
Weak KAM Theorem in

Lagrangian Dynamics

Preliminary Version

Number 10

Albert FATHI

Lyon, Version 15 June 2008



ii



Contents

Preface vii

Introduction ix
0.1 The Hamilton-Jacobi Method . . . . . . . . . . . . xi

1 Convex Functions: Legendre and Fenchel 1

1.1 Convex Functions: General Facts . . . . . . . . . . 1
1.2 Linear Supporting Form and Derivative . . . . . . 7
1.3 The Fenchel Transform . . . . . . . . . . . . . . . . 11
1.4 Differentiable Convex Functions and Legendre Trans-

form . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.5 Quasi-convex functions . . . . . . . . . . . . . . . . 28
1.6 Exposed Points of a Convex Set . . . . . . . . . . . 30

2 Calculus of Variations 37
2.1 Lagrangian, Action, Minimizers, and Extremal Curves 37
2.2 Lagrangians on Open Subsets of R

n . . . . . . . . 40
2.3 Lagrangians on Manifolds . . . . . . . . . . . . . . 48
2.4 The Euler-Lagrange Equation and its Flow . . . . 51

2.5 Symplectic Aspects . . . . . . . . . . . . . . . . . . 54
2.6 Lagrangian and Hamiltonians . . . . . . . . . . . . 58
2.7 Existence of Local Extremal Curves . . . . . . . . 63
2.8 The Hamilton-Jacobi method . . . . . . . . . . . . 71

3 Calculus of Variations for a Lagrangian Convex in
the Fibers: Tonelli’s Theory 81
3.1 Absolutely Continuous Curves. . . . . . . . . . . . 81
3.2 Lagrangian Convex in the Fibers . . . . . . . . . . 89
3.3 Tonelli’s Theorem . . . . . . . . . . . . . . . . . . 95

iii



iv

3.4 Tonelli Lagrangians . . . . . . . . . . . . . . . . . . 98

3.5 Hamilton-Jacobi and Minimizers . . . . . . . . . . 101

3.6 Small Extremal Curves Are Minimizers . . . . . . 103

3.7 Regularity of Minimizers . . . . . . . . . . . . . . . 106

4 The Weak KAM Theorem 109

4.1 The Hamilton-Jacobi Equation Revisited . . . . . . 109

4.2 Dominated Functions and the Mañé Critical Value 118
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Preface

The project of this book started from my work published in the
Comptes Rendus de l’Académie des Sciences, see [Fat97b, Fat97a,
Fat98a, Fat98b].

I gave several courses and lectures on the material presented
there.

The project went through several versions. The first version
was in French. It was produced for the Graduate course “Systèmes
lagrangiens et théorie d’Aubry-Mather”, that I gave at the Ecole
Normale Supérieure de Lyon during Spring Semester 1998. The
French set of notes has circulated widely. Daniel Massart and
Ezequiel Maderna caught up a large amount of mistakes in the
French version. The first set of notes in english were a translated
and improved version of lectures notes in French, and consited of
versions of chapter 1 to 5. It was done while I was on sabbatical
during Spring Semester 2000 at the University of Geneva. I wish to
thank the Swiss National Scientific foundation for support during
that time. This first version was distributed and used at the “Ecole
d’été en géométrie” held at “Université de Savoie” June, 15-22,
2000. A certain number of typing mistakes were found by people
attending the “Ecole d’été en géométrie”

After adding chapter 6, we incorporated some of the improve-
ments suggested by Alain Chenciner and Richard Montgomery.

The subsequent versions, besides improvements, contained a
couple of chapters on viscosity solutions of the Hamilton-Jacobi
equation, especially the connection with the weak KAM theorem,
and a last brief one making the connection with Mañé’s point of
view. The opportunity to teach a course of DEA in Lyon in 2001-
2002 and 2002-2003 was instrumental in the expansions in this set
of notes.
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The seventh version was done in Pisa. I had the privilige of
giving a seires of Lectures in Winter 2005 in the Centro di Giorgi
at the Scuola Normale Superiore in Pisa. This seventh version is
a major revision of the sixth.

In this version 8, we have incorporated several typing mistakes
picked up by Maxime Zavidovique.

The present tenth version is prepared for a course given at the
Summer School “Dynamical Systems: Theoretical and Applied
Hamiltonian Dynamics” held at t Instituto Superior Técnico in
Lisbon 16-20 June 2008. It has gone through a major revision of
chapter 4. I have incorporated a new proof found in June 2008
of the Weak KAM Theorem that is more elementary than the
previous ones in that it only uses the order properties for the Lax-
Oleinik semi-group and some compacrness arguments. It avoids
any appeal to a fixed point theorem. We hope that the simple
arguments may be used in other contexts. We kept as a second
proof the one using a fixed point theorem, since we consider it as
much more natural and almost forced on us by the compactness
obtained from Fleming’s Lemma.

A lot of people have helped me for a better understanding
of the subject, it is impossible to mention them all, among the
ones that I can remember vividly in chronological order: John
Mather, Michel Herman, Nicole Desolneux, Daniel Massart, Denis
Serre (without whom, I would have never realized that there was
a deep connection with viscosity solutions), Jean-Christophe Yoc-
coz, Francis Clarke, Gabriel & Miguel Paternain, Gonzalo Con-
treras, Renato Itturiaga, Guy Barles, Jean-Michel Roquejoffre,
Ezequiel Maderna, Patrick Bernard, Italo Capuzzo-Dolcetta, Pier-
marco Cannarsa, Craig Evans. Special thanks to Alain Chenciner
for his drive to understand and improve this subject. Last but not
least Antonio Siconolfi, we have been enjoying now a long a solid
collaboration, a large number of the improvements in these set of
notes is due to the numerous conversation that we have specialy
on the viscosity theory aspects.

Starting with the French notes, Claire Desecures helped a lot
in the typing.

Lyon, 14 June 2008



Introduction

The object of this course is the study of the Dynamical System
defined by a convex Lagrangian. LetM be a compact C∞ manifold
without boundary. We denote by TM the tangent bundle and by
π : TM → M the canonical projection. A point of TM will be
denoted by (x, v) with x ∈ M and v ∈ TxM = π−1(x). In the
same way, a point of the cotangent bundle T ∗M will be denoted
by (x, p) with x ∈ M and p ∈ T ∗

xM a linear form on the vector
space TxM .

We consider a function L : TM → R of class at least C3.
We will call L the Lagrangian. As a typical case of L, we can
think of L(x, v) = 1

2gx(v, v) where g is a Riemannian metric on
M . There is also the case of more general mechanical systems
L(x, v) = 1

2gx(v, v)−V (x), with g a Riemannian metric on M and
V : M → R a function.

The action functional L is defined on the set of continuous
piecewise C1 curves γ : [a, b] →M,a ≤ b by

L(γ) =

∫ b

a
L(γ(s), γ̇(s))ds

We look for C1 (or even continuous piecewise C1) curves γ :

[a, b] → M which minimize the action L(γ) =
∫ b
a L(γ(s), γ̇(s))ds

among the C1 curves (or continuous piecewise C1) γ̃ : [a, b] → M
with the ends γ̃(a) and γ̃(b) fixed. We will also look for curves γ̃
which minimize the action among the curves homotopic to γ with
fixed endpoints or even for curves which achieve a local minimum
of the action among all curves homotopic with same endpoints.

The problem is tackled using differential calculus on a func-
tional space. We first look for the critical points of the action

ix
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γ → L(γ) on the space of curves

C1
x,y([a, b],M) = {γ : [a, b] →M | γ of class C1 and γ(a) = x, γ(b) = y}.

Such a curve which is a critical point is called an extremal curve
for the Lagrangian L. If an extremal curve γ is C2, it is possible to
show that the curve γ satisfies the Euler-Lagrange equation which,
in a system of coordinates, is written as

∂L

∂x
(γ(t), γ̇(t)) −

d

dt
(
∂L

∂v
(γ(t), γ̇(t)) = 0.

If the second partial vertical derivative ∂2L
∂v2 (x, v) is non-degenerate

at each point of TM we then see that we can solve for γ̈(t). It
results that there is a vector field

(x, v) 7→ XL(x, v)

on TM such that the speed curves t 7→ (γ(t), γ̇(t)) of extremal
curves γ for the Lagrangian are precisely the solutions of this vec-
tor field XL. The (local) flow φs : TM → TM of this vector field
XL is called the Euler-Lagrange flow of the Lagrangian L. By
definition, a curve γ : [a, b] →M is an extremal curve if and only
if (γ(s), γ̇(s)) = φs−a(γ(a), γ̇(a)), for all s ∈ [a, b].

