €]0,03], by the same Theorem 3.5.1 we obtain that for every
1 : [0,8] — By(z,€) which is absolutely continuous and satisfies
71(0) = = and 71(6) = V(a,0,6)(6), we have L(y1) > L(V(z,0,5))-

It remains to check that a curve 7; : [0,6] — M with v1(0) =z
and 71 ([0,8]) ¢ Bq(w, €) has a much too large action. This is where
we use that

Cy = inf{L(x,v) | (x,v) €e TM} > —oc.

In fact, if ¥([0,6]) ¢ By(z,€), there exists 7 > 0 such that
7([0,n]) € Ba(x,€) and d(71(0),7(n)) = €. Since By(z,€) C Ao,
we then obtain from inequality (%) above

L(71][0,n]) > € + Cin.

We can use Cy as a lower bound of L(v1(s),41(s)) on [n,d] to
obtain

L(v1) = e+ Cin+ Ca(d — ),
from which, setting C3 = min(Cy, Cy) > —o0, it follows that
L(le) 2 €+ 0357
as soon as 11(0) = o and 711((0,8]) ¢ Ba(,e). Since L{x5) <

Cyd, to finish the proof of the theorem, we see that it is enough
to choose &y with dy < d3, and (Cy — C3)dp < €. O
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Theorem 3.6.2. Suppose that L is a Tonelli Lagrangian on the
manifold M, and that inf, , ey L(z,v) is finite. Fix d a distance
on M coming from a Riemannian metric. If K C M is compact,
and C is a strictly positive constant, then there exists a constant
do > 0 such that, if x € K,y € M, and ¢ €0, dy], satisfy d(x,y) <
C4, then there exists an extremal curve 7, 5 : [0,6] — M with
V(z,,6)(0) = T,Y(2,4,6)(6) = y, and for every curve absolutely con-
tinuous v : [0,0] — M which satisfies v(0) = z,v(d) = y, and
v # V(z,y,8), We have L(’V) > L(W(w,y,é))'

Proof. By the theorem of existence of local extremal curves 2.7.4,
we know that there exists a constant §; > 0 such that, if d(z,y) <
C4§ with § €]0, 1], then there exists an extremal curve v, , 5 With
Vw,8)(0) = T, V(@ ys) = ¥> and [[¥(g4.5)(0)][z < 2C. However the
set {(z,v) € TM |z € K,||v|z < 2C} is compact in TM and we
can apply the previous theorem 3.6.1 to find §y < & satisfying the
conclusions of the theorem we are proving. O

3.7 Regularity of Minimizers

In this section we will assume that the Lagrangian L : TM — R is
C" , with 227%(:17, v) definite positive as a quadratic form, for each
(x,v) € TM, and L superlinear in the fibers of the tangent bundle
TM. We still provide M with a Riemannian metric of reference.

Theorem 3.7.1 (Regularity). Suppose that L is a Tonelli Lag-
rangian on the manifold M. Let 7 : [a,b] — M be an absolutely
continuous curve such that () < IL(vy;), for each other absolutely
continuous curve 7 : [a,b] — M, with v1(a) = v(a),v1(b) = v(b),
then the curve 7 is an extremal curve, and is therefore C".

Proof. By an argument already used many times previously, it
suffices to consider the case M = U is an open subset of of R¥.
Let W be a compact subset of U, containing ([a, b]) in its interior
W. By the compactness of W and the uniform superlinearity of
L above compact subsets of M, we have

inf{L(z,v) |z € W,v € R¥} > —c0.

We can then apply theorem 3.6.2 to the compact subset v([a, b))
contained in the manifold W C R* (which then plays the role of
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the M of theorem 3.6.2). Let us first show that if the derivative
4(to) exists for some ty € [a, b], then 7 coincides with an extremal
curve in the neighborhood of t;. We have

”fY(t) — ’Y(tO) H

= ||¥(%o)]|]-
Jim | == 15 (to)l

Choosing C > ||¥(to)||, we can then find 1 > 0 such that
0 <[t —to] <n=y({t) =)l < CJt —tol- (%)

Let us apply theorem 3.6.2 with v([a,b]) as the compact subset
and C as the constant, to find the dy > 0 given by this theorem.
We can assume that 6y < 1. We will suppose ty €]a,b[, and let
the reader make the trivial changes in the cases t9 = a or ty = b.
From (%) we get

[7(to + 60/2) — v(to — d0/2)|| < Cdo.

By theorem 3.6.2, the curve v; : [0,09] — M which minimizes
the action among the curves connecting v(tg — d9/2) to v(to +
d0/2) is an extremal curve. However, the curve [0,d0] — M,s —
v(s+to—0p/2) minimizes the action among the curves connecting
v(to — 00/2) with ~(to + d0/2), since the curve v : [a,b] — M
minimizes the action for the curves connecting v(a) to v(b). We
conclude that the restriction of 7y to the interval [to—dg/2, to+d0/2]
is an extremal curve.

Let then O C [a, b] be the open subset formed by the points ¢
such that v coincides with an extremal curve in the neighborhood
of tyg. For every connected component I of O, the restriction ~|I
is an extremal because it coincides locally with an extremal, and
the Euler-Lagrange flow is uniquely integrable. Notice also that
v(I) C ¥([a,b]) which is compact therefore by corollary 3.4.4 the
extremal curve v|I can be extended to the compact closure I C
[a,b], therefore by continuity | is an extremal. If O # [a,b],
let us consider a connected component I of O, then I\ I is non-
empty and not contained in O. This component can be of one
of the following types |«, 5], [a, 5],]a,b]. We will treat the case
I =]a, B[C O. We have a,3 ¢ O. Since [a, 3] is compact and
v|[er, 8] is an extremal curve, its speed is bounded. Therefore
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there exists a finite constant C', such that
Vs €la, 8], [¥(s)l| < C.

Once again we apply theorem 3.6.2 to the compact subset y([a, b])
and the constant C, to find g > 0 given by that theorem. We
have

16
17(8) = A(8 — 6o/2) < / Ii)lds

By continuity, for t > § and close to 3, we do also have
[7(8) =78 = do/2)[ < C[t = (B = do/2)].

We can take t > 3 close enough to (3 so that t — 3 < d§y/2. By
theorem 3.6.2, the curve v coincides with an extremal curve on
the interval [3 — d9/2,t]. This interval contains 3 in its interior,
and thus 6 € O, which is absurd. Therefore we necessarily have
O = [a,b], and 7 is an extremal curve. O

Let us summarize the results obtained for M compact.

Theorem 3.7.2. Let L : TM — R be a C" Tonelli Lagrangian,
with r > 2, where M is a compact manifold. We have:

e the Euler-Lagrange flow is well-defined complete and C"™1;
e the extremal curves are all of class C";

e for each x,y € M, each and a,b € R, with a < b, there
exists an extremal curve v : [a,b] — M with v : [a,b] — M
with vy(a) = x,v(b) = y and such that for every absolutely
continuous curves 71 : [a,b] — M, with v1(a) = z,v1(b) =y,
and vy # v we have L(y1) > L(v);

e if v:[a,b] — M is an absolutely continuous curve which is
a minimizer for the class C*([a, b], M, then it is an extremal
curve. In particular, it is of class C";

e if C € R, the set ¢ = {y € C*([a,b], M) | L(y) < C} is
compact for the topology of uniform convergence.



Chapter 4

The Weak KAM
Theorem

In this chapter, as usual we denote by M a compact and connected
manifold. The projection of TM on M is denoted by w : TM —
M. We suppose given a C" Lagrangian L : TM — R, with r >
2, such that, for each (z,v) € TM, the second partial vertical
derivative %(m,v) is definite > 0 as a quadratic form, and that
L is superlinear in each fiber of the tangent bundle 7 : TM — M.
We will also suppose that M is provided with a fixed Riemannian
metric. We denote by d the distance on M associated with this
Riemannian metric. If z € M, the norm || - ||, on T, M is the one

induced by the Riemannian metric.

4.1 The Hamilton-Jacobi Equation Revis-
ited

In this section we will assume that we have a Tonelli Lagrangian

L of class C",r > 2, on the manifold M. The global Legendre

transform £ : TM — T*M is a C"~! diffeomorphism, see Theorem
3.4.2. Its associated Hamiltonian H : T*M — R given by

Ho L(zx,v) = g—i(ac,v)(v) — L(z,v),

is C”, and satisfies the Fenchel inequality

p(v) < L(z,v) + H(z,p),

109
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with equality if and only if p = L /0v(x, v), or equivalently (z,p) =

L(x,v). The Hamiltonian flow ¢! of H is conjugated by £ to the
Euler-Lagrange flow ¢f of L.

Theorem 4.1.1 (Hamilton-Jacobi). Suppose that L is a C" Tonelli
Lagrangian, with v > 2 on the manifold M. Call H : T*M — R
the Hamiltonian associated to the Lagrangian L.

Let u: M — R be a C' function. If for some constant ¢ € R
it satisfies the Hamilton-Jacobi equation

Ve € M, H(z,d,u) =c

then the graph of du, defined by Graph(du) = {z,d,u) | x € M},
is invariant under the Hamiltonian flow ¢f! of H.

Moreover, for each x € M, the projection t v 7*¢ (z,d,) is
minimizing for the class of absolutely continuous curves.

Of course, if u is of class C? the first part theorem follows from
2.5.10. The second part can be deduced from Theorem 3.5.1. In
fact, as we will see below, the main argument in proof of Theorem
4.1.1 is just a mere repetition of the main argument in the proof
of Theorem 3.5.1. Although this proof of Theorem 4.1.1 could be
rather short, we will cut it down in several pieces, because on doing
so we will be able to find a notion of C° solution of the Hamilton-
Jacobi equation. With this notion we will prove, in contrast to
the C! case, that such a C° solution does always exist, see 4.7.1
below, and we will explain its dynamical significance.

We start by studying the meaning for C! functions of the
Hamilton-Jacobi inequality.

Proposition 4.1.2. Suppose that L is a Tonelli Lagrangian on
the manifold M. Call H : T*M — R the Hamiltonian associated
to the Lagrangian L.

Let ¢ € R be a constant, and let v : U — R be a C! function
defined on the open subset U C M. If u satisfies the inequality

Ve € V,H(x,dyu) <c (%)

then for every absolutely continuous curve v : [a,b] — U, with
a < b, we have

b
u(y(b)) —u(y(a)) < / L(v(s),7(s)) ds + ¢(b — a). €
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Conversely, if inequality (*x) holds for every C* curve v : [a,b] —
M then (x) holds.

Proof. If 7 : [a,b] — U is absolutely continuous then by Lemma
3.1.3 the function uwo-y is also absolutely continuous, and therefore

b
u(y(b)) —u(y(a)) < / dy(s)u(¥(s)), ds. (%% %)

By Fenchel’s inequality, at each point s € [a,b] where 7(s) exists
we can write

doy(s)u(¥(s)) < L(v(s),¥(s)) + H(v(s), dy(syu)-
Suppose that (x) holds, we get

dy(syu(¥(s)) < L(v(s),7(s)) + ¢

Integrating, and comparing with (x * x), yields (xx).

Conversely, suppose that (xx) for every C* curve 7 : [a,b] —
U. Fix x € U. For a given v € T, M we can find a C*® curve
v :[—€ €] = U, with € > 0,7(0) = z, and 4(0) = v. Then writing
condition (*x) for every restriction ~|[0,t],t €]0, €], we obtain

t
a2 () = ur(0) < [ dgguli(s).ds + clt ).
Dividing both sides by ¢t > 0, and letting ¢ — 0 yields
dyu(v) < Lz, v) + c.

Since this is true for every v € T, M, we conclude that H(x,du) =
SUpyer, pr datt(v) — L(z,v) < c. O

This suggests the following definition.

Definition 4.1.3 (Dominated Function). Let v : U — R be a
function defined on the open subset U C M. If ¢ € R, we say that
u is dominated by L + ¢ on U, which we denote by u < L + ¢, if
for each continuous piecewise C! curve v : [a,b] — U we have

b

u(y(b)) — u(y(a)) < / L(v(s),¥(s))ds + ¢(b —a). (D)

If U = M, we will simply say that u is dominated by L + c.
We will denote by D(U) the set of functions v : U — R
dominated by L + ¢
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In the definition above, we have used continuous piecewise C*
curves in (D) instead of C* curves because if condition (D) holds
for C* curves it also holds for continuous piecewise C' curves, and
even for absolutely continuous curves, see the following exercise.

Exercise 4.1.4. Suppose L is a Tonelli Lagrangian on the man-
ifold M. Let u: U — R be a function defined on the open subset
U of M such that the inequality (D) of Definition 4.1.3 holds for
every C> curve 7.

1) Show that (D) holds for C! curves. [Indication: Use a den-
sity argument.]

2) Show that (D) holds for a continuous piecewise C1 curve.
[Indication: If v : [a,b] — U, there exists ag < a1 < -+- < ap =b
such that v|[a;, a;+1] is CL.]

3) Show that (D) holds for absolutely continuous curves. For
this fix such a curve 7 : [a,b] — U, if L(y) = 400, there is nothing
to prove. Therefore we can assume that

b
/ L(v(s),4(s)) ds < +o0.

We set
w(t) = sup{ / L(y(s),4(s)) ds | < t,¢ — ¢ <},

a) Show that w(n) — 0, when n — 0.

Fiz K,K' C U compact neighborhoods of v([a, b)) with K C K'.

b) Show that there exists ny such that any absolutely continu-
ous curve 8 : [¢,d] — K', witha < ¢ < d < b,c—d < ny,8(c) =
v(¢),0(d) = v(d), and L(§) < w(ny), takes values only in K. [In-
dication: See the proof of Theorem 3.6.1. Notice that L is bounded
below on the subset {(x,v) € TM |z € K'}.]

¢) Show that for for every c,d € [a,b], with ¢ < d and d—c < ny,
there exists an absolutely continuous curve § : [c,d] — M which
satisfies:

= d(c) =(c),0(d) = ~(d).

~ (e d]) C K.
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— 0 is a minimizer for the class of absolutely continuous curves
with values in K'.

d) Conclude.

Of course, the notion of dominated function does not use any
differentiability assumption on the function. Therefore we can use
it as a notion of subsolution of the Hamilton-Jacobi equation. This
notion is equivalent to the notion of viscosity subsolution as we
will see in chapters 7 and 8.

The next step necessary to prove Theorem 4.1.1 is the intro-
duction of the Lagrangian gradient. Let us recall, see definition
3.4.5, that for v : U — R is a C! function, its Lagrangian gradient
grad; u is the vector field defined on U by

(z,dyu) = L(x,grad; u(zx)).

It follows that

Graph(du) = L[Graph(grad;, u)],
where Graph(grad,u) = {(z,grad u(z)) | * € U}. Since ol
and ¢ are conjugated by L, invariance of Graph(du) under ¢{? is
equivalent to invariance of Graph(grad; u) under ¢f. Therefore
the following proposition finishes the proof of Theorem 4.1.1

Proposition 4.1.5. Let L be a Tonelli Lagrangian on the man-
ifold M. If u: U — R is a C' function which satisfies on U the
Hamilton-Jacobi equation

H(x,dyu) = c,

for some fixed ¢ € R, then every solution 7 : [a,b] — U of the
vector field grad; u satisfies

u(y(b)) — u(y(a)) = /ba L(v(s),7(s)) ds + ¢(b — a).

It follows that solutions of grad; u are minimizing for the class of
absolutely continuous curves with values in U, and that it must
be an extremal of class C?.

Moreover, the graph of gradju is locally invariant by the
Euler-Lagrange flow. If U = M and M is compact then the graph
Graph(grad; ) is invariant by the Euler-Lagrange flow.
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Proof. Since (y,dyu) = L(y,grad; u(y)), we have the following
equality in the Fenchel inequality

dyu(grady u(y)) = L(y, grad u(y)) + H(y, dyu).

Taking into account that H(y,d,u) = ¢, and using the equality
along a solution 7 : [a,b] — U of the vector field grad; u, we get

dy@yu(y(t)) = L(v(1),¥(1)) + c.

If we integrate we get

u(y(b)) — u(y(a)) = /ba L(v(s),7(s)) ds + ¢(b — a).

This implies that v is a minimizer for absolutely continuous curves,
and is therefore a C? extremal. In fact, if § : [a,b] — U is a
curve, by Proposition 4.1.2, we have u(§(b)) — u(d(a)) < L(4). If
d(a) = v(a) and §(b) = 7v(a), we obtain

L(v) +¢(b—a) = u(y(b)) — u(v(a))
= u((b)) — u(d(a))
< L(3).

We now show that the Graph(grad; u) is locally invariant by
the Euler-Lagrange flow. Given x € U, since the vector field
grad; u is continuous, we can apply the Cauchy-Peano Theorem,
see [Bou76], to find a map I" : [—€,¢] x V, with € > 0 and V an
open neighborhood of z, such that for every y € V the curve ¢t —
I'y(t) =T'(y,t) is a solution of grad; u with I',(0) = y. Therefore

Iy (t) = grad,, u(T, (1)),

But we know that I'y is an extremal, hence its speed curve is
t — oL (y,T(0)). Therefore, for every (t,y) € [—¢, €] x V, we have

o1 (y,14(0)) = (Ty(t), grad, u(T'y(1))) € Graph(grad, ). (%)

If U = M is compact we can find a finite family of [—¢;, €] x
Vi,i =1,...,¢ satisfying (), and such that M = ulem. Setting
¢ = min’_, ¢; > 0, we obtain

Vt € [—¢, €], o (Graph(grad; u)) C Graph(grad; u).
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Since ¢! is a flow defined for all t € R, we obtain
Vt € R, pF(Graph(grad; v)) C Graph(grad; u).

Using the inclusion above for t and —t yields ¢f (Graph(grad, u)) =
Graph(grad; u), for all ¢t € R. O

Exercise 4.1.6. Under the hypothesis of Proposition 4.1.5, if x €
U, show that the orbit ¢} (x,grad; u(x)) is defined at least on an
interval o, B[ such that y(t) = n¢F (z, grad, u(z)) € U for every
t €la, B[, and t — ~(t) leaves every compact subset of U as t tends
to either a or (3. Show that this curve 7 is a solution of grady u
on la, B[. Show that, any other solution 7 : I — U of ,grad u,
with 4(0) = z, satisfies I Clo, B[ and 5 =~ on I.

Proposition 4.1.5 suggests the following definition

Definition 4.1.7 (Calibrated Curve). Let u : U — R be a func-
tion and let ¢ € R be a constant, where U is an open subset of
M. We say that the (continuous) piecewise C! curve v : I — U,
defined on the interval I C R is (u, L, c)-calibrated, if for every
t <t el,with t <t we have

(1)) — ul (1)) = / Liv(s),4(s)) ds + e(t’ — 1).

Although the following proposition is an immediate conse-
quence of the definition of calibrated curve, it will be used often.

Proposition 4.1.8. Let L be a Tonelli Lagrangian defined on the
manifold M. Suppose v : U — R is a C' function defined on
the open subset U C M, and ¢ € R. If the curve v : I — U is
(u, L, ¢)-calibrated, then for any subinterval I' C I the restriction
|1’ is also (u, L, ¢)-calibrated.

The following theorem explains why calibrated curves are spe-
cial.

Theorem 4.1.9. Suppose that L is a Tonelli Lagrangian on the
manifold M. Let u : U — R be a function defined on the open
subset U C M. Assume that u < L + ¢, where ¢ € R. Then any
continuous piecewise C! (u, L, c)-calibrated curve v : I — U is
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necessarily a minimizing curve for the class of continuous piecewise
C! on U. Therefore it is an extremal curve and it is as smooth as
the Lagrangian L.

Proof. We fix a compact interval [t,t'] C I, with ¢t < ¢/. If § :
[t,t] — U is a (continuous) piecewise C!, from u < L + ¢, it
follows that

w(d(t')) —u(6(t)) <L) + c(t' —t).

Moreover, since 7 is (u, L, c)-calibrated, we have equality when
d =|[t, t']. It 6(t") = (') and (t) = ~(t), we obtain

L[ 1)) + e’ — 1) = u(y(t)) —u(v(t)) <L) +c(t' — 1),

hence L(v|[t,t']) < L(4), and ~ is therefore a minimizing curve.
This implies that ~ is an extremal and is as smooth as L, see
Proposition 2.3.7. O

We now can give a characterization of C! solutions of the
Hamilton-Jacobi equation which does not involve the derivative.

Proposition 4.1.10. Let L be a Tonelli Lagrangian defined on
the manifold M. Ifu : U — R is a C! function defined on the open
subset U C M, and ¢ € R, the following conditions are equivalent:

(i) The function u satisfies Hamilton-Jacobi equation

Ve € U, H(z,dyu) = c.

(ii) The function u is dominated by L + ¢, and for every x € U
we can find € > 0 and a C! curve v : [—€,¢] — U which is
(u, L, ¢)-calibrated, and satisfies v(0) = .

(iii) The function u is dominated by L + ¢, and for every x € U
we can find € > 0 and a C! curve v : [—¢,0] — U which is
(u, L, ¢)-calibrated, and satisfies y(0) = x.

(iv) The function u is dominated by L + ¢, and for every x € U
we can find ¢ > 0 and a C! curve v : [0,¢] — U which is
(u, L, ¢)-calibrated, and satisfies v(0) = .
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Proof. We prove that (i) implies (ii). The fact that u < L + ¢
follows from Proposition 4.1.2. By Proposition 4.1.5, we can take
for v any solution of grad; u with v(0) = x. Again such a solution
exists by the Cauchy-Peano Theorem, see [Bou76], since grad u
is continuous.

Obviously (ii) implies (iii) and (iv).

It remains to prove that either (iii) or (iv) implies (i). We
show that (iii) implies (i), the other implication being similar.
From Proposition 4.1.2, we know that

Vo e U, H(z,dyu) < c.

To show the reversed inequality, we pick a (u, L, ¢)-calibrated C!
curve 7y : [—¢,0] — M with v(0) = z. For every t € [0, €], we have

0
u(7(0)) —u(y(=t)) = / L(y(s),7(s)) ds + ct.

—t
If we divide by ¢t > 0, after changing signs in the numerator and
denominator of the left hand side, we get

u(y(—t)) — u(~(0)) 1/0

L(y(s),7(s)) ds +c.

—t t ),

If we let ¢ — 0 taking into account that v(0) = x, and that both
u and ~y are C!, we obtain

dgu((0)) = L(z,7(0)) + c.

But by Fenchel’s inequality H(x,d,u) > d,u($(0)) — L(z,5(0)),
therefore H(z,d,u)) > c. O

Therefore we could take any one of condition (ii), (iii) or (iv)
above as a definition of a continuous solution of the Hamilton-
Jacobi equation. In fact, a continuous function satisfying (ii) is
necessarily C!, see ?? below. Condition (iii) and (iv) lead both to
the notion of continuous solutions of the Hamilton-Jacobi equa-
tion. The two sets of solutions that we obtain are in general dif-
ferent, and they both have a dynamical meaning as we will see
later.
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We will be mainly using continuous solution of the Hamilton-
Jacobi equation which are defined on a compact manifold M. No-
tice that for C! solutions of the Hamilton-Jacobi equation defined
on M, by the last part of Proposition 4.1.5, in condition (ii), (iii),
and (iv) of Proposition 4.1.10 we can impose € = +oo. This justi-
fies the following definition (see also 7?7 below).

Definition 4.1.11. Let L be a Tonelli Lagrangian on the compact
manifold M. A weak KAM solution of negative type (resp. of
positive type) is a function u : M — R for which there exists
¢ € R such that

(1) The function u is dominated by L + c.

(2) For every x € M we can find a (u, L, c)-calibrated C! curve
v :] —00,0] — M (resp. 7 : [0, +oo[— M) with v(0) = x.

We denote by S_ (resp. Sy) the set of weak KAM solutions of
negative (resp. positive) type.

We will usually use the notation u_ (resp. uy) to denote an
element of S_ (resp. S4).

4.2 Dominated Functions and the Mané Crit-
ical Value

We now establish some properties of dominated function. Before
doing that let us recall that the notion of locally Lipschitz function
makes perfect sense in a manifold M. In fact, a function u :
M — R is said to be locally Lipschitz if for every coordinate
chart ¢ : U — M, the function u o ¢ is locally Lipschitz on the
open subset U of some Euclidean space. Since all Riemannian
metrics are equivalent above compact subsets, it is equivalent to
say that w is locally Lipschitz for one distance (or for all distances)
d coming from a Riemannian metric. If u: X — Y is a Lipschitz
map between the metric spaces X,Y we will denote by Lip(u) its
smallest Lipschitz constant

d(u(x), u(z'))

Lip(u) = sup (w.2)

where the supremum is taken over all z, 2’ € X, with x # 2/
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Proposition 4.2.1. Suppose L is a Tonelli Lagrangian on the
manifold M. Endow M with a distance d and T M a norm (z,v)
IV]|z both coming from the same Riemannian metric on M (Note
that d well defined and finite on each connected component of M ).

Let U be an open subset of M, and ¢ € R. We have the
following properties:

(i)

(i)

(iii)

The set D¢(U) of functions u : U — R dominated by L + ¢
is a closed convex subset of the set of functions U — R for

the topology of point-wise convergence. Moreover, if k € R,
we have v € D¢(U) if and only if u+ k € D°(U).

Every function in D°(U) is locally Lipschitz. More precisely,
for every z¢ € U, we can find a compact neighborhood Vy,
such that for every u € D°(U) the Lipschitz constant of u|Vy,
is < AVIO + ¢, where

Ay,

0

= sup{L(z,v) | (z,v) € TM,z € Vay, [[v]l = 1} < +00.

In particular the family of functions in D°(U) is locally equi-
Lipschitzian.

If M is compact and connected, and u : M — R is defined
on the whole of M and is dominated by L + ¢, then u is
Lipschitz. More precisely, then Lipschitz constant Lip(u) of
u is < A+ ¢, where

A = sup{L(z,v) | (z,v) € TM,||v|, = 1}.

In particular the family of functions in D¢(M) is I equi-
Lipschitzian.

Moreover, if M is compact and connected, then every Lip-
schitz function v : M — R is dominated by L + ¢ for some
¢ € R. More precisely, given K € [0,4o00[, we can find ck
such that every u : M — R, with Lip(u) < K, satisfies
u<L+ckg.

Suppose that ¢, k € R, and that U is a connected open subset
of M. If xy € U is fixed, then the subset {u € D°(U) |
lu(zo)| < k} is a compact convex subset of C°(U,R) for the
topology of uniform convergence on compact subsets.
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Proof. Tts is obvious from the definition of domination that D¢(U)
is convex and that u € D¢(U) if and only if u + k € D°(U). For a
fixed continuous piecewise C! curve 7 : [a,b] — U the set F, . of
function v : U — R such that

b
u(y(b)) — u(y(a)) = / L(v(s),7(s)) ds + ¢(b — a)

is clearly closed in the topology of point-wise convergence. Since
De(U) is the intersection of the F, . for all 4’s with values in U,
it is also closed.

To prove (ii), let u € D(U). Fix zy € U. We can find a
compact neighborhood V,, C U of g, such that for every x,y €
To/wo we can find a geodesic v : [a,b] — M parametrized by unit
length such that v(a) = z,v(b) = y and length(y) = b —a =
d(x,y). Since V,, is compact, the constant

Ay,

0

= sup{L(z,v) | (z,v) € TM,x € Vi, |[vl> = 1}

IN

is finite. Since ||¥(s)|| = 1, for every s € [a, b], we have L(~(s),(s))
Ay, , therefore we obtain

b
u(y(b)) — u(y(a)) < / L(v(s),7(s)) ds + ¢(b — a)

b
< / Ay, ds+c(b—a)

= (Ay,, + ¢)length(7)
= (Avxo + c)d(a:, y)

To prove (iii), it suffices to observe that, when M is compact
and connected, we can take V,, = M in the argument above.
Suppose now that M is compact and connected. If we fix
K > 0, by the superlinearity of L we can find A(K) > —oo such
that
V(z,v) € TM, L(z,v) > K|v|; + A(K).

therefore if v : [a,b] — M is a continuous piecewise C! curve,
applying this inequality for (z,v) = (7v(s),7%(s)) and integrating
we get

K length(v) < L(v) — A(K)(b — a),
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and hence
Kd((~(b),v(a)) < L(y) — A(K)(b — a).
If w: M — R has Lipschitz constant < K, we therefore obtain

u(y(b)) — u(y(b)) < L(y) — A(K)(b — a).

This proves (iv) with cx = —A(K) < +00.

It remains to prove (v). Set & = {u € D(U) | |u(xo)| < k}.
By (1) this set is clearly closed for the topology of point-wise
convergence. It suffices to show that for each compact subset
K C U, the set of restrictions £|K = {u|K | u € £} is relatively
compact in C°(K,R). We apply Ascoli’s Theorem, since this the
family £| K is locally equi-Lipschitz by (ii), it suffices to check that

sup{|u(z)| |z € K,u € £} < 0.

Since U is connected locally compact and locally connected, en-
larging K if necessary, we can assume that K is connected and
contains . Again by (ii), we can cover K by a finite number of
open sets Vp,...,V,, and find finite numbers k; > 0,9 = 1,...,n
such Lip(u|V;) < k; for every u € D¢(U), and every i = 1,...,n. If
x € K, by connectedness of K, we can find i1,...,ip € {1,...,n}
such that V; NV, , NK #0,j =1,...,0,x9 € V;;,x € V;,. By
assuming ¢ minimal with this properties, we get that the i, are all
distinct, therefore £ < n. We can choose z; € V;, NV, , N K, for
i=1,...,¢ — 1. Therefore setting xy =, for u € D°(U), we obtain

~
—_

lu(z) —u(wo)| < D |u(@jt1) — u(z))]

IA
~ S
Il
- o

ki d(wj11,75)

Il
=)

J
¢ diam (K ) max k;

=1

IN

< ndiam(K) max k;.

i=1

Therefore |u(x)| < k + ndiam(K) max]"  k;, for every x € K and
every u € £. O
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Proposition 4.2.2. Let L be a Tonelli Lagrangian on the man-
ifold M. Suppose that u : U — R is defined on the open subset
U C M and that it is dominated by L + c. Then at each point
x € U where the derivative d,u exists, we have

H(z,dyu) <ec.

By Rademacher’s Theorem 1.1.10, the derivative d,u exists almost
everywhere on U, the above inequality is therefore satisfied almost
everywhere.

Proof. Suppose that d,u exists. We fix v € T(M). Let v : [0,1] —
U be a C! curve such that v(0) = 2 and 4(0) = v. Since u < L+-c,
we have

vt € [0, 1], u(y(t)) — u(¥(0)) < /0 L(y(s),7(s)) ds + ct.

By dividing this inequality by ¢ > 0 and letting ¢ tend to 0, we
find dyu(v) < L(z,v) 4 ¢ and hence

H(z,dyu) = sup dyu(v) — L(z,v) < ec. O
’UETxM

We now prove the converse of Proposition 4.2.2.

Proposition 4.2.3. Let L be a Tonelli Lagrangian on the man-
ifold M. Call H the Hamiltonian associated to L. Suppose that
u : U — R is a locally Lipschitz function defined on the open
subset U of M. By Rademacher’s Theorem 1.1.10, the derivative
dyu exists for almost all x € U. If there exists a ¢ such that
H(z,d,u) < ¢, for almost all x € U, then u < L + c.

Proof. Using a covering of a curve by coordinates charts, it is not
difficult to see that we can assume that U is an open convex set
in R¥. We call R the set of points € U were d,u exists and
H(z,d,u) < c¢. By assumption U \ R is negligible for Lebesgue
measure.

We show that first that u(y(b)) — u(y(a)) < L(y) + ¢(b — a),
for an affine segment ~ : [a,b] — U. To treat the case where 7 is
constant we have to show that L(z,0) + ¢ > 0 for every = € U.
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If x € R, this is true since L(z,0) + ¢ > L(z,0) + H(x,d,u) >
dzu(0) = 0, where the second inequality is a consequence of part (i)
of Fenchel’s Theorem 1.3.6. Since R is dense in U, the inequality
L(z,0) + ¢ > 0 is therefore true on the whole of U. We now
assume that the affine segment is not constant. We can then write
v(s) = x + (t — a)v, with |jv]| = r > 0. We call S the set of
vectors w such that ||w| = r, and the line D,, = {z + tw | t € R}
intersects R in a set of full linear measure in U N D,,. By Fubini’s
Theorem, the set S itself is of full Lebesgue measure in the sphere
{w € R¥ | |w|| = r}. Hence we can find a sequence v, € S with
v, — v, when n — oco. Dropping the first n’s, if necessary, we can
assume that the affine curve v, : [a,b] — R¥,t +— 2 + (t — a)v, is
contained in fact in U. By the definition of the set S, for each n,
the derivative d,, ,u exists and verifies H(y,(t),d,, yu) < c for
almost every t € [a,b]. It follows that the derivative of u oy, is
equal to d,, ) u(¥(t)) at almost every ¢ € [a,b]. Using again part
(i) of Fenchel’s Theorem 1.3.6, we see that

WO (1) =, yulin()

H(yn(t),d (1) U u) + L(vn(t), ¥u(t))
<C+L(’Y (1), (1)),

Since wu o v, is Lipschitz, we obtain

buo
() — ) = [ F220)at

a

b
g/ ¢+ L(yn(t),3n(t)) dt
=L(m) +c(b—a).

Since 7, converges in the C! topology to v we obtain

u(y(b)) —u(y(a)) < L(y) +c(b—a).

Of course, we now have the same inequality for any continuous
piecewise affine segment v : [a,b] — U. To show the inequality
u(y(b)) — u(y(a)) < L(y) + ¢(b — a) for an arbitrary C! curve
v : [a,b] — U, we introduce piecewise affine approximation =, :
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[a,b] — U in the usual way. For each integer n > 1, the curve ~,
is affine on each of the intervals [a+i(b—a)/n,a+(i+1)(b—a)/n],
fori =0,...,n—1, and y,(a +i(b —a)/n) = v(a+ i(b — a)/n),
for i = 0,...,n. The sequence 7, converges uniformly on [a,b] to
. Since y,(a) = v(a) and v, (b) = (b), we obtain from what we
just proved

u(v(b)) — u(v(a)) < L(vn) + c(b—a). (%)

The derivative 4, (t) exists for each n at each ¢ in the complement
A of the countable set {a+i(b—a)/n|n>1,i=0,...,n}. More-
over, using the Mean Value Theorem, the sequence 4, |A converges
uniformly to §|A, as n — oo, since 7 is C. Using the fact the the
set {(v(t),¥(t)) | t € [a,b]} is compact and the continuity of L, it
follows that the sequence of maps A — R, ¢ — L(v,(t),¥n(t)) con-
verges uniformly to A — R, ¢ +— L(vy(t),¥(t)), therefore L(vy,) —
L(7y), since [a, b] \ A is countable. passing to the limit in the above
inequality () we indeed obtain

u(v(b)) — u(y(a)) < L(7) + (b —a).00

Definition 4.2.4 (Hamiltonian constant of a function). If u :
U — R is a locally Lipschitz function, we define Hy;(u) as the es-

sential supremum on U of the almost everywhere defined function
x— H(z,dyu).

We summarize the last couples of Propositions 4.2.2 and 4.2.3
in the following theorem.

Theorem 4.2.5. Suppose that L is a Tonelli Lagrangian on the
manifold M. Let U be an open subset of M. A functionu : U — R
is dominated by L + ¢ on U, for some ¢ € R, if and only if it is
locally Lipschitz and ¢ > Hy (u).

Definition 4.2.6 (Mané’s Critical Value). If L is a Tonelli Lag-
rangian on the connected compact manifold M, the Mané critical
value of L is the constant ¢[0] (or ¢r[0], if we need to precise the
Lagrangian) defined by

0] =inf{c e R |Ju: M — R,u < L +c}.
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Theorem 4.2.7. The Mané critical value c[0] of L is finite. In
fact we have c[0] > —inf e L(z,0).

If w : M — R is dominated by L + ¢ for some ¢ € R, then
¢ > ¢[0]. Moreover, there exists a function ug : M — R such that
ug < L+ c.