As TM is not compact, it may happen that φs is not defined
for all s ∈ R, which would prevent us from making dynamics. It
will be supposed that L verifies the two following conditions

(1) with x fixed v 7→ L(x, v) is C2-strictly convex, i.e. the sec-

ond partial vertical derivative ∂2L
∂v2 (x, v) is defined strictly positive,

as a quadratic form;
(2) L(x, v) is superlinear in v, i.e.

lim
‖v‖→∞

L(x, v)

‖v‖
→ +∞,

where ‖·‖ is a norm coming from a Riemannian metric on M .
Since all the Riemannian metrics are equivalent on a compact

manifold, this condition (2) does not depend on the choice of the
Riemannian metric.

Condition (2) implies that the continuous function L : TM →
R is proper, i.e. inverse images under L of compact sets are com-
pact.
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Conditions (1) and (2) are of course satisfied for the examples
given above.

The function H(x, v) = ∂L
∂v (x, v)v−L(x, v) is called the Hamil-

tonian of the system. It is invariant by φs. Under the assumptions
(1) and (2), this function H : TM → R is also proper (in fact su-
perlinear). The levels H−1(c), c ∈ R are thus compact subsets of
TM . As each trajectory of φs remains in such compact set, we con-
clude from it that φs is defined for all s ∈ R, as soon as L satisfies
conditions (1) and (2). We can, then, study the Euler-Lagrange
flow using the theory of Dynamical Systems.

0.1 The Hamilton-Jacobi Method

A natural problem in dynamics is the search for subsets invari-
ant by the flow φs. Within the framework which concerns us the
Hamilton-Jacobi method makes it possible to find such invariant
subsets.

To explain this method, it is better to think of the Hamiltonian
H as a function on cotangent bundle T ∗M . Indeed, under the
assumptions (1) and (2) above, we see that the Legendre transform
L : TM → T ∗M , defined by

L(x, v) = (x,
∂L

∂v
(x, v)),

is a diffeomorphism of TM onto T ∗M . We can then regard H as
a function on T ∗M defined by

H(x, p) = p(v) − L(x, v), where p =
∂L

∂v
(x, v).

As the Legendre transform L is a diffeomorphism, we can use it
to transport the flow φt : TM → TM to a flow φ∗t : T ∗M → T ∗M
defined by φ∗t = LφtL

−1.

Theorem 0.1.1 (Hamilton-Jacobi). Let ω be a closed 1-form on
M . If H is constant on the graph Graph(ω) = {(x, ωn) | x ∈M},
then this graph is invariant by φ∗t .

We can then ask the following question:
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Given a fixed closed 1-form ω0, does there exist ω another
closed 1-form cohomologous with ω0 such that H is constant on
the graph of ω?

The answer is in general negative if we require ω to be contin-
uous. It is sometimes positive, this can be a way to formulate the
Kolmogorov-Arnold-Moser theorem, see [Bos86].

However, there are always solutions in a generalized sense. In
order to explain this phenomenon, we will first show how to reduce
the problem to the 0 cohomology class. If ω0 is a fixed closed 1-
form, let us consider the Lagrangian Lω0 = L− ω0, defined by

Lω0(x, v) = L(x, v) − ω0,x(v).

Since ω0 is closed, if we consider only curves γ with the same fixed
endpoints, the map γ 7→

∫

γ ω0 is locally constant. It follows that
Lω0 and L have the same extremal curves. Thus they have also
the same Euler-Lagrange flow. The Hamiltonian Hω0 associated
with Lω0 verifies

Hω0(x, p) = H(x, ω0,x + p).

By changing the Lagrangian in this way we see that we have only
to consider the case ω0 = 0.

We can then try to solve the following problem:

Does there exist a constant c ∈ R and a differentiable function
u : M → R such that H(x, dxu) = c, for all x ∈M?

There is an “integrated” version of this question using the semi-
group T−

t : C0(M,R) → C0(M,R), defined for t ≥ 0 by

T−
t u(x) = inf{L(γ) + u(γ(0)) | γ : [0, t] →M,γ(t) = x}.

It can be checked that T−
t+t′ = T−

t ◦ T−
t′ , and thus T−

t is a (non-
linear) semigroup on C0(M,R).

A C1 function u : M → R, and a constant c ∈ R satisfy
H(x, dxu) = c, for all x ∈M , if and only if T−

t u = u− ct, for each
t ≥ 0.

Theorem 0.1.2 (Weak KAM). We can always find a Lipschitz
function u : M → R and a constant c ∈ R such that T−

t u = u− ct,
for all t ≥ 0.



xiii

The case M = T
n, in a slightly different form (viscosity solu-

tions) is due to P.L. Lions, G. Papanicolaou and S.R.S. Varadha-
ran 87, see [LPV87, Theorem 1, page 6]. This general version was
obtained by the author in 96, see [Fat97b, Théorème1, page 1044].
Carlsson, Haurie and Leizarowitz also obtained a version of this
theorem in 1992, see [CHL91, Theorem 5.9, page 115].

As u is a Lipschitz function, it is differentiable almost every-
where by Rademacher’s Theorem. It can be shown thatH(x, dxu) =
c at each point where u is differentiable. Moreover, for such a func-
tion u we can find, for each x ∈M , a C1 curve γx :]−∞, 0] →M ,
with γx(0) = x, which is a solution of the multivalued vector field
“ gradL u”(x) defined on M by

“ gradL u”(y) = L−1(y, dyu).

These trajectories of gradL u are minimizing extremal curves.
The accumulation points of their speed curves in TM for t→ −∞
define a compact subset of TM invariant under the Euler-Lagrange
flow ϕt. This is an instance of the so-called Aubry and Mather
sets found for twist maps independently by Aubry and Mather in
1982 and in this full generality by Mather in 1988.

We can of course vary the cohomology class replacing L by
Lω and thus obtain other extremal curves whose speed curves
define compact sets in TM invariant under φt. The study of these
extremal curves is important for the understanding of this type of
Lagrangian Dynamical Systems.



xiv



Chapter 1

Convex Functions:

Legendre and Fenchel

Besides some generalities in the first two sections, our main goal
in this chapter is to look at the Legendre and Fenchel transforms.
This is now standard material in Convex Analysis, Optimization,
and Calculus of Variations. We have departed from the usual
viewpoint in Convex Analysis by not allowing our convex functions
to take the value +∞. We think that this helps to grasp things
on a first introduction; moreover, in our applications all functions
have finite values. In the same way, we have not considered lower
semi-continuous functions, since we will be mainly working with
convex functions on finite dimensional spaces.

We will suppose known the theory of convex functions of one
real variable, see for example [RV73, Chapter 1]or [Bou76, Chapitre
1].

1.1 Convex Functions: General Facts

Definition 1.1.1 (Convex Function). Let U be a convex set in
the vector space E. A function f : U → R is said to be convex if
it satisfies the following condition

∀x, y ∈ U,∀t ∈ [0, 1], f(tx + (1 − t)y) ≤ tf(x) + (1 − t)f(y).

1
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The function f is said to be strictly convex if it satisfies the fol-
lowing stronger condition

∀x 6= y ∈ U,∀t ∈]0, 1[, f(tx + (1 − t)y) < tf(x) + (1 − t)f(y).

It results from the definition that f : U → R is convex if and
only if for every line D ⊂ E the restriction of f on D ∩ U is a
convex function (of one real variable).

Proposition 1.1.2. (i) An affine function is convex (an affine
function is a function which is the sum of a linear function and a
constant).

(ii) If (fi)i ∈ I is a family of convex functions : U → R, and
supi∈I fi(x) < +∞ for each x ∈ U then supi∈I fi is convex.

(iii) Let U be an open convex subset of the normed space E.
If f : U → R is convex and twice differentiable at x ∈ U , then
D2f(x) is non-negative definite as a quadratic form. Conversely,
if g : U → R admits a second derivative D2g(x) at every point
x ∈ U , with D2g(x) non-negative (resp. positive) definite as a
quadratic form, then g is (resp. strictly) convex.

Properties (i) and (ii) are immediate from the definitions. The
property (iii) results from the case of the functions of a real vari-
able by looking at the restrictions to each line of E.

Definition 1.1.3 (C2-Strictly Convex Function). Let be a in the
vector space E. A function f : U → R, defined on the convex
subset U of the normed vector space E, is said to be C2-strictly
convex if it is C2, and its the second derivative D2f(x) is positive
definite as a quadratic form, for each x ∈ U .

Exercise 1.1.4. Let U be an open convex subset of the normed
space E, and let f : U → R be a convex function.

a) Show that f is not strictly convex if and only if there exists a
pair of distinct points x, y ∈ U such that f is affine on the segment
[x, y] = {tx+ (1 − t)y | t ∈ [0, 1].

b) If f is twice differentiable at every x ∈ U , show that it
is strictly convex if and only if for every unit vector v ∈ E the
set {x ∈ U | D2f(x)(v, v) = 0} does not contain a non trivial
segment parallel to v. In particular, if D2f(x) is non-negative
definite as a quadratic form at every point x ∈ U , and the set of



3

points x where D2f(x) is not of maximal rank does not contain a
non-trivial segment then f is strictly convex.