Proof. For a given z, the constant curve -, : [0, 1] — z has action
equal to L(x,0). Therefore, if u < L+ c,we have 0 = u(z) —u(z) <
L(z,0)4c-1 hence ¢ < —L(z,0). Since this is true for every x € M,
we obtain ¢ > —inf ¢y L(z,0), for every ¢ for which we can find
u: M — R with v < L + c.taking the infimum over all such
¢ yields ¢[0] > —inf,eps L(x,0), which is of course finite by the
compactness of M.

By definition of ¢[0], if ¢ is such that there exists u : M — R
with u < L + ¢ we have ¢ > ¢[0].

It remains to find v : M — R such that u < L + ¢[0]. By
definition of ¢[0] we can find a sequence ¢,, — ¢[0] of numbers, and
a sequence of functions u, : M — R, with u, < L + ¢,, for each
n. We now fix o € M. By (i) of Proposition 4.2.1, the function
Up, — Up(x0) is also dominated by L + ¢,. therefore we can assume
un(xg) = 0, for every n. We could apply part (v) of Proposition
4.2.1, to finish the proof by having a subsequence of u,, converge.
In fact, it is easier to argue directly. We define v : M — [—o00, +00]
by

Vo € M,u(z) = liminf u,(x).

n—oo

Since uy, (xo) = 0, we have u(zp) = 0. Given a continuous piecewise
C! curve v : [a,b] — M, since u, < L + ¢, we have

b
tn(Y(b)) < tn(4(a)) + / L(v(s), 4(s)) ds + enlb — a).

Since ¢, — ¢[0], by taking the liminf in the equality above, we
obtain

b
u(y(b)) < uly(a)) + / L(v(s),7(s)) ds + c[0](b —a).  ((*))

Since u(zp) = 0, using a continuous piecewise C! curve starting
at a given point z € M and ending at zp, we obtain from (*)
that u(x) > —oo. Using a curve starting at xo and ending at z
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we conclude u(x) < +oo. Finally, the function w is finite valued
everywhere. since (*) is true for an arbitrary continuous piecewise
C! curve v : [a,b] — M. We obtain u < L + c[0]. O

4.3 Defect and Calibration of Curves

We now study the properties of calibrated curves. It is convenient
to introduce the notion of defect of a curve on an interval with
respect to a function u < L + c.

Definition 4.3.1 (Defect of a Curve). Let U be an open subset of
M,and ce R. If u: U — R is dominated by L+cand y: [ - U
is a continuous piecewise C! curve, for [, 3] C I, with a < 3,
we define the defect D(v,u,c; o, 3) of the curve v on the interval
[a, B] for the (L + ¢)-dominated function u by

8
D(v, u, c; , ) =/ L(y(s),7(s)) ds—c(B—a) = (u(v(8) —u(y(a)).

«

© Of course, in the definition of defect, there is no need to
assume u < L 4 ¢. However, this definition is useful only when
u < L+ ¢, as we will presently see.

Proposition 4.3.2. Let L be a Tonelli Lagarangian on the man-
ifold M. Suppose that u : U — R is a continuous function defined
on the open subset U C M, withu < L+c, and that~y : I — U isa
continuous piecewise C! curve. We have the following properties:

(1) If [, B] C I, with o < 3, then

D(v,u,c;a, 3) > 0.

(2) Forevery k € R, we have D(v, u, ¢; o, ) = D(v,u+k, c; o, 3).

(3) If we define the curve 7y, by v,(s) = v(to + s), then its
interval of definition is I —tg = {s —to | s €}, and for every
[, B] C I —tg, with o < 3, then

D(/yto’uyc; avﬁ) = D(’}/,U,C; o+ t(]aﬁ + tO)'
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(4) [Chasles Property] If a.az,a3 € I, with a1 < az < as,
then

D(’Y,’LL, & a17a3) = D(’}/,U,C; (11,&2) + D(’}/,U,C; az, (13)-

(5) If aq, 1,0, B € I, with o < oy <y < 3, then

D(’}/,U,C;Oé,ﬁ) > D(’Y,’LL, & alvﬁl) > 0.

(6) The function («, ) — D(v,u,c;a, ) is continuous on the
set {(a,B) € I x I | a < [}

(7) If v, : [a,b] — U is a sequence of C' curves which converges
to the C' curve v : [a,b] — U in the C! topology then
D(Yn,u, ¢;a,b) — D(Yoo, u, ¢;a, b).

(8) Let u, : U — R is a sequence of functions, with u,, < L+ c,,
where ¢, € R. If ¢, — ¢ and uy(r) — u(x) at every point
x € U, then D(v,un, cp;a,b) — D(vy,u,c;a,b).

Proof. Claim (1) is easy since U < L + ¢ on U implies

B
U3~ utr(@) < [ L) A5 ds (9 - ).
Claims (2,3,4) follow easily from the definition of the defect.
For claim (5), by Chasles Property (4), we have

D(/% u, ¢ &, ﬁ) = D(77 u, c; «, ()41)+D(’7, u, Cc;aq, ﬁ1)+D(77 u, C; ﬁl s ﬁ)

But by claim (1), we have D(v, u, ¢; a, 1) > 0 and D(v, u, ¢; 51, 8) >
0.

Claims (6,7) and (8) can also be obtained from the definition
of the defect since a dominated function is locally Lipschitz, and
the action of the Lagrangian for C! curves is continuous in the C!
topology on the space of C! curves. O

The first corollary we obtain is a simplification of the definition
of a (u, L, c¢)-calibrated curve on a compact interval when u < L+c.
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Corollary 4.3.3. Let L be a Tonelli Lagarangian on the manifold
M. Suppose that u : U — R is a continuous function defined on
the open subset U C M, with uw < L + ¢, and that 7 : [a,b] — U
is a continuous piecewise C' curve. the following properties are
equivalent

(i) The curve v is (u, L, ¢)-calibrated.
(ii) We have

(iii) The defect D(v,u,c;a,b) is equal to 0.

Proof. 1t is clear that (ii) and (iii) are equivalent. Obviously if
is (u, L, ¢)-calibrated we have

b
u(y(b)) —u(y(a) = / L(v(s),7(s)) ds + ¢(b — a).

It remains to prove that (iii) implies (i). If D(v,u,c;a,b) =0,
from claims (1) and (5) of Proposition 4.3.2 above, we get that
D(v,u,c;a, 3) = 0, for every subinterval [«, 5] C [a,b], and hence

B
u((B) — u((a) = / L(v(3),4(s)) ds + (6 — @),

hence 7 is (u, L, ¢)-calibrated on the interval [a, b]. O
We now state some of the properties of calibrated curves.

Corollary 4.3.4. Let L be a Tonelli Lagarangian on the manifold
M. Suppose that u : U — R is a continuous function defined on
the open subset U C M, that ~v: I — U is a continuous piecewise
C! curve. We have the following properties:

(1) Ify: I — M is (u, L, c)-calibrated, then for every subinterval
I' C I the restriction v|I' is also (u, Lc)-calibrated.

(2) If I' is a subinterval of I and the restriction v|I" is (u, L, ¢)-
calibrated, then v is (u, L, ¢)-calibrated on the interval I'N1.
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(3) Suppose that I is a finite union of subintervals I, ..., I,. If
Y|I; is (u, L, ¢)-calibrated, fori =1,...,n, then~ is (u, L, ¢)-
calibrated (on I).

(4) Suppose that I = Upenl;, where each I; is an interval and
I; C Ii4y. If each ~|I; is (u,L,c)-calibrated, then ~ is
(u, L, c)-calibrated (on I).

(5) For every tg € I, there exists a largest subinterval I;, C I
containing xy on which ~y is (u, L, c)-calibrated. Moreover
Ijy = I, NI

(6) If k € R, then v is (u,L,c)-calibrated if and only if it is
(u+ k, L, ¢)-calibrated.

(7) If ty € R, then v is (u, L,c)-calibrated on I if and only if
the curve s — ~y(s+tg) is (u, L, ¢)-calibrated on the interval
[—tQZ{t—toltGI}.

(8) If vy : [a,b] — U is a sequence of C* curves which converges
to the C' curve v : [a,b] — U in the C' topology, and
Yn is (u, L, ¢)-calibrated for every n then the curve 7y is also
(u, L, c)-calibrated.

Proof. Claim (1) was already given as Proposition 4.1.8. It is a
simple consequence of the definition of a calibrated curve.

To prove claim (2), consider a compact subinterval [a,b] C
INT, with a < b. For n large enough we have a +1/n < b—1/n,
and [a+1/n,b—1/n] C I, therefore by by claim (1) and Corollary
4.3.3 above we get D(v,u,c;a + 1/n,b—1/n) = 0. By claim (6)
of Proposition 4.3.2 above D(~, u, ¢;a,b) = 0. Therefore 7|[a, ] is
(u, L, ¢)-calibrated for every compact subinterval [a, b] of I’. Hence
y|I' is (u, L, c¢)-calibrated.

To prove (3), we fix [a,b] C I. By (2) we can assume that each
I;NJa,b] is a compact interval [a;, b;]. Extracting a minimal cover
and reindexing, we can assume
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It suffices to prove by induction on i that D(vy,u,c;a1,b;) = 0
For i = 1, this follows from the hypothesis that ~v|I; is (u, L, c)-
calibrated. Let us now do the induction step from i to ¢ + 1.
By (*), we have [b;,bi11] C [aiy1,bi11] C Lip1. Since 7|l
is (u, L, c)-calibrated, we therefore obtain D(v,u,c;b;, bi+1) = 0.
From Chasles Property, claim (4) of Proposition 4.3.2, it follows
that D(vy,u,c;a1,bi+1) = 0.

To prove (4), it suffices to observe that if [a, b] € I is a compact
subinterval, then for n large enough we have [a,b] C I,,.

To prove (5), call A the family of subinterval J C I such that
to € J and v|J is (u, L, c)-calibrated. Notice that A is not empty
since [to,to] € A. Since tg € (jcp J, the union Iy (J ey J is an
interval. We have to show that v is (u, L, ¢)-calibrated on I;,. Let
[a,b] C Ip,. We can find Jy, J2 € A with a € J;,b € J. the union
J3 = Jp U Jy is an interval because ty € J; N Jy. Therefore by (3),
the restriction ~y|J3 is (u, L, ¢)-calibrated. This finishes the proof
since [a, b] C Js.

Claim (6), follows from Corollary 4.3.3 above and claim (2)
of Proposition 4.3.2. In the same way claim (7), follows from
Corollary 4.3.3 above and claim (3) of Proposition 4.3.2. Claim
(8) follows from Corollary 4.3.3 above and claim (7) of Proposition
4.3.2. U

Exercise 4.3.5. Let L be a Tonelli Lagarangian on the manifold
M. Suppose that u : U — R is a continuous function defined on
the open subset U C M, that v : I — U is a continuous piecewise
C! curve. Suppose that I = Unen In, with I, a subinterval I of I
on which 7y is (u, L, ¢)-calibrated. (Do not assume that the family
I,,n € N is increasing.) Show that v is (u, L, c)-calibrated on 1.
[Indication: Reduce to the case I = [a,b] and each I, compact.
Show, using part (5) of Proposition 4.3.4 above, that you can as-
sume that the I, are pairwise disjoint. Call F' the complement in
la,b] of the union | J, ¢y I,. Show that F is countable. Use Baire’s
Category Theorem to show that if F'\ {a,b} is not empty then it
must has an isolated point.]

Let us now show that infinite calibrated curves can only exist
for the Ma né critical value c[0].
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Proposition 4.3.6. Suppose u: M — R is < L + c. If it admits
a (u, L, c)-calibrated curve v : I — M, with I an infinite interval
then necessarily c is equal to the Ma né critical value c[0].

Proof. By the definition of the Ma né critical value, since u < L+c
and u is defined on the whole of M, we have ¢ > ¢[0]. To prove
the converse inequality, we pick a continuous function ug : M — R
with ugp < L + ¢[0]. For any a,b € I with a < b, we have

b
uww»—uwwnzj"uw@ﬂ@»w+cw—@

b
w() ~ w(1(0) £ [ LO2(6),3()ds + clo)b — o).
Subtracting the first equality from the second inequality, we get

uo(7(0)) = uo(y(b)) — u(v(b)) + u(v(a)) < (c[0] = ¢)(b - a).

Since both u and ug are continuous functions on the compact space
M, the constant

K =supz € M|uy(z)| +supx € M|u(z)|
is finite, and we obtain from the inequality above
—2K < (c[0] = ¢)(b — a),

for all a,b € I with a < b. Since [ is an infinite interval, we can
find sequences a,, b, € I with a, < lb, such that b, — a, — oo,
as n — oo. This yields ¢[0] — ¢ > —2L/(b, — a,) — 0. Hence we
obtain ¢[0] > c. O

The following corollary is now a consequence of Definition
4.1.11 of a weak KAM solution and Proposition 4.3.6 above.

Corollary 4.3.7. Ifu: M — R is a negative (resp. positive) weak
KAM solution with the constant c, on the compact manifold M,
then c is necessarily ¢ is equal to the Ma né critical value c|0].

Theorem 4.3.8. Suppose that L is a Tonelli Lagrangian on the
manifold M. Let u : U — R be a function defined on the open
subset U C M. Assume that u < L 4 ¢, where ¢ € R, and that
v : [a,b] — M is a (u, L, c)-calibrated curve, with a < b, then we
have:
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(i) If for some t, the derivative of u at y(t) exists then

L

dywu =5

(’Y(t)/.}/(t)) and H(’Y(t% d'y(t) u) =G
where H is the Hamiltonian associated to L.
(ii) For every t €|a,b[ the derivative of u at y(t) exists.

Proof. We prove (i). We will assume ¢t < b (for the case t = b
use a t’ <t in the argument). For ¢ € [a, b] satisfying ¢’ > ¢, the
calibration condition implies

t/
W () — u((1)) = / L(7(s),4(s)) ds + et — 1),
t
Dividing by ¢’ — t and letting ¢ — ¢, we obtain

dﬁ/(t)u(’}/(t)) = L(’Y(t)a 7(3)) +ec.

Combining with the Fenchel Inequality 1.3.1 we get

¢ = dyyu(y(t)) = L(v(1),7(s)) < H(Y(#), dyyu)- (%)

But by Proposition 4.2.2, we know that H(vy(t),d,u) < c. This
yields equality in (*). Therefore H(v(t),d ) u) = c. But also the
equality

dyyu(¥(t)) = L(y(t),7(s)) = H(y(t), dyryu)

means that we have equality in the Fenchel inequality, therefore

we conclude oL
dytyu = %(V(t)d(t))

To prove (ii), we choose a open C* chart ¢ : U’ — R¥ on M,
such that ¢(U’') = R¥ and x = v(t) € U’ € U. We can find o', ¥/
such that a < @’ <t <V < b and v([¢/,b'] C U. To simplify
notations, we identify U’ and R* via ¢. For every y € U’ = R¥,
we define the curve v, : [@/,t] — U’ by

/

Ly -2

t—a
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We have vy (a’) = v(a'), and ~,(t) = y, since z = ~(t). Moreover,
we also have v, = 7|[d/,t]. Since u < L + ¢, we obtain

t
uly) < ur(@) + [ L0y (6),5y(s)) ds + clt — o),

with equality at x = ~(¢) since v, = v is (u, L, ¢)-calibrated. If we

define vy : U’ — R by

by () = u(r(@)) + / Ly (), 3 (5)) ds + c(t — )

’

s—a ) Yy—
(y_x)7’7(8)+t_a/

— u(y(a))+ / Liv(s) +

’ t—a
+c(t —d),

) ds

we easily see that 14 is as smooth as L (note that 7 is a minimizer,
and is therefore as smooth as L). Moreover we have u(y) < ¢4 (y),
with equality at x.

We now will find a function ¢_ : U’ — R satisfying ¢_ < u
with equality at 2 = ~(t). For this, given y € U’ = R* we define
'7y : [tvbl] - U’ by

Again we get 3, (b)) = ('), (t) = y and 4, = ~[[t,V']. Since
u < L 4+ ¢, we obtain

bl .
(b)) — uly) < / LFy(5),3y(5)) ds + et/ — 1),

with equality at x since 7, = 7 is (u, L, ¢)-calibrated. If we define
P_:U — R by
v .
U-) = u0) = [ LGy(5) Ayls)) ds = e )

4 ;o s .
—ub @) - [ L66) + oty 3() - 5

—c(b —1).

) ds
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Again we easily see that i _ is as smooth as L. Moreover we have
u(y) > _(y), with equality at z.

Since ¥_(y) < u(y) < ¥4 (y), with equality at 0, the C! func-
tion 14 — t_ is non negative and is equal to 0 at z therefore
its derivative at = is 0. Call p the common value d vy = d¢_.
By the definition of the derivative, using ¥ _(z) = u(x) = ¥4 (x),
we can write ¢4 (y) = u(z) +p(y — z) + ||y — z[|Bx(y — z), with
limy, 0 B+ (h) = 0. The inequality ¢¥_(y) < u(y) < ¥4+ (y) now
gives

u(z) +ply—z)+ ly —2|B-(y —z) <uly) <
<u(z) +ply —z) + ||y — zl|B+(y — 7).

This obviously implies that p is the derivative of u at © = y(¢). O

Another important property of calibrated curves and domi-
nated functions is given in the following theorem. We will call this
result the Lyapunov property for reasons that will become clear

Theorem 4.3.9 (Lyapunov Property). Let L be a Tonelli Lag-
rangian on the manifold M. Suppose that v : [a,b] — M is a
continuous piecewise C' curve, and that u;, us are two real-valued
functions defined on a neighborhood of y([a, b]). If, for some ¢ € R,
the curve 7 is (u1, L, ¢)-calibrated and us < L + ¢ on a neighbor-
hood of 7([a,b]), then the function t — wug(y(t)) — ui(y(t)) is
non-increasing on [a, b].

Proof. Since 7 is (uy, L, ¢)-calibrated, for t,t' € [a,b] with ¢t < ¢
we have
t/

ur(y(t)) = ur(y(t)) =/ L(v(s),9(s)) ds + c(t' — ).

t

Using that ug < L + ¢ on a neighborhood of v([a, b]), we get

uz(Y(t)) — u2(y(t)) S/t L(v(s),7(s)) ds + c(t' — ).

Comparing we obtain us(Y(t')) — u2(¥(t)) < ur(v(t')) — ua(¥(t)),
therefore ug(y(t')) — ui (v(t')) < ua(v(t)) —u
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4.4 Minimal Action for a Given Time

As we said minimizers are the important object of the theory.
Therefore if we fix a pair of points z,y and a time ¢ > 0, the
minimal action of a curve joining x to y in time ¢t will enjoy some
special properties.

Definition 4.4.1 (Minimal Action). If L is a Tonelli Lagrangian
on the compact connected manifold M, for ¢ > 0 fixed, we define
the function h; : M x M — R by

(e.y) =t [ D(s).4(5) ds

where the infimum is taken over all the (continuous) piecewise C!
curves v : [0,¢] — M with v(0) = z and v(¢) = y.

The quantity h(z,y) is called the minimal action to go from
z to y in time t.

Note that h; is well-defined since we are assuming that M is
connected, therefore any pair of points in M can be joined by a
smooth path. Moreover, the function h; is finite valued since L is
bounded from below, by superlinearity and compactness of M.

Of course, in the definition of h(x,y), we could have taken the
infimum on all absolute continuous paths. this would have note
changed the value of hy(x,y), since minimizers for a given posi-
tive time between two points do always exist by Tonelli’s theorem
3.3.4 and are in fact as smooth as the Lagragian by the regularity
theorem 3.7.1.

Here are some of the important properties of h;.

Proposition 4.4.2 (Properties of h;). The properties of h; are

(1) For each x,y € M, and each t > 0, we have

>ti .
ht(ﬂf,y) = t,}ﬂl}\g‘[/

(2) For each x,z € M and each t,t' > 0, we have

ht+t’ (‘Ta Z) = ylélj\fj ht(.%',y) + ht'(y7z)'
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(3) If u: M — R is a function defined on the whole of M, then
u < L + c if and only if

Va,y € M,Vt > 0,u(y) — u(x) < hy(x,y) + ct.

(4) A continuous piecewise C* curve v : [a,b] — M, with a < b,
is minimizing if and only if

b
h—a((a),1(8)) = / Liv(s).4(s)) ds.

(5) For each t > 0 and each x,y € M, there exists an extremal
curve v : [0,t] — M with v(0) = x,v(t) = y and h(z,y) =
t .
Jo L(v(s),4(s)) ds.

Proof. Property (1) is obvious since for any continuous piecewise
C! curve v : [0,t] — M, with ¢ > 0, we have

t t
/0 L(v(s),~(s))ds > /0 %%Lds = tiTI}\gL.

To prove property (2), let us consider two continuous piecewise
linear curves = : [0,t] — M, with v1(0) = z,7(t) = y, and
v2 ¢ [0,'] = M, with 72(0) = y,72(t') = y. We can define the
curve y3 =1 * 2 : [0,t + '] — M by

/73(3) = 71(8)7 for s € [07t]
= vo(s —t), for s € [t,t +1].

The curve 73 is continuous piecewise C!, with 43(0) = z and
v3(t+t") = 2. Moreover, its action L(v3) is equal to L(~;) +L(72).
Therefore, we have

byt (z,2) < L(m1) + L(v2).
Taking the infimum over all possible v, and 7, gives
hivv (2,2) < hy(z,y) + he(y, 2).
Taking now the infimum over y € M, we obtain

ht+t’ (33‘, Z) < inf ht($,y) + ht’ (y, Z).
yeM
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We now prove that the inequality above is an equality. Given € >
0, we can find a continuous piecewise C! curve v : [0,¢ +t'] — M,
with v(0) = z,v(t +t') = z, and

t+t/
A L(y(s).4(s)) ds < hsp(2,2) + €.

Using the curve v|[0, ], we obtain that

mmwmgéLmawmw.

Using a reparametrization of v|[t, ¢ + ¢'] by [0,t], we obtain

L+t
mmmws[ L(v(s),4(s)) ds.

Adding these inequalities, we get

t+t’
mmwm+mw@@sA L(3(5),4(s)) ds < hopo(a,2) + e

Therefore infyeps he(z,y) + hy(y,2) < hipp(x, 2) + €, for every
€ > 0. We conclude by letting € — 0.

For property (3), we observe that if v : [a,b] — M is a con-
tinuous piecewise C! curve, then the reparametrized curve 7 :
[0,b — a] — M defined by

Y(s) = v(a+s),

has the same endpoints as v, and also the same action, since L is
time-independent. In particular we could have defined h; by

b
la,y) = int [ L03(5).3(5)) ds.

where the infimum is taken over all the continuous piecewise C!
curves v : [a,b] — M with v(a) = z,v(b) =y, and b—a = t. With
this observation, we get that for a given ¢ > 0, the inequality

u(y) —u(z) < hy(z,y) + ct
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is equivalent to

b
ub®) ~ ur(a)) < [ L)) ds
for every continuous piecewise C! curves 7 : [a,b] — M with
v(a) = z,v(b) =y, and b —a = t.
For property (4), we observe that, by definition of h;, we have

mmwwmzémeﬂmm

for a curve v : [0,t] — M if and only if y is a minimizer. It remains
to observe as indicated above that we can reparametrize any curve
by an interval starting at 0 without changing neither its endpoints
nor its action.

Property (5) results from Tonelli’s Theorem 3.3.1. O

It is probably difficult to find out when the next theorem ap-
peared, in some of its forms, for the first time in the literature. It
has certainly been known for some time now, at least in its equiv-
alent form given as Lemma 4.6.3 below, see for example [Fle69,
Theorem1, page 518]. It has of course been, in a form or another,
been rediscovered by several people, including the author himself,
for whom it started weak KAM Theory since it has as an “obvi-
ous” consequence the existence of a fixed point (up to a constant)
for the Lax—Oleinik semi-group, see section 4 below.

Theorem 4.4.3 (Fleming’s Lemma). For each ty > 0, there exists
a constant ry, € [0,+o0] such that, for each t > ty the function
hi : M x M — R is Lipschitzian with a Lipschitz constant < ky,.

Before proving the theorem, we need to prove some preliminary
results.

Proposition 4.4.4. Let L be a Tonelli Lagrangian on the compact
connected manifold M. For every given t > 0, there exists a
constant Cy < +oo, such that, for each x,y € M, we can find a
C* curve v : [0,t] — M with v(0) = z,v(t) = y and

LMzALM%ﬂmwéa
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Proof. Choose a Riemannian metric g on M. By the compactness
of M, we can find a geodesic (for the metric g) between x and y
and whose length is d(x,y). Let us parametrize this geodesic by
the interval [0,¢] with a speed of constant norm and denote by
v : [0,t] — M this parametrization, with v(0) = x,v(t) = y. As
the length of this curve is d(z,y), we find that

d(z,y)
t

Vs € [0,t], [|7(s)]ly(s) =

Since the manifold M is compact, the diameter diam(M) of M for
the metric d is finite, consequently, the set

diam (M)

A0 = {(w,0) € TM | o]l < =5

¥
is compact. We have (v(s),¥(s)) € A, for all s € [0,t]. By
compactness of A;, we can find a constant C; < +oo such that

V(z,v) € Ay, L(z,v) < Cy.
If we set C; = tC}, we do indeed have L(v) < C4. O

Corollary 4.4.5 (A Priori Compactness). Let L be a Tonelli Lag-
rangian on the compact manifold M. Ift > 0 is fixed, there exists
a compact subset K; C T'M such that for every minimizing ex-
tremal curve vy : [a,b] — M, with b — a > t, we have

Vs € [a,b], (v(s),7(s)) € K.

Proof. Let us recall that we are assuming in this chapter that M
is compact and connected. We first observe that it is enough to
show the corollary if [a,b] = [0,¢]. Indeed, if ¢ty € [a,b], we can
find an interval of the form [c, ¢ + t], with tg € [c,c+ ] C [a,]].
The curve 7. : [0,t] — M, s — ~(c + s) satisfies the assumptions
of the corollary with [0,¢] in place of [a, b].

Thus let us give the proof of the corollary with [a,b] = [0,].
With the notations of the previous Proposition 4.4.4, we necessar-
ily have

LMZALM%w%%SQ



140

Since s — L(7(s),%(s)) is continuous on [0, ¢], by the Mean Value
Theorem, we can find sy € [0,¢] such that

) C
L(v(s0),%¥(s0)) < Tt (*)
The set B = {(z,v) € TM | L(z,v) < £t} is a compact subset
of TM. By continuity of the flow ¢;, the set K; = Uls\ét ¢s(B)
is also compact subset of TM. As v is an extremal curve, the

inequality (%) shows that

Vs € [O’t]’ (7(8)75/(8)) € qbs—so(B) C Kt'
]

Proof of Theorem 4.4.3. We fix some ty > 0, and we will study hy
only for t > t.

Let us consider B(0,3) the closed ball of center 0 and radius
3 in the Euclidean space R, where k is the dimension of M. By
compactness of M, we can find a finite number of coordinate charts
@i : RF — M,i=1,...,p, such that M = (J}_, ©i(B(0,1)). We
denote by 1 > 0, a constant such that

Vi=1,...,p,Vo,2' € M, d(z,2’) <nand z € gpi(B(O, 1)) =
LZ'/ € (Pi(é((L 2)) and H(Pi_l(x/) - (Pz_l(x)H < 17

where the norm || - || is the Euclidean norm. Let us denote by
K, the compact set obtained from corollary 4.4.5. We can find a
constant A < +o0 such that

V(z,v) € Ky, ||v]]2 < A.
In the remaining part of the proof, we set

: n
€ = min(t/2, Z)

In the same way by the compactness of K;,, we can find a constant
B < +00 such that

Vz € B(0,3),Yv e RE.Vi=1,...,p, Tpi(z,v) € Ky, = ||v]| < B.
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Consider two points x,y € M, and suppose that i,7 € {1,...,p}
are such that z € cpi(é(O, 1)) and y € @j(é(O, 1)). For a fixed
t > tg, we can find a minimizing extremal curve ~ : [0,t] — M
such that v(0) = z,~(t) = y and

he(z,y) = /0 Liv(s), 4(s)) ds. *)

By the a priori compactness given by Corollary 4.4.5, since t > tg,
we have (v(s),5(s)) € Kji,, for each s € [0,¢]. Consequently,
by the choice of A, we obtain d(y(s),v(s")) < Als — §|, for all
s,s' € [0,t]. In particular, since x = ¥(0) € cpi(é(O, 1)) and
y="(t) € ¢; (E(O, 1))by the choice of €, we find that

7([0’ E]) C i (é(ov 2))
([t = 1)) C 9;(B(0,2)).

We can then define the two curves 39 :[0,€] — B(0,2) and 3" :
[t — €,t] — B(0,2) by ¢i(7°(s)) = 7(s) and ;(3'(s)) = ¥(s) .
If d(z,2’) < n and d(y,y’) < n, there are unique &',y € B(0,2)
such that ¢;(Z') = 2’ and ¢;(7') = v/. By the definition of n, we
also have |7/ — z|| < 1 and ||§/ — §|| < 1. Let us define curves
3%+ 10,e] = B(0,3) and 7}, , : [t — €,t] — B(0,3) by

€E— S

’?gwl(s) = (&' — %) +7(s), for s €0,€,
N s—(t—¢€), N N
Vot g () = %(y’ — ) +7(s), for s € [t —¢,1].

The curve 7Y, 1[0, €] connects the point ' to the point (e), and
the curve ﬁ,’y,Ht — €,t] connects the point 4(¢ — €) to the point
y'. Since € < T/2 we can, then, define the curve v,/ : [0,¢] —
M by Yo'y = 7 OR [Evt - E]v Va'y' = Pi © ’727’3/ on [07 6]7 and
Yty = Pj O 1y o0 [t —€,t]. The curve 7,/ is continuous on the
interval [0, ¢], moreover, it of class C! on each of each the intervals
[0, €], [e,t —¢€] and [t —¢,t]. We of course have v, , = 7. As v/ (5)
is equal to 2/, for s = 0, and to v/, for s = t, we have

t
ht(fﬂlay/) S/O L(Vz’,y’(s)vlyx’,y’(s)) ds.
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Subtracting the equality (*) above from this inequality and using
the fact that v, ,» = on [e,t — €], we find

he(2',y') — hu(2,y) < /0 Lty (), Yar o (8)) ds — /0 L(y(s),%(s)) ds
¢ ¢
[ Low ) Ay @)ds — [ L5 ds
t—e t—e

We will use the coordinate charts ¢; and ¢; to estimate the right-
hand side of this inequality. For that, it is convenient, for ¢ =
1,...,p, to consider the Lagrangian L, : B(0,3) x R¥ — R defined

by B

Li(z,w) = L(pe(2), Dpe(w)[w]).

This Lagrangian L, is of class C" on B(0,3) x R*. Using these
Lagrangian for ¢ = 1, j, we have

hi(2',y') — hu(z,y) <
E~.~0 $). A9 (s)ds — €~-~Os A0(s)) ds
/0 Lz(’Ym’,y’( )7’Ym ,y( ))d /0 LZ(’Y ( )7'7 ( ))d

t t
+ / L(:Y;’,y’(‘g% ,.3/:12,72/ (S)) ds — / L(ﬁll(S% 5/1 (S)) ds. (*)
t—e t—e
By the choice of B, we have ||5(s)|| < B, for each s € [0, €]. By
the definition of ’?g,,y, and the fact that ||Z — Z|| < 1, we obtain

~/

12" — 2|

-0
Vs € [0,¢€], |70y (s)]l < + B

€
< B+¢e L.
Since L; is C! and the set
Ep.={(2v) € B(0,3) xR* | |v| < B+ ¢}

is compact, we see that there exists a constant C;, which depends
only on the restriction of the derivative of L; on this set Ep , such
that
V(z,v),(2',v') € Ep,,
Lalz,0) = Eal!, o) < Comax(lz = 2/, o = v/
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Since the two points (%(37 /(s ,ﬁg /(s)), (10(s)ﬁ0(8)) are in Ep,
: — :%) we find

—S

and 32, (5) ~ 3°(s) = ("
L3 (5). 3% 4 (9)) = EG°(5),5°9))
G- 126 - D]

1., .
< Cmax(1, 7).

< Cimax[ €=

By integration on the interval [0, €], it follows that

“F(30 )52 (s))ds — E~~~OS D(s)) ds
/0 Lz(’ygv’,y’( )7'7:(: Y ( ))d /0 LZ(’Y ( )7 9( ))d
< Cymax(e,1)||g — Z||.

Since ¢; is a diffeomorphism of class C*°, its inverse is Lipschitzian
on the compact subset ¢; (B (0, 3)) We then see that there exists
a constant C;, independent of z, 2/, v,y and t > tg, and such that

x € goi(é(o, 1)) and d(z',2) <n =
/6 Zi(ﬁ’gﬁy’(s)? iyg’,y’(s)) ds — /E -Z/z'(:}/o(s), N'%(S)) ds < éjd(xl, x)
0 0

In the same way we can prove the existence of a constant CN’J’,
independent of x,2’,y,3" and t > tg, and such that

y € ¢;(B(0,1)) and d(y',y) <n =
t t
~ - ’:1 ~ - ~. ~
| LGk @y @D ds = [ LGN, ) ds < ity ).
Therefore by the inequality (*) above, we obtain

x € ;i (B(0,1)),y € ;(B(0,1)),

1) z) <nand d(y,y) <n=
he(2'y') — hu(z,y) <

d(a’,
Cid(a',x) + Cjd(y, y).

Setting ky, = max?_, max(C;, C!), we find that we have

d(2',z) <n,d(y',y) <nand t > to =
hi(a',y') = he(z,y) < kgold(2’, 2) 4+ d(y', ).
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If x,2',y,y  are arbitrary points, and v : [0,1] — M, : [0,1] —
M are geodesics of length respectively d(z,y) and d(',y), param-
eterized proportionally arclength and connecting respectively x to
y and ' to 3y , we can find a finite sequence tg =0 <t; < --- <
t¢ = 1 such that d(y°(ti+1),7°(t:)) < nand d(y' (tit1), 7' () < n.
Applying what we did above, we obtain

Vi € {07 1’ s ,K - 1}7 ht(lyo(ti-l-l)vlyl(ti-l-l)) - ht(lyo(ti)’/yl(ti))
< g [d(0(ti1), 7" (82)) + d(y (tign), 7 (1))

Adding these inequalities, we find

he(2',y') — bz, y) < kold(2’, @) + d(y'y)).
We finish the proof by exchanging the roles of (z,y) and (2/,y’) O

The following theorem is a consequence of Corollary 4.4.5 and

Theorem 4.4.6. Let L be a C" Tonelli Lagrangian, with r > 2, on
the compact connected manifold M. Given a,b € R with a < b,
call M, the set of curves v : [a,b] — M which are minimizers
for the class of continuous piecewise C' curves. Then Mgy is a
compact subset of C"([a,b], M) for the C" topology.

Moreover, For every t, € [a,b] the map My, — TM,y —
(v(t0),¥(to)) is a homeomorphism on its image (which is therefore
a compact subset of T'M.)

4.5 The Lax-Oleinik Semi-group.

We call F(M, [—o0,+0o0]) the set of arbitrary functions from the
manifold M to the set [—00,+o0] of extended real numbers. We

will also use the notation F (M, R) for the set of arbitrary functions
M :— R.

4.6 The Lax-Oleinik semi-group

We introduce a semi-group of non-linear operators (7, ):>o from
F (M, [—o00,400]) into itself. This semigroup is well-known in PDE
and in Calculus of Variations, it is called the Lax-Oleinik semi-
group. Again it has been rediscovered many times in different
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forms; For the author, it came as a natural by-product of the
proof of the hamilton-Jacobi Theorem for C! functions, see the
proof of Theorem 4.1.1 and the discussion in section 1.

Definition 4.6.1 (Lax-Oleinik semi-group). Fix u € F°(M, [—o0, +))
and t > 0. The function 7, u : M — [—o0,+00] is defined at
x € M by

T u(a) = it {ur(0) + [ L6305 dsh

where the infimum is taken over all the absolutely continuous
curves 7 : [0,t] — M such that v(t) = z. By the definition of
the minimal action h¢, see Definition 4.4.1, for ¢t > 0, we have

Ty u(z) = yiél{/[ u(y) + he(y, x).

We will also set T, w = w. The family of maps T, : F(M, [—o0, +0]) —
F(M,[—o0,4+00]),t € [0,+00[ is called the Lax-Oleinik semi-group.

Here are some properties of 7, on F (M, [—oo, +0]).

Proposition 4.6.2. Consider u € F (M, [—00, +0]).
(1) For x € M and t > 0, we have

infu+tinf L < Tyu(x) < infu + max hy.
M TM M MxM

Since infpy; L > —oo by the superlinearity of L and h; is contin-
uous on the compact space M x M, we obtain that the following
properties are equivalent:

(a) there exists at > 0 and and an x € M such that T, u(z) is
finite;

(b) we have infy; u €] — 0o, +00[;

(c) for every t > 0, the function T, u is finite, valued.

(2) (Semigroup Property) We have T, for
each t,t' < 0.

(3) for every ¢ € R, we have T} (¢ +u) = ¢+ T} u.

7 :,—Tt_O,I;//_,
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(4) (Inf Commutativity) If u;,i € I is a family of functions
inu € F(M,[—o0,+00]), we have

T fu) = T ()

(5) (Monotony) For each u,v € F(M,[—o00,+0o0])) and all
t > 0, we have

u<v="T u<T v

(6) If ¢ € R, the function u € F(M,[—o00,+o0]) satisfies u <
T, u+ ct if and only if one of the following three things happens:

(i) the function u is identically —oo;
(ii) the function u is identically +o0;
(iii) the function u is finite everywhere and u < L + c.

(7) Suppose that ¢ € R, and u : M — R are such that u <
L + ¢, then, for every t > 0, the function T} u is finite valued, and
T, u < L+ec.

Proof. To prove assertion (1), we juste notice that T, u(z) =
infyen u(y) + he(y,z) < infyens u(y) + maxprxar by = infpru +
max s« ar he. Moreover by part (1) of Proposition 5.3.2, we have
hi(y,x) > tinfpps L, from which it follows that

Ty u(z) > inf u(y) + t%r}‘f[L

yeM
=t inf L + inf u.
TM M

The rest of assertion (1) follows easily from this double inequality.

Assertion (2) follows from part (2) of Proposition 5.3.2, which
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states that hy4(y, ) = inf.ens hy (y, 2) + hi(z, ). Therefore

thrt'u(x) = ylélzau(y) + hy e (2, )

= inf [u(y) + mf hyy, z) + he(z, )]

yeM
= inf inf hy h
ylélelél [u(y )+ v (Y, 2) + hi(z, )]
= inf inf /
inf ylélM[u(y) + hy (y, 2) + he(z, 7))

= Zlél]\f;[[ylélf [u(y) + he (y, 2)] + he(2, 2)

= mf Ty u(z) + he(z, )
T iz

Assertion (3) is obvious from the definition of 7} .
For assertion (4), we notice that

Ty (infu;)(x) = inf infu(y) + ha(y,
¢ (infug)(@) = inf infui(y) + he(y, z)

= inf inf u; ha(y,
;glylgMU(y)Jr 1y, )

= inf T, (u;)(z).
iel

Assertion (5) is also an immediate consequence of the def-
inition of 7y . It also easily follows from assertion (4), since
we have v = inf(u,v), which yields T, (u) = 1} (inf(u,v)) =
inf (77 (u), Ty~ (v)) < Ty (0).

For assertion (6), assume that v < T, u + ct for every t. Ob-
viously, by assertion (1), if infy; u = —oo, then T u = —oo hence
u<T, u+ctisalso = —oo. If infy; u = 400, of course u = +o0.
In the remaining case infyru €] — 0o, +00[, we obtain from (1)
above that T, u is finite everywhere therefore w, which satisfies
u < T, u+ct and u > infps u > —o0, is also finite valued. The con-
dition v < T, u+-ct yields u(z) < infyepr u(y)+he(y, x)+ct. There-
fore u(x) < u(y)+he(y,x)+ct, for every x,y € M and ¢ > 0. Since
u is finite valued this is equivalent to u(x) —u(y) < h¢(y, x)+ct, for
every x,y € M and t > 0. By Assertion (3) of Proposition 5.3.2
this is equivalent to w < L + c¢. Note that reversing the reasoning
just done we can show that if u is finite valued and v < L + ¢
then u < Ty u + ct, for every t > 0. Moreover, if u = —oo (resp.
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u = 400) we have T} (u) = —oo (resp. T, (u) = +o0) which of
course yields u = Ty u + ct.

For assertion (7), we first observe that by part (iii) of Propo-
sition 4.2.1, then function u is continuous (it is even Lipschitz)
on the compact manifold M. Therefore it is bounded from below
and by Assertion (1, the function 7; u is finite everywhere. By
Assertion (6), we have

u< T, u+ct,
for every ¢ > 0. Using Assertions (2), (3), and (5), we get

T, u<T, [Ty u+ct]
=T, [T u] + ct’

=T

Therefore T, u < T, [Ty u] + ct’, for every t' > 0. Since T} u is
finite, from Assertion (6), we get T, u < L +c. O

Let us now introduce the space B(M,— R) of bounded func-
tions u : M — R. As usual, we endow this space of the norm |||
defined by

[ulloc = sup [u(z)]|.
reM
By assertion (1) of Proposition 4.6.2, if u € F(M,R) satisfies
infpyu > —oo, then T, u € B(M,R). Fleming’s Lemma 4.4.3
yields the following much stronger property on the Lax-Oleinik
semi-group.

Lemma 4.6.3. For each ty > 0, there exists a constant rky, such
that for every u € F(M,R) with infy; u > —oo, and every t > tg
the functionT, u : M — R is ky,-Lipschitzian.

In particular for every t > 0, we have T, (B(M,R) C C°(M,R).

Proof. By Fleming’s Lemma 4.4.3, we can find a constant ¢, such
that for every t > tg, the function h; : M x M : toR is Lipschitz
with Lipschitz constant ry,. If follows that for any u inC°(M,R)
and any t > tg, the family of function u(y)+ h(y, ),y € M is equi-
Lipschitzian with Lipschitz constant k. Since, by the condition
inf s u > —oo0, its infimum 7, u(x) = infyenrr u(y)+h(y, z) is finite
everywhere, it is also Lipschitz with Lipschitz constant . O



149

Before giving further properties of the semi-group 7, we recall
the following well-known definition

Definition 4.6.4 (Non-expansive Map). A map ¢ : X — Y,
between the metric spaces X and Y, is said to be non-expansive
if it is Lipschitzian with a Lipschitz constant < 1.

Proposition 4.6.5 (Non-expansiveness of the Lax Oleinik semi—
group). The maps T, : are non-expansive for the norm |||, 1.e.

Vu,v € B(M,R),Vt >0, |1}, v — T} Voo < ||t — v]0o-
Proof. 1f u,v € B(M,R), we have
—u = v]|oo +v <u < || — V|00 + .
By parts (5) and (3) of Proposition 4.6.2, we get
—llu=vlloc + Ty v < Tiu < flu — vljeo + T 0.
This clearly implies |7, u — T} v]|co < [|U — V|| co- O

We now turn to the properties of the semi-group on the space
C°(M,R) of continuous functions, endowed with the topology of
uniform convergence, i.e. the topology induced by the norm ||-||.

Proposition 4.6.6. The semi-group T, sends C°(M,R) to itself.
It satisfies the following properties:

(1) For each u € C°(M,R), we have lim;_o T, u = u.

(2) For each u € C°(M,R), the map t — T, u is uniformly
continuous.

(3) For each u € C°(M,R), the function (t,z) +— T, u(z) is con-
tinuous on [0,4+o00[x M and locally Lipschitz on ]0,+oo[x M. In
fact, for each ty > 0, the family of functions (t,z) — T, u(z),u €
C°(M,R), is equi-Lipschitzian on [ty, +oo[x M.

(4) For each u € C°(M,R), each x € M, and each t > 0 we
can find a a continuous piecewise C! curve v, : [0,t] — M with
Vat(t) = x and

Tt_ (LE) = U(Vx,t(o))"i_ht(’}/x,t(o)a ‘T)) = U(Vx,t(o))"i_/o L(’Yx,t(s)f.}/x,t(s)) ds.
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Proof. As the C! maps form a dense subset of C°(M,R) in the
topology of uniform convergence, it is not difficult to see, using
Proposition 4.6.5 above, that it is enough to show property (1)
when u is Lipschitz. We denote by K the Lipschitz constant of u.
By the compactness of M and the superlinearity of L, there is a
constant Ci such that

\V/(:E,’U) € TM7 L(l‘,U) > KHUHI + C’K-

It follows that for every curve v : [0,t] — M, we have

| £ ds > K 0).4(0) + Ot

Since the Lipschitz constant of u is K, we conclude that

/0 L(v(s).4(s)) ds + u(~(0)) > u(7(t)) + Cit,

which gives
T, u(z) > u(z) + Ckt.

Moreover, using the constant curve ~, : [0,t] — M,s — z, we
obtain
T, u(x) < wu(x) + L(z,0)t.

Finally, if we set Ay = maxyeps L(x,0), we have obtained
1Ty u — ulloo < tmax(Ck Ayp),

which does tend to 0, when ¢ tends to 0.

To show (2), we notice that by the semi-group property of T},

see part (2) of Proposition 4.6.2, we have
”Tt/_u - Tt_u”oo < ”T|;_t|u - UHOCH
and we apply (1) above.

To prove (3), we remark that the continuity of (¢, z) — T} u(x)
follows from (1) and the fact that T, w is continuous for ever ¢ > 0.
To prove the equi-Lipschitzianity, we fix tg > 0. By Lemma 4.6.3,
we know that there exists a finite constant K (t¢) such that T, w is
Lipschitz with Lipschitz constant < K (tg), for each u € C°(M,R)
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and each t > tg. It follows from the semi-group property and the
proof of (1) that

1T u—T; ulloo < (t' —t) max(Cr ), Ao),

for all t/ >t > . It is then easy to check that (¢,z) — T}, u(x) is
Lipschitz on [to, +0o[x M, with Lipschitz constant < max(C 4, Ao)+
K(tg), for anyone of the standard metrics on the product R x M.
To prove (4), we recall that T} (z) = inf e u(y) + he(y, x). since
the function y — u(y)+hs(y, ) is continuous on the compact space
M, we can find y, € M such that T, (z) = u(ys) + he(ys, ). We
can apply part (5) of Proposition 5.3.2 to find a continuous piece-
wise C! curve v, ¢ : [0,¢] — M with v,+(0) = yz,72+(t) = = and
hi(ye, ) = fot L(v34(8),¥2,4(s)) ds. Therefore T, () = u(yy) +
(g, 7)) = u(ye) + Jo Lt (5), e (5)) ds. O

We now give the connection of the semi-group 7, with weal
KAM solutions of the negative type.

Proposition 4.6.7. Suppose that u : M — R s a function and
c € R. We have Ty u + ct = u, for each t € [0, +o0|, if and only if
u is a negative weak KAM solution, i.e.we have

(i) u<L+¢

(ii) for each x € M, there exists a (u, L, ¢)-calibrated curve = :
| — 00,0] — M such that v*(0) = x.

Proof. We suppose that T, u + ¢t = u, for each ¢ € [0,400[. In
particular, we have By part (6) of Proposition 4.6.2 above, since u
is finite-valued, we obtain w < L+c. In particular, the function u is
continuous. It remains to show the existence of 4% :]—00,0] — M,
for a given x € M. We already know by part (4) of Proposition
4.6.6 that, for each t > 0, there exists a continuous piecewise C!
curve 7y : [0,t] — M, with v(t) = z and

u—(z)=ct = Tru—(x) = u—(7:(0))+ht (7:(0),7:(t)) = u- (%(0))+/0 L(7:(s),4:(s)) ds.

We set 7:(s) = v(s+1), this curve is parametrized by the interval
[—t,0], is equal to x at 0, and satisfies

0
u—(3:(0)) —u—(3e(=1)) = ht(%(—t)ﬁt(O))Jrct/ L(u(s), 7e(s)) ds+ct.

—t
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It follows from Proposition ?? above that 4 is (u, L, ¢)-calibrated.
In particular, the curve %;, and we have

0 .
vt' € [-1,0], u_(z) —u_(%(t) = —ct’+/t/ L(Ve(s),7:(s)) ds. (*)

As the 4 are minimizing extremal curves, by the a priori com-
pactness given by corollary 4.4.5, there exists a compact subset
Ky C TM, such that

A > 1’V8 € [—t,O], (ﬁt(s)vﬁt(s)) € Kl-

Since the ; are extremal curves, we have (3:(s), %:(s)) = ¢s(7:(0),7:(0)).
The points (3;(0),7:(0)) are all in the compact subset K7, we can
find a sequence t,, /" +o0 such that the sequence (4, (0), 7, (0)) =
(x,%4,(0)) tends to (z,vs), when n — +oo. The negative orbit
¢s(%, V50 ), s < 01is of the form (7% (s),4” (s)), where v* :]—00,0] —
M is an extremal curve with v, (0) = z. If ' €]—o00, 0] is fixed, for n
large enough, the function s — (7, (5), %, (s)) = ¢s(31,,(0), ¥4, (0))
is defined on [t', 0], and, by continuity of the Euler-Lagrange flow,
this sequence converges uniformly on the compact interval [t/ 0]
to the map s — ¢s(z,v00) = (72(8),¥2(s)). We can then pass to
the limit in the equality (*) to obtain

0
u_<$>——u_<v_<ﬂ>>=:—cﬂ-+j£ L+ (), 5% (5)) ds

Conversely, let us suppose that © < L+c and that, for each x € M,
there exists a curve 4% :] — 00, 0] — M, with 4% (0) = z, and such
that for each ¢ € [0, +o0|

0

u_(z) —u_(y2(—t)) =ct —l—/ L(v*(s),7%(s)) ds.

—t

Let us show that T, u + ¢t = u, for each t € [0,+o0[. If z € M
and t > 0, we define the curve ~ : [0,t] — M by v(s) =+~ (s — t).
It is not difficult to see that v(t) = z and that

u4@=d+AL@@m@mu+mw@»

It follows that T, u(z) + ¢t < u(z) and thus T, u + ¢t < u. The
inequality u < T, u + ct results from u < L + c. O
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4.7 Existence of Negative Weak KAM So-
lutions

Our goal in this section is to prove the existence of negative weak

KAM solutions.

Theorem 4.7.1 (Weak KAM). There exists a functionu_ : M —
R which is a negative weak KAM solution with constant c[0].

Note that we already know by Corollary 4.3.7 that a weak
KAM solution can only have c[0] as a constant. By Proposition
the weak KAM theorem above is equivalent to

Theorem 4.7.2. There exists a function u_ : M — R such that
T, u— + tc[0] = u_, for each t € [0, +o0].

We will give two proofs of this theorem.
For the first proof we need some lemmas.

Lemma 4.7.3. Let u : M — R be a function (not necessarily
continuous or even bounded), and ¢ € R. If the function @ defined
on M by
u(r) = inf T, t
u(x) inf T, u(z) + ¢
is finite at some point, then it is finite everywhere and @ < L + c.
Proof. We use parts (4), (3), (2) of Proposition 4.6.2 to obtain
T,u="T,[infT,
v U t[%go ¢ u+ct]
= %Izlg T, [T, u+ ct]
= %Izlg T, [Ty u] +ct
=inf T,
t>0

vl utct

Therefore
-~ / / . — —
T,a+ct =ct +££Tt,+tTt u+ct

=mf T, T utct+ ct!
=mf T, T ut c(t' +1t)

inf T}~ i = u.
geq;go t utct=u
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Since @ is finite at some point it follows from part (6) of Proposi-
tion 4.6.2 that it is finite everywhere and u < L + c. O

Lemma 4.7.4. Let u: M — R be a function with infy; u > —o0,
but not necessarily continuous or even bounded. Supposet > 0
and ¢ € R are such that u < T, u + ¢, then ¢/t > ¢[0].

Proof. Using parts (2), (3) and (5) of Proposition 4.6.2, we obtain
forn e N

u<T u+c<Thu+2c<--- <Tu+nc.
This implies that for s > 0
Tou < T, su+nc
If we set ¢ = ¢/t, this yields
Tyu+s¢ <Thpyou+ (nt+ s)é,
for all s > 0, and all n € N. In particular, we have

u=inf T, u+sc= inf T, u-+ sc.
$>0 0<s<t

We now note that by part (1) of Proposition 4.6.2 we have
Tsu > infu+ s inf L > infu — s|inf L|.
M ™ M ™
Therefore
= inf T;u+ sc
0<s<t

> inf infu — s|inf L| + sé
0<s<t M TM

> infu — s(|inf L| + |¢] > —o0.
M TM

Hence we can apply Lemma 4.7.3 to obtain that @ < L 4+ ¢. Hence
¢ =c/t > cl0]. O

Lemma 4.7.5. Let u: M — R be dominated by L + ¢[0] on the
compact manifold M. then for every t > 0, we can find a point
xy € M such that u(z;) = T, u(x;) + tc[0].

In particular, we have sup;||T; u + tc[0]||oo < +00.
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Proof. Let us observe that, part (iii) of Proposition 4.2.1 and part
(7) of Proposition 4.6.2, the family of functions 7, u,t > 0, is
equi-Lipschitzian. We call L < +00 a common Lipschitz constant
for T, u,t > 0.

To prove the first part we can assume ¢t > 0. Suppose that
no such z; exists, since u < T} u + tc[0], we obtain that T, u +
tc[0] — u > 0 everywhere. Since both w and T, u are continuous,
the compactness of M now implies that there exists ¢ > 0 such
that 7, u + tc[0] — u > € everywhere. This can be rewritten as
u < T, u+ tc[0] —e. By Lemma 4.7.4 above, this implies (¢c[0] —
€)/t > ¢[0]. Which is obviously false. This proves the existence of
Tt.

For each t > 0 the function 7} u+tc[0] —u is Lipschitzian with
Lipschitz constant > 2L. Since it vanishes at some point z; € M,
we have for every x € M

T u(x) + 0] — u(e)| = [(T;u + te[0] — w(@)) — (T3 u(z) + te[0] — u(x))|
< 2Ld(x,x¢)
< 2L diam(M).

Therefore we, obtain sup;l|T; u+tc[0][|oc < [Julloo+2L diam(M) <

+o00. O

We can now prove the following theorem which yields imme-
diately the weak KAM Theorem 4.7.1.

Theorem 4.7.6. Let L be a Tonelli Lagrangian on the compact
connected manifold M. Suppose ulf u : M — R is dominated by
L + ¢[0]. Then T; u + tc[0] converges uniformly to a continuous
function u_ : M — R which is a negative weak KAM solution.

Proof. We note that by parts (6), (5) and (2) of Proposition 4.6.2
we have for s,t > 0

Tou<T, (T, u+ tc[0])
=T, ;u+ tc[0].
Hence T, u + sc[0] < T u + (t + s)c[0], this implies that T}, u +

tel0] < T, u + t'c[0], for every t,t' > 0, with t < ¢'. Since by
Lemma 4.7.5, the family T, u + tc[0],¢ > 0 is equibounded, it
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follows that the point-wise limit u_(x) = lim_, 4o T} u(z) + tc[0]
exists everywhere and is finite. We now remark as at the beginning
of the proof of Lemma 4.7.5 above that the family 7, u+tc[0,¢ > 0
is equicontinuous, to conclude that the limit u_ = lim;— 4o T} u+
tc[0] is uniform.

It remains to prove that u— : M — R which is a negative
weak KAM solution. By Proposition 4.6.7, we have to check that
T, u + sc[0] = u, for each s >. Using the non-expansiveness of
the Lax Oleinik semi-group Proposition 4.6.5, we obtain 7T, u_ =
limg oo T5 [Ty u + tc[0]] = limy— oo T su + tc[0]. Therefore
Tyu_ + scl0] = limy— o0 Ty, ju + (t + 5)c[0] = u_. O

Before giving a second proof of the weak KAM Theorem 4.7.1,
we will need to recall some fixed point theorems. We leave this as
an exercise, see also [GK90, Theorem 3.1, page 28].

Exercise 4.7.7. 1) Let E be a normed space and K C E a com-
pact convexr subset. We suppose that the map ¢ : K — K is
non-expansive. Show that ¢ has a fized point. [Hint: Reduce first
to the case when 0 € K, and then consider x — A\p(x), with
A €]0,1]./

2) Let E be a Banach space and let C C E be a compact subset.
Show that the closed convex envelope of C in E is itself compact.
[Hint: It is enough to show that, for each € > 0, we can cover the
closed convex envelope of C' by a finite number of balls of radius
€./

3) Let E' be a Banach space. If p : E — E is a non-expansive
map such that o(E) has a relatively compact image in E, then the
map ¢ admits a fixed point. [Hint: Take a compact convexr subset
containing the image of ¢.]

4) Let E be a Banach space and ¢ : E — E be a family of maps
defined for t € [0,00[. We suppose that the following conditions
are satisfied

e For each t,t' € [0,00[, we have @iy = i o @y
e For each t € [0,00][, the map p; is non-expansive.
e For each t > 0, the image @i(E) is relatively compact in E.

e Foreachx € E, the map t — () is continuous on [0, +00].
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Show then that the maps ¢; have a common fized point. [Hint:
A fized point of v; is a fixed point of oy for each integer k > 1.
Show then that the maps ¢y /on, withn € N, admit a common fized
point.]

We notice that we can use Brouwer’s Fixed Point Theorem
(instead of Banach’s Fixed Point Theorem) and an approximation
technique to show that the result established in part 1) of the
exercise above remains true if ¢ is merely continuous. This is the
Schauder-Tykhonov Theorem, see [Dug66, Theorems 2.2 and 3.2,
pages 414 and 415] or [DG82, Theorem 2.3, page 74]. It follows
that the statements in parts 3) and 4) are also valid when the
involved maps are merely continuous.

Second proof of Weak KAM Theorem 4.7.1. Let us denote by 1
the constant function equal to 1 everywhere on M and consider the
quotient £ = C°(M,R)/R.1. This quotient space F is a Banach
space for the quotient norm

= inf 1
Il = in Jlu+ a1

where [u] is the class in E of u € C°(M,R). Since T, (u + al) =
T, (u) + al, if @ € R, the maps 7, pass to the quotient to a
semigroup Tt_ : ¥ — FE consisting of non-expansive maps. Since,
for each t > 0, the image of T, is an equi-Lipschitzian family
of maps, Ascoli’s Theorem, see for example [Dug66, Theorem 6.4
page 267], then shows that the image of T}, is relatively compact
in E (exercise). Using part 4) in the exercise above, we find a
common fixed point for all the T;". We then deduce that there
exists u_ € CO(M,R) such that T, u_ = u_ + ¢;, where ¢ is a

constant. The semigroup property gives ¢y = ¢ + cp; since
t — T, u is continuous, we obtain ¢; = —tc with ¢ = —¢;. We
thus have T, u_ +ct = u_. O

FROM HERE ON NOTES HAVE TO REVISED.
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4.8 Invariant Measures and Ma né’s Criti-
cal Value

Corollary 4.8.1. If T, u_ = u_ — ct, then, we have

—c= inf/ Ldpu,
wJTM

where p varies among Borel probability measures onI'M invariant
by the Euler-Lagrange flow ¢;. This lower bound is in fact achieved
by a measure with compact support. In particular, the constant c
is unique.

Proof. If (z,v) € TM, then ~ : [0,400]— M, defined by ~(s) =
wos(x,v), satisfies (y(s),5(s)) = ¢s(z,v). Since u_ < L + ¢, we
find

1
u_ (w1 (z,v)) — u_(m(z,v)) < / L(¢s(z,v))ds + c.
0
If 1 is a probability measure invariant by ¢;, the function u_ o7

is integrable since it is bounded. Invariance of the measure by ¢;
gives

| u-worte)) — u-(nle, o) duta,e) =0,
™
from where, by integration of the inequality above, we obtain

1
0< /TM[/O L(¢ps(z,v))ds + c] du(z,v).

Since L is bounded below and p is a probability measure, we can
apply Fubini Theorem to obtain

1
0< /0 [/TM(L((bS(w,v)) + ¢) dp(z,v)]ds.

By the invariance of p under ¢, we find that 0 < [(L + ¢)dp.
Since p is a probability measure, this yields

—c< / Ldu.
T™
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It remains to see that the value —c is attained. For that, we fix
x € M, and we take a curve v, :] — 00,0] — M with v, (0) = =
and such that

0
V< 0,u_ (4 (0)) — u_ (5 (1)) = / Liv; (s), 35 (5)) ds — et.

The curve 7, is a minimizing extremal curve with v, (0) = =z,
therefore, we have

¢s(2,72 (0) = (7 (8): ¥z (9))

and the curve (v (s), 75 (8)), s < 0 is entirely contained in a com-
pact subset K7 of T'M as given by corollary 4.4.5. Using Riesz Rep-
resentation Theorem [Rud87, Theorem 2.14, page 40|, for ¢t > 0,
we define a Borel probability measure p; on T'M by

I o

() = 7 [ 0(6.(2.5 0)) ds
—t

for 8 : TM — R a continuous function. All these probability

measures have their supports contained in the compact subset K7,

consequently, we can extract a sequence t, /" +oo such that py,

converges weakly to a probability measure p with support in K;.

Weak convergence means that for each continuous function 6 :
TM — R, we have

0
6dp = lim L 0(ps(x, 7, (0)) ds.
™ = ln Jot,
We have [.,,(L + ¢)du = 0, because
1 0
/ (L+c¢)dp = lim — / (L(vz (8),%5 (s)) + ¢) ds
™

n—oo tn —tn

and
0
/_ L5 (535 () ds o et = u- (25 (0) ~ u- (35 (1)

which is bounded by 2||u_||c. This does indeed show that for the
limit measure u, we have fTM Lduy=—c. O
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In the second part of the previous proof, we have in fact shown
the following proposition.

Proposition 4.8.2. If T, u_ = u_ + ct, for every t > 0, and
vz | —00,0] = M is an extremal curve, with v, (0) = x, and such
that

0
e 2 0 (o) —u (3 (<) = [ L0 (6,35 (5) ds. + o,
—t
the following properties are satisfied
e for each s > 0, we have ¢_s(z,7; (0)) = (75 (=5), %, (=5));
e the a-limit set of the orbit of (x,7; (0)) for ¢s is compact;

e there exists a Borel probability measure p on T'M , invariant
by ¢, carried by the a-limit set of the orbit of (z,%; (0)),
and such that [ Ldy = —c.

We define ¢[0] € R by

cl0] = —inf/ Ldpu,
ke Jrm

where the lower bound is taken with respect to all Borel probability
measures on T'M invariant by the FKuler-Lagrange flow. We will
use the notation cz,[0], if we want to specify the Lagrangian.

Definition 4.8.3 (Minimizing Measure). A measure p on T'M
is said to be minimizing if it is a Borel probability measure p,
invariant by the Euler-Lagrange flow, which satisfies

c0] = —/TMLdu.

Exercise 4.8.4. Show that each Borel probability measure p, in-
variant by the Euler-Lagrange flow, and whose support is contained
in the a-limit set of a trajectory of the form t — (y=(t),5*(¢)),
must be minimizing.

Corollary 4.8.5. If a weak KAM solution u_ is differentiable at
x € M, we have
H(z,dyu_) = c[0].
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Proof. If u_ is a weak KAM solution, we have u_ < L + ¢[0] and
thus
H(z,dyu_)= sup dyu_(v)— L(z,v) < [0].

’UETxM
It remains to find vy € T, M such that d,u_(vg) = L(x,vg) + ¢[0].
For that, we pick extremal curves v* :]—o0, 0] such that v*(0) =

and

0
V> 0,u_ (1% (0)) — u_ (3% (—t)) = / L+ (s), 4% () ds + c[0]¢.

—t

By dividing this equality by ¢ > 0 and letting t tend to 0, we find

dgu—(¥2(0)) = L(z,72(0)) 4 c[0].

4.9 The Symmetrical Lagrangian

Definition 4.9.1 (Symmetrical Lagrangian). If L : TM — R is
a Lagrangian we define its symmetrical Lagrangian L : TM — R
by

L(z,v) = L(z, —v).
If v : [a,b] — M is a curve, we define the curve ¥ : [a,b] — M

by ¥(s) = y(a + b — s). It is immediate to check that ¥(s) =
—4(a + b — s) and thus

L(7) =L(v),
where L is the action associated with L, i.e.

b
L(5) = / L(3(s).4(s)) ds.

It clearly results that v is an extremal curve of L if and only if
% is an extremal curve of L. We want to express the Lax-Oleinik
semigroup T, : CO(M,R) — C°(M,R) associated with L in terms
of L only. For that, we notice that when ~ : [0,¢] — M varies
among all the curves such that v(0) = x, then ¥ varies among all
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all the curves such that 4(t) = x, and we have 5(0) = ~(t). We
thus find

— inf / ))ds +u(3(0))}
= inf / ))ds + u(x(1)},

where the lower bound is taken all the piecewise C' curves v :
[0,¢] — M such that v(0) =

We then introduce the semigroup 7, : C°(M,R) — C°(M,R)
defined by T;" (u) = —T; (—u). We find

T u(z) = sup{u(~(t)) —/0 L(y(s),7(s)) ds},

v

where the upper bound is taken on the (continuous) piecewise C*
curves 7 : [0,¢] — M such that v(0) =
The following lemma is easily verified.

Lemma 4.9.2. We have u < L + c if and only ith+u —ct <.

By the Weak KAM Theorem 4.7.1, we can find 4 € C°(M, R)
and ¢ such that T} @ + ¢t = @_. If we set uy = —_, and we find
Tiuy = uy +ét. If 4 : [a,b] — M is an arbitrary (continuous)
piecewise C! curve of C!, we see that

b
w (@) +b-0) = T+ 0(@)) 2 6@~ [ L2(6).3(5))ds,
which gives uy < L+ ¢.

By arguments similar to the ones we made for u_, we obtain:

Theorem 4.9.3 (Weak KAM). There exists a Lipschitzian func-
tion uy : M — R and a constant ¢ such that T, uy — ct = u..
This function u satisfies the following properties

(a) ux < L+ec.

(b) For each x € M, there exists a minimizing extremal curve
74 [0, +o00[— M with 7% (0) = x and such that

Vi € [0, ool up (Y (1)) — up () = /0 L+ (5),4% (s))ds + ct.



163

Conversely, if uy € C°(M, R) satisfies the properties (a) and (b)
above, then, we have T;rqu —ct = ug.
We also have

—c= inf/Ld,u,
m

where the lower bound is taken over all the Borel probability mea-
sures y on T'M invariant by the FEuler-Lagrange flow ¢;. It follows
that ¢ = c[0]. For a curve v% of the type above, we have

Vs >0, (vi(s), 75 (s)) = ¢s(x,71(0)),

since it is a minimizing extremal curve. This implies that ¢,(x,57(0)),s >
0 is relatively compact in T'M. Moreover, we can find a Borel prob-
ability measure p on T'M, invariant by the FEuler-Lagrange flow

¢¢, such that —c[0] = [ Ldu, and whose support is contained in

the w-limit set of the orbit ¢(x,5%(0)). At each point x € M,

where uy has a derivative, we have H(x,dzuy) = c[0].

4.10 The Mather Function on Cohomology.

Let us first give several characterizations of ¢[0].

Theorem 4.10.1. Suppose that u € C°(M,R), and that c € R.

If ¢ > ¢[0] then T; u + ct tends uniformly to +o00, as t — 400,
and T, u — ct tends uniformly to —oo, as t — +oc.

If ¢ < ¢[0], then T, u + ct tends uniformly to —oco, when t —
400, and T;ru — ¢t tends uniformly to 400, as t — +o0.

Moreover, we have sup;~ || T, u-+c[0]t|| < 400 and sup;~ || T, u—
c0]t| < +oo0. - -

Proof. By the Weak KAM Theorem 4.7.1, there exists u_ € C°(M,R)
with T, u_ + ¢[0]t = u_, for each ¢ > 0. As the T, are non-
expansive maps, we have

1Ty u =Ty u|| < flu—u—]loo
and thus
—lu = u—lloc = lu-lloc <Tp u+c0ft < [lu—u_]lec + [Ju—|loo-

O
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Theorem 4.10.2. We have the following characterization of the
constant c[0]:

e The constant c[0] is the only constant ¢ such that the semi-
group u +— T, u+ct (resp. u+ T;fu — ct) has a fixed point
in CO(M,R).

e The constant c[0] is the greatest lower bound of the set of
the numbers ¢ € R for which there exists u € C°(M,R) with
u=<L+c

e The constant c|0] is the only constant ¢ € R such that there
exists u € CO(M,R) with sup,sq [T u + ctfo < +00 (resp.
SUP;> 1T u — ct||oo < +00.)

Proof. The first point results from the Weak KAM Theorem. The
last point is a consequence of the previous Theorem 4.10.1. The
second point also results from the previous theorem, because we
have u < L+ cif and only if u < T, u+ ct and in addition, by the
weak KAM theorem, there exists u_ with u_ = Tyu_ + ¢[0]t. O

If wis a C*° differential 1-form, it is not difficult to check the
Lagrangian L, : TM — R, defined by

L, (z,v) = L(x,v) — w,(v),

is C" like L, with » > 2, that 88252“’ = 227% is thus also > 0 definite
as a quadratic form, and that L, is superlinear in the fibers of the

tangent bundle TM. We then set
clw] = ep[w] = cp—w[0].

Proposition 4.10.3. If 0 : M — R is a differentiable function,
then we have
clw + db] = clw].

In particular, for closed forms w, the constant c|w] depends only
on the cohomology class.

Proof. We have u < (L — [w + df]) + ¢ if and only if u + 6 <
(L—w)+ec O
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The following definition is due to Mather, see [Mat91, page
177].

Definition 4.10.4 (Mather’s a Function). The function « of
Mather is the function o : H*(M,R) — R defined by

where w is a class C* differential 1-form representing the class of
cohomology §2.

The next theorem is due to Mather, see [Mat91, Theorem 1,
page 178].

Theorem 4.10.5 (Mather). The function « is convex and super-
linear on the first cohomology group H'(M,R).

Proof. Let wy and wy be two differential 1-forms of class C*°. By
the weak KAM Theorem applied to L,, and L,, we can find
uy,ug € C°(M,R) such that

u; < (L —w;) + clwi].
If t € [0,1], it is not difficult to conclude that
tug + (1 — t)ug < (L — [twy + (1 — t)wa]) + (tcfwi] + (1 — t)c|wa].
It follows that
cltwr + (1 — t)ws] < tefwi] + (1 — t)cfws).

Let us show the superlinearity of a. Let us recall that by com-
pactness of M, the first group of homology is a vector space of
finite dimension. Let us fix a finite family v1,--- ,v, : [0,1] — M
of C* closed (i.e. 7;(0) = 7;(1) curves such that the homology
Hi{(M,R) is generated by the homology classes of ~1,--- ,v,. We
can then define a norm on H'(M,R) by

1o :max(|/ﬂw‘,...,‘/mw‘),

where w is a C* closed differential 1-form representing the coho-
mology class €. Let k be an integer. Let us note by ’yf the closed
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curve v¥ : [0,1] — M obtained by going k times through ~; in the
direction of the increasing ¢t and reparametrizing it by the interval
[0,1]. Let us also note by ¥ : [0,1] — M the curve opposite to 7;,
i.e. 4F(s) = v¥(1 — s5). We then have

from which we obtain the equality

)

k(€| = max(| kw|,...,|[ykw

71

fib

where w is a C* closed differential 1-form representing €. By the
Weak KAM Theorem 4.7.1, there exists u, € C°(M,R) such that
Uy, < (L —w) + c[w]. We deduce from it that for every closed (i.e.
v(b) = v(a)) curve v : [a,b] — M, we have

L(y) — /w+c[w](b—a) > 0.
v

In particular, we find

Hence, if we set Cy = max(L(7f),...,L(vf),L(37), ..., L(¥F)),
which is a constant which depends only on k, we find

() = clw] = k[|Qf| — C.O

Theorem 4.10.6. If w is a closed 1-form, the FEuler-Lagrange
flows ¢pF™% and ¢F coincide.
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Proof. Indeed, if 71,72 : [a,b] — M are two curves with the same
ends and close enough, they are homotopic with fixed ends and
thus w = fw w. It follows that the actions for L and L, are

71
related by

Lu(i) =L = [ v

"
Hence, the critical points of I, and of IL. on the space of curves with
fixed endpoints are the same ones. Consequently, the Lagrangians
L and L, have same the extremal curves. O

Corollary 4.10.7. We have clw] = —inf,, [,,,(L — w)du, where
1 varies among the Borel probability measures on T'M invariant
under the Fuler-Lagrange flow ¢; of L. Moreover, there exists
such a measure p with compact support and satisfying clw] =

S (L — w)dp.