Theorem 1.1.5. Suppose that U is an open convex subset of
the topological vector space E. Let f : U → R be a convex
function. If there exists an open non-empty subset V ⊂ U with
supx∈V f(x) < +∞, then f is continuous on U.

Proof. Let us first show that for all x ∈ U , there exists an open
neighborhood Vx of x, with Vx ⊂ U and supy∈Vx

f(y) < +∞. In-
deed, if x /∈ V , we choose z0 ∈ V . The intersection of the open set
U and the line containing x and z0 is an open segment contain-
ing the compact segment [x, z0]. We choose in this intersection, a
point y near to x and such that y /∈ [x, z0], thus x ∈]y, z0[, see fig-
ure 1.1. It follows that there exists t with 0 < t0 < 1 and such that
x = t0y+(1− t0)z0. The map H : E → E, z 7→ x = t0y+(1− t0)z
sends z0 to x, is a homeomorphism of E, and, by convexity of U , it
maps U into itself. The image of V by H is an open neighborhood
Vx of x contained in U . Observe now that any point x′ of Vx can
be written as the form x′ = t0y + (1 − t0)z with z ∈ V for the
same t0 ∈]0, 1[ as above, thus

f(x′) = f(t0y + (1 − t0)z)

≤ t0f(y) + (1 − t0)f(z)

≤ t0f(y) + (1 − t0) sup
z∈V

f(z) < +∞.

This proves that f is bounded above on Vx.

Let us now show that f is continuous at x ∈ U . We can
suppose by translation that x = 0. Let V0 be an open subset of U
containing 0 and such that supy∈V0

f(y) = M < +∞. Since E is

a topological vector space, we can find an open set Ṽ0 containing
0, and such that tṼ0 ⊂ V0, for all t ∈ R with |t| ≤ 1. Let us
suppose that y ∈ ǫṼ0 ∩ (−ǫṼ0), with ǫ ≤ 1. We can write y = ǫz+
and y = −ǫz−, with z+, z− ∈ Ṽ0 (of course z− = −z+, but this
is irrelevant in our argument). As y = (1 − ǫ)0 + ǫz+, we obtain
f(y) ≤ (1 − ǫ)f(0) + ǫf(z+), hence

∀y ∈ ǫṼ0 ∩ (−ǫṼ0), f(y) − f(0) ≤ ǫ(M − f(0)).
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U

V

Vx
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x

y

Figure 1.1:

We can also write 0 = 1
1+ǫy + ǫ

1+ǫz−, hence f(0) ≤ 1
1+ǫf(y) +

ǫ
1+ǫf(z−) which gives (1 + ǫ)f(0) ≤ f(y) + ǫf(z−) ≤ f(y) + ǫM .
Consequently

∀y ∈ ǫṼ0 ∩ (−ǫṼ0), f(y) − f(0) ≥ −ǫM + ǫf(0).

Gathering the two inequalities we obtain

∀y ∈ ǫṼ0 ∩ (−ǫṼ0), |f(y) − f(0)| ≤ ǫ(M − f(0)).

Corollary 1.1.6. A convex function f : U → R defined on an
open convex subset U of R

n is continuous.

Proof. Let us consider n+1 affinely independent points x0, · · · , xn ∈
U . The convex hull σ of x0, · · · , xn has a non-empty interior. By
convexity, the map f is bounded by maxn

i=0 f(xi) on σ.

Most books treating convex functions from the point of view of
Convex Analysis do emphasize the role of lower semi-continuous
convex functions. When dealing with finite valued functions, the
following exercise shows that this is not really necessary.
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Exercise 1.1.7. Let U be an open subset of the Banach space E.
If f : U → R is convex, and lower semi-continuous show that it is
in fact continuous. [Indication: Consider the sequence of subsets
Cn = {x ∈ U | f(x) ≤ n}, n ∈ N. Show that one of these subsets
has non-empty interior.]

We recall that a function f : X → Y , between the metric
spaces X,Y , is said to be locally Lipschitz if, for each x ∈ X,
there exists a neighborhood Vx of x in X on which the restriction
f|Vx

is Lipschitz.

Theorem 1.1.8. Let E be a normed space and U ⊂ E an open
convex subset. Any convex continuous function f : U → R is a
locally Lipschitz function.

Proof. In fact, this follows from the end of the proof of Theorem
1.1.5. We now give a direct slightly modified proof.

We fix x ∈ U . Since f is continuous, there exists r ∈]0,+∞[
and M < +∞ such that

sup
y∈B̄(x,r)

|f(y)| ≤M.

We have used the usual notation B̄(x, r) to mean the closed ball
of center x and radius r.

Let us fix y, y′ ∈ B̄(x, r/2). We call z the intersection point
of the boundary ∂B(x, r) = {x′ ∈ E | ‖x′ − x‖ = r} of the closed
ball B̄(x, r) with the line connecting y and y′ such that y is in the
segment [z, y′], see figure 1.2. We of course have ‖z−y′‖ ≥ r/2. We
write y = tz + (1 − t)y′, with t ∈ [0, 1[, from which it follows that
y−y′ = t(z−y′). By taking the norms and by using ‖z−y′‖ ≥ r/2,
we see that

t ≤ ‖y′ − y‖
2

r
.

The convexity of f gives us f(y) ≤ tf(z)+(1−t)f(y′), from which
we obtain the inequality f(y)− f(y′) ≤ t(f(z) − f(y′)). It results
that

f(y) − f(y′) ≤ 2tM ≤
4M

r
‖y − y′‖,

and by symmetry

∀y, y′ ∈ B̄(x, r/2), |f(y) − f(y′)| ≤
4M

r
‖y − y′‖.
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Figure 1.2:

Corollary 1.1.9. If f : U → R is convex with U ⊂ R
n open and

convex, then f is a locally Lipschitz function.

We recall Rademacher’s Theorem, see [EG92, Theorem 2, page
81]or [Smi83, Theorem 5.1, page 388].

Theorem 1.1.10 (Rademacher). A locally Lipschitz function de-
fined on open subset of R

n and with values in R
m is Lebesgue

almost everywhere differentiable.

Corollary 1.1.11. A convex function f : U → R, where U is
open convex of R

n, is Lebesgue almost everywhere differentiable.

It is possible to give a proof of this Corollary not relying on
Rademacher’s Theorem, see [RV73, Theorem D, page 116]. We
conclude this section with a very useful lemma.

Lemma 1.1.12. Let f : V → R be a convex function defined on
an open subset V of a topological vector space.

(a) A local minimum for f is a global minimum.
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(b) If f is strictly convex, then f admits at most one minimum.

Proof. (a) Let x0 be a local minimum. For y ∈ V and t ∈ [0, 1]
and close to 1 we have

f(x0) ≤ f(tx0 + (1 − t)y) ≤ tf(x0) + (1 − t)f(y),

thus (1 − t)f(x0) ≤ (1 − t)f(y) for t close to 1. It follows that
f(y) ≥ f(x0).

(b) It results from the convexity of f that the subset {x |
f(x) ≤ λ} is convex. If λ = inf f , we have {x | f(x) = inf f} =
{x | f(x) ≤ inf f}. If f is strictly convex this convex set cannot
contain more than one point.

1.2 Linear Supporting Form and Derivative

As is usual, if E as a vector space (over R) we will denote by
E∗ = Hom(E,R) its algebraic dual space. We will indifferently
use both notations p(v) or 〈p, v〉 to denote the value of v ∈ E
under the linear form p ∈ E∗.

Definition 1.2.1 (Supporting Linear Form). We say that the
linear form p ∈ E∗ is a supporting linear form at x0 ∈ U for the
function f : U → R, defined on U ⊂ E, if we have

∀x ∈ U, f(x) − f(x0) ≥ p(x− x0) = 〈p, x− x0〉.

We will denote by SLFx(f) the set of supporting linear form at x
for f , and by SLF(f) the graph

SLF(f) = ∪x∈U{x} × SLFx(f) ⊂ U × E∗.

In the literature, the linear form p is also called subderiva-
tive of f at x0 or even sometimes subgradient. We prefer to call
it supporting linear form to avoid confusion with the notion of
subdifferential that we will introduce in another chapter.

Example 1.2.2. a) If f : R → R, t 7→ |t| then SLF0(f) = [−1, 1],
for t > 0,SLFt(f) = {1}, and for t < 0,SLFt(f) = {−1}.

b) If g : R → R, t 7→ t3 then SLFt(g) = ∅, for every t ∈ R.

The following Proposition is obvious.



8

Proposition 1.2.3. The set SLFx(f) is a convex subset of E∗.
Moreover, if we endow E∗ with the topology of simple convergence
on E (”weak topology”) then SLFx(f) is also closed.

Here is the relation between supporting linear form and deriva-
tive.

Proposition 1.2.4. Let f : U → R be a function defined on an
open subset U of the normed space E.

a) If f is differentiable at some given x ∈ U then SLFx(f) ⊂
{Df(x)}, i.e. it is either empty or equal to the singleton {Df(x)}.

b) If E = R
n, and all partial derivatives ∂f/∂xi(x), i = 1, . . . , n,

exist at some given x ∈ U , then SLFx(f) is either empty or re-
duced to the single linear form (a1, . . . , an) 7→

∑n
i=1 ai∂f/∂xi(x).

Proof. a) If SLFx(f) 6= ∅, let p be a supporting linear form of f
at x. If v ∈ E is fixed, for all ǫ > 0 small we have x+ ǫv ∈ U and
thus f(x+ ǫv)− f(x) ≥ ǫp(v). Dividing by ǫ and taking the limit
as ǫ goes to 0 in this last inequality, we find Df(x)(v) ≥ p(v). For
linear forms this implies equality, because a linear form which is
≥ 0 everywhere has to be 0.

b) We denote by (e1, . . . , en) the canonical base in R
n. Let us

consider a point x = (x1, . . . , xn) ∈ R
n where all partial deriva-

tives exist. This implies that the function of one variable h 7→
f(x1, . . . , xi−1, h, xi+1, . . . , xn) is differentiable at xi, hence by part
a), if p ∈ SLFx(f), we have p(ei) = ∂f/∂xi(x). Since this is true
for every i = 1, . . . , n, therefore the map p must be (a1, . . . , an) 7→
∑n

i=1 ai∂f/∂xi(x).

We have not imposed any continuity in the definition of a sup-
porting linear form for a function f . This is indeed the case under
very mild conditions on f , as we will see presently.

Proposition 1.2.5. Let U be an open subset of the topological
vector space E, and let f : U → R be a function. Suppose that
f is bounded from above on a neighborhood of x0 ∈ U , then any
supporting linear form of f at x0 is continuous.

Proof. Let V be a neighborhood of 0 such that V = −V , and f is
defined and bounded from above by K < +∞ on x0 +V . Since V
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is symmetrical around 0, for each v ∈ V , we have

p(v) ≤ f(x0 + v) − f(x0) ≤ 2K

−p(v) = p(−v) ≤ f(x0 − v) − f(x0) ≤ 2K,

hence the linear form p is thus bounded on a nonempty open sub-
set, it is therefore continuous.

As is customary, if E is a topological vector space, we will
denote by E′ ⊂ E∗ the topological dual space of E, namely E′

is the subset formed by the continuous linear forms. Of course
E′ = E∗ if E is finite-dimensional. If E is a normed space, with
norm ‖·‖, then E′ is also a normed space for the usual norm

‖p‖ = sup{p(v) | v ∈ E, ‖v‖ ≤ 1}.

In the case of continuous map, we can improve Proposition 1.2.3.

Proposition 1.2.6. Suppose that f : U → R is a continuous
function defined on the topological vector space E. If we endow E′

with the topology of simple convergence on E (”weak topology”),
then the graph SLF(f) is a closed subset of U × E′.

The proof of this Proposition is obvious.

Exercise 1.2.7. Let f : U → R be a locally bounded function
defined on the open subset U of the normed space E. (Recall that
locally bounded means that each point in U has a neighborhood on
which the absolute value of f is bounded)

a) Show that for every x ∈ U , we can find a constant K, and a
neighborhood V such that for every y ∈ V and every p ∈ SLFy(f)
we have ‖p‖ ≤ K. [Indication: see the proof of Theorem 1.4.1]

b) If E is finite dimensional, and f is continuous, show the
following continuity property: for every x ∈ U , and every neigh-
borhood W of SLFx(f) in E′ = E∗, we can find a neighborhood V
of x such that for every y ∈ V we have SLFy(f) ⊂W .

As we will see now the notion of linear supporting form is
tailored for convex functions.

Proposition 1.2.8. If the function f : U → R, defined on the
convex subset U of the vector space E, admits a supporting linear
form at every x ∈ U , then f is convex.
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Proof. Let us suppose that x0 = y + (1 − t)z with y, z ∈ U and
t ∈ [0, 1]. If p is a supporting linear form at x0, we have

f(y) − f(x0) ≥ p(y − x0) and f(z) − f(x0) ≥ p(z − x0),

hence

tf(y) + (1 − t)f(z) − f(x0) ≥ p(t(y − x0) + (1 − t)(z − x0))

= p(ty + (1 − t)z − x0) = 0.

The following theorem is essentially equivalent to the Hahn-
Banach Theorem.

Theorem 1.2.9. Let U be a convex open subset of the locally
convex topological vector space E. If f : U → R is continuous and
convex, then we can find a supporting linear form for f at each
x ∈ U .

Proof. As f is continuous and convex, the set

O = {(x, t) | x ∈ U, f(x) < t}

is open, non-empty, and convex in E × R. Since (x0, f(x0)) is not
in O, by the Hahn-Banach Theorem, see [RV73, Theorem C, page
84] or [Rud91, Theorem, 3.4, page 59], there exists a continuous
and non identically zero linear form α : E ×R → R and such that

∀(x, t) ∈ O, α(x, t) > α(x0, f(x0)).

We can write α(x, t) = p0(x) + k0t, with p0 : E → R a continuous
linear form and k0 ∈ R. Since α(x0, t) > α(x0, f(x0)) for all
t > f(x0), we see that k0 > 0. If we define p̃0 = k−1

0 p0, we get
p̃0(x)+t ≥ p̃0(x0)+f(x0), for all t > f(x), therefore f(x)−f(x0) ≥
(−p̃0)(x− x0). The linear form −p̃0 is the supporting linear form
we are looking for.

The following Proposition is a straightforward consequence of
Theorem 1.2.9 and Proposition 1.2.4
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Proposition 1.2.10. Let f : U → R be a continuous convex
function defined on an open convex subset U of the normed space
E. If f is differentiable at x0 then the derivative Df(x0) is the
only supporting linear form of f at x0. In particular, we have

∀x ∈ U, f(x) − f(x0) ≥ Df(x0)(x− x0).

Corollary 1.2.11. Let f : U → R be a continuous convex func-
tion defined on an open convex subset U of a normed space. If f
is differentiable at x0, then x0 is a global minimum if and only if
Df(x0) = 0.

Proof. Of course, if the derivative exists at a minimum it must be
0, this is true even if f is not convex. The converse, which uses
convexity, follows from the inequality

f(y) − f(x0) ≥ Df(x0)(y − x0) = 0

given by Proposition 1.2.10 above.

Corollary 1.2.12. If U ⊂ R
n is open and convex and f : U → R

is a convex function, then, for almost all x, the function f admits
a unique supporting linear form at x.

Proof. This is a consequence of Proposition 1.2.10 above and Rade-
macher’s Theorem 1.1.10.

Exercise 1.2.13. Let U be an open and convex subset of R
n.

Suppose that f : U → R is convex and continuous. Show that if
f admits a unique supporting linear form p0 at x0 then Df(x0)
exists, and is equal to p0. [Indication: For each x ∈ U \ 0, choose
px ∈ SLFx(f), and prove that

p0(x− x0) ≤ f(x) − f(x0) ≤ px(x− x0).

Conclude using exercise 1.2.7.

1.3 The Fenchel Transform

Recall that for a topological vector E, we denote its topological
dual by E′.
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Definition 1.3.1 (Fenchel Transform). If L : E → R is function,
the Fenchel transform of L, denoted by H (or L∗ if we want to
refer explicitly to L), is the function H : E′ →]−∞,+∞] defined
by

H(p) = sup
v∈E

〈p, v〉 − L(v).

We will call Fenchel’s formula the relation between H and L.
The everywhere satisfied inequality

〈p, v〉 ≤ L(v) +H(p),

is called the Fenchel inequality.

It is easily seen that H(0) = − infv∈E L(v) and that H(p) ≥
−L(0), for all p ∈ E′.

We have not defined H on E∗ because it is identically +∞ on
E∗ \ E′ under a very mild hypothesis on L.

Exercise 1.3.2. If L : E → R is bounded on some non-empty
open subset of the normed space E, show that if we extend the
Fenchel H to E∗, using the same definition, then H is identically
+∞ on E∗ \ E′.

Usually H assumes the value +∞ even on E′. To give a case
where H is finite everywhere, we must introduce the following
definition.

Definition 1.3.3 (Superlinear). Let E be a normed space. A map
f : E →] −∞,+∞] is said to be superlinear, if for all K < +∞,
there exists C(K) > −∞ such that f(x) ≥ K‖x‖ + C(K), for all
x ∈ E.

When E is finite-dimensional, all norms are equivalent hence
the notion of superlinearity does not depend on the choice of a
norm.

Exercise 1.3.4. 1) Show that f : E → R, defined on the normed

space E, is superlinear if and only if lim‖x‖→∞
f(x)
‖x‖ = +∞ and f

is bounded below.
2) If f : E → R is continuous on the finite dimensional vector

space E, show that it is superlinear if and only if

lim
x→∞

f(x)

‖x‖
= +∞.
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Proposition 1.3.5. Let L : E → R be a function, defined on the
normed space E, and let H be its Fenchel transform.