4.11 Differentiability of Dominated Func-
tions

In the sequel we denote by B(0,7) (resp. B(0,r)) the open ball
(resp. closed) of center 0 and radius r in the Euclidean space R,
where £ is the dimension of M.

Proposition 4.11.1. Let ¢ : E(O, 5) — M be a coordinate chart
and tg > 0 be given. There is a constant K > 0 such that for each
function u € C°(M,R), for each x € B(0,1), and for each t > t,
we have:

(1) For each y € B(0,1) and each extremal curve~ : [0,t] — M
with v(t) = ¢(z) and

we have
oL
<

< %(cp(w%"Y(t))(Dcp(w)[y—x])JrKHy—sz-

Ty ulp(y)| =Ty ulp(x)]
In particular, if T, u is differentiable at ¢(x) then

dgo(w)trt_u = 8L/8’U((‘0(Z’), ’Y(t))
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and the curve 7y is unique.
(2) For each y € B(0,1) and each curve v : [0,t] — M with
7(0) = ¢(x) and

T ulp(x)] = u(y(t)) - /0 Liv(s).4(s))ds,
we have

T ule(y)] =T, ulp()) > %(sﬁ(w)aﬁ(O))(Dsﬁ(w)[y—iﬂ])—KHy—wHQ-

In particular, if T, u is differentiable at ¢(x) then
and the curve v is unique.

Proof. We use some auxiliary Riemannian metric on M to have a
norm on tangent space and a distance on M.

Since Ty w = Ty T;"; u by the semigroup property, we have
only to consider the case t = ty. By corollary 4.4.5, we can find a
finite constant A, such that any minimizer defined on an interval
of time at least ty > 0 has speed uniformly bounded in norm
by A.This means that such curves are all A-Lipschitz. We then
pick € > 0 such that for each ball B(y, Ae), for y € p(B(0,1)) is
contained in ¢(B(0,2)). Notice that this e does not depend on w.
Since any curve 7, as in part (1) of the proposition is necessary a

minimizer, we therefore have

o

v([to — € to]) C ¢(B(0,2)).

We then set 7 = ¢ ' o~ and L(z,w) = L(g(z), Do(x)w) for
(z,w) € B(0,5) x R*. Taking derivatives, we obtain

OL(z,w oL

OLw) _ O (), Dep(a)(w)) [Dipla) (]
The norm of the vector h = y — x is < 2, hence if Weodeﬁne
Tn(s) = =D t5(s), for s € [to—e, to], we have 7(s) € B(0,4),

and

to

Ty ulp(a+h))~ Ty ulp(2)] < / [E(Tn(5), 50 ()~ L(3(s), 5 (s))] ds.

to—e
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Since the speed of y is bounded in norm by A, we see that (3(s), 5(s))
is contained in a compact subset of B(0,2) x RF independent of
u,z and . Moreover, we have J,(s) — J(s) = #h, which
is of norm < 2, and A4(s) — 4(s) = 1h, which is itself of norm
< 2/e. We then conclude that there exists a compact convex sub-
set C C B(0,4) x R*  independent of u,z and +, and containing
(3(s),7(s)) and (5(s), 9 (s)), for each s € [ty — €,ty]. Since we
can bound uniformly on the compact subset C' the norm of the
second derivative of L, by Taylor’s formula at order 2 applied to
L, we see that there exists a constant K independent of u,z and

of v such that for each s € [ty — €, o]

L(Fn(s), 4 (5)) = L(7(5),3(s))

~ s—(t—c¢ hl|\2
< Kmax(7| (e ) IRl @)

i
< SR,

supposing that e < 1. As ¥ is an extremal curve for the Lagrangian
L, it satisfies the Euler-Lagrange equation

O (340 = L{2 5), 551}

LG (3), (D)~ L), 4D { s (1)) o (3(5), (s)) (1)}

K o
< E—QHhH .

If we integrate on the interval [ty — €, tg], we obtain

Tiyulp(z + h)] = T ulp(x)] < 5 (p(),7(to)) (h) + glthQ-

We just have to take K > K /.
If T, w is differentiable at ¢(x), for v € R™ and ¢ small enough,

we can write
oL

< 5o (@), 4(1)) (Do () [5o]) + K [|5v]*.

T, ulp(z+6v)] =T} ulp(z)]
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If we divide by § > 0 and we let  go to 0, we obtain

Vv € R%dy(q) Ty uDg(x)[v] < g—i(sﬁ(x)d(t))(Dsﬁ(x)[v])-

Since we can also apply the inequality above with —v instead of
v, we conclude that If we divide by § > 0 and we let § go to 0, we
obtain

Vv S Rndw(x)Tt_UD90($)['U] = g_f;/((’p(x)’ ’V(t))(DC,D(l‘)[U]),

by the linearity in v of the involved maps. Since ¢ is a diffeomor-
phism this shows that d )T, udL/0v(p(z),¥(t)). By the bijec-
tivity of the Legendre Transform the tangent vector +(t) is unique.
Since +y is necessarily a minimizing extremal, it is also unique, since
both its position x and its speed 4(t) at ¢ are uniquely determined.

To prove (2), we can make a similar argument for Tt+, or,
more simply, apply what we have just done to the symmetrical
Lagrangian L of L. O

Exercise 4.11.2. 1) Let u— : M — R be a weak KAM solution.
Show that u_ has a derivative at x if and only if there is one and
only one curve v~ :] — 00,0] — M such that ¥*(0) = x and

0
V> 0,u_ (v (0)) — u_ (v (—t)) = / L+ (s), 4% () ds + c[0]¢.

—t

In that case we have dyu_ = g—ﬁ(x,ﬁf (0)).

2) Suppose that x € M, and that v* :] — 00,0] — M satisfies
¥E(0) = x and

0
V> 0,0 (72 (0)) — u_ (1% (—t)) = / L(v" (), 4% (5)) ds + c[O]t.

—t
Show that necessarily

o
" Ov
We will need a criterion to show that a map is differentiable

with a Lipschitz derivative. This criterion has appeared in dif-
ferent forms either implicitly or explicitly in the literature, see

H(z, S (2,47 (0)) = [0].
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[CC95, Proposition 1.2 page 8], [Her89, Proof of 8.14, pages 63—
65], [Kni86], [Lio82, Proof of Theorem 15.1, pages 258-259|, and
also [Kis92| for far reaching generalizations. The simple proof
given below evolved from discussions with Bruno Sevennec.

Proposition 4.11.3 (Criterion for a Lipschitz Derivative). Let B
be the open unit ball in the normed space E. Fix amapu : B —R.
If K > 0 is a constant, denote by A, the set of points x € é, for
which there exists ¢, : E— R a continuous linear form such that

vy € B, |u(y) — u(z) — pu(y — =)| < K|y — z|*.

Then the map w has a derivative at each point v € Af y,
and dyu = .. Moreover, the restriction of the map x +— dyu
to {x € Ak | ||z| < 3} is Lipschitzian with Lipschitz constant
<6K.

More precisely
Vo, o' € Ak, |lz—2'|| < min(1—|z|, 1-||2'||) = ||dyu—dyul < 6K ||z—2'||.
Proof. The fact that d,u = ¢, for x € Ag,, is clear. Let us fix
z, ' € Ak, with ||z — 2/ < min(1 — ||z]|,1 — [|2']]). If z = 2’
there is nothing to show, we can then suppose that ||z — 2’| > 0.
If 1 is such that [|h|| = ||z —2'||, then the two points z+h et 2’ +h
are in B. This allows us to write

u(z + h) = u(z) — . (h)| < K|A]
u(z) = w(z') = pu(z — 2') < Ko — ||
u(z + ) = u(@) — (e — a2’ +h)| < K|z — 2"+ h|*.
As ||h]| = ||z — 2'||, we obtain from the last inequality
lu(z') — u(x + h) + @p(z — 2’ + h)| < 4K ||z — 2|)°.
Adding this last inequality with the first two above, we find that,
for each h such that ||h| = || — 2/||, we have

|ar (h) = @a(h)| < 6K ]|z — /%,

hence
J(h) — o (h
low —gall = sup oW Z@alb)l gpey oy
lll=lle—a  llz— 2]
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Exercise 4.11.4. If Ay, is convex, for example if Axy = é,
show that the derivative is Lipschitzian on A, with Lipschitz
constant < 6K.

Theorem 4.11.5. If ¢ > 0 is given, then there are constants
A > 0 and n > 0, such that any map v : M — R, with u <
L + ¢, is differentiable at every point of the set A, ,, formed by the
x € M for which there exists a (continuous) piecewise C' curve
v : [—€,€] — M with v(0) = = and

u@&»—uw«a>=/TLm@xw@wu+zﬁ

—€
Moreover we have

(1) Such a curve 7y is a minimizing extremal and

oL

dow = 52 (@.4(0);

(2) the set A, is closed;

(3) the derivative map Ac,, — T*M,x — (z, dyu) is Lipschitzian
with Lipschitz constant < A on each subset A, with diam-
eter <.

Proof. The fact that v is a minimizing extremal curve results from
u < L + c. This last condition does also imply that

ur(e) = ule) = [ L2(3).3(0)) s+ e
0

u(@) —ur(-9) = [ Lo A ds e ()
Since € > 0 is fixed, by the Corollary of A Priori Compactness, we
can find a compact subset K. C T'M such that for each minimizing
extremal curve v : [—€,¢] — M, we have (y(s),7%(s)) € K. It is
not then difficult to deduce that A, is closed. It also results from
(*) that

(x) = ce. (**)
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As u < L + ¢, we have

THu < u+ ce,

T u>u—ce.

We then obtain equality in (x*). Subtracting this equality from
the inequality above, we find

Vy € M7 T:u(y) - T:_U(:E) < u(y) - U($) < Ts_u(y) - Ts_u(x)‘
(k%)
Let us then cover the compact manifold M by a finite number of
open subsets of the form ¢ (B(0,1/3)),--- , e(B3(0,1/3)), where
¢; : B(0,5) — M,i = 1,...,¢, is a C* coordinate chart. By
Proposition 4.11.1, there exists a constant K, which depends only
on € and the fixed ¢,,p =1,...,¢ such that, if z € @i(é(o, 1/3)),

setting = = ;(Z), for each y € B(0,1), we have
_ _ . oL, . - - -
Toulei(y) = Toulpi()) < 5-(2,9(0)) 0 Dpi(@)(y — &) + Klly - &[|”

Tru(ei(y) — T u(ps (7)) = ?9_5(:6’ $(0)) o Dyi(&)(y — &) — K|ly — 1%,

Using the inequalities (x*x) we get

u(ei(y)) — ulei()) — g—i(wd(o)) o Dg;i(#)(y — 7)| < Klly — &,

By the Criterion for a Lipschitz Derivative 4.11.3, we find that
d,u exists and is equal to g—ﬁ(x, 4(0)). Moreover the restriction of
x +— dguon AN ©i(B(0,1/3)) is Lipschitzian with a constant of
Lipschitz which depends only on €. It is then enough to choose for
n > 0 a Lebesgue number for the open cover (;(B(0, 1/3))i=1, ¢
of the compact manifold M. O

Definition 4.11.6 (The sets S— and S;). We denote by S_ (resp.
S+ ) the set of weak KAM solutions of the type u_ (resp. u4), i.e.
the continuous functions u : M — R such that T} u + ¢[0]t = u
(resp. T;tu — c[0]t = u).

Exercise 4.11.7. If ¢ € R, show that u € S_ (resp. u € Sy) if
and only if u+c € S (resp. u+c € Sy). If vy € M is fized, show
that the set {u € S_ | u(zg) = 0} (resp. {u € Sy | u(zp) = 0}) is
compact for the topology of uniform convergence.
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Theorem 4.11.8. Let u : M — R be a continuous function. The
following properties are equivalent

(1) the function u is C! and belongs to S_,
(2) the function u is C! and belongs to S..

(3) the function u belongs to the intersection S_ N'Sy. (4)] the
function u is C' and there exists ¢ € R such that H(x,du) =
¢, for each x € M.

In all the cases above, the derivative of u is (locally) Lipschitzian.

Proof. Conditions (1) or (2) imply (4). It is enough, then to show
that (4) implies (1) and (2) and that (3) implies that u is C!, and
that its derivative is (locally) Lipschitzian. Thus let us suppose
condition (3) satisfied. Indeed, in this case, if x € M, we can find
extremal curves v* :] — 00,0] — M and ~§ : [0,00[— M, with
+(0) = 74(0) = = and

> 0 ()~ ule) = | L (). 5% () ds + el
0

w(z) — u(y® (—1)) = / L(v (5), 4% () ds + c[O]t.

—t

The curve v : [-1,1] — M, defined by v|[—1,0] = v* and ~|[0,1] =
7§, shows that x € A;,. By the previous theorem, the function
u is of class C! and its derivative is (locally) Lipschitzian.

Let us suppose that u satisfies condition (4). By the Fenchel
inequality, we have

V(z,v) € TM,dyu(v) < H(x,dyu) + L(z,v)
=c+ L(z,v).

Consequently, if « : [a,b] — M is a C! curve, we obtain

Vs € [CL, b]7d'\/(s)u(7(3)) <c+ L(’Y(S)a;}'(s))? (*)

and by integration on the interval [a, b]

b
u(y(b)) — u(y(a)) < ¢(b—a) + / L(v(s),7(s)) ds, (%)
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which gives us u < L+ ¢. If v : [a,b] — M is an integral curve
of grad; u, we have in fact equality in (*) and thus in (*x). Since
u < L+ ¢, it follows that v is a minimizing extremal curve. If two
solutions go through the same point x at time tg, they are, in fact,
equal on their common interval of definition, since they are two ex-
tremal curves which have the same tangent vector (z,grad; u(x))
at time t3. As we can find local solutions by the Cauchy-Peano
Theorem, we see that grad; w is uniquely integrable. Since M
is compact, for any point x € M, we can find an integral curve
" :] = 00, +00[— M of grad; u with 4*(0) = x. This curve gives
at the same time a curve of the type 7 and one of the type ¥
for w. This establishes that u € S_ N S,. O

4.12 Mather’s Set.

The definition below is due to Mather, see [Mat91, page 184].

Definition 4.12.1 (Mather Set). The Mather set is

Mo =|_Jsupp(p) € TM,
m

where supp(u) is the support of the measure p, and the union is
taken over the set of all Borel probability measures on T'M invari-
ant under the Euler-Lagrange flow ¢;, and such that fT v Ldy =
—c|0].

The projection Mg = m(Mo) C M is called the projected
Mather set.

As the support of an invariant measure is itself invariant under
the flow, the set My is invariant by ¢;.

Lemma 4.12.2. If (z,v) € Mg and u < L + ¢[0], then, for each
t,t' € R, with t <t', we have

(0 Gy (2, 0)) — u(m o du(w,v)) = /t L(éa(x,v)) ds + c[0](¢' — 1),

Proof. By continuity, it is enough to see it when (z,v) € supp(u)
with p a Borel probability measure on T'M, invariant by ¢; and
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such that [, Ld, = —c[0] Since u < L + ¢[0], for each (x,v) €
TM, we have

t/
(o g0 (2,0) ~ulro (z,0)) £ [ L(ou(yrw)) ds +l0l(E ~ )
t
(%)
If we integrate this inequality with respect to u, we find by the
invariance of y

/uowd,u—/ u07rd,u§(t/—t)(/LTMd,u—l—c[O]),
™ ™

which is in fact the equality 0 = 0. It follows that the inequality
(*) is an equality at any point (z,v) contained in supp(u). O

Theorem 4.12.3. A function u € C°(M,R), such that u < L +
cl0], is differentiable at every point of the projected Mather set
My = w(My). Moreover, if (x,v) € My, we have

oL
dyu = %(x, v)

and the map My — T*M,x — (z,d,u) is locally Lipschitzian
with a (local) Lipschitz constant independent of u.

Proof. If (z,v) € My, we set ,(s) = 7 o ¢ps(z,v). We then have
¥2z(0) = x,79,(0) = v, and (V2(8),¥z(s)) = ¢s(x,v). In particular,
by Lemma 4.12.2 above

1

(D) = ura(=1)) = [ L1a(s), 52 () ds + 2¢[],
thus z € Ay ,, where A, , is the set introduced in 4.11.5. Conse-
quently, the derivative d,u exists and is equal to %($, v). More-
over, the map x — (x, dyu) is locally Lipschitzian with a Lipschitz
constant independent of . O

Corollary 4.12.4 (Mather). The map w|My : Mg — My is
injective. Its inverse is Lipschitzian.

Proof. Let u < L + ¢[0] be fixed, for example a weak KAM so-
lution. By the previous Theorem 7?7, the inverse of m on My is
& +— LYz, dyu), which is Lipschitz as a composition of Lipschitz
functions. O
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The following corollary is due to Carneiro, see [Car95, Theorem
1, page 1078|.

Corollary 4.12.5 (Carneiro). The Mather set My is contained
in the energy level c[0], i.e.

Y(z,v) € Mo, H(z, Z—i(m,v)) = ¢[0].

Proof. Let u_ be a weak KAM solution. It is known that for

(z,v) € M, the function u_ is differentiable at z and dyu_ =
‘g—ﬁ(:n,v). O

The functions of S_ and S, are completely determined by their
values on My as we show in the following theorem.

Theorem 4.12.6 (Uniqueness). Suppose that u_,u_ are both in
S_ (resp. uy, 4 are both in S;). If u_ = u_ (resp. u4 = 4 ) on
My, then, we have u_ = u_ (resp. uy = 4 ) everywhere on M.

Proof. Let us fix * € M, we can find an extremal curve ~* :

] = 00,0] — M, with 4*(0) = = and such that

0
V>0, u () — u_ (4 (1)) = / Ly (), 47 () ds + c[0]¢.

—t
Since @— < L + ¢[0], we have

0
V>0, (z) — a_ (7% (1)) < / Ly (5),5" (5)) ds + c[O]t.

—t
It follows that

Vt 20, u(z) —a-(72(=1) S u-(2) —u-(72(=1)). (%)

In addition, we know that s — (7% (s),4%(s)) is a trajectory of
the Euler-Lagrange flow ¢; and that the a-limit set of this tra-
jectory carries a Borel probability measure p invariant by ¢; and
such that [, Ldu = —c[0]. The support of this measure is thus
contained in My. We conclude from it, that there exists a se-
quence t, \, +oo such that (y*(—ty),3*(—t,)) converges to a
point (Zoe, Vo) € My, in particular, we have 7% (—t,) — Zoo
which is in M. It follows that a_(y* (—t,)) — u—(v*(—t,)) tends
t0 U (To0) — U—(Zoo), Which is 0 since xo € My. From (x), we
then obtain the inequality 4_(z) — u_(xz) < 0. We can of course
exchange the role of 4_ and that of u_ to conclude. O
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4.13 Complements

If w: M — R is a Lipschitz function, we will denote by dom(du)
the domain of definition of du, i.e. the set of the points x where
the derivative d,u exists. The graph of du is

Graph(du) = {(z,dyu) | z € dom(u)} C T*M.

Let us recall that Rademacher’s theorem 1.1.10 says that M \
dom(u) is negligible (for the Lebesgue class of measures). Since
||dzul||z is bounded by the Lipschitz constant of w, it is not diffi-

cult to use a compactness argument to show that the projection
7* (Graph(du)) is the whole of M.

Lemma 4.13.1. Suppose that u— € S_. If x € M and v* :
| — 00,0] — M is such that v* (0) = z and

0
Vit >0, u_(z) —u_(v2(-t)) = /_t L(v%(s),7%(s))ds + c[0]t,

then, the function u_ has a derivative at each point y* (—t) with
t > 0, and we have

oL gy
vt > 0, d’yf(—t)u— = %(Vi(_t)vly—(_t))

It follows that

Vt,s > 0, (’73(_1t - 8)7 dvf(—t—s)u—) = gb*_s(vf(—t), dﬁ/x (—t)u—)'
We also have

Vi 2 0, H 7 (-0), 5202 (0,52 (~6)] = el

Moreover, if u_ has a derivative at x, we have

oL
d:c - = 5 ) f
u- = 5-(2,72(0))
and d.z (_pu— = ¢y (x,d,u_), for each t > 0.
There is a similar statement for the functions uy € S;.
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Proof. For the first part, we notice that the curve v : [—t,t] — M
defined by v(s) = ~* (s —t) shows that v(0) = v*(—t) is in Az, _,
for each t > 0. Tt follows that de (_yu_ = BL Z(VE (1), 7% (—1)).
The fact that (72 (—t — ), dye (—_gu—) = ( T(=t),dye (—pyu-)
is, by Legendre transform, equivalent to ¢_s(7*(—t),3%(—t)) =
(= (=t — 8),%" (=t — s)), which is true since 7 is an extremal
curve. Let us suppose that u_ has a derivative at x. The relation
u_ < L+ ¢[0] implies that

Vo € TpyM, dyu_(v) < ¢[0] + L(z,v).

Moreover, taking the derivative at t = 0 of the equality

0
V>0, u_(x) - u_(v5 (1) = / L(v(5), 4 (5)) ds + c[O]t,
—t
we obtain the equality dyu_ (9% (0)) = ¢[0] + L(x, 4" (0)). We then
conclude that H(x,d,u_) = ¢[0] and that d,u_ = gﬁ (z,54%(0)).
In particular, it follows that we have H(y,dyu_) = ¢[0] at any
point y € M where u_ has a derivative. By the first part, with-
out any assumption on the differentiability of u_ at x, we find
that H[v*(—t), ‘gﬁ(y (=t),%%(—t))] = ¢[0], for each ¢t > 0. By
continuity this equality is also true for ¢ = 0. U

Theorem 4.13.2. Let u_ € S_. The derivative map x — (z, dyu_)
is continuous on its domain of definition dom(du_). The sets
Graph(du_) and Graph(du_) are invariant by ¢*,, for each t > 0.
Moreover, for each (x,p) € Graph(du_), we have H(z,p) = ¢[0].

The closure Graph(du_) is the image by the Legendre trans-
form £ : TM — T*M of the subset of TM formed by the (z,v) €
TM such that

0
V2 0, u- (o) — u-r(émi(o,0)] = [ Ligu(e,0)ds + (0l
—t
i.e. the set of the (x,v) such that the extremal curve 7y :]—00,0] —

M, with v(0) = z and 4(0) = v, is a curve of the type v for u_.

Proof. The above Lemma 4.13.1 shows that Graph(du_) is invari-
ant by ¢*,, for each ¢ > 0 and that Graph(du_) C H~(c[0]).

Since the flow ¢; is continuous, the closure Graph(du_) is also
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invariant by ¢*,, for each ¢t > 0. In the same way, the inclu-
sion Graph(du_) C H~(c[0]) results from the continuity of H.
If we denote by D_ the subset of T'M defined in the last part of
the theorem, Lemma ?? also shows that Graph(du_) C £(D_) C
Graph(du_). If =, is a sequence in dom(du_) and (z, dz,u—) —
(z,p), let us then show that

0
V>0, u_(x) — u_[n(6i(x,v))] = / L(a(,v)) ds + cl0]t, (+)

—t

where v € T, M is defined by p = g—ﬁ(x,v). For that we define
vy € Ty, M by dy,u_ = g—ﬁ(azn,vn). We have (x,,v,) — (z,v).
By Lemma ?7, the extremal curve v** :] — 00,0 — M is s +—

(ps(zn, vy)), hence we obtain

0
Vit >0, u_(zp) —u_[m(Pp_t(Tn,vn))] = / L(¢s(zn,vn)) ds+ c[0]t.

—t

When we let n tend to +oo, we find (x). We conclude that (z,v) €

D_ and thus £(D_) = Graph(du_). Moreover by Lemma ?7, if

x € dom(du—) we necessarily have dyu_ = g—{j(az, v) = p. As
Graph(du_) is contained in the compact subset H ~1(c[0]), we then
obtain the continuity of x +— (z,d,u_) on dom(du_). O

We have of course a similar statement for the functions in Sy.

Theorem 4.13.3. If uy € Sy, the derivative map x +— (x,d;uy)
is continuous on its domain of definition dom(du. ).

The sets Graph(du, ) and Graph(du ) are invariant by ¢f, for
each t > 0. Moreover, for each (z,p) € Graph(duy), we have
H(z,p) = c[0]. The closure Graph(duy ) is the image by the Le-
gendre transform £ : TM — T*M of the subset of TM formed by
the (z,v) € TM such that

Vi >0, ug o w(p(x,v)) —uy(x) = /0 L(¢ps(x,v))ds + c[0]t,

i.e. the set of (x,v) such that the extremal curve vy : [0, +o00[— M,
with v(0) = z and ¥(0) = v, is a curve of the type v for u4.
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4.14 Examples

Definition 4.14.1 (Reversible Lagrangian). The Lagrangian L
is said to be reversible if it satisfies L(z, —v) = L(x,v), for each
(x,v) € TM.

Example 4.14.2. Let g be a Riemannian metric on M, we denote
by || - ||z the norm deduced from g on T, M. If V : M — R is C?,
the Lagrangian L defined by L(z,v) = 1|jv||2 — V(z) is reversible.

Proposition 4.14.3. For a reversible Lagrangian L, we have

c[0] = inf L(z,0) o (z,v)

Moreover Mg = {(z,0) | L(z,0) = —c[0]}.

Proof. By the strict convexity and the superlinearity of L in the
fibers of the tangent bundle T'M, we have L(x,0) = inf,ep, v Lz, v),
for all z € M. Let us set k = inf,epr L(x,0) = inf, yerar L(z,v).
Since —c[0] = inf [ L dp, where the infimum is taken over all Borel
probability measures on T'M invariant under the flow ¢;, we ob-
tain k < —c[0]. Let then zop € M be such that L(z¢,0) = k,
the constant curve | — 0o, +00[— M,t — x is a minimizing ex-
tremal curve. Consequently ¢.(xg,0) = (z¢,0) and the Dirac mass
O(wo,0) 18 invariant by ¢, but [ L dd(,, oy = k. Therefore —c[0] = k
and (z0,0) € Mo. Let u be a Borel probability measure on TM

such that [, Ldu = —c[0]. Since —c[0] = infrps L, we necessar-
ily have L(x,v) = infpps L on the support of p. It follows that
supp(u) C {(z,0) | L(z,0) = —¢[0]}. O

We then consider the case where M is the circle T = R/Z.
We identify the tangent bundle T'T with T x R. As a Lagran-
gian L we take one defined by L(z,v) = 1v? — V(z), where
V :T — Ris C2. We thus have —¢[0] = infrxg L = —supV,
hence c[0] = sup V. Let us identify T7*T with T x R. The Hamil-
tonian H is given by H(z,p) = 3p? + V(z). The differential equa-
tion on T*T which defines the flow ¢; is given by & = p and
p=—-V'(z). If u_ € S_, the compact subset Graph(du_) is con-
tained in the set H~1(c[0]) = {(x,p) | p = £+/supV — V(z)}.

We strongly encourage the reader to do some drawings FAIRE
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DES DESSINS of the situation in R x R, the universal cover
of T x R. To describe u_ completely let us consider the case
where V' reaches its maximum only at 0. In this case the set
H~Y(c[0]) consists of three orbits of ¢}, namely the fixed point
(0,0), the orbit Oy = {(x,\/supV — V(z)) | x # 0} and the orbit
O_ ={(z,—/supV — V(x)) |  # 0}. On O the direction of the
increasing t is that of the increasing = (we identify in a natural way
T\ 0 with ]0,1[). On O_ the direction of the increasing t is that of
the decreasing x. Since Graph(du_) is invariant by the maps ¢*,,
fort > 0, if (z,\/supV — V(z)) € Graph(du_), then we must have
(y, /supV — V(y)) € Graph(du_), for each y €]0,z]. By symme-
try we get (y, —/supV — V(y)) € Graph(du_), for each y € [z, 1].
It follows that there is a point xg such that Graph(du_) is the
union of (0,0) and the two sets {(y,/supV — V(y)) | y €]0, zo]}
and {(y,—y/supV =V (y)) | y € [zo,1[}. Moreover, since the
function u_ is defined on T, we have lim,_; u_(z) = u_(0) and
thus the integral on 0, 1] of the derivative of u_ must be 0. This
gives the relation

/Omomdx:/x:mm

This equality determines completely a unique point x, since sup V' —
V(x) > 0 for x €]0,1[. In this case, we see that u_ is unique up
to an additive constant and that

u_(z) = u-(0)+ [§ v/supV = V(w)dz, if z € [0,a0];
B u—(0) + fxl \/Mdl‘, if z € [zg, 1].

Exercise 4.14.4. 1) If V : T — R reaches its mazimum ezactly
n times, show that the solutions u_ depend on n real parameters,
one of these parameters being an additive constant.
2) Describe the Mather function a : HY(T,R) — R, Q — c[Q)].
3) If w is a closed differential 1-form on T, describe the func-
tion u¥ for the Lagrangian L, defined by L(x,v) = %vz —V(x) —
wz (V).



Chapter 5

Conjugate Weak KAM
Solutions

In this chapter, as in the previous ones, we denote by M a com-
pact and connected manifold. The projection of TM on M is
denoted by w : TM — M. We suppose given a C" Lagrangian
L :TM — R, with » > 2, such that, for each (z,v) € TM, the
second vertical derivative ‘?;T%(ac,v) is definite > 0 as a quadratic
form, and that L is superlinear in each fiber of the tangent bundle
m:TM — M. We will also endow M with a fixed Riemannian
metric. We denote by d the distance on M associated with this
Riemannian metric. If z € M, the norm || - ||, on T, M is the one
induced by this same Riemannian metric.

5.1 Conjugate Weak KAM Solutions
We start with the following lemma
Lemma 5.1.1. If u < L + ¢[0], then we have

Vo € Mo, Vt > 0, u(z) = T, u(z) + c[0]t = T u(x) — c[0]t.
Proof. Since u < L + ¢[0], we have u < T, u + ¢[0]t and u >
T;tu — c[0]t. We consider the point (z,v) € Mg above z. Let us

note by v :] — 0o, +00[— M the extremal curve s — m(¢s(z,v)).

183



184

By lemma 4.12.2, for each t > 0, we have

0

u(1(0)) — u(y(~1)) = / Liv(s),4(s)) ds + clo]t,

—t

u(y(t)) —u(v(0)) = /0 L(y(s),7(s)) ds + c[0]¢.

Since v(0) = =, we obtain the inequalities u(x) > T, u(x) + ¢[0]¢
and u(z) < T, u(x) — c[0]t. O

Theorem 5.1.2 (Existence of Conjugate Pairs). If u : M — R
is a function such that uw < L + ¢[0], then, there exists a unique
function u_ € S_ (resp. uy € S4) with uw = u_ (resp. u = u4) on
the projected Mather set My. These functions verify the following
properties

(1) we have uy <u < u_;

(2) iful € S_ (resp. ul € S;) verifies u < ul (resp. ul < w),
then u— < ul (resp. ul <wu,);

(3) We haveu_ = limy_ 1o T, u+c[0)t and uy = limy_ oo T} u—
c[0]t, the convergence being uniform on M.

Proof. 1t will be simpler to consider the modified semigroup Tt_v =
T, v + c[0]t. The elements of S_ are precisely the fixed points of
the semigroup T The condition u < L + ¢[0] is equivalent to
u < T u. As T preserves the order, we see that T u < ul for

1. As T u = u on the projected

each ul € S_ satisfying u < u®
Mather set My, it then remains to show that T u is uniformly
convergent for ¢ — co. However, we have T u < Tt LU, if s >0,
because this is true for ¢t = 0 and the semigroup T preserves the
order. Since for £ > 1 the family of maps Tt_u is equi-Lipschitzian,
it is enough to see that this family of maps is uniformly bounded.
To show this uniform boundedness, we fix u® € S_, by compact-
ness of M, there exists k € R such that u < «° 4+ k. By what was

already shown, we have T, u < u® + k. O

Corollary 5.1.3. For any function u— € S_ (resp. uy € Si),
there exists one and only one function of uy € Sy (resp. u_ € S_)
satisfying uy = u_ on My. Moreover, we have uy < u_ on all M.
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Definition 5.1.4 (Conjugate Functions). A pair of functions (u_, u)
is said to be conjugate if u_ € S_,uy € St and u— = uq on M.
We will denote by D the set formed by the differences u_ — u, of
pairs (u_,u4) of conjugate functions.

The following lemma will be useful in the sequel.

Lemma 5.1.5 (Compactness of the Differences). All the functions
in D are > 0. Moreover, the subset D is compact in C°(M,R) for
the topology of uniform convergence.

Proof. If u_ and u, are conjugate, we then know that u, < u_
and thus u— —uy > 0. If we fix g € M, the set ST = {u_ |
u_(xg) = 0} (resp. S1° = {uq | uy(xo) = 0}) is compact, since it
is a family of equi-Lipschitzian functions on the compact manifold
M which all vanishes at the point xg. However, for ¢ € R, it is
obvious that the pair (u_,uy) is conjugate if and only if the pair
(u— 4 ¢,us + ¢) is conjugate. We conclude that D is the subset
of the compact subset S — S7° formed by the functions which
vanish on M. O

Corollary 5.1.6. Let us suppose that all the functions u_ € S_
are C (what is equivalent to S = Sy). Then, two arbitrary
functions in S_ differ by a constant.

Proof. Conjugate functions are then equal, because the C! func-
tions contained in S_ or Sy are also in S_ NSy by 4.11.8. Sup-
pose then that u! and w2 are two functions in S_. We of course
do have u = (ul +w2)/2 < L+ ¢c[0]. By the Theorem of Ex-
istence of Conjugate Pairs 5.1.2, we can find a pair of conju-
gate functions (u—,u4) with uy < u < u_. As conjugate func-
tions are equal, we have v = (u! + v?)/2 € S_. The three
functions uw,u and w? are C! and in S_, we must then have
H(z,d(ut +u?)/2) = H(z,du' ) = H(z,d,u?) = c[0], for each
x € M. This is compatible with the strict convexity of H in fibers
of T*M only if dyut = dyu?, for each z € M. O
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5.2 Aubry Set and Mané Set.

Definition 5.2.1 (The Set Z,,_,,,)). Let us consider a pair (u_, u )
of conjugate functions. We denote by Z(,_ ), the set

Z(u,,u+) = {‘T eM ’ u_(a;) = U+(Z')}
We have I(uﬂqu) D M.
Theorem 5.2.2. For each v € Z(,_ ), there exists an extremal

curve a y* :] — 00, +oo[— M, with v*(0) = z,4%(0) = v and such
that, for each t € R, we have u_(m[¢(z,v)]) = us(7[¢(z,v)]) and

vt <t € R, ur(y"(t))—ux(v" (1)) :/t L("(5),7"(s)) ds+c[0](t ).

It follows that the functions u_ and u are differentiable at every
point of Z(,,_ o,y with the same derivative. Moreover, there exists
a constant K which depends only on L and such that the section
Tu_uy) — T"M,x — dyu_ = dyuy is Lipschitzian with Lipschitz
constant < K.

Proof. Let us fix x € Z(,,_ ,,, ). There exists extremal curves 72 :
] —00,0] = M and ~¥ : [0, +oo[— M with 4% (0) = 7§ (0) = 2 and
for each t € [0, 400

0
u(x) —u-(vE(-t)) = 6[0]t+/ L(v2(s),7Z(s)) ds.