(1) If L is superlinear, then H is finite everywhere. It is even
bounded on bounded subsets of E.

(2) If H is finite everywhere, it is convex.

(3) If L is bounded on bounded subsets of E, then H is su-
perlinear. In particular, if L is continuous, and E is finite-
dimensional, then H is superlinear.

Proof. Let us show (1). We know that H is bounded below by
−L(0). It remains to show it is finite an bounded from above on
each subset {p ∈ E′ | ‖p‖ ≤ K}, for each K < +∞. By the
superlinearity of L, there exists C(K) > −∞ such that L(v) ≥
K‖v‖ + C(K), for all v ∈ E, and thus for p ∈ E′ such that
‖p‖ ≤ K, we have

〈p, v〉 − L(v) ≤ ‖p‖ ‖x‖ −K‖x‖ − C(‖p‖) ≤ −C(‖p‖) < +∞.

From which follows sup‖p‖≤K H(p) ≤ −C(‖p‖) < +∞.
Property (2) results from the fact that H is an upper bound

of a family of functions affine in p.
Let us show (3). We have

H(p) ≥ sup
‖v‖=K

〈p, v〉 − sup
‖v‖=K

L(v).

But sup‖v‖=K〈p, v〉 = K‖p‖, and sup‖v‖=K L(v) < +∞ by the
hypothesis, since the sphere {v ∈ E | ‖v‖ = K} is bounded. If E
is finite dimensional, bounded sets are compact, and therefore, if
L is continuous, it is bounded on bounded subsets of E.

Theorem 1.3.6 (Fenchel). Let us suppose that L : E → R is
superlinear on the normed space E.

(i) The equality 〈p0, v0〉 = H(p0) +L(v0) holds if and only if p0

is a supporting linear form for L at v0.

(ii) If L is convex and differentiable everywhere then 〈p, v〉 =
H(p) + L(v) if and only if p = DL(v). Moreover

∀v ∈ E,H ◦DL(v) = DL(v)(v) − L(v).
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(iii) If we have L(v) = supp∈E′〈p, v〉−H(p), for each v ∈ E, then
L is convex. Conversely, if L is convex and continuous then
L(v) = supp∈E′〈p, v〉 −H(p), for each v ∈ E.

Proof. Let us show (i). If L(v) − L(v0) ≥ 〈p0, v − v0〉, we find
〈p0, v0〉 − L(v0) ≥ 〈p0, v〉 − L(v), for all v ∈ E, and thus H(p0) =
〈p0, v0〉 − L(v0). Conversely, by Fenchel’s inequality 〈p0, v〉 ≤
H(p0) + L(v), for all v ∈ E. If we subtract from this inequal-
ity the equality 〈p0, v0〉 = H(p0) +L(v0), we obtain 〈p0, v − v0〉 ≤
L(v) − L(v0).

Part (ii) follows from part (i) since for a differentiable func-
tion the only possible supporting linear form is the derivative, see
Proposition 1.2.4.

Let us show (iii). If L(v) = supp∈E′〈p, v〉 − H(p), then, the
function L is convex as a supremum of affine functions. Conversely,
by (i) we always have L(v) ≥ 〈p, v〉 − H(p). Therefore L(v) ≥
supp∈E′〈p, v〉 −H(p). If L is convex, let p0 be a linear supporting
form for L at v, by (ii), we obtain L(v) = 〈p0, v〉−H(p0) and thus
L(v) = supp∈E′〈p, v〉 −H(p).

Exercise 1.3.7. Let L : E → R be superlinear on the normed
space E, and let H be its Fenchel transform. Denote by AL the
set of affine continuous functions v 7→ p(v)+c, p ∈ E′, c ∈ R, such
that L(v) ≥ p(v) + c, for each v ∈ E. If L∗∗ : E → R is defined by
L∗∗(v) = supf∈AL

f(v), show that

L∗∗(v) = sup
p∈E′

〈p, v〉 −H(p).

[Indication: An affine function f = p + c, p ∈ E′, c ∈ R, is in AL

if and only if c ≤ −H(p).]

Proposition 1.3.8. Suppose that L : E → R is continuous and
superlinear on the finite-dimensional linear space E, andH : E∗ →
R is its Fenchel transform.

(i) H is everywhere continuous, and superlinear.

(ii) For every p ∈ E∗, there exists v ∈ E such that 〈p, v〉 =
H(p) + L(v).

(iii) If L is convex, for every v ∈ E, there exists p ∈ E∗ such that
〈p, v〉 = H(p) + L(v).
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Proof. We are assuming that E is finite-dimensional, and that L
is continuous. Therefore, in part (i), the continuity follows from
the convexity of H, see 1.1.6, and the superlinearity follows from
part (iii) of Theorem 1.3.6.

We now prove part (ii). Since lim‖v‖→+∞ L(x, v)/‖v‖ = +∞,
and |p(v)| ≤ ‖p‖‖v‖, we see that

lim
‖v‖→+∞

[p(v) − L(x, v)]

‖v‖
= −∞.

Hence the supremum H(x, p) of the continuous function p(·) −
L(x, ·) is the same as the supremum of its restriction to big enough
bounded sets. Since bounded sets in E are compact, the supremum
H(x, p) is achieved.

For part (iii), we remark that E = E∗∗, and that L is the
Fenchel transform of H, by part (ii) of Fenchel’s Theorem 1.3.6,
therefore we can apply part (ii) of the present Proposition.

Corollary 1.3.9. If E is finite-dimensional and L : E → R is
everywhere differentiable and superlinear, then DL : E → E∗ is
surjective.

Proof. This follows from part (ii) of Fenchel’s Theorem 1.3.6 to-
gether with part (ii) of Proposition 1.3.8 (note that L is continuous
since it is differentiable everywhere).

We will need some fibered version of the results in this section.
We will have to consider locally trivial finite-dimensional vector

bundle π : E → X, where X is a Hausdorff topological space. We
will use the notation (x, v) for a point in E to mean x ∈ X and
v ∈ Ex = π−1(x), with this notation π : E → X is the projection
on the first coordinate (x, v) 7→ x.

We denote, as is customary by π∗ : E∗ → X the dual vector
bundle.

We recall that a continuous norm on π : E → X is a continuous
function (x, v) 7→ ‖v‖x such that v 7→ ‖v‖x is a norm on the
fiber Ex, for each x ∈ X. Such a norm induces a dual norm on
π∗ : E∗ → X defined, for p ∈ E∗

x, in the usual way by

‖p|x = sup{p(v) | v ∈ Ex, ‖v|x ≤ 1}.

The following result is classical.
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Proposition 1.3.10. Let π : E → X be a locally trivial vector
bundle with finite-dimensional fibers over the Hausdorff topologi-
cal space X, then all continuous norms on this bundle are equiva-
lent above compact subsets of X. This means that for each com-
pact subset C ⊂ X, and each pair ‖·‖, ‖·‖′ of continuous norms,
there exists constants α, β, with α > 0, and such that

∀(x, v) ∈ E, x ∈ C ⇒ α−1‖v‖x ≤ ‖v‖′x ≤ α‖v‖x.

Proof. We do it first for the case of the trivial bundle x×R
n → X,

with X compact. It is not difficult to see that it suffices to do it
with ‖·‖x a fixed norm independent of x, for example the Euclidean
norm on R

n, which we simply denote by ‖·‖. The set S = X×{v ∈
R

n | ‖v‖ = 1} is compact and disjoint from × {0}, therefore by
continuity the two bounds α = inf(x,v)∈S‖v‖x, β = sup(x,v)∈S‖v‖

′
x

are attained, hence they are finite and 6= 0. It is not difficult to
see by homogeneity that

∀(x, v) ∈ X × R
n, α‖v‖ ≤ ‖v‖′x ≤ ‖v‖.

For the case of a general bundle, if C ⊂ X is compact, we can
find a finite number U1, . . . , Un of open subsets of X such that the
bundle is trivial over each Ui, and C ⊂ U1 ∪ · · · ∪ Un. Since X is
Hausdorff, we can write C = C1 ∪ · · · ∪Cn, with Ci compact, and
included in Ui. From the first part of the proof two norms on the
bundle are equivalent above each Ci, hence this is also the case of
their (finite) union C.