—t

But, since u— < L 4 ¢[0],uy < L+ ¢[0],u+ < u_ and u_(x) =
u4(z), we have

wp (A1) — 4 (&) < u (2 (1) — ()
< clole+ [ L0604 6) .
and

U (@) — (0 () < (&) — s (5 (1)

0
< c[O]t+/ L(v%(s),7%(s))ds.

—t
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We thus have equality everywhere. It is not difficult to deduce
that the curve 4* which is equal to 4% on | — 00, 0] and to 7§ on
[0, +o0] satisfies

Vt <t € R, us(Y't)—us(v"t) = /t L(v"(s),7"(s)) ds+c[0](t' ).

It follows that +* is the sought extremal curve. The existence
of v* shows that z € A;,_ and x € A;,, and thus u_ and u,
are differentiable at x with dyu_ = dyuqs = g—%(x,"y””(O)). The
existence of K also results from x € Ay, (or € Ay, ). O

Definition 5.2.3 (The set i—(u,,u+))' If (u—,uy) is a pair of con-

jugate functions, we define the set Z(,_ ) by

~ oL
I(u,,uJF) = {($,’U) | LS I(uf,ujL)vd:Bu— = dyut = %(l‘av)}

Theorem 5.2.4. If (u_,uy) is a pair of conjugate functions, the
projection w : T'M — induces a bi-Lipschitzian homeomorphism
j(u,,w) onZey_ .. The set j-(u,,u+) is compact and invariant by
the Euler-Lagrange flow ¢;. It contains M. If (z,v) € i(u,,qu)a
for each t € R, we have u_(7[¢¢(z,v)]) = us(w][pe(x,v)]) and for
allt <t' eR

u:l:(ﬂ-[(bt’ (‘Tﬂv)])_ ui(ﬂ[¢t(x7v)]) = /t L(¢5($,U))ds+c[0](t/—t),

Proof. By the previous theorem 5.2.2 the projection 7 restricted
to Z(y_ 4, 1s surjective onto Z(,_ . ) with a Lipschitzian inverse.
In particular, the set j(u,7u .) is compact. Moreover, if (z,v) €
j(u,,u ) and 7, is the extremal curve given by the previous theo-
rem, we have v = 4%(0), and, for each s € R, we have (v*(s), " (s)) €
T(u_u,)s because vE(s) € Ia(cu”u” and the extremal curve t +—
7*(s + t) can be used as 77 (5). Since (v%(s),5%(s)) = ¢s(x,v),
it follows that Z,_ ) is invariant by the flow ¢;. From theorem
4.12.3, if z € Mo, we have dyut = JL/0v(x,v), where (z,v) is
the point My above z. Since Mo C Z(,_ ., ), the definition of
Zu_ ) implies (7,v) € Ly, 4, O
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The Mané set was introduced in [Mn97, page 144|, where it is
denoted 3(L).

Definition 5.2.5 (Mané Set). The Mané set is

-/\70 = Uj(u,,qu),

where the union is taken over all pairs (u_, u ) of conjugate func-
tions.

Proposition 5.2.6. The Mané set ./\~fo~1's a compact subset of T M
which is invariant by ¢;. It contains My.

Definition 5.2.7 (Aubry Set). The Aubry Set in T M is

AO = ﬂj(u,,u+)a

where the intersection is taken on the pairs (u_,u4) of conjugate
functions. The projected Aubry set in M is Ay = 7(Ap).

Theorem 5.2.8. The Aubry sets Ag and Ao are both compact,
and satisfy Mo C Ay and My C Ag. The compact set Ao cTM
is invariant by the Euler-Lagrange flow ¢;.

Moreover, there is a pair (u—,uy) of conjugate functions such
that .A() = I(uﬂqu) and ./40 = I(u,,u+)-

Therefore the projection w : TM — M induces a bi-Lipschitz
homeomorphism Ay on Ay = W(Ao).

Proof. The first part of the theorem is a consequence of the same
properties which hold true for j(u,,u o and Z(,_ ) which are true
by theorem 5.2.4. The last part of the theorem is, again by 5.2.4,
a consequence of the second part.

It remains to prove the second part. We fix a base point xy €
M, any pair of conjugate function is of the form (u_ + ¢, us +¢),
where (u_,u4) is a pair of conjugate functions with u_(zg) =
uy(xg) = 0, and ¢ € R. Using the fact that C(M,R) is metric
and separable (i.e. contains a dense sequence) for the topology of
uniform convergence, we can find a sequence of pairs of conjugate
functions (u” + ¢, u’tc,), dense in the set of pairs of conjugate
functions, and such that u” (z¢) = v/} (z9) = 0,¢, € R. Since
the sets S_ and S form equi-Lipschitzian families of functions on
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the compact space M, and u” (zg) = u'}(x9) = 0, we can find a
constant C' < 400 such that |[u”|. < C and ||u} ||« < C, for

each n > 0. It follows that the series Y, 27" 'u™ converges to
a continuous function. The sum is dominated by L + ¢[0], because
this is the case for each u™ and Y .,2 " ! = 1. By theorem
5.1.2, we can thus find u_ € S_ with u_ > Y 27" and
u_ =3Y,502""u" on My. In the same way, we can find u; € S}
with up < Y, 027"t and uy = 3,2 "ut on My. Since
ut < with equality on M, we see that

uy < Z 27"l < Z 27" <,
n>0 n>0

with equalities on Mj. It follows that functions u_ and wu, are
conjugate. Moreover, if u_(z) = uy(x), we necessarily have u” (z) =
ul} (z) for each n > 0. By density of the sequence (u” + ¢, u’}.cy)
we conclude that for each pair v_, v ) of conjugate functions, we
have Z,_ .y C Z(y_v,)- Therefore shows that Z,_ )= Ao.

If (x,v) € j(u,7u+)7 the curve v(s) = m(¢s(x,v)) is contained in
Tiu_uy) = Ao, and (ux, L, c[0])-calibrated. Therefore, for example

t/
vt <t' € Ru(y(t)—u-(+(t)) =/ L(+(s),4(s)) ds+c[0](t'—t)..
t
(*)

Since u,, < L + ¢[0], for each n > 1, we also have
V<t € R,un (1(¢))—u (v(8) < int! L(3(s), 4 (5)) ds-+e[0)(¢ ).

(**)
From what we established we have

u” (y
W € T () = 0 S ()
n>1

The equalities (*) and (***), taken with the fact that the image
of v is contained in Z(,_ ), do imply that the inequality (**) is
in fact an equality, which means that ~ is (u", L, ¢[0])-calibrated,
for every n > 1. By denseness of the sequence (u" + ¢,) in S_,
we obtain that + is (v_, L, c[0])-calibrated, for every v_ € S_.
Therefore d,v_ is the Legendre transform of (z,v) = (7(0),5(0)).
Since x € Ag C Z(,_,), this implies that (z,v) € j(v,,u)- It
follows easily that i(u,,u = Ao. O
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5.3 The Peierls barrier.

This definition of the Peierls barrier is due to Mather, see [Mat93,
§7, page 1372].

Definition 5.3.1 (Peierls Barrier). The Peierls barrier is the func-
tion h : M — R defined by

h(z,y) = ltII_I)l_ﬁg hi(z,y) + c[0]¢.

It is not completely clear that A is finite nor that it is contin-
uous. We start by showing these two points.

Lemma 5.3.2 (Properties of h;). The properties of h; are

(1) for each z,y,z € M and each t,t' > 0, we have
hi(z,y) + he (y, 2) = hygw (2, 2);

(2) if u < L+ ¢, we have h(z,y) + ct > u(y) — u(x);
(3) for each t > 0 and each x € M, we have hy(x,x) + c[0]t > 0;

(4) for each ty > 0 and each u_ € S_, there exists a constant
Cto,u_ such that

vt > tOv\v/x>y € M7 _2Hu—||00 < ht($7y)+c[0]t < 2Hu—||00+0t07uf;

(5) for each t > 0 and each z,y € M, there exists an ex-
tremal curve vy [0 t] — M with v(0) = z,7(t) = y and
ht (z,9) fo (s))ds. Moreover, an extremal curve

[0 t] — M is m1n1m1z1ng if and only if hy(v(0),~(t)) =

fo (s))ds;

(6) for each tg > 0, there exists a constant K;, € [0,+oo[ such
that, for each t > ty the function hy : M x M — R is
Lipschitzian with a Lipschitz constant < Kj,.

Proof. Properties (1) and (2) are immediate, and property (3)
results from (2) taking for u a function in S_.

To prove property (4), we first remark that the inequality
—2|lu—|loc < he(x,y)+ c[0]t also results from (2). By compactness
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of M, we can find a constant CY, such that for each z, z € M, there
exists a C! curve v, : [0,t0] — M with v, .(0) = z,7:..(t0) = z,
and foto L(7z,2(5),3z,2(s)) ds < Ct,. By the properties of u_, we
can find an extremal curve 7Y :] — 00,0] — M, with 7Y (0) = v,
and

0
Vit > 0,u_(y) — u_(7 (1)) = / Ly (), 5" (5)) ds + c[O]t.

If t > ty, we can define a (continuous) piecewise C! curve  : [0, ]
by 7(5) = Vet gty (5): for s € [0, o], and A(s) = 7 (s — ), for
s € [to,t]. This curve 7 joins z with y, and we have

/0 L(y(s),3(s)) ds +cl0}t < Cry + [0t +u_(y) — u_ (" (to — 1)).

It is then enough to set Cy, . = Ct, + ¢[0]tp to finish the proof of
(4).

The first part of the property (5) results from Tonelli’s Theo-
rem 3.3.1. The second part is immediate starting from the defini-
tions.

To prove property (6), suppose that v : [0,¢] — M is an
extremal curve such that v(0) = z,v(t) = y, and h(x,y) =
fo (s))ds. Since t > tg, we know by the Compactness
Lemma that there exists a compact subset K of T'M with (y(s),~(s)) €
K for each z,y € M, each t > ty and each s € [0,t]. It is then
enough to adapt the ideas which made it possible to show that the
family {7, u | t > to,u € C°(M,R)} is equi-Lipschitzian. O

Corollary 5.3.3 (Properties of h). The values of the map h are
finite. Moreover, the following properties hold

1) the map h is Lipschitzian;
2) if u < L+ ¢[0], we have h(z,y) > u(y) — u(z);

(1)
(2)
(3) for each x € M, we have h(z,z) > 0;
(4) R
(5) A

5
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(6) for x € My, we have h(z,x) = 0;

(7) for each x,y € M, there exists a sequence of minimizing
extremal curves 7y, : [0,t,] — M with t, — 00,7,(0) =
x,Yn(tn) =y and

hz,y) = Tm | L(ya(s),n(s)) ds + cl0]tn;

n—-4o0o 0

(8) if vy : [0, t,] — M is a sequence of (continuous) piecewise
C! curves with t, — 00,7,(0) — z, and v,(t,) — y, then
we have

h(z,y) < lim inf/0 ' L(vn(8),9n(s)) ds + ¢[0]t,.

n—-4o0o

Proof. Properties (1) to (5) are easy consequences of the lemma
giving the properties of h; 5.3.2. Let us show the property (6). By
the continuity of h, it is enough to show that if u is a Borel proba-
bility measure on 7'M, invariant by ¢; and such that fT MLdp =
—c[0], then, for each (x,v) € supp(u), the support of u, we have
h(z,x) = 0. By Poincaré’s Recurrence Theorem, the recurrent
points for ¢; contained in supp(u) form a dense set in supp(u).
By continuity of h, we can thus assume that (x,v) is a recurrent
point for ¢;. Let us fix u_ € S_. We have

u_(r64(z,0)) — u_(z) = /0 L(6a(x,0)) ds + c[0]t

By the definition of a recurrent point, there exists a sequence t,, —
oo with ¢y, (x,v) — (x,v), it is not difficult, for each € > 0 and each
t' > 0, to find a (continuous) piecewise C! curve v : [0,t] — M,
with ¢ > t/,v(0) = ~(¢t) = z, and such that fg L(v(s),5(s)) ds +
c[0]t < e. Consequently, we obtain h(z,x) < 0. The inequality
h(xz,z) > 0 is true for each z € M.

Property (7) results from part (5) of the lemma giving the
properties of h;, since there is a sequence t, — —o0o such that
h(z,y) = limy, 400 he, (z,y) + c[0]t;,.

Let us show property (8). By the previous lemma, there is a
constant Kjsuch that

Vt Z 17V$7$/7y7y/ € M7 ‘ht(‘ray)_ht(‘rlay/)‘ S Kl(d(l’,x/)+d(y,y/))
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In addition, we also have

tn
b1 (0 0(6) < [ L0(5). 1 (3)) ds -+ 0l
For n large, it follows that

hun (2,9) + cl0ltn < B (10 (0), () + 00t + K1 (s 10(0)) + Ay (1))
< €0]tn + Ky (d(z, 1 (0)) + d(y,3n(tn)) + /0 " Ln(5), 4 (5)) ds + [0,

Since d(x,7,(0)) +d(y, vn(tn)) — 0, we obtain the sought inequal-
ity. ]

The following lemma is useful.

Lemma 5.3.4. Let V be an open neighborhood of My in TM.
There exists t(V') > 0 with the following property:

If~:[0,t] — M is a minimizing extremal curve, witht > t(V'),
then, we can find s € [0,t] with (y(s),7(s)) € V.

Proof. If the lemma were not true, we could find a sequence of
extremal minimizing curves ; : [0,¢;] — M, with ¢; — oo, and
such that (vi(s),%i(s)) ¢ V, for each s € [0,¢;]. Since t; — +o0,
by corollary 4.4.5, there exists a compact subset K C T'M with
(i(s),7i(s)) € K, for each s € [0,t;] and each ¢ > 0. We then
consider the sequence of probability measures p, on T'M defined
by

tn

1 .
ed:un = t_ 9(7n(3)7’7n(3))ds7
TM n JO

for 8 : TM — R continuous. All the supports of these mea-
sures are contained in the compact subset K of T'M. Extract-
ing a subsequence, we can assume that pu, converge weakly to a
probability measure p. Since (v,(s),¥n(s)),s € [0,t,] are pieces
of orbits of the flow ¢, and since t, — 400, the measure y is
invariant by ¢;. Moreover, its support supp(u) is contained in
TM\V, because this is the case for all supp(pn) = {(7n(5), ¥n(s)) |
s € [0,t,}. Since the ~, are minimizing extremals, we have
[ Ldp, = ht, (70(0),7(tn))/tn. By the lemma giving the prop-
erties of hy 5.3.2, if u_ € S_, we can find a constant C; such
that

Vit > 1,Vz,y € M, =2|u_|lo < he(z,y) + ¢[0]t < 2||u_]|o + Ci.
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It follows that lim,, o [ Ldu, = —c[0]. Hence [, Ldu = —c[0]
and the support of p is included in Mather’s set M. This is
a contradiction, since we have already observed that supp(u) is
disjoint from the open set V which contains M. O

Corollary 5.3.5. For each pair u_ € S_,uy € S1 of conjugate
functions, we have

Vm,y € M, u_(y) - U+(l‘) < h(l‘,y)

Proof. We pick a sequence of extremals v, : [0,t,] — M joining x
to y, and such that

h(z,y) = lim ; L(vn(8),9n(s)) ds + ¢[0]t,.

By the previous lemma 5.3.4, extracting a subsequence if neces-
sary, we can find a sequence t), € [0,¢,] such that v,(t,) — z €
Mo. fu_ € S_, and uy € Sy, we have

(i (th)) — 1wy () < /0 " L (3), An(s)) ds + [0}t

u—(y) — u-(1a(ty)) < /t L (8), 4 (s)) ds + ¢[0](t,, — t1).

!
n

If we add these inequalities, and we let n go to +o0, we find

u—(y) —u-(2) + uy(2) — uy(2) < h(z,y).

But the functions u_ and u4 being conjugate, we have ui(z) =
u_(z), since z € My. O

Theorem 5.3.6. For x € M, we define the function h* : M — R
(resp. hy : M — R) by h*(y) = h(x,y) (resp. hy(y) = h(y,x)). For
each v € M, the function h* : M — R (resp. —hy) is in S_ (resp.
Syt ). Moreover, its conjugate function v € S; (resp. u* € S_)
vanishes at x.

Proof. We first show that the function h* is dominated by L+ ¢[0].
If v : [0,¢] — M is a (continuous) piecewise C! curve, we have
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he((0),~(t)) < fg L(v(s),%(s))ds and thus, by part (1) of the
lemma giving the properties of h; 5.3.2, we obtain

hursa(,7() < he(2,7(0)) + /O Ly(s).4(s)) ds,

which gives by adding c[0](¢ + t’) to the two members

hr i,y (1)) +[0](t4+t") < hy (2, 7(0))+c[0]t + /0 L(y(s),%(s)) ds+c[0]t.

By taking the liminf for # — +o00, we find

Bz A(8) < hla,1(0) + /O L((s),4(s)) ds + clo]t,
which we can write as

h*(y(#)) = h*(7(0)) < /0 L((s),7(s)) ds + ¢[0]¢.

To finish showing that h* € S_, it is enough to show that for
y € M, we can find an extremal curve y_ :] — 00, 0] such that
7-(0) =y and

0
VE < 0,h(z,y) > h(z,y-(8)) + / Ly (s),4-(s)) ds — c[O].

We take a sequence of extremal curves 7, : [0,¢,] — M connecting
z to y, and such that

h(z,y) = lim 0nL(%(s),%(s))ds+c[0]tn.

Since t,, — oo and the ~,, are all minimizing extremal curves, by
extracting a subsequence if necessary, we can suppose that the
sequence of extremal curves 7}, : [—t,,0] — M.t — v,(t, + 1)
converges to an extremal curve y_ :] — 00,0 — M. We have
v—(0) = limy, 00 Vn(tn) = y. Let us fix ¢ €] — 00,0], for n big
enough, we have ¢, +¢ > 0 and we can write

tn tn+t
/ L(yn(5), n(s)) ds+c[0]tn = / Ly (5), An(s)) ds-+[0] (tn 1)
0 0

tn+t 0
/0 Ly (), An(5)) ds-+[0] (tn +1)+ / Lo (), 34(s)) ds—c[O]t.
(+)
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By convergence of the v/, we have

0 0
RCICEAD T R CROERE)TS

Since limy, t,, + ¢t = oo, and lim, s Y, (ty + ) = lim, o0 7, (t) =
~v—(t), by part (8) of the corollary giving the properties of h, we
obtain h(x,v_(t)) < liminf, S”H L(vn (), ¥n(s)) ds+c[0](t,+
t). By taking the liminf in the equality (x), we do indeed find

0
h(z,y) = h(z,v-(t)) +/t L(y-(s),7-(s)) ds — c[0]t.

It remains to be seen that u% € S;, the conjugate function of A%,
vanishes at x. For that, we define

ww:%m+wmwwm—/wawmw,
Y 0

where 7 : [0,¢] — M varies among C' curves with 7(0) = x. This
quantity a(t)is nothing but 7, (h®)(x) — ¢[0]¢, and thus u¥ (z) =
limy_ a(t). For each ¢ > 0, we can choose an extremal curve
v+ [0,t] = M, with 74(0) = x and

a@=—¢m+Ma%@w1ALm@ww$m&

We then choose a sequence t,, — +o00o such that v, (¢,) converges
to a point of M which we will call y. By continuity of A we have
h(z,y) = lim,— 400 h(z, 7, (tn)). Moreover, by part (8) of the
corollary giving the properties of h, we have

n——+

h(z,y) < liminf/O L(v(s),%(s)) ds + c[0]t.

It follows that u% (z) = lima(t,) < 0. Since we already showed
the inequality h(z,y) > u_(y) — us(z), for any pair of conjugate
functions u_ € S_,uy € Si, we have h(z,z) > h*(x) — uf (z).
However h(z,x) = h*(x), which gives u% (z) > 0. O

Corollary 5.3.7. For each x,y € M, we have the equality

h(z,y) = sup u_(y) —uq(x),

(u—,uq)
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the supremum being taken on pairs (u_, u ) of conjugate functions
U_ € S_,U+ S S+.

We can also give the following characterization for the Aubry
set Ag.

Proposition 5.3.8. If x € M, the following conditions are equiv-
alent

(1) z € Ao;

(2) the Peierls barrier h(x,x) vanishes;

(3) there exists a sequence 7y, : [0,t,] — M of (continuous)
piecewise C! curves such that

—for each n, we have v,(0) = v,(t,) = x;

—the sequence t,, tends to +0o0, when n — o0o;

~for n — oo, we have fot" L(vn(s),n(s)) ds + c[0]t,, — O;

(4) there exists a sequence 7y, : [0,t,] — M minimizing ex-
tremal curves such that

—for each n, we have v,(0) = v,(t,) = x;

—the sequence t,, tends to +0o0, when n — o0;

~for n — oo, we have fot" L(vn(s),n(s)) ds + c[0]t,, — 0.

Proof. Equivalence of conditions (1) and (2) results from the pre-
vious corollary. Equivalence of (2), (3) and (4) results from the
definition of h. O

5.4 Chain Transitivity

Proposition 5.4.1. Let (u_,uy) be a given pair of conjugate
functions. If tg > 0 given, then for each ¢ > 0, there exists
d > 0 such that if v : [0,t] — M is an extremal curve, with
t > to,u-(7(0)) < w(y(0)) +6 and fy L(y(s),¥(s)) ds + c[0]t <
uy(y(t)) — usx(y(0)) + 9, then for each s € [0,t], we can find a
point in j(u,,u+) at distance at most € from (y(s),7(s)).

Proof. Since uy < L+ ¢[0], for 0 < a < b < t, we have
w (@) = (00) < [ L(5)(5) ds +clof,

ue (1(8)) — g (1(8)) < /b Liv(s), 4(s)) ds + 0)(t — b).
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Subtracting the last two inequalities from the inequality fg L(v(s),7(s)) ds+
c[0]t < up (v(t)) — us(7(0)) + 6, we find

b
/ L(v(s).4(s)) ds + c0](b — @) < us (1(3)) — s (v(@)) + 6. (¥)

Moreover, since u_ < L + ¢[0], we have

u—(v(a)) —u-(v(0)) < /Oa L(7(s),7(s)) ds + c[0]a

Since, by the inequality (x), this last quantity is not larger than
s (1(a)) 14 (1(0))+3, we obtain u_(y(a)) —u—(7(0)) < uy (v(a)—
u4+(7(0)) + d. The condition u_(y(0)) < us(7(0)) + I gives then
u_(y(a)) <wuy(y(a))+ 20, for each a € [0,t]. We conclude that it
is enough to show the lemma with ¢ = tg, taking 6 smaller if neces-
sary. Let us argue by contradiction. We suppose that there exists
a sequence of extremal curves 7, : [0,tg] — M and a sequence 0y,
such that the following conditions are satisfied

(1) 0p — 0;
( ) u ( ( )) < ut(1n(0)) + On;
(3) fy’ L n(8)) ds+c[0]t0 < uy (Yn(to)) =+ (Y0 (0)) +0n;

(4) there ex1sts sn € [0, to] such that the distance from (v, (s,), ¥n(Sn))
with Z(u,,u ) is bigger than e.

By conditions (1) and (3) above, there exists a constant C' <
+o0 such that fot (s ) An(s))ds < C, for each n > 0. It
follows that there ex1sts sh, € [0, o] such that L(v,(s),),¥n(sh)) <
C'/to. Therefore the (v,(s n) An(sh)) are all in the compact subset
K = {(z,v) | L(z,v) < C/to} C TM. Since the =, are extremal
curves, we have (7,(t), (1)) = dp—s ) (v (sy); ¥u(sy)), and thus
the point (v,(t),¥x(t)) is in the compact subset (U ejg 4, ¢s(K),
for each n > 0 and each ¢ € [0, tg].

Extracting a subsequence if necessary, we can thus suppose
that the sequence of extremal curves 7, converges in the C! topol-
ogy to the extremal curve v : [0,t9] — M. As we saw above, we
have u_ (v, (t)) < us (v (t)) + 20, for each t € [0,t9]. Going to
the limit and taking s, a value of adherence of the sequence s,,
we thus obtain

(1) for each t € [0,tp], we have u_(Voo(t)) < Uy (Voo (t));

2) Jo" L(Yoo(5), Foo (5)) ds + c[0]to < s (Yoo(t0)) — 14 (700(0));
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(3) there exists a number s € [0,tg] such that the distance
from the point (Yoo (Sc0), Yoo (Sc0)) to the set j-(u,,qu) is at least e.
However u_ > uy thus u_ (v (t)) = us(Yeo(t)), for each t €

[0, o], which gives Yoo (t) € Z(y_ u,)- In the same way, the fact that
u4 < L+c[0], forces the equality in condition (2) above. This gives
oto L(’Yoo(s)v 700(3)) ds+c[0]t0 = u-i-(’Yoo (tO)) — U4 (700(0)) In par-
ticular, the derivative of u4 at v ($), for s €]0,¢g] is the Legendre
transform of (Voo (8),300(8)). It follows that (Yeo(Seo), Yoo (Scc)) €
j(u,,u .)» which contradicts condition (3) above. O

Corollary 5.4.2. Letu_ € S_ anduy € S; be a pair of conjugate
functions. If x,y € M is such that h(z,y) = uy(y) — u_(x), then
7,y € L(y_u,)- Moreover, if (z,v,) and (y,v,) are the points of
j(u,,w) above x and y, then for each € > 0, we can find a sequence
of points (x;,v;) € f(uﬂu”,i =0,1,...,k, with k > 1, such that
(x0,v0) = (z,vz), (xk, vk) = (y,vy), that there exists t € [1,2] with
the distance from ¢y(xp_1,v5—1) to (g, vr) = (y,vy) is less than e
and that, for i =0,...,k — 2, the distance in TM from ¢1(x;,v;)
to (zi4+1,vi41) Is also less than e.

Proof. We know that h(x,y) > u—(y) —u4+(z). Since u— > uy, we
see that u_(z) = uy(x) and u_(y) = uy(y). By the properties of
h, there exist a sequence of extremals 7, : [0,t,] — M, with ¢, —
oo, such that v,(0) = z,v,(t,) = vy and fg" L(yn(8),4n(s)) ds +
c[0Jto < ut(n(tn)) — ut (7 (0)) + 6y with 6, — 0.

Let us fix € > 0. The compactness of Z,,_ ) gives the exis-
tence of € such that if (a,v) € j(u,,u+) and (b,w) € TM are at
distance less than €', then, for each s € [0,2], the distance from
¢s(a,v) with ¢4(b, w) is smaller than €/2. By the previous propo-
sition, for n large enough, (y,(s),4n(s)),s € [0,t,] is at distance
< min(€’, €/2) from a point of j(u,,qu)' Let us fix such an inte-
ger n with ¢, > 1 and call k£ the greatest integer < {. We thus
have k > 1l and t = ¢, — (k—1) € [1,2[. Fori=1,2,...,k — 2,
let us choose (z;,v;) € :Z-(u,,u+) at distance < min(¢’,¢e/2) from
(Y (i), ¥n (7)) and let us set (xo,v0) = (2, vz), (Tk,vk) = (Y, vy).
For i = 0,...,k — 2, by the choice of ¢, the distance between
¢1(xiyvi) and (Zsl(’Yn(Z)v’Yn(z)) = (’Yn(z + 1)7;}/n(i + 1)) is < 6/27
consequently the distance between ¢.(x;,v;) and (zj41,vi41) is
less than e. In the same way, as ¢ € [1,2[ the distance between



200

1, vir) and Gk — 1), 3n(k 1)) = (a(k). n(K))
(y,vy) is less than €/2.

O
The following theorem is due to Mané, see [Mn97, Theorem V,
page 144]:

Theorem 5.4.3 (Maiié). The Maié set N is chain transitive for
the flow ¢,. In particular, it is connected.

Proof. We recall that Ny = U f(u7 ,uy)» where the union is taken on
all pairs of conjugate functions. Let us notice that Mg C i—(u,,u+)7
by definition of conjugate functions. If x,y € My, then by the
compactness of the set of differences u_ — u4 and the character-
ization of h, there exists a pair (u_,uy) of conjugate functions
such that h(z,y) = u_(y) — uy(x), since z,y € My, we have also
h(z,y) = uy(y) — u_(z). By the corollary above, we see that
the points (z,v,) € Mg and (y,v,) € My above = and y can,
for each € > 0, be connected by an e-chain of points, for ¢, in
j(u,7u ,)- 1t follows that the set M is contained in a single chain
recurrent component of the union Ny = Uj(u,,u .)- To finish
showing that Nj is chain transitive, it is enough to notice that if
(7,v) € Z(y_ u,), then the a-limit and w-limit sets, for ¢, of (z,v)
both contain points of M. O



Chapter 6

A Closer Look at the
Lax-Oleinik semi-group

6.1 Semi-convex Functions

6.1.1 The Case of Open subsets of R"

Proposition 6.1.1. Let U be an open convex subset of R™, and let
u: U — R be a function. The following conditions are equivalent:

(i) There exists a C? function ¢ : U — R with bounded second
derivative and such that u + ¢ is convex.

(ii) There exists a C* function ¢ : U — R with bounded second
derivative and such that u + @ is convex.

(iii) There exists a finite constant K and for each x € U there
exists a linear form 6, : R™ — R such that

Wy € Uu(y) — u(w) > 0,(y — 2) — K|y — a||.
Proof. Obviously (ii) implies (i). To prove that (i) implies (iii),

we denote by 2K an upper bound on U of the norm of the second
derivative of ¢, using Taylor’s formula, we see that

Vz,y € U, p(y) — o(x) < dop(y — ) + Klly — z||*.

We now use theorem 1.2.9 to obtain a supporting linear form 6
at x for the convex function u + . This gives

u(y) —u(x) > 01(y — ) — 9(y) + ¢(z).

201
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Combining the two inequalities, we get

u(y) —u(@) > 01(y — z) — dop(y — ) — K|y — z||?,

but the map v — 61(v) — d,p(v) is linear.

It remains to prove that (iii) implies (ii). We consider p(y) =
K|ly||?, where K is the constant given by (iii). A simple compu-
tation gives

o(y) — o(z) = K|y — 2| + 2K (y — z,z).

Adding the inequality given by (iii) and the equality above, we
obtain

(u+¢)(y) — (u+e)(y) >0y —z) + 2Ky — z, ).

This shows that u+ ¢ admits the linear map v — 6,(v) +2K (v, )
as a supporting linear form at z. It follows from proposition 1.2.8
that v + ¢ is convex. O

Definition 6.1.2 (Semi-convex). A function v : U — R, defined
on the open convex subset U of R", is said to be semi-convex if it
satisfies one of (and hence all) the three equivalent conditions of
proposition 6.1.1.

We will say that u is K-semi-convex if it satisfies condition (iii)
of 6.1.1 with K as a constant.

A function w is said to be semi-concave (resp. K-semi-concave)
is —u semi-convex (resp. K-semi-convex).

We will say that a function v : V' — R, defined on an open
subset of R™ is locally semi-convex (resp. semi-concave) if for each
point & € V there exists an open convex neighborhood U, of x in V'
such that the restriction u|U, is semi-convex (resp. semi-concave).

Here are some properties of locally semi-convex or semi-concave
functions:

Proposition 6.1.3. (1) A locally semi-convex (resp. semi-concave)
function is locally Lipschitz.

(2) If u is locally semi-convex (resp. semi-concave) then u is
differentiable almost everywhere.

(3) If u : V. — R is locally semi-convex (resp. semi-concave)
and f: W — V is a C2 map then uo f : W — R is also is locally
semi-convex (resp. semi-concave).
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Proof. 1t suffices to prove these properties for a semi-convex func-
tion v : U — R defined on the open convex subset U of R". But
w is the sum of a C? function and a convex function. A C? func-
tion is obviously locally Lipschitz and differentiable everywhere.
Moreover, a convex function on an open subset of R™ is locally
Lipschitz by corollary 1.1.9 and differentiable almost everywhere
by corollary 1.1.11 (or by Rademacher’s theorem 1.1.10). This
proves (1) and (2).

It suffices to prove (3) for u : V' — R convex. We fix some z €
W, and we pick r > 0 such that the closed ball B(f(z),2r) C V.
We first show that there is a constant K such that each supporting
linear form p of u at y € B(f(z),r) satisfies ||p|| < Ki. In fact,
for v such that ||v]| < r, the point y 4 v is in V since it belongs to
B(f(z),2r), hence we can write

u(y +v) —u(y) > p(v).

We set M = max{[u(z)| | z € B(f(2),2r). The constant M is
finite because B(f(z),2r) is compact and u is continuous by (1).
from the inequality above we obtain

Yo € B(0,7),p(v) < 2M.

It is not difficult to conclude that ||p|| < K7. We now pick an open
convex set O which contains z, such that its closure O is compact
and contained in W and f(O) C B(f(2),r). Since f is C? and O
is convex with compact closure, by Taylor’s formula, we can find
a constant K9 such that

Va1, 22 € O, |f(22) = f(21) — Df(21)[22 — 21]] < Kallza — 21| (%)

If z1, 29 are both in O, then f(z2), f(z1) are both in B(f(z),r). If
we call p; a supporting linear form of v at f(z1), we have

[lp2|l < K1 and wo f(z2) —uo f(z1) > p1(f(22) — f(21))-

Combining with (x), we obtain
V21,20 € O,uof(20)—uof(21) > proDf(21)[za—21]— K1 Ka|lza—21 |

Thus w o f is semi-convex on O. O
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Part (3) of the last proposition 6.1.3 implies that the notion
of locally semi-convex (or semi-concave) is well-defined on a dif-
ferentiable manifold (of class at least C?).

Definition 6.1.4 (Semi-convex). A function u : M — R defined
on the C? differentiable manifold M is locally semi-convex (resp.
semi-concave), if for each z € M there is a C? coordinate chart
¢ : U — R" with € U, such that uo ¢! : pU) — R is
semi-convex (resp. semi-concave).

In that case for each C? coordinate chart § : V' — R, the map
uof~1:0(U) — R is semi-convex (resp. semi-concave).

Theorem 6.1.5. A function u : M — R, defined on the C? dif-
ferentiable manifold M, is both locally semi-convex and locally
semi-concave if and only if it is C11.

Proof. Suppose that u is Cb!. Since the result is by nature local,
we can suppose that M is in fact the open ball subset B(0,r) of R”

o

and that the derivative du : B(0,7) — R™, z — d,u is Lipschitz
with Lipschitz constant < K. If z,y € B(0,r), we can write

1
) = @) = [ sty =) .
Moreover, we have
dty+ -tz — daull < Kt|ly — .

Combining these two inequalities, we obtain
1
() — u(e) — dpuly — )] = | /0 duy 1y — @) — dpuly — ) dt|
1
< /0 iy s 1ot — doully — ]| dt
1
s/o Kllty + (1 — t)z — allly — || dt

1
= / Kt|ly — | dt
0

K
= Sy .
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This implies that u is both semi-convex and semi-concave on the
convex set B(0,7).

Suppose now that u is both locally semi-convex and locally
semi-concave. Again due to the local nature of the result, we can
assume M = B(0,r) and that u is both K;-semi-convex and Ko-
semi-concave. Given z € é(O,T), we can find 6,62 € R™ such
that

Yy € B(0,7),u(y) — u(x) > 0L(y — ) — K1|jy — z||%,
and
Vy € B(0,r), u(y) — u(z) < 02(y — ) + Kally — 2%

For a fixed v € R™, and for all € small enough, the point = + ev €

o

B(0,r), thus combining the two inequalities above we obtain
0, (cv) — Kilev]|? < 63 (ev) + Kallev]?,

for all € small enough. Dividing by € and letting ¢ go to 0, we
obtain
Vo € R, 01 (v) < 62(v).

Changing v into —v, and using the linearity of 01,02 € R™, we
see that 01 = 62. Thus we have

Vy € B(0.7), [uly) — u() = 04(y — )| < max(Ky, Ko)|ly — .

It follows from 4.11.3 that u is C! on E(O,T) with a Lipschitz
derivative. O

6.2 The Lax-Oleinik Semi-group and Semi-
convex Functions

In this section we suppose that the compact manifold M is en-
dowed with a C? Lagrangian L : TM — R which is superlin-
ear and C? strictly convex in the fibers of the tangent bundle
m:TM — M. We can then define the two Lax-Oleinik semi-
groups T, T;F : C°(M,R) — C°(M,R). An immediate conse-
quence of proposition 4.11.1 is the following proposition:
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Proposition 6.2.1. For each u € C°(M,R) and each t > 0, the
function T, (u) (resp. T,  (u)) is locally semi-concave (resp. semi-
convex)

Theorem 6.2.2. Suppose that T, (u) (resp. T;" (u)) is Ct, where
u € CO(M,R) and t > 0, then we have u = T;'T, (u) (resp.
=TT (u).

In particular, the function u must be locally semi-convex. More-
over, for each t' €]0,t[ the function T}, (u) (resp. T, (u)) is C11.

Before embarking in the proof of this theorem, we will need the
following lemma, whose proof results easily from the definitions of
T, and T,

Lemma 6.2.3. If u,v € C°(M,R) and t > 0, the following three
conditions are equivalent:

(1) v <T;w

(2) Tv < u;

(3) for each C' curve v : [0,t] — M, we have

v(v(t)) = u(v(0)) <L(v) :/0 L(v(s),7(s)) ds.

If anyone of these conditions is satisfied and «y : [0,t] — M is
a Cl curve with

v(¥(#)) —u(¥(0)) = L(v) = /0 L(y(s),7(s)) ds,

then v(y(t)) = T; u(y(t)) and u(y(0)) = Ty v(+(0)).

Proof of theorem 6.2.2. We set v = T, u. For each x € M, we
can find a minimizing C? extremal curve v, : [0,t] — M with
vz (t) = x and

m%@waéLw@n@»w+m%m»

From lemma 6.2.3, we have u(7,(0)) = T; v(y(0)). To show that
u = T, v, it then remains to see that the set {y,(0) | * € M}
is the whole of M. Since v is C!, it follows from proposition
4.11.1 that dyv = OL/0v(z,45(t)) or A,(t) = grad; v(x). Since
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vz is an extremal we conclude that (y,(s), Yz (s)) = ¢s—t(z, Y2 (t)),
where ¢; is the Euler-Lagrange flow of L. In particular, the set
{72(0) | * € M} is nothing but the image of the map f : M —
M,z — mé_(z,grad, v(x)). Since v = T, u is C!, the map f
is continuous and homotopic to the identity, a homotopy being
given by (z,s) — m¢_s(x,grad; v(z)), with s € [0,¢]. Since M
is a compact manifold without boundary, it follows from degree
theory mod 2 that f is surjective. This finishes the proof of
u=TFT, (u).

Using ¢ > 0, we obtain the local semi-convexity of u from
proposition 6.2.1.

If t' €]0,t[, we also have v =T, u =T, ,
first part with T}, u instead of v and ¢ — ¢ > 0 instead of ¢, we
see that T}, u is locally semi-convex. It is also locally semi-concave
by 6.2.1, since t' > 0. It follows from theorem 6.1.5 that T}, u is
chL. O

T, u. Applying the

6.3 Convergence of the Lax-Oleinik Semi-
group

Up to now in this book, all the statements given above do hold for
periodic time-dependent Lagrangians which satisfy the hypothesis
imposed by Mather in [Mat91, Pages 170-172]. The results in
this section depend heavily on the invariance of the energy by the
Euler-Lagrange flow. Some of these results do not hold for the
time-dependent case, see [FMO0].

The main goal of this section is to prove the following theorem:

Theorem 6.3.1 (Convergence of the Lax-Oleinik Semi-group).
Let L : TM — R be a C? Lagrangian, defined on the the com-
pact manifold M, which is superlinear and C? strictly convex in
the fibers of the tangent bundle 7 : TM — M. If T, T, :
CO(M,R) — C°(M,R) are the two Lax-Oleinik semi-groups asso-
ciated with L, then for each v € C°(M,R), the limits, for t — o0,
of T, u + ¢[0]t and T, u — c[0]t exist. The limit of T, u + c[0]t is
in S_, and the limit of T;"u — c[0]t is in S,.

Particular cases of the above theorem are due to Namah and
Roquejofire, see [NRI7b, NR97a, NR99] and [Roq98a]. The first



208

proof of the general case was given in [Fat98b]. There now exists
other proofs of the general case due to Barles-Souganidis and to
Roquejoffre, see [BS00] and [Roq98b].

The main ingredient in the proof is the following lemma:

Lemma 6.3.2. Under the hypothesis of theorem 6.3.1 above, for
each € > 0, there exists a t(e) > 0 such that for each u € C°(M,R)
and each t > t(e), if T, u has a derivative at x € M, then c[0] —e <
H(z,d; T, u) < c[0] + €. Consequently limy_,oo Hps (T, u) — ¢[0],
for each u € C°(M,R).

Proof. By Carneiro’s theorem 4.12.5, the set
We = {(x,v) | ¢[0] — € < H o L(z,v) < c[0] + €}

is a neighborhood of the Mather set My. We can now apply
lemma 5.3.4 with W, as neighborhood of My, to find t(¢) > 0 such
that for minimizing extremal curve ~ : [0,¢] — M with t > t(e),
there exists a ¢’ € [0,¢] with (y(¢'),4(¢')) € We, which means that
HoL(y(t),%(t)) is in [c[0] — €, ¢[0] +¢]. This implies that for such
a minimizing curve, we have

Vs € [0,],¢[0] — e < H o L((s),5(s)) < ¢[0] + €.

In fact, since 7 is a minimizing curve, its speed curve s — (v(s),%(s))
is a piece of an orbit of the Euler-Lagrange flow. Since the en-
ergy H o L is invariant by the Euler-Lagrange flow, it follows that
H o L(7(s),%(s)) does not depend on s € [0,t], but for s = ¢, we
know that this quantity is in [¢[0] — €, ¢[0] + €].

If we suppose that T} u is differentiable at x € M, and we pick
a curve v : [0,t] — M, with y(¢) = x, such that

Ty u(z) = u(+(0)) + /0 L(y(s).4(s)) ds.

then we know that + is minimizing, and from proposition 4.11.1 we
also know that d,7; v = L(z,%(t)). From what we saw above, we
indeed conclude that when ¢t > t(e) we must have H(z,d, T u) €
[c[0]—¢, c[0]+€]. It follows that the Hamiltonian constant Ha, (7T, u)
does converge to ¢[0] when t — +oo. O
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Proof of Theorem 6.3.1. Tt is convenient to introduce T; : CO(M,R) —

CY(M,R) defined by T, u = T, u + c[0]t. Tt is clear that T, is it-
self a semi-group of non-expansive maps whose fixed points are
precisely the weak KAM solutions in S_. We fix some u® € S_.
If u € CY(M,R), since Tt_ is non-expansive, and ©? € S_ is a fixed
point of Tt_, we obtain

1 Tew —u o = 1Teu — Tul o < Jlu—ul].

It follows that 3
[ Tiull < fJu—u? || + [lu? .

The family of functions Tyu = T, u + ct, with t > 1, is equi-
Lipschitzian by lemma 77, hence there exists a sequence t,, /" +00
such that T}, u — s uniformly. Using the Lemma above 6.3.2 and
Theorem 4.2.5, we see that us, < L+ ¢[0], and hence 1, < T)tio,
for each ¢ > 0. Since T} is order preserving, we conclude that

V' >t >0, < Thtioo < Ty tine.

To show that us is a fixed point for 7}, it then remains to find a
sequence S, " +oo such that Tsnuoo — Usg-

Extracting if necessary, we can assume that ¢,41 — ¢, / +00.
We will show that the choice s, = t,,4+1 — t,, does work. We have
TS o Tt u = Ttn .1 u therefore

||Tsnuoo — Us|lo < ||Tsnuoo - Tsn © TtnuHO + HTthu — uc|lo
< |luoo — Ty, ullo + Tt 4, — uscllo,
where we used the inequality ||Tsnuoo —T,, oTy ullo < |[ttes —
TtnuHo, which is valid since the maps T; are - non-expansive. Since
oo — T3, ullo — O, this indeed shows that Tjtie = Use.

We stlll have to see that Ttu — Uso, When t — +oo. If t > £,
we can write

|1 Tou = eollo = [ To—t, © ot = Tyt toollo < || T, v = oollo-
This finishes the proof, since Ttnu — Upo- U

A corollary is that the liminf in the definition of the Peierls
barrier is indeed a limit.



210

Corollary 6.3.3. For each x,y € M, we have h(x,y) = limy_, o he(z,y)+
c[0]t. Moreover, the convergence is uniform on M x M.

Proof. 1If we fix y in M, we can define continuous functions hY M —
R by h{(z) = h¢(x,y). It is not difficult to check that T, h{ =
hy ., Tt follows from theorem 6.3.1 that the limit of i1 (z,y) +
[0t = T, hy(z) + ¢[0)¢ exists, it must of course coincide with
liminfy .t hev1(z, y) +¢[0]t. By the definition of the Peierls bar-

rier, this last quantity is h(z,y) — ¢[0].
The fact that the limit is uniform on M follows from the fact
that the hy,t > 1 are equi-Lipschitzian by part (6) of lemma 5.3.2.
U

6.4 Invariant Lagrangian Graphs

Theorem 6.4.1. Suppose that N C T*M is a compact Lagran-
gian submanifold of T*M which is everywhere transverse to the
fibers of the canonical projection n* : T*M — M. If the image
@7 (N) is still transversal to the fibers of the canonical projection
7 : T*M — M, then the same is true for ¢%(N), for any s € [0, t].
Moreover, if there exists t, — oo such that ¢; () is still transver-
sal to the fibers of the canonical projection ©* : T*M — M, for
each n, then N is in fact invariant by the whole flow ¢j,t € R.

Proof. We first treat the case where N is the graph Graph(du) of
the derivative of a C' function u : M — R. Using proposition
4.11.1, we see that the derivative of the Lipschitz function 7T, u
wherever it exists is contained in ¢f(N). Since this last set is
a (continuous) graph over the base, the derivative of 7} u can
be extended by continuity, hence T, u is also C! and ¢} (N) =
Graph(dT, u). By theorem 6.2.2, it follows that T, u is C! and
¢;s(N) = Graph(dT, u), for each s € [0,¢]. If moreover, there
exists a sequence t,, — oo with ¢} (Graph(du)) transversal to the
fibers of #* : T*"M — M, then T, u is everywhere smooth. By
lemma 6.3.2, if ¢ > 0 is given, then the graph Graph(dT; u) is
contained in H~1([c[0] — ¢, c[0] + €]), for n large enough. Since H
is invariant by the flow ¢; and Graph(dT; u) = ¢} (Graph(du)),
it follows that Graph(du) is contained in H~1([c[0] — €, ¢[0] + €]),
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for all € > 0. Hence H is constant on Graph(du), with value c[0].
By lemma 2.5.10, the graph of du is invariant under ¢;.

To treat the general case, we observe that 7*|N : N — M is
a covering since NN is compact and transversal to the fibers of the
submersion . We will now assume that 7*|N is a diffeomorphism.
Since N is Lagrangian, it is the graph of a closed form @ on M.
We choose some C*° form w which is cohomologous to @w. If we
introduce the Lagrangian L, : TM — R, (z,v) — L(z,v) — w,(v),
its Hamiltonian H, is (z,p) — H(z,p + w,). This means that
H,=How,wherew : T*M — T*M, (x,p) — (x,p+w,). Since w
is closed, the diffeomorphism @ preserves the canonical symplec-
tic form on T*M, hence w conjugates ¢y*, the Hamiltonian flow
associated to H, and with ¢j, the Hamiltonian flow associated
to H. Moreover w sends fibers of 7* onto fibers of 7*. It follows
that ¢¢* (@' (IV)) is transversal to the fibers of 7. Since N is the
graph of @, its inverse @~!(IN), is the graph of @—w, which is exact
by the choice of w. Hence we can apply what we already proved
to conclude that @~!(N) is invariant under ¢¥*, from which we
obtain that N is invariant under ¢j.

It remain to consider the case where the covering map 7*|N :
N — M is not necessarily injective. To simplify notations, we
set p = 7*|N. If we consider the tangent map Tp : TN —
TM, (z,v) — (p(x),T;p(v), we obtain a covering, which reduces
to p on the 0-section identified to N. Since T}, p is an isomorphism,
for each € N, we can also define (Tp)* : T*N — T*M, (z,p) —
(p(z),poTyp~'. We define the Lagrangian L = LoTp : TN — R.
It is easy to see that L is as differentiable as L, is superlinear
in each fiber of TN, and for each (z,v) € TN 92L/0v?(z,v) is
positive definite. Moreover, the conjugate Hamiltonian of L is
H = H o (Tp)*. It is not difficult to check that the pullback of
the Liouville form ap; on T*M by (T'p)* is the Liouville form ay
on T*N. If we call gz;;" , the Hamiltonian flow associated with H, it
follows that (T'p)* o ¢f = ¢7. We conclude that N = [(Tp)*] ' (N)
is a Lagrangian submanifold of T% N, which is transversal to the
fibers of the projection 7% : T*N — N, and ¢y, (N) is transversal
to the fibers of w},. Using the identity map of N, we see that we
can find a section oq of the covering map 3, : N — N. If we call
Ny the image of 0y, we see that we can apply the previous case
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to conclude that Ny is invariant by ¢;. Hence N = (Tp)*(Ny) is
invariant by ¢;. O

Corollary 6.4.2. Suppose that N C T*M is a compact Lagran-
gian submanifold of T*M which is everywhere transverse to the
fibers of the canonical projection * : T*M — M. If ¢} (N) = N
for some tg # 0 then N is in fact invariant by the whole flow
o;,t € R.



Chapter 7

Viscosity Solutions

In this chapter, we will study the notion of viscosity solutions
which was introduced by Crandall and Lions, see [CL83]. There
are two excellent books on the subject by Guy Barles [Bar94]
and another one by Martino Bardi and Italo Capuzzo-Dolceta
[BCDY7]. A first introduction to viscosity solutions can be found
in Craig Evans book [Eva98]. Our treatment has been extremely
influenced by the content of these three books. Besides introduc-
ing viscosity solutions, the main goal of this chapter is to show
that, at least, for the Hamiltonians introduced in the previous
chapters, the viscosity solutions and the weak KAM solutions are
the same.

7.1 The different forms of Hamilton-Jacobi
Equation

We will suppose that M is a fixed manifold, and that H : T*M —
R is a continuous function , which we will call the Hamiltonian.

Definition 7.1.1 (Stationary HJE). The Hamilton-Jacobi asso-
ciated to H is the equation

H(x,dyu) = c,
where ¢ is some constant.
A classical solution of the Hamilton-Jacobi equation H (x, dyu) =

¢ (HJE in short) on the open subset U of M isa C! mapu : U — R
such that H(z,d,u) = ¢, for each x € U.

213
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We will deal usually only with the case H(x, d,u) = 0, since we
can reduce the general case to that case if we replace the Hamil-
tonian H by H. defined by H.(z,p) = H(x,p) — c.

Definition 7.1.2 (Evolutionary HJE). The evolutionary Hamilton-
Jacobi associated equation to the Hamiltonian H is the equation

ou ou

A classical solution to this evolutionary Hamilton-Jacobi equa-
tion on the open subset W of R x T*M is a C' map u: W — R
such that %(t,a;) + H (z, %(t,az)) =0, for each (t,z) € W.

(t,z)) = 0.

The evolutionary form can be reduced to the stationary form

by introducing the Hamiltonian H : T*(R x M) defined by
H(t,z,s,p) = s+ H(z,p),
where (t,r) € R x M, and (s,p) € Ty, (R x M) =R x T; M.

It is also possible to consider a time dependent Hamiltonian
defined on an open subset of M. Consider for example a Hamil-
tonian H : R x TM* — R, the evolutionary form of the HJE for
that Hamiltonian is

ou

ou
E(t,x) +H(t,x,%

A classical solution of that equation on the open subset W of
R x M is, of course, a C!' map u : W — R such that %(t,:n) +
H(t,:n,%(t,:n)) = 0, for each (t,x) € W. This form of the
Hamilton-Jacobi equation can also be reduced to the stationary
form by introducing the Hamiltonian H : T*(R x M) — R defined
by

(t,z)) = 0.

H(t,x,s,p) = s+ H(t,z,p).

7.2 Viscosity Solutions

We will suppose in this section that M is a manifold and H :
T*M — M is a Hamiltonian.

As we said in the introduction of this book, it is usually impos-
sible to find global C' solutions of the Hamilton-Jacobi equation
H(z,d,u) = c¢. One has to admit more general functions. A first
attempt is to consider Lipschitz functions.
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Definition 7.2.1 (Very Weak Solution). We will say that u :
M — R is a very weak solution of H (z,d,u) = ¢, if it is Lipschitz,
and H(z,d,u) = c almost everywhere (this makes sense since the
derivative of u exists almost everywhere by Rademacher’s theo-
rem).

This is too general because it gives too many solutions. A
notion of weak solution is useful if it gives a unique, or at least a
small number of solutions. This is not satisfied by this notion of
very weak solution as can be seen in the following example.

Example 7.2.2. We suppose M =R, so T*"M = R x R, and we
take H(x,p) = p?> — 1. Then any continuous piecewise C' function
u with derivative taking only the values 41 is a very weak solution
of H(x,dyu) = 0. This is already too huge, but there are even
more very weak solutions. In fact, if A is any measurable subset
of R, then the function

Fa(z) = /0 alt) — 1,

where x4 is the characteristic function of A, is Lipschitz with
derivative +1 almost everywhere.

Therefore we have to define a more stringent notion of solu-
tions. Crandall and Lions have introduced the notion of viscosity
solutions, see [CL83] and [CEL84].

Definition 7.2.3 (Viscosity solution). A function u:V — R is a
viscosity subsolution of H(x,d,u) = c on the open subset V' C M,
if for every C! function ¢ : V' — R and every point 2y € V such
that u — ¢ has a mazimum at xq, we have H (zg,d,¢) < c.

A function v : V' — Ris a viscosity supersolution of H (x, dyu) =
c on the open subset V C M, if for every C! function ¢ : V. — R
and every point yg € V such that u — v has a minimum at yg, we
have H (yo, dy,v) > c.

A function u : V' — R is a viscosity solution of H(x,d,u) = ¢
on the open subset V. C M, if it is both a subsolution and a
supersolution.

This definition is reminiscent of the definition of distributions:
since we cannot restrict to differentiable functions, we use test



216

functions (namely ¢ or ) which are smooth and on which we can
test the condition. We first see that this is indeed a generalization
of classical solutions.

Theorem 7.2.4. A C! function u : V — R is a viscosity solution
of H(x,dyu) = c on V if and only if it is a classical solution.

In fact, the C! function u is a viscosity subsolution (resp. su-
persolution) of H(x,d,u) = ¢ on V if and only H(z,d,u) < ¢
(resp. H(x,dyu) > ¢), for each x € V.

Proof. We will prove the statement about the subsolution case.
Suppose that the C! function u is a viscosity subsolution. Since u
is C!, we can use it as a test function. But v — u = 0, therefore
every z € V is a maximum, hence H(x,dyu) < c for each z € V.
Conversely, suppose H(x,dyu) < ¢ for each x € V. If ¢ :
V — Ris C! and u — ¢ has a maximum at o, then the differen-
tiable function u — ¢ must have derivative 0 at the maximum z.
Therefore dy,¢ = dyyu, and H(x,dy,¢) = H(z,dy,u) < c. O

To get a feeling for these viscosity notions, it is better to re-
state slightly the definitions. We first remark that the condition
imposed on the test functions (¢ or ) in the definition above is
on the derivative, therefore, to check the condition, we can change
our test function by a constant. Suppose now that ¢ (resp. )
is C! and u — ¢ (resp. u — %) has a maximum (resp. minimum)
at xo (resp. yo), this means that u(zg) — ¢(xg) > u(x) — ¢(x)
(resp. u(yo) — ¥(yo) < u(x) — (x)). As we said, since we can add
to ¢ (resp. 1) the constant u(zo) — ¢(zo) (resp. u(yo) — ¥(¥o)),
these conditions can be replaced by ¢ > w (resp. ¥ < wu) and
u(xg) = ¢(xg) (resp. u(yo) = ¥(yo)). Therefore we obtain an
equivalent definition for subsolution and supersolution.

Definition 7.2.5 (Viscosity Solution). A function v : V — R is
a subsolution of H(x,d,u) = c¢ on the open subset V C M, if for
every C! function ¢ : V — R, with ¢ > u everywhere, at every
point zg € V' where u(xg) = ¢(xo) we have H(xg,dz,¢) < ¢, see
figure 7.1.

A function u : V' — R is a supersolution of H(x,dyu) = ¢ on
the open subset V' C M, if for every C! function ¥ : V — R, with
u > 1 everywhere, at every point yy € V' where u(yg) = 1¥(yo) we
have H (yo, dy,1) > c, see figure 7.2.
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Graph(¢)

(0, u(z0))

/\/\/Gmph(u)

Figure 7.1: Subsolution: ¢ > u,u(zo) = ¢(xo) = H(zo,dz¢) < c

To see what the viscosity conditions mean we test them on the
example 7.2.2 given above.

Example 7.2.6. We suppose M = R, so T"M = R x R, and
we take H(z,p) = p*> — 1. Any Lipschitz function v : R — R
with Lipschitz constant < 1 is in fact a viscosity subsolution of
H(z,du) = 0. To check this consider ¢ a C! function and zg € R
such that ¢(xg) = u(xg) and ¢(z) > u(x), for x € R. We can write

o(x) — p(w0) > u(x) — u(wo) > —|z — 20)-
For x > x(, this gives

¢(z) — p(x0)

Tr — X

2 _17

hence passing to the limit ¢’'(zg) > —1. On the other hand, if
(x — xp) < 0 we obtain

¢(z) — p(x0)

Tr — X

<1

hence ¢'(zg) < 1.This yields |¢'(x0)| < 1, and therefore

H(w, ¢/ (x0)) = |¢/ (x0)|” = 1 < 0.
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(o, u(20) Graph(u)

Graph(¢))

Figure 7.2: Supersolution: ¢ < u, u(xo)=1v(xo)= H(zg, dz,1)>c

So in fact, any very weak subsolution (i.e. a Lipschitz function u
such that H(z,dz, u) < 0 almost everywhere) is a viscosity subso-
lution. This is due to the fact that, in this example, the Hamilto-
nian is convex in p, see 8.3.4 below.

Of course, the two smooth functions = — x, and z — —x are
the only two classical solutions in that example. It is easy to check
that the absolute value function = +— |z|, which is a subsolution
and even a solution on R\ {0} (where it is smooth and a classical
solution), is not a viscosity solution on the whole of R. In fact
the constant function equal to 0 is less than the absolute value
everywhere with equality at 0, but we have H(0,0) = —1 < 0, and
this violates the supersolution condition.

The function = +— —|z| is a viscosity solution. It is smooth
and a classical solution on R\ {0}. It is a subsolution everywhere.
Moreover, any function ¢ with ¢(0) = 0 and ¢(z) < —|x| every-
where cannot be differentiable at 0. This is obvious on a picture
of the graphs, see figure 7.3. Formally it results from the fact that
both ¢(x) — x and ¢(z) + = have a maximum at 0.

We now establish part of the relationship between viscosity
solutions and weak KAM solutions.

Proposition 7.2.7. Let L : TM — R be a Tonelli Lagrangian on
the compact manifold M. If the function v : V — R, defined on
the open subset V' C M, is dominated by L+-c, then u is a viscosity
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Figure 7.3: Graphs of ¢(z) < —|z| with ¢(0) = 0.
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subsolution of H(x,d,u) = ¢ on V, where H is the Hamiltonian
associated to L, i.e. H(x,p) = sup,eq, 1 (P, v) — L(z,v).

Moreover, any weak KAM solution u_ € S_ is a viscosity
solution of H(z,dyu) = c[0].

Proof. To prove the first part, let ¢ : V — R be C!, and such
that u < ¢ with equality at xg. This implies ¢(zg) — ¢(x) <
u(zg) —u(x). Fix v € Ty, M and choose 7 :] — §,5[— M, a C! path
with v(0) = xo, and 4(0) = v. For ¢t €] — 4, 0], we obtain

¢(7(0)) — o(7v(t)) < u(v(0)) —u(v(?))
0
glLW@d@M&wt

Dividing by —t > 0 yields

- 0
o(1(1)) t $(1(0)) _ _it/t L(~(s),4(s)) ds + c.

If we let ¢ — 0, we obtain dy,¢(v) < L(zo,v) + ¢, hence
H(zo,dgo¢) = sup dyop(v) — L(zo,v) < c.

UET:CO M

This shows that u is a viscosity subsolution.

To prove that u_ € S_ is a viscosity solution, it remains to
show that it is a supersolution of H(x,d,u_) = ¢[0]. Suppose that
Y : M — Ris C!, and that u_ > 9 everywhere with u_(z0) =
(o). We have (xo) — ¢(z) > u_(xg) — u—(x), for each x € M.
We pick a C! path v :] — 00,0] — M, with v(0) = x0, and such
that

0
vt <0,u—(7(0)) —u-(y(t)) = /t L(y(s),7(s)) ds — c[0]¢.

Therefore

0
vOO) = 600) 2 [ LO().5(5) ds — 0l
t
If, for t < 0, we divide both sides by —t > 0, we obtain

_ 0

B 00D 5 L[ 10300 + L

If we let t tend to 0, this yields d,,¢(¥(0)) > L(zo,7(0)) + ¢[0];
hence H(zg, duyt)) > dey$(3(0)) — L(z0,4(0)) = c[0]. .
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The following theorem will be needed to prove the converse of
proposition 7.2.7.

Theorem 7.2.8. Suppose L : TM — R is a Tonelli Lagran-
gian on the compact manifold M. Let T, be the associated Lax-
Oleinik semi-group. If u € C°(M,R), then the continuous function
U :[0,+00[xM — R defined by U(t,z) = T, u(x) is a viscosity
solution of

oU ou

on the open set |0, +oo[x M, where H : T*M — R is the Hamil-
tonian associated to L, i.e. H(x,p) = sup,er, p p(v) — L(x,v).

Proof. Suppose that v : [a,b] — M. Since T, v = T, [T, (u)],

—al

(t,z)) =0

using the definition of T,~ , we get
T, u(y(a)) =T," [T, (w)](v(a)
b
< Trubr(@) + [ L) A() ds

therefore

b
Umwm—w%wmgjwawmw, ()

We now show that U is a viscosity subsolution. Suppose ¢ >
U, with ¢ of class C! and (tg,z0) = U(tg,xo), where ty > 0.
Fix v € Ty, M, and pick a C! curve 7 : [0,#g] — M such that
(+(to), A (ko)) = (z,v).

If 0 <t <tp, we have by (%) and therefore

Ulto,v(t0)) — U(t,7(1)) < /t 0 L(y(s),7(s))ds.  (xx)

Since ¢ > U, with equality at (to,xo), noticing that y(tg) = o,
we obtain from ()

vt €]0, to[, ¢(to, v(to)) — &(t,7(t)) < /t 0 L(y(s),7(s)) ds.

Dividing by to —t > 0, and letting t — £y, we get

0 0
Yo € Tx0M7 8—?@0,%0) + a—i(to,xo)(v) < L(a:o,v).
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By Fenchel’s formula 1.3.1

H(xo, %(to,xo)) = sup %(to,mo)(v) — L(zg,v),

ox UET;,COM Ox
therefore 06 26
E(to’%) + H(xo, %(toymo)) <0.

To prove that U is a supersolution, we consider ¥ < U, with ¢ of
class Ct. Suppose Ul(tg, z9) = ¥(to, xg), with tg > 0.
We pick « : [0,%0] — M such that v(tg) = zo and

U%wwzﬂM@MZMWW+AOM%$%$M&

Since U(0,7(0)) = u(v(0)), this can be rewritten as

U%mw—U®ﬁ®D=AOM%$ﬂ®D®. (s % %)

Applying (*) above twice, we obtain
to
Ulta.a0) = U(t.A(0) < [ L) 3(5) s

U(t,~(t)) = U(0,7(0)) < /0 O L(y(s),7(s)) ds.

Adding this two inequalities we get in fact by (**) an equality,
hence we must have

w6@%ﬂ%wwm—wam=[”Mwﬂw@Ws

Since ¢ < U, with equality at (¢g,z¢), we obtain

w%ﬁ%»—WVWDEAOUﬂﬂﬂﬂw&

Dividing by tg — t > 0, and letting t — to, we get

oY

L (t0,20) + S t0,20) 300) 2 Lo, 3(00))

ox
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By Fenchel’s formula 1.3.1

H(wo, 92 t0,70)) > 92 (10, 20) (3(t0)) — Lo, 3(t0)),

Therefore

o 0
% 10, 20) + Hzo, 2 (10, 0) 0. O

7.3 Lower and upper differentials
We need to introduce the notion of lower and upper differentials.

Definition 7.3.1. If u : M — R is a map defined on the manifold
M, we say that the linear form p € T; M is a lower (resp. upper)
differential of u at zg € M, if we can find a neighborhood V of x
and a function ¢ : V' — R, differentiable at zo, with ¢(z¢) = u(zo)
and d;,¢ = p, and such that ¢(z) < u(x) (resp. ¢(x) > u(zx)), for
every x € V.

We denote by D~ u(zg) (resp. DT u(zg)) the set of lower (resp.
upper) differentials of u at .

Exercise 7.3.2. Consider the function v : R — R,z — |z,
for each x € R, find D™ u(z), and DT u(z). Same question with
u(x) = —|x|.

Definition 7.3.1 is not the one usually given for M an open
set of an Euclidean space, see [Bar94], [BCD97] or [Cla90]. It is
nevertheless equivalent to the usual definition as we now show.

Proposition 7.3.3. Let u : U — R be a function defined on the
open subset U of R™, then the linear form p is in D~ u(xg) if and
only if

=0 [l — ol
In the same way p € DV u(xg) if and only if
lim sup u(x) — u(zo) — p(x — 20) <0.

=0 [ = ol
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Proof. Suppose p € D™ u(xq), we can find a neighborhood V' of z
and a function ¢ : V' — R, differentiable at o, with ¢(x¢) = u(zo)
and d,,¢ = p, and such that ¢(z) < wu(z), for every xz € V.
Therefore, for x € V', we can write

¢(z) — ¢(xo) — p(x — o) _ u(z) — ulzo) — p(x — o)
|2 — o] - (e |

Since p = dz,¢ the left hand side tends to 0, therefore

lim inf u(r) — u(ro) — p(x — o)

> 0.
2= [ — ol

Suppose conversely, that p € R™ satisfies

lim inf (u(z) — u(wo) — p(r — x0))

> 0.
a0 [l — ol

We pick r > 0 such that the ball é(mo,r) C U, and for h € R"
such that 0 < ||h|| < r, we set

u(zo + h) —u(xg) — p(h)

¢(h) = min(0, 7 )

It is easy to see that limy,_ge(h) = 0. We can therefore set €(0) =
0. The function ¢ : B(xo,r) — R, defined by ¢(z) = u(zq)+p(z —
x9) + ||z — mo|le(x — xp), is differentiable at xy, with derivative
p, it is equal to u at z¢ and satisfies ¢(x) < u(x), for every x €
Bz, 7). O

Proposition 7.3.4. Let u : M — R be a function defined on the
manifold M.

(i) For each z in M, we have D" u(z) = —D~(—u)(z) = {-p |
p € D™ (—u)(z)} and D™ u(x) = =D (—u)(x).

(ii) For each z in M, both sets DV u(x), D~ u(z) are closed con-
vex subsets of T M.

(iii) If u is differentiable at x, then DV u(z) = D™ u(x) = {du}.

(iv) If both sets D u(z), D~ u(x) are non-empty then u is differ-
entiable at x.
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(v) ifv: M — R is a function with v < u and v(x) = u(z), then
D~ v(z) € D~ u(z) and DYv(z) D Dt u(x).

(vi) If U is an open convex subset of an Euclidean space and
u: U — R is convex then D~ u(z) is the set of supporting
linear forms of u at x € U. In particular DV u(z) # 0 if and
only if u is differentiable at x.

(vil) Suppose M has a distance d obtained from the Riemannian
metric g. If u : M — R is Lipschitz for d with Lipschitz
constant Lip(u), then for any p € D¥u(z) we have |p|, <
Lip(u).

In particular, if M is compact then the sets D¥u = {(z, p) |
p € D*u(x),x € M} are compact.

Proof. Part (i) and and the convexity claim in part (ii) are obvious
from the definition 7.3.1.

To prove the fact that DT u(zg) is closed for a given for zg € M,
we can assume that M is an open subset of R¥. We will apply
proposition 7.3.3. If p, € DT u(xg) converges to p € R** we can
write

u(z) — u(wo) — pn(r — 70)
|z — 2o

u(z) — u(wo) — p(x — x0)

<
[l — o

+|lpn—pll-

Fixing n, and letting x — x(, we obtain

Jimn sup u(z) — u(zo) — p(x — w0)

< |lpn —pl-
z—0 2 — ol

If we let n — oo, we see that p € D u(xp).

We now prove (iii) and (iv) together. If u is differentiable at
o € M then obviously d,,u € D u(zg) N D™ u(zg). Suppose
now that both DV u(zg) and D~ u(zg) are both not empty, pick
p+ € DMu(zg) and p— € D™ u(xg). For h small, we have

p—(h) + [hlle-(h) < ulzo + h) —u(zo) < pi(h) + [|hller(h), (%)

where both e_(h) and €4 (h) tend to 0, a h — 0. If v € R", for
t > 0 small enough, we can replace h by tv in the inequalities (*)
above. Forgetting the middle term and dividing by ¢, we obtain

p-(v) + [[olle-(tv) < py(v) + [[o]ler (o),
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letting ¢ tend to 0, we see that p_(v)+ < p4(v), for every v € R™.
Replacing v by —v gives the reverse inequality p4(v)+ < p_(v),
therefore p_ = p,. This implies that both DT u(zg) and D~ u(zg)
are reduced to the same singleton {p}. The inequality (*) above
now gives

p(h) + [[hlle-(h) < u(zo + h) — u(wo) < p(h) + [|hlles(h),

this clearly implies that p is the derivative of u at xg.

Part (v) follows routinely from the definition.

To prove (vi), we remark that by convexity u(xzg + th) < (1 —
t)u(zo) + tu(xo + h), therefore

u(xo + th) — u(xo).

u(zg + h) — u(xg) > :

If p is a linear form we obtain

u(zo + h) — u(xo) — p(h)
Al

u(wo + th) — u(ze) — p(h)
[[th|]

>

If p € D™u(xp), then the liminf as ¢ — 0 of the right hand side is
> 0, therefore u(zp+ h) —u(xo) — p(h) > 0, which shows that p is
a supporting linear form. Conversely, a supporting linear form is
clearly a lower differential.

It remains to prove (vii). Suppose, for example that ¢ : V' — R
is defined on some neighborhood V of a given g € M, that it is
differentiable at zg, and that ¢ > w on V, with equality at xg.
If v € TyyM is given, we pick a C! path v : [0,6] — V, with
5 > 0,7(0) = xg, and 4(0) = v.We have

vt € [0,6], [u(y(t)) — u(xo)| < Lip(u)d(v(t), zo)

Lip(u / 15 (s)]l ds.

Therefore u(7(t)) — u(zo) > — Lip(u) [ |7(s)[| ds. Since ¢ > u on
V', with equality at xg, it follows that

d(7(t)) — ¢(xo) > — Lip(u) /0 t||1(s)|| ds.
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Dividing by t > 0, and letting ¢t — 0, we get

dyo¢(v) = — Lip(u)|Jv]|.