Definition 1.3.11 (Superlinear Above Compact subsets). Sup-
pose that π : E → X is a finite-dimensional locally trivial vec-
tor bundle over the topological space X. We say that a function
L : E → X is superlinear above compact subsets if for every com-
pact subset C ⊂ X, and every K ≥ 0, we can find a constant
A(C,K) > −∞ such that

∀(x, v) ∈ E, x ∈ C ⇒ L(x, v) ≥ K‖v‖x +A(C,K),

where ‖·‖x is a fixed continuous norm on the vector bundle E.
When X is compact we will say that L is superlinear instead

of superlinear above compact subsets. Of course in that case, it
suffices to verify the condition of superlinearity with K = X.
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Of course, the condition above is independent of the choice
of the continuous norm on the vector bundle, since all norms are
equivalent by Proposition 1.3.10. We have not defined the concept
of uniform superlinearity for a general X because it depends on
the choice of the norm on the bundle, since if X is not compact
not all norms are equivalent.

Theorem 1.3.12. Suppose L : E → R is a continuous function
on the total space of the finite-dimensional locally trivial vector
bundle π : E → X. We consider π∗ : E∗ → X, the dual vector
bundle and define H : E∗ → R by

H(x, p) = sup
v∈Ex

p(v) − L(x, v).

If L is superlinear above compact subsets of X, and X is a Haus-
dorff locally compact, topological space, then H is continuous and
superlinear above compact subsets of X.

Proof. Since continuity is a local property, and X is Hausdorff lo-
cally compact, without loss of generality, we can assume X com-
pact, and π : E → X trivial, therefore E = X × R

n. We choose a
norm ‖·‖ on R

n.

Fix K ≥ 0, we can pick C > −∞ such that

∀(x, v) ∈ X × R
n, L(x, v) ≥ (K + 1)‖v‖ + C.

If we choose R > 0 such that R + C > supx∈X L(x, 0) (this is
possible since the right hand side is finite by the compactness of
X), we see that for each x ∈ X, v ∈ R

n,and each p ∈ R
n∗ satisfying

‖p‖ ≤ K, ‖v‖ ≥ R, we have

p(v) − L(x, v) ≤ ‖p‖v‖−‖ − (K + 1)‖v‖ − C

≤ −R− C < − sup
x∈X

L(x, 0)

≤ −L(x, 0) = p(0) − L(x, 0).

Therefore for ‖p‖ ≤ K, we have H(x, p) = sup‖v‖≤R p(v)−L(x, v).
Since {v ∈ R

n | ‖v‖ ≤ R} is compact, we see that H is continuous
on the set X × {p ∈ R

n∗ | ‖p‖ ≤ K}. But K ≥ 0 is arbitrary,
therefore the function H is continuous everywhere.
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We prove superlinearity above compact subsets of X. Us-
ing the same argument as in final part the proof of Proposition
1.3.10 above, we can without loss of generality suppose that X
is compact, and that the bundle is the trivial bundle X × R

n →
X. For a fixed K, remark that by compactness, and continuity
A = sup{L(x, v) | x ∈ X, v ∈ R

n, ‖v‖ ≤ K} is finite. Therefore
H(x, p) ≥ p(v) − A, for each v ∈ R

n, satisfying ‖v‖ ≤ K. If we
take the supremum over all such v’s, since K‖p‖ = sup{p(v) | v ∈
R

n, ‖v‖ ≤ K}, we get H(x, p) ≥ K‖p‖ −A.

Definition 1.3.13 (Convex in the Fibers). Let L : E → R be
a continuous function on the total space of the finite-dimensional
locally trivial vector bundle π : E → X, where X is a Hausdorff
space. We will say that a Lagrangian L on the manifold M is
convex in the fibers, if the restriction L|Ex

is convex for each x ∈ X.

In fact, for convex functions superlinearity above compact sets
is not so difficult to have, because of the following not so well
known theorem.

Theorem 1.3.14. Suppose L : E → R is a continuous function
on the total space of the finite-dimensional locally trivial vector
bundle π : E → X, where X is a Hausdorff space. If L is convex
in the fibers, then L is superlinear above each compact subsets of
X if and only if L|Ex

is superlinear, for each x ∈ X.

Proof. Of course, it is obvious that if L is superlinear above each
compact subset, then each restriction L|Ex

is superlinear.

Suppose now that L|Ex
is convex and superlinear for each x ∈

X, to prove that L is linear above compact subsets of X, again by
the same argument as in final part the proof of Proposition 1.3.10
above, we can without loss of generality that X is compact, and
that the bundle is the trivial bundle X × R

n → X.

We choose a fixed norm ‖·‖ on R
n. For given x0 ∈ X, and

K ≥ 0, we will show that there exists a neighborhood Vx0 of x0

and C(x0,K) > −∞ such that

∀x ∈ Vx0 ,∀v ∈ R
n, L(x, v) ≥ K‖v‖ + C(x0,K). (*)

A compactness argument finishes the proof.
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We now prove (*). We choose C1 > −∞ such that

∀v ∈ R
n, L(x0, v) ≥ (K + 1)‖v‖ + C1.

We then pick R > 0 such that R+ C1 ≥ L(x0, 0) + 1. Now if p ∈
R

n∗, and v ∈ R
n satisfy respectively ‖p‖x0 ≤ K, and ‖v‖x0 = R,

we see that

L(x0, v) − p(v) ≥ (K + 1)‖v‖ + C1 −K‖v‖

≥ R+ C1

≥ L(x0, 0) + 2.

Since the set {(v, p) ∈ R
n × R

n∗ | ‖v‖x0 = R, ‖p‖x0 ≤ K} is
compact, and L is continuous, we can find a neighborhood Vx0 of
x0 in X such that for each x ∈ Vx0 , v ∈ R

n, and each p ∈ R
n∗, we

have
‖v‖ = R, ‖p‖ ≤ K ⇒ L(x, v) − p(v) > L(x, 0).

This implies that for fixed x ∈ Vx0 , and p ∈ R
n∗ satisfying ‖p‖ ≤

K, the convex function L(x, ·) − p(·) achieves its minimum on
the compact set {v ∈ R

n | ‖v‖ ≤ R} in the interior of that set.
Therefore, the convex function L(x, ·)− p(·) has a local minimum
attained in {v ∈ R

n | ‖v‖ < R}. By convexity this local minimum
must be global, see 1.1.12. Therefore, defining C = inf{L(x, v) −
p(v) | x ∈ X, ‖v‖x ≤ R, ‖p‖x ≤ K}, we observe that C is finite by
compactness, and we have

∀(x, v, p) ∈ Vx0 × R
n × R

n∗, ‖p‖ ≤ K ⇒ L(x, v) − p(v) ≥ C.

Taking the infimum of the right hand side over all ‖p‖x ≤ K, we
get

∀(x, v) ∈ Vx0 × R
n, L(x, v) −K‖v‖ ≥ C.

1.4 Differentiable Convex Functions and Le-

gendre Transform

Theorem 1.4.1. Let U be an open convex subset of R
n. If f :

U → R is convex and differentiable at each point of U, then f is
C1.



20

Proof. We fix x ∈ U . Let r ∈ ]0,∞[ be such that the closed ball
B̄(x, r) is contained in U . Let us set M = supy∈B̄(x,r) |f(y)| <

+∞. For h, k ∈ B̄(0, r
2), we have

f(x+ h+ k) − f(x+ k) ≥ Df(x+ k)(h), (*)

taking the supremum over all h such that ‖h‖ = r/2, we obtain
‖Df(x + k)‖ ≤ 4M/r. Since the ball {p ∈ R

n∗ | ‖p‖ ≤ 4M/r} is
compact, it is enough to see that if kn → 0 and Df(x+ kn) → p,
then p = Df(x). But taking the limit in the inequality (∗), we get

∀k ∈ B̄(0, r/2), f(x+ h) − f(x) ≥ 〈p, h〉.

It results that Df(x) = p, since we have already seen that at a
point where a function is differentiable only its derivative can be
a supporting linear form, see Proposition 1.2.4.

Exercise 1.4.2. Let K be a compact topological space and U an
open convex subset of R

n. If L : K × U → R is continuous and
such that for each k ∈ K, the map U → R : v 7→ L(k, v) is convex
and everywhere differentiable, then ∂L

∂v : K × U → (Rn)∗, (k, v) 7→
∂L
∂v (k, v) is continuous. [Indication: Adapt the proof of Theorem
1.4.1.]

Definition 1.4.3 (Legendre Transform). Let L : U → R be a C1

function, with U ⊂ R
n open. The Legendre transform associated

with L is the map L : U → R
n∗, v 7→ DL(v).

We can rephrase part (ii) of Fenchel’s Theorem 1.3.6 and Corol-
lary 1.3.9 in the following way:

Proposition 1.4.4. Let L : R
n → R be C1, convex and super-

linear, then its Legendre transform L : R
n → R

n∗ is surjective.
Moreover, if we denote by H : R

n∗ → R its Fenchel transform
then 〈p, v〉 = H(p) + L(v) if and only if p = DL(v), and we have

∀v ∈ R
n,H ◦ L(v) = DL(v)(v) − L(x, v).

In particular, the surjectivity of L is a consequence of super-
linearity of L.

We are interested in finding out, for a C1 convex function L :
R

n → R, when its Legendre transform L : R
n → R

n∗ is bijective.
It is easy to understand when L is injective.
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Theorem 1.4.5. Suppose L : U → R is a C1 convex function,
defined on an open subset U of R

n. Its associated Legendre trans-
form L is injective if and only if L is strictly convex.

Proof. Let p ∈ R
n∗. We have p = DL(x) if and only if DLp(x) = 0

where Lp(x) = L(x)−p(x). Hence x is a point where the function
Lp reaches its minimum, see 1.2.11. If L is strictly convex so is
Lp. However a strictly convex function can achieve its minimum
at most at one point.

Conversely, if L is injective, the convex function L(x)−DL(x0)(x)
has only x0 as a critical point and hence, and again by Corollary
1.2.11, it reaches its minimum only at x0. If x0 = tx + (1 − t)y
with t ∈]0, 1[, x 6= x0 and y 6= x0, we therefore have

L(x) −DL(x0)(x) > L(x0) −DL(x0)(x0)

L(y) −DL(x0)(y) > L(x0) −DL(x0)(x0).

Since t > 0 and (1 − t) > 0, we obtain

tL(x)+(1−t)L(y)−DL(x0)(tx+ (1 − t)y)
︸ ︷︷ ︸

x0

) > L(x0)−DL(x0)(x0),

hence tL(x) + (1 − t)L(y) > L(x0).

We would like now to prove the following theorem.

Theorem 1.4.6. Let L : R
n → R be C1, and convex. If L is its

Legendre transform, then the following statements are equivalent:

(1) The function L is strictly convex, and superlinear.

(2) Its Legendre transform L : R
n → R

n∗ is a homeomorphism.

(3) Its Legendre transform L : R
n → R

n∗ is bijective.

Proof. We first show that (1) implies (3). If (1) is true then from
Proposition 1.4.4, we know that L is surjective, and from Theorem
1.4.5 it is injective.

The fact that (3) implies (2) follows from Brouwer’s Theo-
rem on the invariance of the domain see [Dug66, Theorem 3.1,
page 358]. (Note that one can obtain a proof independent from
Brouwer’s Theorem by using Theorem 1.4.13 below.)
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We now prove that (2) implies (1). Another application of
Theorem 1.4.5 shows that L is strictly convex. It remains to show
the superlinearity. Since L is a homeomorphism, the set AK = {x |
‖DL(x)‖ = K} is compact, and L(AK) = {p ∈ R

n∗ | ‖p‖ = K},
thus

∀v ∈ R
n, K‖v‖ = sup

x∈AK

DL(x)(v).

As L(v) ≥ DL(x)(v) + L(x) −DL(x)(x) we see that

L(v) ≥ K‖v‖ + inf
x∈AK

[L(x) −DL(x)(x)],

but infx∈AK
[L(x)−DL(x)(x)] > −∞, because AK is compact and

L is of class C1.

When it comes to Lagrangians, Analysts like to assume that
they are superlinear, and Geometers prefer to assume that its as-
sociated Legendre transform is bijective. The following Corollary
shows that for C2-strictly convex Lagrangians, these hypothesis
are equivalent.

Corollary 1.4.7. Let L : R
n → R be a C2 convex function. Its

associated Legendre transform L is a C1 diffeomorphism from R
n

onto its dual space R
n∗ if and only if L is superlinear, and C2-

strictly convex.

Proof. Suppose that L = DL is a C1 diffeomorphism. By the
previous Theorem 1.4.6, the map L is superlinear. Moreover, the
derivative DL(v) = D2L(v) is an isomorphism, for each v ∈ R

n.
Therefore D2L(v) is non degenerate as a bilinear form, for each
v ∈ R

n. Since, by the convexity of L, the second derivative D2L(v)
is non negative definite as a quadratic form, it follows that D2L(v)
is positive definite as a quadratic form, for each v ∈ R

n.
Conversely, suppose L superlinear, and C2-strictly convex .

Then DL : R
n → R

n∗ is a homeomorphism by Theorem 1.4.6.
Moreover, since DL(v) = D2L(v), the derivative DL(v) is thus
an isomorphism at every point v ∈ R

n. By the Local Inversion
Theorem, the inverse map L−1 is also C1.

In the sequel of this section, we will discuss some aspects of
the Legendre transform that will not be used in this book. They
nonetheless deserve to be better known.
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We start with the notion of proper map.

Definition 1.4.8 (Proper Map). A map f : X → Y , between
the topological spaces X and Y , is said to be proper if for ev-
ery compact subset K of the target space Y , the inverse image
f−1(K) ⊂ X is also compact.

The main properties of proper maps are recalled in the follow-
ing exercise.

Exercise 1.4.9. Let f : X → Y be a proper continuous map
between metric spaces.

1) Show that for each closed subset F ⊂ X, the image f(F ) is
closed in Y . [Indication: Use the fact that if a sequence converges,
then the subset formed by this sequence together with its limit is
compact.

2) Conclude that f is a homeomorphism as soon as it is bijec-
tive.

3) Show that a continuous map f : R
n → R

m is proper if and
only if

lim
‖x‖→+∞

‖f(x)‖ = +∞.

Theorem 1.4.10. Let L : U → R be a C1 convex function, where
U is an open convex subset of R

n. If its associated Legendre
transform L : U → R

n∗ is proper, then L is surjective.

We need some preliminaries in order to prove the theorem.

Lemma 1.4.11 (Of the Minimum). Let f : B̄(x, r) → R be a
function which has a derivative at each point of B̄(x, r). If f
achieves its minimum at x0 ∈ B̄(x, r), a closed ball in a normed
space, then Df(x0)(x0−x) = −‖Df(x0)‖r = −‖Df(x0)‖‖x0−x‖.

Proof. Without loss of generality, we can suppose x = 0. For all
y ∈ B̄(0, r) and for all t ∈ [0, 1], we have

f(ty + (1 − t)x0) ≥ f(x0),

thus, the function φy : [0, 1] → R, t 7→ f(ty + (1 − t)x0) has a
minimum at t = 0, its derivative at 0, namely Df(x0)(y − x0), is
thus ≥ 0. Hence Df(x0)(y − x0) ≥ 0, for each y ∈ B̄(0, r), and
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consequently Df(x0)(x0) ≤ Df(x0)(y), for each y ∈ B̄(0, r). It
follows that

Df(x0)(x0) = inf
y∈B̄(0,r)

Df(x0)(y) = −‖Df(x0)‖r.

If Df(x0) = 0, we also have the second part of the required equal-
ities. If Df(x0) 6= 0, then x must be on the boundary ∂B(0, r) of
B̄(0, r) and we again have the second part of the equalities.

Corollary 1.4.12. Let f : U → R be a C1 convex function defined
on the open convex subset U of R

n. If the derivative Df(x) is never
the 0 linear form, for x ∈ U , then for each compact subset K ⊂ U ,
we have

inf
x∈U

‖Df(x)‖ = inf
x∈U\K

‖Df(x)‖.

Proof. The inequality infx∈U‖Df(x)‖ ≤ infx∈U\K‖Df(x)‖ is ob-
vious. If we do not have equality for some compact subset K,
then

inf
x∈U

‖Df(x)‖ < inf
x∈U\K

‖Df(x)‖,

and therefore

inf
x∈U

‖Df(x)‖ = inf
x∈K

‖Df(x)‖,

If we set K0 = {x ∈ U | ‖Df(x)‖ = infz∈U‖Df(z)‖}, it follows
that K0 is closed, non-empty, and contained in K, therefore K0 is
compact. Moreover

∀x ∈ U \K0, ‖Df(x)‖ > inf
z∈U

‖Df(z)‖.

Since K0 is compact there exists r > 0 such that the closed set
V̄r(K0) = {x | d(x,K0) ≤ r} is contained in the open set U . As
this set V̄r(K0) is also compact, there exists x0 ∈ V̄r(K0) such
that f(x0) = infx∈V̄r(K0) f(x). Necessarily x is on the boundary of

V̄r(K0), because otherwise x0 would be a local minimum of f and
therefore Df(x0) = 0, which is excluded. Hence d(x0,K0) = r.
By compactness of K0, we can find x ∈ K0 such that d(x0, x) = r.
Since B̄(x, r) ⊂ V̄r(K0) and x0 ∈ B̄(x, r), we also have f(x0) =
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infy∈B̄(x,r) f(y). By the previous Lemma 1.4.11, we must have
Df(x0)(x0 − x) = −‖Df(x0)‖r. The convexity of f gives

f(x) − f(x0) ≥ Df(x0)(x− x0)

f(x0) − f(x) ≥ Df(x)(x0 − x),

hence Df(x)(x − x0) ≥ Df(x0)(x − x0) = ‖Df(x0)‖r. As ‖x −
x0‖ = r, we get

Df(x)(x− x0) ≤ ‖Df(x)‖‖x− x0‖ = ‖Df(x)‖r.