Since v € T,,M is arbitrary, we can change v into —v in the
inequality above to conclude that we also have

dzy@(v) < Lip(u)|[v].
It then follows that ||d,¢|| < Lip(u). O

Lemma 7.3.5. If u : M — R is continuous and p € DV u(x)
(resp. p € D~ u(zg)), there exists a C' function ¢ : M — R,
such that ¢(zo) = wu(zo),dz,phi = p, and ¢(z) > u(x) (resp.
o(z) < wu(z)) for x # xg.

Moreover, if W is any neighborhood of ¢y and C > 0, we can
choose ¢ such that ¢(x) > u(x) + C, for x ¢ W (resp. ¢p(z) <
u(x) — C).

Proof. Assume first M = RF. To simplify notations, we can as-
sume zg = 0. Moreover, subtracting from w the affine function
x +— u(0) + p(x). We can assume u(0) = 0 and p = 0. The fact
that 0 € DTu(0) gives

u(x)

limsup —= < 0.
v—0 ]|
If we take the non-negative part u™(z) = max(u(x),0) of u, this
gives
+
lim - ()
a=0 ||z

=0. (#)
If we set
cn = sup{u’(z) [ 27" < ||zl < 27"}

then ¢, is finite and > 0, because u™ > 0 is continuous. Moreover
using that 2"uy (z) < ut(z)/|z||, for ||z|| < 27", and the limit in
(#) above, we obtain

lim [sup 2™¢p,] = 0. (@)

n—00"m>n



228

We now consider 6 : R¥ — R a C* bump function with § = 1 on
the set {z € R¥ | 1/2 < ||z < 1}, and whose support is contained
in {x € RF | 1/4 < ||z|| < 2}. We define the function v : RF — R
by
P(z) = Z(cn +272M)9(2"x).
neL

This function is well defined at 0 because every term is then 0. For
x # 0, we have 0(2"z) # 0 only if 1/4 < ||2"z| < 2. Taking the
logarithm in base 2, this can happen only if —2 — log,||z|| < n <
1 — logs||x||, therefore this can happen for at most 3 consecutive
integers n, hence the sum is also well defined for = # 0. Moreover,
if x # 0, the set V; = {y # 0 | —1 — logyl|z|| < —logs|lyll <
1 —logy||x||} is a neighborhood of x and

Yy € Vy,¥(y) = > (cn +272)0(2%y). (%)

—3—log,||z[| <n<2—log, |||

This sum is finite with at most 5 terms, therefore 6 is C*° on

RF\ {0}.
We now check that v is continuous at 0. Using equation (*),
and the limit (O) we see that

0 < () < > (en +277")

—3—log,||z[| <n<2—log, |||

<5 sup  (cp +272) - 0asx — 0.
n>—3—log,||z||

To show that 9 is C' on the whole of R* with derivative 0 at 0,
it suffices to show that d,1 tends to 0 as ||z|| — 0. Differentiating
equation (*) we see that

dpth = > (cn 4 272)2%dyn 0.

—3—log, [Jz[|<n<2—log, ||z

Since 6 has compact support K = sup,cpn|dz0]| is finite. The
equality above and the limit in (©) give

[dz]] < 5K sup{2"e, +27" [ n > =2 — log, ||},

but the right hand side goes to 0 when |z| — 0.
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We now show ¥ (x) > u(z), for x # 0. There is an integer ng
such that ||z|| € [27™0T1 2770 hence §(2™z) = 1 and ¥ (z) >
0(2M0x) (Cpy +2720) > ¢ + 27210 since ¢, = sup{ut(y) | ||yl €
[2(=m0+1) 9=m0]} " we obtain ¢,, > ut(z) and therefore 1 (z) >
ut(x) > u(x).

It remains to show that we can get rid of the assumption
M =TR*, and to show how to obtain the desired inequality on the
complement of W. We pick a small open neighborhood U C W
of xg which is diffeomorphic to an Euclidean space. By what we
have done, we can find a C! function ¢ : U — R with ¢(zg) =
u(zg), dyytp = p, and Y(x) > u(x), for x € U \ {xo}. We then
take a C* bump function ¢ : M — [0,1] which is equal to 1
on a neighborhood of zy and has compact support contained in
U Cc W. We can find a C® function ¢ : M — R such that
¢ > u+ C. It is easy to check that the function ¢ : M — R
defined by ¢(z) = (1 — p(x))(z) + () (x) has the required
property. ]

The following simple lemma is very useful.

Lemma 7.3.6. Suppose ¢ : M — R is C", with r > 0. If zg €
M,C > 0, and W is a neighborhood of xg, there exist two C"
functions Y4,9_ : M — R, such that ¥ (xz¢) = ¥_(x9) = P¥(x0),

and Y1 (x) > ¢Y(z) > ¢Y_(z), for x # xy. Moreover V() —
C>yY(x) > _(x)+C, forx ¢ W. If r > 1, then necessarily
xow—i- = da)ow— = x()q/}

Proof. The last fact is clear since ¢, — 1 (resp. ¥ — 1)) achieves
a minimum (resp. maximum) at .

Using the same arguments as in the end of the proof in the
previous lemma to obtain the general case, it suffices to assume
C =0 and M = R". In that case, we can take ¢4 (z) = (x) £
& — o> O

Proposition 7.3.7. Suppose M is a compact manifold. Let L :
TM — R be a C? Tonelli Lagrangian. Consider the associ-
ated Lax-Oleinik semi-groups T, ,T;". Suppose that t > 0, and
that v : [0,t] — M is a C! Curve Wlth 7() =z (resp ~7(0) =
x), and such that T, u(z ) = u(y(0)) + fo (s))ds (resp.
Ttu(z) = fo )ds) then 8L/8v( (t),7(t)) €
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DT} u)(x), and OL/0v(7(0),5(0)) € D~u(v(0)) (resp. OL/dv(v(0),7(0)) €
D~ [T} u)(x) and OL/9v(y(t),¥(t)) € D [u](+(2)))-

Proof. A Faire!!!!! O

7.4 Criteria for viscosity solutions

We fix in this section a continuous function H : T*M — R.
Theorem 7.4.1. Let uw: M — R be a continuous function.

(i) w is a viscosity subsolution of H(z,d,u) = 0 if and only if
for each x € M and each p € DVu(x) we have H(x,p) < 0.

(ii) w is a viscosity supersolution of H(x,dyu) = 0 if and only if
for each x € M and each p € D™ u(x) we have H(z,p) > 0.

Proof. Suppose that u is a viscosity subsolution. If p € D u(x),
since u is continuous, it follows from 7.3.5 that there exists a C!
function ¢ : M — R, with ¢ > uwon M, u(zg) = ¢(0) and d,¢ = p.
By the viscosity subsolution condition H(z,p) = H(z,d,¢) <0, .

Suppose conversely that for each x € M and each p € DT u(zg)
we have H(x,p) < 0. If ¢ : M — R is C! with u < ¢, then at each
point x where u(z) = ¢(z), we have d,¢p € D u(x) and therefore
H(z,dy¢) <0. O

Since D*u(z) depends only on the values of « in a neighbor-
hood of x, the following corollary is now obvious. It shows the
local nature of the viscosity conditions.

Corollary 7.4.2. Let u: M — R be a continuous function.

If u is a viscosity subsolution (resp. supersolution, solution) of
H(z,dyu) = 0 on M, then any restriction ujy to an open sub-
set U C M is itself a viscosity subsolution (resp. supersolution,
solution) of H(x,dyu) =0 on U.

Conversely, if there exists an open cover (U;);er of M such that
every restriction uy, Is a viscosity subsolution (resp. supersolu-
tion, solution) of H(z,d,u) = 0 on U;, then u itself is a viscosity
subsolution (resp. supersolution, solution) of H(x,d,u) = 0 on M.

Here is another straightforward consequence of theorem 7.4.1.
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Corollary 7.4.3. Let u : M — R be a locally Lipschitz func-
tion. If w is a viscosity subsolution (resp. supersolution solu-
tion) of H(x,d,u) = 0, then H(z,d,u) < 0 (resp. H(z,dyu) >
0, H(x,dyu) = 0) for almost every x € M.

In particular, a locally Lipschitz viscosity solution is always a
very weak solution.

We end this section with one more characterization of viscosity
solutions.

Proposition 7.4.4 (Criterion for viscosity solution). Suppose
that v : M — R is continuous. To check that u is a viscosity
subsolution (resp. supersolution) of H(x,d,u) = 0, it suffices to
show that for each C* function ¢ : M — R such that u — ¢ has
a unique strict global maximum (resp. minimum), attained at x,

we have H(xzo,dyz,¢) <0 (resp. H(zo,dg,¢) > 0).

Proof. We treat the subsolution case. We first show that if ¢ :
M — R is a C* function such that u— ¢ achieves a (not necessarily
strict) maximum at xg, then we have H(xg,dz,¢) < 0. In fact
applying 7.3.6, we can find a C* function ¢4 : M — R such that
¢+(20) = ¢(20), duy P+ = duo®, $+(2) > ¢(z), for z # 2. The
function u — ¢4 has a unique strict global maximum achieved at
x0, therefore H(xq,dgz,¢+) < 0. Since dy ¢4+ = dy, ¢, this finishes
our claim.

Suppose now that ¢ : M — R is C! and that «—1 has a global
maximum at zo, we must show that H(zo,dz,¢) < 0. We fix a
relatively compact open neighborhood W of xq, by 7.3.6, applied to
the continuous function 1), there exists a C! function v, : M — R
such that 71)—1-(330) = ¢($0),dzo¢+ = dwo¢v¢+($) > 7/)(:17)’ for x #
xg, and even ¢y (z) > (x) + 3, for © ¢ W. It is easy to see that
u—1)4 has a strict global maximum at z¢, and that u(x)—4 () <
u(zo) — Y4 (xg) — 3, for x ¢ W. By smooth approximations, we
can find a sequence of C*° functions ¢, : M — R such that ¢,
converges to 1/, in the C! topology uniformly on compact subsets,
and sup,cs|dn () — 4 (x)| < 1. This last condition together with
u(z) =4 (z) < u(zo)—1p4(x0)—3, for x ¢ W, gives u(x) —dp(x) <
u(zo) — Pn(xo) — 1, for ¢ W. This implies that the maximum of
u—a, on the compact set W is a global maximum of u—¢,,. Choose
yn € W where u— ¢,, attains its global maximum. Since ¢,, is C*°,
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from the beginning of the proof we must have H(y,,dy, ¢n) < 0.
Extracting a subsequence, if necessary, we can assume that y,
converges to Yoo € W. Since ¢,, converges to 14 uniformly on the
compact set W, necessarily v — 1), achieves its maximum on W at
Yoo- This implies that y.. = xg, because the strict global maximum
of u — zﬁ is precisely attained at xo € W. The convergence of ¢,
to 4 is in the C! topology, therefore (yn,dy, dn) — (20, duyt)+),
and hence H (yy, dy, ¢n) — H(zo,dy,1+), by continuity of H. But
H(yn,dy, ¢n) <0 and dy,t) = dyyth4, hence H(xg,dzp) < 0. O

7.5 Coercive Hamiltonians

Definition 7.5.1 (Coercive). A continuous function H : T*M —
R is said to be coercive above every compact subset, if for each
compact subset K C M and each ¢ € R the set {(z,p) € T*M |
x € K,H(z,p) < ¢} is compact.

Choosing any Riemannian metric on M, it is not difficult to
see that H is coercive, if and only if for each compact subset
K C M, we have lim .o H(z,p) = +00 the limit being uniform
inx e K.

Theorem 7.5.2. Suppose that H : T*M — R is coercive above
every compact subset, and ¢ € R then a viscosity subsolution
of H(x,d,u) = c is necessarily locally Lipschitz, and therefore
satisfies H(x,d,u) < ¢ almost everywhere.

Proof. Since this is a local result we can assume M = RF, and
prove only that u is Lipschitz on a neighborhood of the origin 0.
We will consider the usual distance d given by d(z,y) = ||y — z||,
where we have chosen the usual Euclidean norm on R*. We set

to = sup{||p|| | p € R, 3z € R¥, ||z|| < 3, H(x,p) < c}.

Suppose u : R¥ — R is a subsolution of H(z,d,u) = c¢. Choose
¢ > {y + 1 such that

20 > sup{|u(y) —u(z)| | z,y € R*, |lz]| <3, ly]| < 3}.

Fix z, with ||z|| < 1, and define ¢ : R* — R by é(y) = £||y—z]|.
Pick yo € B(z,2) where the function y — u(y) — ¢(y) attains its
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maximum for y € B(z,2). We first observe that g is not on the
boundary of B(x,2). In fact, if ||y — || = 2, we have u(y) — ¢(y) =
u(y)—20 < u(z) = u(x)—¢(x). In particular yq is a local maximum
of u— ¢. If yp is not equal to x, then dy,¢ exists, with dy,¢(v) =
U{yo — x,v)/||lyo — ||, and we obtain ||dy,¢| = ¢. On the other
hand, since u(y) > u(yo) — ¢(yo) + ¢(y), for y in a neighborhood
of yo, we get dy,¢ € DT u(yo), and therefore have H(yo, dy,¢) < c.
By the choice of ¢y, this gives ||dy,¢| < ¢o < o+ 1 < £. This
contradiction shows that yo = z, hence u(y) — ||y — z| < u(x),
for every x of norm < 1, and every y € B(z,2). This implies that
u has Lipschitz constant < ¢ on the unit ball of R, O

7.6 Viscosity and weak KAM

In this section we finish showing that weak KAM solutions and
viscosity solutions are the same.

Theorem 7.6.1. Let L : TM — R be a Tonelli Lagrangian on
the compact manifold M. Denote by H : T*M — R its associated
Hamiltonian. A continuous function u : U — R is a viscosity
subsolution of H(x,d,u) = ¢ on the open subset U if and only if
u=<L+ec.

Proof. By proposition 7.2.7, it remains to prove that a viscosity
subsolution of H(x,d,u) = ¢ is dominated by L + ¢ on U. Since
H is superlinear, we can apply theorem 7.5.2 to conclude that
u is locally Lipschitz, and hence, by corollary 7.4.3, we obtain
H(z,dyu) < c almost everywhere on U. From lemma 4.2.3, we
infer u < L4+ con U. O

Theorem 7.6.2. Let L : TM — R be a Tonelli Lagrangian on
the compact manifold M. Denote by H : T*M — R its associated
Hamiltonian. A continuous function u : M — R is a viscosity
solution of H(x,dyu) = c if and only if it is Lipschitz and satisfies
u =T, u+ct, for each t > 0. (In particular, we must have c=c[0].)

Proof. If u satisfies u = T, u + ct, for each ¢ > 0, then necessarily
¢ = ¢[0], and therefore, by proposition 7.2.7, the function u is a
viscosity solution of H(z,dyu) = ¢ = ¢[0].
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Suppose now that u is a viscosity solution. From proposition
7.6.1, we know that u < L + ¢, and that u is Lipschitz. We then
define u(t,x) = T, u(x). We must show that u(t,z) = u(x) — ct.
Since we know that @ is locally Lipschitz on |0, 4+o00[x M, it suf-
fices to show that Oyu(t,x) = —c at each (¢,z) where @ admits
a derivative. In fact, since @ is locally Lipschitz, it is differen-
tiable almost everywhere, therefore for almost every z the deriva-
tive d(; ;) exists for almost every ¢. If we fix such an z, it follows
that dyu(t,z) = —c, for almost every t. But, since the ¢t — (¢, x)
is locally Lipschitz, it is the integral of its derivative, therefore
a(t,x) — u(0,x) = —ct. This is valid for almost every = € M, and
by continuity for every x € M.

It remains to show that at a point (¢,z) where @ is differen-
tiable, we have dyu(t,z) = —c. From proposition 7.2.8, we know
that @ is a viscosity solution of d,u + H(z,d,u) = 0. Hence we
have to show that H(z,d,u(t,z)) = c¢. In fact, we already have
that H(x,0,u(t,z)) < ¢, because u(t,-) = T, u is dominated by
L + ¢, like u. It remains to prove that H(x, 8 L U(t,x)) > c. To do
this, we identify the derivative of 0 u(t a:) We choose ’y [0 t] —

M with ~(t) = x and T} u(z) = ) + fo (s))ds.
The curve ~ is a minimizer of the actlon In partlcular the
curve s — (7(s),7(s)) is a solution of the Euler-Lagrange equa-
tion, it follows that the energy H(vy(s), g—ﬁ(’y(s)),’y(s))) is con-
stant on [0, ¢]. By proposition 7.3.7, We have OL/0v(vy(t)),5(t)) €
DH (T u)(z), therefore 0,7(t, z) = av L (y(t)),#(t)). Using the fact
that H(v(s), au( (s)),4(s))) is constant, we are reduced to see
that H(v(0), 8U( (0)),%(0))) > c. But the same proposition 7.3.7
yields also 9L/0v(v(0),%(0)) € D~ u(y(0)). We can therefore
conclude using theorem 7.4.1, since u is a viscosity solution of
H(z,d,u) = c. O



Chapter 8

More on Viscosity
Solutions

We further develop the theory of viscosity solutions. Although
many things are standard, whatever is not comes from joint work
with Antonio Siconolfi, see [FS04] and [FS05].

8.1 Stability

Theorem 8.1.1 (Stability). Suppose that the sequence of contin-
uous functions H, : T*M — R converges uniformly on compact
subsets to H : T*M — R. Suppose also that u, : M — R is a se-
quence of continuous functions converging uniformly on compact
subsets to u : M — R. If, for each n, the function u,, is a viscos-
ity subsolution (resp. supersolution, solution) of H,(x,d,u,) = 0,
then u is a viscosity subsolution (resp. supersolution, solution) of
H(z,d,u) =0.

Proof. We show the subsolution case. We use the criterion 7.4.4.
Suppose that ¢ : M — R is a C* function such that u — ¢ has
a unique strict global maximum, achieved at xg, we have to show
H(zo,dz,¢) < 0. We pick a relatively compact open neighbor-
hood W of . For each n, choose y, € W where u,, — ¢ attains its
maximum on the compact subset W. Extracting a subsequence,
if necessary, we can assume that v, converges to yso € W. Since
u, converges to u uniformly on the compact set W, necessarily

235
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u — ¢ achieves its maximum on W at y.. But u — ¢ has a strict
global maximum at xg € W therefore yo, = 9. By continuity
of the derivative of ¢, we obtain (yn,dy,¢) — (2o,dz,¢). Since
W is an open neighborhood of z, dropping the first terms if nec-
essary, we can assume ¥, € W, this implies that ¥, is a local
maximum of u,, — ¢, therefore d,, ¢ € DT u,(y). Since u, is a vis-
cosity subsolution of H,(z,d,u,) = 0, we get Hy(yn,dy, ) < 0.
The uniform convergence of H, on compact subsets now implies
H(xg,dzy¢) = limp oo Hp(Yn, dy, ¢) < 0. O

8.2 Construction of viscosity solutions

Proposition 8.2.1. Let H : T*M — R be a continuous func-
tion. Suppose (u;)icr is a family of continuous functions u; :
M — R such that each u; is a subsolution (resp. supersolution) of
H(z,dyu) = 0. If sup;ey u; (resp. infie, u;) is finite and continu-
ous everywhere, then it is also a subsolution (resp. supersolution)
of H(x,dyu) =0 .

Proof. Set u = sup;c; u;. Suppose ¢ : M — R is C!, with ¢(zo) =
u(zo) and ¢(z) > u(x), for every x € M \ {xo}. We have to show
H(zg,dgz,¢) < 0. Fix some distance d on M. By continuity of the
derivative of ¢, it suffices to show that for each ¢ > 0 small enough
there exists 2 € B(xo, €), with H(z,d,¢) < 0.

For ¢ > 0 small enough, the closed ball B(xg,¢) is compact.
Fix such an € > 0. There is a 6 > 0 such that ¢(y) —J > u(y) =
sup;cr ui(y), for each y € 0B (o, ¢€).

Since ¢(xo) = u(zp), we can find i. € I such that ¢(zg) — 0 <
u;, (zg). It follows that the maximum of the continuous function
u;, —¢ on the compact set B(xy, €) is not attained on the boundary,
therefore u;, — ¢ has a local maximum at some x, € é(:l?(], €). Since
the function w;_ is a viscosity subsolution of H(z,d,u) = 0, we
have H(x.,d,. ¢) < 0. O

Theorem 8.2.2 (Perron Method). Suppose the Hamiltonian H :
TM — R is coercive above every compact subset. If M is con-
nected and there exists a viscosity subsolution u : M — R of
H(z,dyu) = 0, then for every xo € M, the function Sy, : M — R
defined by Sy, (x) = sup, v(x), where the supremum is taken over
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all viscosity subsolutions v satisfying v(xo) = 0, has indeed finite
values and is a viscosity subsolution of H(z,dzu) =0 on M.
Moreover, it is a viscosity solution of H(x,dyu) = 0 on M \

{wo}.

Proof. Call §S,, the family of viscosity subsolutions v : M — R
of H(x,d,v) = 0 satisfying v(z¢) = 0.

Since H is coercive above every compact subset of M, by
theorem 7.5.2, we know that each element of this family is lo-
cally Lipschitz. Moreover, since for each compact set K, the set
{(z,p) | v € K,H(x,p) < 0} is compact, it follows that the fam-
ily of restrictions v|g,v € SSy, is equi-Lipschitzian. We now
show, that S, is finite everywhere. Since M is connected, given
x € M, there exists a compact connected set K, ,, containing
both z and xzy. By the equicontinuity of the family of restric-
tions {vk, , | v € SSz,}, we can find § > 0, such that for each
Y,z € Ky 5, with d(y,z) <, we have |v(y) — v(z)|] < 1, for each
vESS,,.

By the set K, , is connected , we can find a sequence xg, z1, - - -
x in Ky 5, with d(x;,z41) < 0. It follows that |v(x)| = |v(z) —
v(zg)] < 2?2_01”0(331'“) —v(z;)| < n, for each v € §S;,. Therefore
SUPyess,, v(z) is finite everywhere. Moreover, as a finite-valued
supremum of a family of locally equicontinuous functions, it is
continuous.

By the previous proposition 8.2.1, the function S, is a vis-
cosity subsolution on M itself. It remains to show that it is a
viscosity solution of H (z,d,u) on M \ {zo}.

Suppose ¥ : M — R is C! with ¥(x1) = Sy (71), where
x1 # xo, and P(z) < Sy, (x) for every x # x;. We want to show
that necessarily H(z1,dz, 1) > 0. If this were false, by continu-
ity of the derivative of 1, endowing M with a distance defining
its topology, we could find e > 0 such that H(y,d,) < 0, for
each y € B(x1,¢). Taking € > 0 small enough, we assume that
B(z1,¢€) is compact and g ¢ B(z1,€). Since 1 < S, on the
boundary OB(z1,¢) of B(w1,€), we can pick § > 0, such that
Y(y) + 6 < Syy(y), for every y € dB(x1,¢). We define S,, on
B(x1,€) by Syo(x) = max(y(z) + 6/2, Sy, (2)). The function S,
is a viscosity subsolution of H(z,d,u) on B (z1,€) as the maxi-
mum of the two viscosity subsolutions 1)+ ¢/2 and S,,. Moreover,
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this function S,, coincides with Sy, outside K = {z € B(xy,¢) |
Y(x)+6/2 >S4, (2))} which is a compact subset of B(z1, €), there-
fore we can extend it to M itself by S, = S, on M \ K. It is a
viscosity subsolution of H(z,d,u) on M itself, since its restrictions
to both open subsets M\ K and B(z1, €) are viscosity subsolutions
and M = B(z1,€) U (M \ K).

_ But Seo(x0) = Suy(x0) = 0 because zg ¢ B(x1,€). Moreover
Sao(21) = max((21)+6/2, Sz, (1)) = max(Sz, (21)+0/2, Sz, (21))
Szo(21)+9/2 > Sy, (x1). This contradicts the definition of Sy,. O

The next argument is inspired by the construction of Buse-
mann functions in Riemannain Geometry, see [BGS85].

Corollary 8.2.3. Suppose that H : T*M — R is a continuous
Hamiltonian coercive above every compact subset of the connected
non-compact manifold M. If there exists a viscosity subsolution

of H(z,dyu) = 0 on M, then there exists a viscosity solution on
M.

Proof. Fix & € M, and pick a sequence x,, — oo (this means such
that each compact subset of M contains only a finite number of
points in the sequence).

By arguments analogous to the ones used in the previous proof,
the sequence S, is locally equicontinuous and moreover, for each
x € M, the sequence S, () — S;, (%) is bounded. Therefore, by
Ascoli’s theorem, extracting a subsequence if necessary, we can
assume that S;, — Sy, (Z) converges uniformly to a continuous
function u : M — R. It now suffices to show that the restriction
of u to an arbitrary open relatively compact subset V of M is a
viscosity solution of H(x,d,u) = 0 on V. Since {n | x, € V} is
finite, for n large enough, the restriction of S;, — Sz, (Z) to V is
a viscosity solution; therefore by the stability theorem 8.1.1, the
restriction of the limit w to V' is also a viscosity solution. O

The situation is different for compact manifolds as can be seen
from the following theorem:

Theorem 8.2.4. Suppose H : T*M — R is a coercive Hamil-
tonian on the compact manifold M. If there exists a viscosity
subsolution of H(x,d,u) = c; and a viscosity supersolution of
H(z,d,u) = cg, then necessarily ¢y < c;.
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In particular, there exists a most one c¢ for which the Hamilton-
Jacobi equation H(x,dyu) = ¢ has a global viscosity solution u :
M — R. This only possible value is the smallest ¢ for which
H(z,d,u) = c admits a global viscosity subsolution u : M — R.

In order to prove this theorem, we will need a lemma (the last
part of the lemma will be used later).

Lemma 8.2.5. Suppose M compact, and v : M — R is a Lips-
chitz viscosity subsolution (resp. supersolution) of H(x,d,u) = c.
For every e > 0, there exists a locally semi-convex (resp. semi-
concave) function u. : M — R such that ||ue — ul|oo < €, and u, is
a viscosity subsolution (resp. supersolution) of H(x,d,u) = ¢+ €
(resp. H(x,dyu) =c—¢€).

Moreover, if K C U are respectively a compact and an open
subsets of M such that the restriction wy; is a viscosity subsolu-
tion (resp. supersolution) of H(z,d,u) = ¢ on U, for some ¢ < ¢
(resp. d > ¢), we can also impose that restriction Uy 1S a Viscos-
ity subsolution (resp. supersolution) of H(x,d,u) = ¢ + € (resp.
H(z,dyu) = ¢ —€) on a neighborhood of K.

Proof. Suppose € > 0 is given. Fix a C*° Riemannian metric
g on M. We call T, and T;" the two Lax-Oleinik semi-groups
associated to the Lagrangian L(z,v) = ig,(v,v) = 3[v|2. If
€ > 0and u : M — R is a Lipschitz viscosity subsolution of
H(z,d,u) = ¢, we consider the locally semi-convex function T} w.
By the analogous of part (7) of corollary ??, the map t — T;fu
is continuous as a map with values in C°(M,R) endowed with the
sup norm, therefore || T, u —ul|o < €, for each ¢ > 0 small enough.
Assume that ¢ > 0. Since T} u is locally semi-convex, at each point
x, the set D‘T,fu(x) is not empty, therefore the points z where
DHT;"u(x) # 0 are the points where to T, u is differentiable.
Hence to check that it is a subsolution of H(x,du) = ¢ + ¢, it
suffices to show that if d, T} u exists then H(x,d, T, u) < c+e.
Suppose that d,T; u exists. Choose a geodesic v : [0,t] — M
with 7(0) = @, and T'u(z) = [q 519012 dt — u(x(t). We
have d,T;fu(r) = 4(0)f, where for v € T,M, the linear form
ot € T, M is given by i (w) = gy(v,w), for every w € T,M.
Moreover, we also have §(t)* € D u(y(t)). Therefore d,T;tu €
©”(Graph(D ™)), where ©f" : T*M — T*M is the Hamiltonian
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form of the geodesic flow f : TM — TM of g, and Graph(DVu) =
{(z,p) | v € M,p € DT u(x)}.

Since w is a subsolution of H(z,dyu) = ¢, we have H(z,p) <
¢, for each p € D%tu(z). The compactness of P = {p | p €
T M, |pll» < Lip(u)}, which contains Graph(D"u), and the con-
tinuity of both the flow J* and the Hamiltonian H imply that
there exists tg > 0 such that ¢*,DTu C H=(] — oo,c + €]), for
every t € [0, o).

To prove the last part, we choose an open subset V with K C
V C V C U. We observe that Graph(DTu) is contained in the
compact set P = {(z,p) € P |z ¢ U, H(x,p) < c}U{(x,p) € P |
r € U, H(z,p) <}. Again by compactness, we can find a t(, such
that the intersection of ¢, DV u with T*V = {(z,p) | * € V} is
contained in H~(] — oo, + €]), for every t € [0,tf). O

Proof of theorem 8.2.4. Suppose ¢; < ¢, and choose € > 0, with
€1 + € < c¢g, by the previous lemma 8.2.5, we can find a locally
semi-convex function u; : M — R which is a viscosity subsolution
of H(z,dyu) = c1 + €.

We now show that for every x € M, there exists p € D™ u(z)
with H(z,p) < ¢1 + €. Since a locally semi-convex function is
Lipschitz, by Rademacher’s theorem, if x € M, we can find a se-
quence of points x,, € M converging to x such that the derivative
dg, up exists. We have H(zy,,d,,u1) < ¢; + €. Since uy is Lip-
schitz, the points (x,,d,, u1) are contained in a compact subset
of T*M. Extracting a sequence if necessary, we can assume that
(zp,dy, u1) — (z,p), of course H(x,p) < c¢1+¢€, and p € D™ uq(x),
because u; is locally semi-convex.

We fix ug : M — R a viscosity supersolution of H(x,d,u) = cs.
Call ¢ a point where the continuous function us — %1 on the com-
pact manifold M achieves its minimum. We have ug > us(xg) —
up(xg) + w1 with equality at xg, therefore D~ u;(xg) C D™ ua(xp),
this is impossible since D~ ua(xg) C H*([ea, +00[), D_ui(zg) N
H™ Y] —o00,c1+€]) # ¢ and ¢1 + € < ca. O

Exercise 8.2.6. Prove a non-compact version of lemma 8.2.5:
Suppose H : T*M — R is a continuous Hamiltonian on the

(not necessarily compact) manifold M. If u : M — R is a locally

Lipschitz viscosity subsolution (resp. supersolution) of H(x,d,u) =
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¢, show that for every € > 0, and every relatively compact open
subset U, there exists a locally semi-convex (resp. semi-concave)
function ue : U — R such that ||ue — uylleo < €, and ue is a vis-
cosity subsolution (resp. supersolution) of H(x,dyu) = c+€ (resp.
H(z,dyu)=c—¢€)onU.

Definition 8.2.7 (strict subsolution). We say that a viscosity
subsolution u : M — R of H(x,dyu) = c is strict at g € M if
there exists an open neighborhood V,, of zy, and c;, < ¢ such
that u|V,, is a viscosity subsolution of H (z, dyu) = ¢z, on Vy,.

Here is a way to construct viscosity subsolutions which are
strict at some point.

Proposition 8.2.8. Suppose that v : M — R is a viscosity sub-
solution of H(y,dyu) = c on M, that is also a viscosity solution
on M\ {z}. If u is not a viscosity solution of H(y,d,u) = ¢ on M
itself then there exists a viscosity subsolution of H(y,dyu) = ¢ on
M which is strict at x.

Proof. If u is not a viscosity solution, since it is a subsolution on
M, it is the supersolution condition that is violated. Moreover,
since u is a supersolution on M \ {z}, the only possibility is that
there exists 1) : M — R of class C! such that ¢ (z) = u(z),¥(y) <
u(y), for y # x, and H(x,d,1) < c¢. By continuity of the derivative
of 1, we can find a compact ball B(x,r), with 7 >0, and ac, < ¢
such that H(y, dyv) < ¢, for every y € B(0,r). In particular, the
C! function 1 is a subsolution of H(z,d,v) = ¢, on B(z,r), and
therefore also of H(z,d.,v) = ¢ on the same set since ¢, < c.

We choose § > 0 such that for every y € 0B(z,r) we have
u(y) > ¥(y) + 9. This is possible since dB(x,r) is a compact
subset of M \ {x} where we have the strict inequality ¥ < u.

If we define @ : M — R by a(y) = u(y) if y ¢ B(z,r) and
u(y) = max(u(y),¥(y) + d), we obtain the desired viscosity sub-
solution of H(y,dyu) < ¢ which is strict at =. In fact, by the
choice of § > 0, the subset K = {y € B(z,r) | ¥(y) + < u(y)}
is compact and contained in the open ball é(m,r). Therefore M
is covered by the two open subsets M \ K and B(z,r). On the
first open subset @ is equal to w, it is therefore a subsolution of
H(y,dyu) = c on that subset. On the second open subset B(z,r),
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the function 4 is the maximum of u and % + ¢ which are both
subsolutions of H(y,d,u) = ¢ on é(x,r), by proposition 8.2.1, it
is therefore a subsolution of H(y,d,u) = c on that second open
subset. Since u(z) = ¢(x); we have u(z) = ¥P(x) + > u(x),
therefore by continuity @ = ¢ + § on a neighborhood N C B (z,7)
of . On that neighborhood H(y,dyv) < ¢, hence @ is strict at
T. ]

8.3 Quasi-convexity and viscosity subsolu-
tions

In this section we will be mainly interested in Hamiltonians H :
T*M — R quasi-convex in the fibers, i.e. for each x € M, the
function p — H(x,p) is quasi-convex on the vector space T, M,
see definition 1.5.1

Our first goal in this section is to prove the following theorem:

Theorem 8.3.1. Suppose H : T*M — R is quasi-convex in the
fibers. If u : M — R is locally Lipschitz and H (z,d,u) < ¢ almost
everywhere, for some fixed ¢ € R, then u is a viscosity subsolution
of H(x,dyu) = c.

Before giving the proof of the theorem we need some prelimi-
nary material.

Let us first recall from definition 4.2.4 that the Hamiltonian
constant Hyr(u) of a locally Lipschitz function u : U — R, where
U is an open subset of M is the essential supremum on U of
H(z,dyu).

We will use some classical facts about convolution. Let (p5)s>0
be a family of functions ps : R*¥ — [0, co[ of class C*°, with ps(z) =
0, if ||| > 0, and [p4 ps(x)dx = 1. Suppose that V,U are open
subsets of R¥, with V compact and contained in U. Call 28 the
Euclidean distance of the compact set V to the boundary of U,
we have dy > 0, therefore the closed dp-neighborhood

N5y (V) ={y € R* |3z €V, |ly — 2| < &}

of V is compact and contained in U.
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If w: U — R is a continuous function, then for § < dy, the
convolution

usa) = ps s (@) = [ psty)ute =) dy
makes sense and is of class C> on a neighborhood of V. Moreover,
the family us converges uniformly on V' to u, as ¢t — 0.

Lemma 8.3.2. Under the hypothesis above, suppose that u :
U — R is a locally Lipschitz function. Given any Hamiltonian
H : T*U — R quasi-convex in the fibers and any ¢ > 0, for
every 0 > 0 small enough, we have sup,cy|us(z) — u(x)| < € and
Hy (us) < Hy(u) + €.

Proof. Because u is locally Lipschitz the derivative d,u exists for
almost every z € U. We first show that, for § < dy, we must have

Ve €V, dyus = / ps(y)dy—yudy. (*)
Rk

In fact, since ug is C*°, it suffices to check that

lim ug(x + th) — ug(x)
t—0 t

— [ mw)deyutiydy, ()
Rk
for z € V,§ < 6y, and h € R*. Writing

us(z + tl;) —us(z) /Rk pé(y)u(x +th — yt) —u(z —y)

dy,

We see that we can obtain (**) from Lebesgue’s dominated con-
vergence theorem, since ps has a compact support contained in
{y € R¥ | |ly|| < 6}, and for y € R¥, ¢ € R such that [|y| <
J, ||th]] < do — ¢, the two points = + th — y,x — y are contained
in the compact set N, (V) on which u is Lipschitz. Equation (*)
yields

H(z,dyus) = H(m,/

pé(y)dx—yUdy)’ (***)
Rk
Since Ng, (V) is compact and contained in U, and u is locally
Lipschitz, we can find K < oo such that ||d,u|| < K, for each

z € Ns, (V) for which d,u exists. Since H is continuous, by a
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compactness argument, we can find d. €]0, dg[, such that for z, 2’ €
Ns,(V), with ||z — 2/|| < 4, and |]p|| < K, we have |H(z',p) —
H(z,p)| <e If § <0, since ps(y) = 0, if ||y|| > 0, we deduce that
for all z in V' and almost every y with ||y|| <, we have

H(z,dy—yu) < H(x —y,dy—yu) + € < Hy(u) + €.

Since H is quasi-convex in the fibers, and psdy is a probability
measure whose support is contained in {y | ||ly|| > d}, we can now
apply proposition 1.5.6 to obtain

Vo < 6E,H(x,/

- Ps(y)dg—yu dy)Hy (u) + €.

It from inequality (***) above that H(x,d,us) < Hy(u) + €, for
d < 6. and x € V. This gives Hy (us) < Hy(u)+e¢, for § < .. The
inequality sup,cy|us(z) — u(x)| < € also holds for every ¢ small
enough, since us converges uniformly on V to u, as t — 0. O

Proof of theorem 8.8.1. We have to prove that for each xy € M,
there exists an open neighborhood V' of zo such that w is a
viscosity subsolution of H(x,d,u) on V. In fact, if we take V
any open neighborhood such that V is contained in a domain of a
coordinate chart, we can apply lemma 8.3.2 to obtain a sequence
Up : V. — Ryn > 1, of C* functions such that u, converges
uniformly to wjy on V and H(x,dyu,) < ¢+ 1/n. If we define
H,(z,p) = H(z,p) —c—1/n, we see that u, is a smooth classical,
and hence viscosity, subsolution of H,,(z,d,w) = 0on V. Since H,
converges uniformly to H — ¢, the stability theorem 8.1.1 implies
that uy is a viscosity subsolution of H(z,dyu) —c=0on V. O

Corollary 8.3.3. Suppose that the Hamiltonian H : T*M — R is
continuous and quasi-convex in the fibers. For every ¢ € R, the set
of Lipschitz functions u : M — R which are viscosity subsolutions
of H(x,dyu) = c is convex.

Proof. If uq,...,u, are such viscosity subsolutions. By 7.4.3, we
know that at every = where d,u; exists we must have H (z, dyu;) <
c. If we call A the set of points & where d,u; exists for each j =
1,...,n, then A has full Lebesgue measure in M. If ay,...,a, > 0,
and a1 +---+a, = 1, then u = ajuq + - - - + ayu, is differentiable
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at each point of x € A with d,u = a1dzuqs + - - - 4+ apdzu,. There-
fore by the quasi-convexity of H(z,p) in the variable p, for every
x € A, we obtain H(x,dyu) = H(x,a1dyu; + -+ + apdyuy,) <
max] | H(z,dyu;) < c. Since A is of full measure, by theo-
rem 8.3.1, we conclude that u is also a viscosity subsolution of
H(z,dyu) = c. O

The next corollary shows that the viscosity subsolutions are
the same as the very weak subsolutions, at least in the geometric
cases we have in mind. This corollary is clearly a consequence of
theorems 7.5.2 and 8.3.1.

Corollary 8.3.4. Suppose that the Hamiltonian H : T*M — R is
continuous, coercive, and quasi-convex in the fibers. A continuous
function u : M — R is a viscosity subsolution of H(x,d,u) = ¢, for
some ¢ € R if and only if u is locally Lipschitz and H(z,d,u) < ¢,
for almost every x € M.

We now give a global version of lemma 8.3.2.

Theorem 8.3.5. Suppose that H : T*M — R is a Hamiltonian,
which is quasi-convex in the fibers. Let u : M — R be a locally
Lipschitz viscosity subsolution of H(z,d,u) = ¢ on M. For every
couple of continuous functions d,¢ : M —]0,+o0], we can find
a C*™ function v : M — R such that |u(z) — v(z)| < é(x) and
H(z,dyv) < c+€e(z), for each x € M.

Proof. We endow M with an auxiliary Riemannian metric. We
pick up a locally finite countable open cover (V;);en of M such
that each closure V; is compact and contained in the domain U; of
a chart which has a compact closure U; in M. The local finiteness
of the cover (V;);en and the compactness of V; imply that the set
J(i) ={j e N| V;NV; # 0} is finite. Therefore, denoting by #A
for the number of elements in a set A, we obtain

(i) =#J(i) = #{j e N[ VinV; # 0} < 400,

~/. — . E < .
(%) 613%)3( ) < 400

We define R; = sup,p.||dsul:< +o00, where the sup is in fact
taken over the subset of full measure of x € U; where the locally
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Lipschitz function u has a derivative. It is finite because U; is
compact. Since J(i) is finite, the following quantity R; is also
finite

R; = max Ry < +c.
e (i)
We now choose (6;);en a C* partition of unity subordinated to
the open cover (V;);en. We also define

K; = sup ||d.0;||.< 400,
rxeM

which is finite since 6; is C* with support in V; which is relatively
compact.
Again by compactness, continuity, and finiteness routine argu-
ments the following numbers are > 0
0; = inf §(x) > 0,6; = min & > 0
zev; e J(3)
¢; = inf €(z) > 0,¢; = min ¢ > 0.
zeV; teJ(i)
Since V; is compact, the subset {(z,p) € T*M | x € V,||p|l» <
Ri + 1} is also compact, therefore by continuity of H, we can find
1; > 0 such that

Vo € V;l)vpvp/ € TvaanZB < RZ + 17 ||p/||$ < nlvH($7p) <c+ EZ
= H(z,p+7) <c+e.

We can now choose 7; > 0 such that j(z)KzﬁZ < minge j(3) Ne-
Noting that H(z,p) and ||p||; are both quasi-convex in p, and
that V; is compact and contained in the domain U; of a chart, by
lemma 8.3.2, for each i € N, we can find a C* function u; : V; — R
such that

Vo € Vi, [u(z) — ui(x)| < min(d;, ),

H(z,dyu;) < sup H(z,d,u) + Scetl
zeV; 2 2
ldzui|le < sup|ld.ull, +1=R; +1,
z€V;

where the sup in the last two lines is taken over the set of points
z € V; where d,u exists.
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We now define v = ZieN f;u;, it is obvious that v is C*°. We
fix x € M, and choose iy € N such that = € V. If 0;(z) # 0
then necessarily V; N V;, # 0 and therefore i € J(ip). Hence

Yicaio bi(z) = 1, and v(z) = 3 ,c 5, Oi(2)ui(2).We can now

write

(@) —v@)l < Y @)l —uw@)| < Y (@)

i€J(io) i€J(io)

< Y 0i(2)6i, = iy < O(x).

i1€J(ip)

We now estimate H (z, dyu). First we observe that 3¢ ;.\ 0i(y) =
L, and v(z) = ;e j0) 0i(¥)ui(y), for every y € V;,. Since Vj, is a

neighborhood of x, we can differentiate to obtain ZZE J(io) d.0; =
0, and
dyv = Z z xuz“‘ Z uz
1€J(i0) i€J (io0)
p(x) p'(z)

Using the quasi-convexity of H in p, we get

< < Zce ﬂ *
H(z,p(z)) Zg}?l)g)H(x dyu;) Zg}]%fé)ﬁ 2 + )

where for the last inequality we have used that ¢ € J(ig) means
ViNV,, # 0, and therefore iy € J(i), which implies € < ¢;,, by the
definition of ¢€;.

In the same way, we have

lp(2)lle < max )|ldsuslle < max Ri+1< Ry +1. (%)
i€J(i0) 1€J(i0)
We now estimate ||p(z)||;. Using > ie (i) dutli = 0, we get

p(x) = Z ui(z)d,0; = Z (ui(z) — u(z))dyb;.

i1€J(ip) 1€J(i0)
Therefore
19" (@)l = || Z ui(z z))dy0; = Z ui () — w(@)|||dsbil
i€J(i0) i1€J(ip)
< Z i K. (***)

i€J(io)
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From the definition of 7;, we get K;7; < ]778)’ for all i € J(ip).
Hence [|p'(2)|lz < > icsa0) ]%8) = 1;,. The definition of 7;,, to-
gether with the inequalities (*), (**) and (***), above implies

H{(z,dyv) = H(z,p(x) +p'(z)) < c+ €, < ¢+ e(x). O

Theorem 8.3.6. Suppose H : T*M — R is a Hamiltonian quasi-
convex in the fibers. Let uw : M — R be a locally Lipschitz
viscosity subsolution of H(x,d,u) = ¢ which is strict at every
point of an open subset U C M. For every continuous function
€ : U —]0,4+o0[, we can find a viscosity subsolution u. : M — R of
H(z,dyu) = ¢ such that u = u. on M\ U, |u(x) —ue(z)| < e(x), for
every v € M, and the restriction ucy; is a C* with H(x,dyu) < c
for each x € U.

Proof. We define € : M — R by é(z) = min(e(z),d(z, M \ U)?),
for x € U, and é(z) = 0, for x ¢ U. It is clear that € is continuous
on M and € >0 on U.

For each « € U, we can find ¢, < ¢, and V, C V an open
neighborhood of x such that H(y,dyu) < ¢, for almost every
y € V. The family (V,)ey is an open cover of U, therefore we
can find a locally finite partition of unity (¢ )ze on U submitted
to the open cover (V,).cy. We define § : U —]0, +o0[ by d(g) =
Y ower P2(y)(c — ), for y € U. It is not difficult to check that
H(y,dyu) < c—d(y) for almost every y € U.

We can apply theorem 8.3.5 to the Hamiltonian H : T*U —
R defined by H(y,p) = H(y,p) + 6(y) and u|U which satisfies
H (y,dyu) < c for almost every y € U, we can therefore find
a C* function u. : U — R, with |u(y) —u(y)] < €(y), and
ﬁ(y,dyue) < ¢+ d(y)/2, for each y € U. Therefore, we obtain
lue(y) — u(y)| < e(y), and H(y,dyue) < ¢ —6d(y)/2 < ¢, for each
y € U. Moreover, since é(y) < d(y, M \U)?, it is clear that we can
extend continuously u. by w on M \ U. This extension satisfies
lue(x) — u(x)| < d(x, M\ U)?, for every x € M. We must verify
that u. is a viscosity subsolution of H(x,d,u.) = c. This is clear
on U, since u, is C* on U, and H(y,dyuc) < ¢, for y € U. It
remains to check that if ¢ : M — R is such that ¢ > u. with
equality at zg ¢ U then H(zg,dy,¢) < c. For this, we note that
ue(z0) = u(xg), and u(x) — u(z) < d(z, M \ U)? < d(x,z0)%.
Hence u(z) < ¢(x) + d(z,70)?, with equality at zo. The function
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r — ¢(z) + d(z,70)? has a derivative at x¢ equal to d,¢, there-
fore H(xq,dz,¢) < ¢, since u is a viscosity solution of H (z, dyu) <
c. O

8.4 The viscosity semi-distance

We will suppose that H : T*M — R is a continuous Hamiltonian
coercive above every compact subset of the connected manifold
M.

We define c[0] as the infimum of all ¢ € R, such that H(z, dyu) =
¢ admits a global subsolution v : M — R. This definition is
coherent with the one we gave in earlier chapters for particular
Hamiltonians.

As before we denote by SS¢ the set of viscosity subsolutions
of H(z,dyu) = ¢, and by S§§ C SS¢ the subset of subsolutions
vanishing at a given & € M. Of course, since we can always add a
constant to a viscosity subsolution and still obtain a subsolution,
we have SS§§ # 0 if and only if SS¢ # ), and in that case S§¢ =
R + SS5.

Proposition 8.4.1. Under the above hypothesis, the constant c[0]
is finite and there exists a global u : M — R viscosity subsolution
of H(x,dyu) = c[0].

Proof. Fix a point & € M. Subtracting u(Z) if necessary, we
will assume that all the viscosity subsolutions of H(x,d,,) = ¢ we
consider vanish at . Since H is coercive above every compact
subset of M, for each c the family of functions in S&% is locally
equi-Lipschitzian, therefore

Ve € M, sup |v(x)| < +o0,
veSSE

since M is connected, and every v € SS% vanish at . We pick a
sequence ¢, \, c[0], and a sequence u, € S§7*. Since, by Ascoli’s
theorem, the family SS% is relatively compact in the topology
of uniform convergence on each compact subset, extracting a se-
quence if necessary, we can assume that wu, converges uniformly to
u on each compact subset of M. By the stability theorem 8.1.1,
the function w is a viscosity subsolution of H(x,d,u) = ¢,, for each
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n, it is therefore locally Lipschitz. Pick a point where d ,u exists,
we have H (zg,dy,u) < ¢y, for each n, therefore c[0] > H(zo, dy,u)
has to be finite. Again by the stability theorem 8.1.1, the function
u is a viscosity subsolution of H(x,d,u) = ¢[0]. O

For ¢ > ¢[0], we define

Sz, y) = sup u(y) —u(z) = sup u(y).
ueSSe uESSE
It follows from the 8.2.2, that for each x € M the function S¢(z,.)
is a viscosity subsolution of H(y,dyu) = ¢ on M itself, and a
viscosity solution on M \ {z}.

Theorem 8.4.2. For each ¢ > ¢[0], the function S¢ is a semi-
distance, i.e. it satisfies

(i) for each x € M, S¢(z,x) =0,
(i) for each x,y,z € M, S¢(x,2) < S°(z,y) + Sy, 2)

Moreover, for ¢ > ¢[0], the symmetric semi-distance, S¢(x,y) =
S¢(x,y)+S(y, z) is a distance which is locally Lipschitz-equivalent
to any distance coming from a Riemannian metric.

Proof. The fact that S¢ is a semi-distance follows easily from the
definition

Sz, y) = useggcu(y) — u(x).

Fix a Riemannian metric on the connected manifold M whose
associated norm is denoted by ||-||, and associated distance is d.
Given a compact subset K C M, the constant sup{||p|| | = €
K,peT,M,H(x,p) < c}, is finite since H is coercive above com-
pact subsets of M. It follows from this that for each compact
subset K C M, there exists a constant Lx < oo such that.

Va,y € K,5x,y) < Lgd(z,y).

It remains to show a reverse inequality for ¢ > ¢[0]. Fix such a ¢,
and a compact set K C M. Choose § > 0, such that Ns(K) =
{x € M | d(z,K) < ¢} is also compact. By the compactness of
the set

{(x,p) | 2 € N5(K), H(x,p) < 0]},
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and the continuity of H, we can find € > 0 such that

V& € Ns(K),Vp,p' € T,M.H(z,p) < c[0] and [p'|| < e

/ (*)

= H(z,p+p) <ec
We can find §; > 0, such that the radius of injectivity of the
exponential map, associated to the Riemannian metric, is at least
81 at every point x in the compact subset Ns(K). In particular, the
distance function z — d(z, zq) is C*° on B(zg, 6;) \ {zo}, for every
zo € N5(K). The derivative of x +— d(z, 7o) at each point where
it exists has norm 1, since this map has (local) Lipschitz constant
equal to 1. We can assume §; < §. We now pick ¢ : R — R a
C* function, with support in |1/2,2[, and such that ¢(1) = 1. If
xo € K and 0 < d(y,zo) < 1/2, the function

d(x,xq)
d(y,a;o)

dy(@) = &( )

is C*°. In fact, if d(z, z9) > 61, then ¢, is zero in a neighborhood of
x, since d(x, xg)/d(y, xo) > 61/(61/2) = 2;if 0 < d(x,xz9) < 61 < 0,
then it is C* on a neighborhood of z; finally ¢, (x) = 0 for x such
that d(z,z0) < d(y,x0)/2. In particular, we obtained that d,¢, =
0, unless 0 < d(z,x9) < 9, but at each such z, the derivative of
z +— d(z, () exists and has norm 1. It is then not difficult to see
that supgenlldadyl < A/d(y, x0), where A = sup;cp|¢d’(t)].
Therefore if we set A = ed(y,zo)/A, we see that [[Ady¢y| < e,
for z € M. Since ¢ is 0 outside the ball B(zg,d1) C N, (K), it
follows from the property (*) characterizing e that we have

V(z,p) € T"M,H(x,p) < c[0] = H(x,p+ Adz¢y) < c.

Since S (zg,-) is a viscosity subsolution of H(zx,d,u) = c|0],
and ¢, is C, we conclude that the function u(.) = S (zq,.) +
Ay (.) is a viscosity subsolution of H(z,d,u) = c. But the value
of u at xg is 0, and its value at y is S°%(zq,y) + A\py(y) =
S(zg,y) + ed(y,x0)/A, since ¢,(y) = ¢(1) = 1. Therefore
S¢(xg,y) > S (0, ) + ed(y, z9)/A. Hence we obtained

Va,y € K, d(x,y) < 61/2 = S%(z,y) > S (z,y) + eA" d(z, y).
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Adding up and using S (z, y) + S (y, z) > SO (2, 2) = 0, we
get

2
Va,y € K,d(z,y) < 61/2 = S°(x,y) + §°(y,2) = Td(a,y). O

8.5 The projected Aubry set

Theorem 8.5.1. Assume that H : T*M — R is a Hamiltonian
coercive above every compact subset of the connected manifold M.
For each ¢ > ¢[0], and each © € M, the following two conditions
are equivalent:

(i) The function S¢(x,-) is a viscosity solution of H(z,d,u) = c.

(ii) There is no viscosity subsolution of H(z,d,u) = ¢ which is
strict at x.

Proof. The implication (ii)=-(i) follows from proposition 8.2.8.

To prove (i)=-(ii), fix z € M such that S, is a viscosity solution
on the whole of M, and suppose that u : M — R is a viscosity
subsolution of H(y,d,u) = ¢ which is strict at . Therefore we
can find an open neighborhood V, of z, and a ¢, < ¢ such that
u)y, is a viscosity subsolution of H(y,dyu) = c; on V;. We can
assume without loss of generality that V. is an open subset of R"
and u(x) = 0. We have

u(y) < S(z,y)

and u(x) = S(xz,z) = 0. On V, C R", we can define uy(y) =
u(y) — %||lz — y||%. Define €(5) > 0 by

e(0) = max {H(y,p+p)—co|H(y,p) < cllp|| <0}
lz—ylI<s
Since H is continuous and coercive above compact subsets we have
€(6) — 0, when § — 0. Since the derivative at yo of y — 3|y —=||?
is (yo — x,-), we see that U1 f3(5.5) is a viscosity sub solution of
H(y,dyui) = ¢z + €(6). We fix 6 > 0 such that ¢, + 2¢(6) <
c. By 8.2.5, we can find a real-valued function ug defined on a
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neighborhood of B(z,d/2) and semi-convex such that us is as close
as we want to u; on B(28/2), and us is a viscosity subsolution of
H(x,dyus) = c; +2¢(5). In a neighborhood of B(0,5/2). We have
w(2) = S(z,z) = 0 and w1 (y) < u(y)—Llw—y|? < u(y) < S(z,y)
hence S(z,y) — u1(y) > £6 on the boundary dB(z,§/2). We can
therefore choose us close enough to u; so that S(x,-)—usa(-) attains
its minimum on B(z,§/2) at a point yo € B(x,5/2). Therefore
S(x,y) > S(z,y0) — u2(yo) + u2(y) in a neighborhood of yg, and
therefore D~ us(yg) C D~ S, (yo). Since ugy is semi-convex and is a
viscosity subsolution of H (y, dyus) = ¢z +2¢(d) on a neighborhood
of B(x,6/2), by an argument analogous to the proof of theorem
8.2.4, we can find py € D~ ug(xo) with H(yo,po) < ¢ + 2€(0).
Since D~ ug(zg) C D~ S:(yo), and S, is a viscosity solution of
H(y,dyS;) = c on M, we must have H(yo,pp) > c. This is a
contradiction since ¢ > ¢, + 2€(0). O

Definition 8.5.2 (Projected Aubry set). If H : T*M — R is a
continuous Hamiltonian, coercive above every compact subset of
the connected manifold M. We define the projected Aubry set as
the set of z € M such that that S°0(z, ) is a viscosity solution of
H(z,d,u) = c[0].

Proposition 8.5.3. Assume that H : T*M — R s a continuous
Hamiltonian, convex is the fibers, and coercive above every com-
pact subset of the connected manifold M. There exists a viscosity
subsolution v : M — R of H(x,d,v) = c[0], which is strict at every
xe M\ A

Proof. We fix some base point & € M. For each x ¢ A, we can find
uy, : M — R, an open subset V,, containing z, and ¢, < ¢[0], such
that u, is a viscosity subsolution of H(y,dyu,) = ¢[0] on M, and
ugz|Vy is a viscosity subsolution of H(y,dyu,) < ¢z, on V. Sub-
tracting u, (&) if necessary, we will assume that u, (%) = 0. Since
U = M\ A is covered by the family of open sets V,,x ¢ A, we
can extract a countable subfamily (V,)ien covering U. Since H is
coercive above every compact set the sequence (uz,)ien is locally
equi-Lipschitzian. Therefore, since M is connected, and all the u,,
vanish at &, the sequence (uy,)ien is uniformly bounded on every
compact subset of M. It follows that the sum V' =}, ﬁuml
is uniformly convergent on each compact subset. If we set u, =
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(1—2-(nFy=Ls~ #uwi, then u,, is a viscosity subsolution
of H(z,d,uy,) = c[0] as a convex combination of viscosity subso-
lutions, see proposition 8.3.3. Since wu,, converges uniformly on
compact subsets to u, the stability theorem 8.1.1 implies that v is
also a viscosity subsolution of H (z, dyv) = c[0].

On the set Vy,, , we have H(z, dyug,, ) < cz,,, for almost every
z € Vg, . Therefore, if we fix n > ng, we see that for almost every
z € Vg, we have

1
2i+1

H(z, dyun) < (1— 27NN —— H (2, dyuy,)
=0

1) 1 (Cng — €[0])
< (1—270)~! Z 9i+1 c[0] + 2On0+1
i=0

Therefore up|Vy,, is a viscosity subsolution of H(z, d,u,) < c[0] +
(Capy — c[0])/27071.

By the stability theorem, this is also true for U|an0. Since
Cz,, — ¢[0] < 0, we conclude that u|V;, is a strict subsolution
of H(x,dyv) = c[0], for each x € V,, , and therefore at each
z €U CUpenVy,- O

Theorem 8.5.4. Assume that H : T*M — R is a Hamiltonian
convex in the fibers and coercive, where M is a compact connected
manifold. Its projected Aubry set A is not empty.

If two viscosity solutions of H(x,d,u) = ¢[0] coincide on A,
they coincide on M.

Theorem 8.5.5. Suppose uj,us : M — R are respectively a
viscosity subsolution and a viscosity supersolution of H(x,d,u) =
c[0]. If uy < ug on the projected Aubry set A, then u; < wusg
everywhere on M.

Proposition 8.5.6. Assume that H : T*M — R is a Hamiltonian
convex in the fibers and coercive, where M is a compact connected
manifold. If M is compact and connected, for each viscosity sub-
solution u : M — R of H(x,d,u) = ¢[0], and each € > 0, we can
find a viscosity subsolution ue : M — Rof H(z,dzue) = ¢[0] such
that ||lu—u¢||co < €, and u, is C*° on M\ A, with H(x,d,u.) < c[0],
for each x € M \ A.



255

Proof. Call v the strict subsolution given by the previous propo-
sition 8.5.3. By a similar argument to the one used in the proof
of that proposition vs = (1 — §)u + dv is a viscosity subsolution of
H(z,dgzvs) = c[0] which is strict a each point of M\ A, and vs — u
uniformly as § — 0. It then suffices to choose J small enough and
to apply 8.3.6 to vs to obtain the function wu.. O

Proof of theorem 8.5.5. Assume m = inf(uz — u;) < 0. Choose
€ > 0 such that m + 2¢ < 0. If we apply proposition 8.5.6, we
obtain 4y : M — R, with ||@; — w1, <€, and @; of class C*on
M\ A, with H(z,d,u) < c[0], for every z ¢ A. We have us(x) —
a1 (z) > ua(x) —ur(z)+ a1 (x) —us (z) > ug(x) —u(x)—e, therefore
ug(x) — g (x) > —e, for x € A. Moreover, inf(ug — 41) < inf(ug —
up)+ |lur — U1 lec < m+e. Since m+e€ < —e, on the compact space
M, the infimum of (uy — @1) is attained at a point xo ¢ A. Since
ug(x) > [ug(xo) — U1 (xo)]+ 1 (x), with equality at xg, the function
@ is differentiable on M \ A > xg, and ug is a supersolution
of H(z,d,us) = c[0], we must have H(z,d,u) > c[0]. This is
impossible by the choice of . O

8.6 The representation formula

We still assume that M is compact, and that H : T"M — R is a
coercive Hamiltonian convex in the fibers.

Theorem 8.6.1. Any viscosity solutionu : M — R for H(z,d,u) =
c|0] satisfies

Vo € M,u(z) = inf u(zg) + S (z0, 2)
roEA

This theorem follows easily from the uniqueness theorem 8.5.4
and the following one:

Theorem 8.6.2. For any function v : A — R bounded below, the
function

N — if c[0]
o(x) xtléAv(azo)—FS (x0,)

is a viscosity solution of H(xz,dyv) = ¢[0]. Moreover, we have
0|4 = v, if and only if

Va,y € Au(y) —v(z) < S(z,y).



256

We start with a lemma.

Lemma 8.6.3. Suppose H : T*M — R is a continuous Hamilto-
nian convex in the fibers, and coercive above each compact subset
of the connected manifold M. Let u; : M — R,i € I be a fam-
ily of viscosity subsolutions of H(z,d,u) = c. If inf;cr u;(xzg), is
finite for some xg € M, then inf;c;u; is finite everywhere. In
that case, the function v = inf;cyu; is a viscosity subsolution of
H(z,dyu) <ec.

Proof. We choose an auxiliary Riemannian metric on M, and use
the associated distance.

By the coercivity condition, the family (u;);er is locally equi-
Lipschitzian, therefore for if K compact connected subset of M,
there exists a constant C'(K') such that

Va,y € K,Vi € I, |u;(z) —u;(y)| < C(K).

If x € M is given, we can find a compact connected subset K,
containing xg and x, it follows that

115 wi(zg) < 12}’ ui(x) + C(Ky)
therefore inf;c u; is finite everywhere. It now suffices to show that
for a given & € M, we can find an open neighborhood V of Z such
that inf;c; u;|V is a viscosity subsolution of H(x,d,u) = c on V.
We choose an open neighborhood V of & such that its closure V is
compact. Since C°(V,R) is metric and separable in the topology
of uniform convergence, we can find a countable subset Iy C [
such that w;y,i € Iy is dense in {uiIV | i € I}, for the topology of
uniform convergence. Therefore inf;c;u; = infjep u; = infier, w;
on V. Since Iy is countable, we have reduced to the case Iy =
{0,--- N}, or [y =N.

Let us start with the first case. Since ug,--- ,un, and u =
infl¥ o u; are all Lipschitzian on V, we can find E C V of full
Lebesgue measure such that d,u, d,ug, - - ,d,un exists, for each
x € E. At each such z € E, we necessarily have d,u € {duo,...,d;un}.
In fact, if n is such that u(z) = u,(z), since u < u,, with equality
at = and both derivative at x exists, they must be equal. Since
each wu; is a viscosity subsolution of H(z,d,v) = ¢, we obtain
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H(z,d,u) < ¢, for every z in the subset E of full measure in V.
The convexity of H in the fibers imply that w is a viscosity sub-
solution of H(z,dyu) = ¢ in V. It remains to consider the case
Iy = N. Define u(z) = info<;<n u;(x), by the previous case, ulv
is a viscosity subsolution of H(z,d,u") =con V.

Now u(z) — infie, ui(z), for each x € V, the convergence
is in fact, uniform on V since (u;)icy, is equi-Lipschitzian on the
compact set V. It remains to apply the stability theorem 8.1.1. [
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Chapter 9

Mané’s Point of View

Ricardo Mané’s last paper [Mn97] contained a version of the weak
KAM theorem. The point of view is probably the closest to the
theory of optimal contral. His ideas after his untimely death were
carried out much further by G. Contreras, J. Delgado, R. Iturriaga,
Gabriel and Miguel Paternain [CDI97, CIPP9S].

There is an excellent reference on Mané’s point of view and th
subsequent developments [CI99].

9.1 Mané’s potential

As in definition 5.3.1, we set

(e.y) =t [ L(s).4(5) ds

Where the infimum is taken over all continuous piecewise C! curves
v :[0,t] = M with v(0) = z,7(t) = v.

Definition 9.1.1 (Mané’s potential). Fix ¢ € R for each z,y, €
M, we set
= inf t
mC(x> y) %20 ht(!L’, y) tc

Here are some properties of m.:

Proposition 9.1.2. For each ¢ € R, the Mané potential m. has
values in R U {—oo}, and satisfies the following properties:
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(iii)

(iv)

(vi)
(vii)

If z,u € M, and ¢,d € R, with ¢ < ¢, we have m.(z,y) <
mc’(xyy)'

For all ce R,y,z € M, we have

me(z,z) < me(x,y) + me(z, 2).
If A = sup{L(z,v) | (z,v) € TM,|v|lz < 1} we have
me(x,y) < (A +c)d(z, y).

For a given ¢ € R either m. is equal identically to —oo or
me Is finite everywhere.

For every ¢ € R, either m. =, or m¢.(x,z) = 0 for every
x e M.

If m, is finite then it is Lipschitz.

For u: M — R, we have u < L + ¢ if and only if

Va,y € M, u(y) —u(z) < me(z,y).

If m, is finite, then for each x € M, the function mc, : M —
R)Z/ = mc(:E,y) (resp. _m:cc M — Rvy = _mc(y7x)) is
dominated by L + c.

The Mané critical value c[0] is equal to the infimum of the
set of ¢ € R such that m. is finite. Moreover, the critical
Mané potential m" = my[o) Is finite everywhere.

Proof. Property (i) is obvious. Property 3 (ii) results from

hi(x, z) < hy(z,y) = he(y, 2).

For property (iii), if we use a geodesic 7., : [0,d(z,y)] — M
from z to y parametrized by arc-length, we see that m.(z,y) <
hd(w,y) (x,y) + Cd(l‘,y) < L(/ym,y) + Cd($7y) < (A + C)d($7y) For
property (iv), we remark that m.(z/,y") < m.(2',2) + me(z,y) +
me(y,y') < me(x,y)+(A+c)[d(@’, ) +d(y', y)] hence if me(z, y) =
—oo for some (z,y) € M x M then m.(z',y’) = —oo for every

(«',y

'Y e M x M.
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For property (v), using constant paths, we first remark that
me(z,z) < (L(x,0) + ¢)t, for every t > 0, therefore m.(x,z) < 0.
Moreover, by (ii)

me(z, ) < me(z,x) + me(z,z) < - < nme(x,x).

Hence m.(z,x) < 0 implies m.(x,z) = —o0.
Property (vi) follows from the proof of (iv), since we obtained
there

me(@',y') < me(@,y) + (A+ o)ld(z,2') + d(y, y')]
which gives by symmetry
Ime(2’,y') — me(z, y)| < [A+ dld(z, ') + d(y, y)].
Property (vii) is obvious since u < L + ¢ if and only if
vVt > 0,u(y) — u(z) < hy(z,y) + ct.
For (viii), the inequality obtained in (ii)
me(x, z) < S(x,y) + me(y, 2)
gives, when m, is finite
me(z,z) — me(x,y) < me(y, 2).
But this can be rewritten as
Me,z(2) — Mea(y) < me(y, 2),

therefore m., < L + ¢ by (vii).

For (ix), if ¢ > ¢[0], there exists u : M — R with u < L + ¢
therefore by (vii), we have m, finite.

Conversely if m, is finite m., < L + ¢ therefore ¢ > ¢[0]. O

Corollary 9.1.3. For each ¢ > ¢|0], the Mané potential m,. is
equal to the viscosity semi-distance S¢, and therefore

Va,y € M,mc(z,y) = sup{u(y) —u(z) | u < L+ c}.

=

Proof. The function m., (resp. SS) is a viscosity subsolution o
H(z,d,) = c (resp. is dominated by L + c¢), therefore m(x,y)
Meg(y) = meqo() < Sz, y) (resp. Sx,y) = Sp(y) — Sp(x)
mc(x, y))

CTIA I

Definition 9.1.4 (Maiié’s critical potential). We will call m® =
m[o) the Mané critical potential.
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9.2 Semi-static and static curves

Proposition 9.2.1. Given ¢ € R, a curve v : [a,b] — M is an
absolute (L + ¢)-minimizer if and only if

b
me(y(a),v(b)) = / L(v(s),7(s)) ds + ¢(b — a).

Proof. Suppose that ~y : [a,b] — M is an absolute (L+c)-minimizer,
then for any curve ¢ : [0,¢] — M, with ¢t > 0,6(0) = 7(a), and
d(t) = ~v(b), we have

t b
/0 L(5(s), 6(s)) ds + ct > / L(v(s),4(s))ds + c(b — a)

therefore hy(y(a),v(b)) +ct > [ L(v(s),%(s)) ds + c¢(b — a).
On the other hand reparametrizing  linearly by [0,b — a], we

see that hy_q(1(8),7(a)) +c(b—a) < 7 L(3(s),(s)) ds+c(b—a).
It follows that
me(v(b),7v(a)) = hp—a(v(b),7(a)) + c(b — a)
b
= [ L) )ds +e - a).

Conversely, since m.(y(a),v(a)) = 0, the equality

b
me(7(a), (b)) = / L((s),4(s)) + ds + (b — a),

can be rewritten as

b
M@ (1)) — Mo (1(0)) = / L(v(s),4(s))ds + c(b — a).

This means that 7 is (M, (q), L, ¢)-calibrated. O

Definition 9.2.2 (Semi-static curve). A curve 7 : [a,b] — M is
called semi-static, if a < band m°(y(a),v(b)) = f; L(v(s),5(s))ds+
c[0](b — a). (Recall that m°® = my is the Mané potential).

We therefore have the following proposition;
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Proposition 9.2.3. A curve v : [a,b] — M semi-static if and
only if it is absolutely minimizing, if and only if it is (u, L, c[0])-
calibrated for some u : M — R dominated by L + ¢[0].

Mané has also defined a notion of static curve.

Definition 9.2.4 (Static curve). A curve v : [a,b] — M is static,
if a <band

b
/ L(v(s),3(s)) ds + c[0](b — a) = =m"(7(b),7(a)).

Proposition 9.2.5. A curve is static if and only if it is a part of
a projected Aubry curve

Proof. We have

b
0= / L(3(5),4(5)) ds + c[0)(b — a) + m (+(8), v(a)) = 0.

For every € > 0, we can find a curve o : [b,b] — M with §.(b) =
v(b), e (be) = v(a), and

be _
/b L(5(5), 8c(s))ds + cl0)(be — b) < m®(4(b), 1(a)) + .

Therefore, if we consider the concatenated closed curve v * 4,
we find a curve J. that is a loop at y(a), is parametrized by an

interval of length ¢ > b —a > 0 and satisfies L(0¢) + ¢[0]lc <
e. Going n times through the loop 4, /ny We find a loop be at
~(a), parametrized by an interval of length nf, /n = n(b—a), with
L(dn.c) + C[O]’I’Lll/n < e. Since b — a > 0, we have n(b — a) — +o0
as n — +oo. It follows that h(vy(a),v(a)) < ¢, for every € > 0,
where h is the Peierls barrier. Therefore v(a) € A. Since the loop
de = %0, goes through every point of y([a,b]) a similar argument
shows 7([a,b]) C A.

It remains to show that v is (u, L, c[0])-calibrated for every
u: M — R which is dominated by L + ¢[0].

In fact, if we add up the two inequalities

b
u(y(b)) — u(y(a)) < / L(v(5)),7(s) ds + ¢[0](b — a)
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u(y(a)) = u(y(b)) <m(v(b),7(a)),

we obtain the equality 0 = 0 therefore both inequalities above
must be equalities. O
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