This implies ‖Df(x)‖ ≥ ‖Df(x0)‖, which is absurd. In fact, we
have ‖Df(x)‖ = infz∈U‖Df(z)‖, since x ∈ K0, and ‖Df(x0)‖ >
infz∈U‖Df(z)‖, because x0 /∈ K0.

Proof of theorem 1.4.10. Fix p ∈ R
n∗, the Legendre transform of

Lp = L−p is L−p, it is thus also proper. By the previous Corollary,
it must vanish at some point in U , because infx/∈B̄(0,r)‖DLp(x)‖ →
∞, when r → ∞.

Theorem 1.4.13. Let L : R
n → R be a C1 convex function. Its

associated Legendre transform L : R
n → R

n∗ is proper if and only
if L is superlinear.

Proof. Let us suppose L superlinear. By convexity we have L(0)−
L(x) ≥ DL(x)(0−x) and thusDL(x)(x) ≥ L(x)−L(0) from which
we obtain

‖DL(x)‖ ≥ DL(x)

(
x

‖x‖

)

≥
L(x)

‖x‖
−
L(0)

‖x‖
,

by the superlinearity of L, we do have ‖DL(x)‖ → ∞, when ‖x‖ →
∞.

The proof of the converse is very close to the end of the proof of
Theorem 1.4.6. If L is proper, the set AK = {x | ‖DL(x)‖ = K}
is compact. Moreover, since L is necessarily surjective, see 1.4.10,
we have L(AK) = {p ∈ R

n∗ | ‖p‖ = K}, and thus

∀v ∈ R
n, K‖v‖ = sup

x∈AK

DL(x)(v).

As L(v) ≥ DL(x)(v) + L(x) −DL(x)(x) we see that

L(v) ≥ K‖v‖ + inf
x∈AK

[L(x) −DL(x)(x)],
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but infx∈AK
[L(x)−DL(x)(x)] > −∞, because AK is compact and

L is of class C1.

We would like to conclude this section with a very nice theorem
due to Minty see [Min64, Min61] (see also [Gro90, 1.2. Convexity
Theorem]). In order to give the best statement, we recall some
notions about convex subsets of a finite-dimensional vector space
E. If C ⊂ F is a convex subset, we will denote by Aff(C) the
affine subspace generated by C, the relative interior relint(C) of
C is its interior as a subset of Aff(C).

Theorem 1.4.14 (Minty). If L : R
n → R is a C1 convex function,

then the closure of the image L(Rn) = DL(Rn) of its associated
Legendre transform L is convex. Moreover L contains the relative
interior of its closure.

In order to prove this theorem, we will need the following
lemma.

Lemma 1.4.15. Let L : R
n → R be a C1 convex function. If

p /∈ L(Rn), then there exists v ∈ R
n\{0} such that L(x)(v) ≥ p(v)

for all x ∈ R
n. If p is not in the closure of L(Rn), then, moreover,

there exists ǫ > 0 such that L(x)(v) ≥ ǫ+ p(v) for all x ∈ R
n.

Proof of Theorem 1.4.14. To simplify notations, we call C the clo-
sure of L(Rn). Observe that a linear form on R

n∗ is of the form
p 7→ p(v), where v ∈ R

n. Therefore the Lemma above 1.4.15 shows
that a point in the complement of C, can be strictly separated by
a hyperplane from L(Rn), and hence from its closure C. This
implies the convexity of C.

It remains to prove the second statement.
We first assume that the affine subspace generated by L(Rn)

is the whole of R
n∗. We have to prove that the interior of C is

contained in L(Rn). Suppose that p0 ∈ C̊ is not contained in
L(Rn), by Lemma 1.4.15 above we can find v ∈ R

n \ {0} with
L(z)(v) ≥ p0(v) for all z ∈ R

n, therefore p(v) ≥ p0(v) for all p in
the closure C of L(Rn). This is clearly impossible since p0 ∈ C̊
and v 6= 0.

To do the general case, call E the affine subspace generated
by L(Rn). Replacing L by L−DL(0), we can assume that 0 ∈ E,
and therefore E is a vector subspace of R

n∗. Changing bases, we
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can assume that E = R
k∗ × {0} ⊂ R

n∗. Since DL(x) ∈ E =
R

k∗ × {0}, we see that ∂L/∂xi is identically 0 for i > 0, and
therefore L(x1, . . . , xn) depends only on the first k variables, so we
can write L(x1, . . . , xn) = L̃(x1, . . . , xk), with L̃ : R

k → R convex
and C1. It is obvious that DL and DL̃ have the same image in
R

k∗ = R
k∗ × {0} ⊂ R

n∗, therefore the image of DL̃ generates
affinely R

k∗. We can therefore apply the first case treated above
to finish the proof.

Proof of Lemma 1.4.15. We fix p0 /∈ L(Rn) = DL(Rn). The func-
tion Lp0 = L− p0 is convex. As its derivative is never the 0 linear
map, it does not have a local minimum. To simplify the notations
let us set f = L − p0. For each integer k ≥ 1, by Lemma 1.4.11
applied to f , and to the ball B̄(0, k), we can find xk with ‖xk‖ = k
such that

Df(xk)(xk) = −‖Df(xk)‖‖xk‖.

The convexity of f gives

∀y ∈ R
n, Df(y)(y − xk) ≥ f(y) − f(xk) ≥ Df(xk)(y − xk),

hence
∀y ∈ R

n, Df(y)(y − xk) ≥ Df(xk)(y − xk). (*)

In particular, we haveDf(0)(−xk) ≥ Df(xk)(−xk) = ‖Df(xk)‖‖xk‖,
and thus ‖Df(0)‖ ≥ ‖Df(xk)‖. Taking a subsequence, we can
suppose that ‖xk‖ → ∞, that Df(xk) → p∞, and that xk/‖xk‖ →
v∞, with v∞ of norm 1. Dividing both sides the inequality (∗)
above by ‖xk‖, and using the equality

Df(xk)(xk) = −‖Df(xk)‖‖xk‖,

and taking limits we obtain

∀y ∈ R
n, Df(y)(−v∞) ≥ ‖p∞‖,

we rewrite it as

∀y ∈ R
nDL(y)(−v∞) ≥ p0(−v∞) + ‖p∞‖.

It then remains to observe that p∞ = 0 implies that Df(xk) =
DL(xk)−p0 tends to 0 and thus p0 is in the closure of DL(Rn).
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Exercise 1.4.16. Suppose that L : R
n → R is C1, and strictly

convex. Show that the image L(Rn) is a convex open subset of
R

n∗.

Does this result remain true, for L : U → R C1, and strictly
convex, on the open subset U ⊂ R

n?

1.5 Quasi-convex functions

At some point, we will need a class of functions more general than
the convex ones.

Definition 1.5.1 (Quasi-convex). Let C ⊂ E be a convex subset
of the vector space E. A function f : C → R is said to be quasi-
convex if for each t ∈ R, the subset f−1(] −∞, t]) is convex.

Proposition 1.5.2. Let f : C → R be a function defined on the
convex subset C of the vector space E.

1 The function f is quasi-convex if and only

∀x, y ∈ C,∀α ∈ [0, 1], f(αx + (1 − α)y) ≤ max(f(x), f(y)).

2 If f is quasi-convex then for every x1, · · · , xn ∈ C and every
α1, · · · , αn ∈ [0, 1], with

∑n
i=1 αi = 1, we have

f(

n∑

i=1

αixi) ≤ max
1≤i≤n

f(xi).

Proof. We prove (2) first. Suppose f is quasi convex. Since f−1(]−
∞,max≤i≤n f(xi)]) is convex and contains x1, · · · , xn necessarily
∑n

i=1 αi, xi ∈ f−1(−]∞,max≤i≤n f(xi)].

To finish proving (1), suppose conversely that

∀x, y ∈ C,∀α ∈ [0, 1], f(αx + (1 − α)y) ≤ max(f(x), f(y)).

If x, y are in f−1(]−∞, t]), then f(x) and f(y) are ≤ t. Therefore
any convex combination αx+(1−α)y satisfies f(αx+(1−α)y) ≤
max(f(x), f(y)) ≤ t, and hence αx+(1−α)y ∈ f−1(]−∞, t]).
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Example 1.5.3. 1) Any convex function is quasi-convex.
2) Any monotonic function ϕ : I → R, where I is an interval

in R, is quasi-convex.

We need a slight generalization of property (2) of Proposition
1.5.2. We start with a lemma. Although we do not need it in its
full generality, it is nice to have the general statement.

Lemma 1.5.4. Suppose that (X,A, µ) is a probability measure,
and that ϕ : X → C is a measurable function with value in
a convex subset C of a finite-dimensional normed space E. If
∫

X‖ϕ(x)‖ dµ(x) < +∞, then
∫

X ϕ(x) dµ(x) is contained in C.

Proof. We will do the proof by induction on dimC. Recall that
the dimension of a convex set is the dimension of the smallest
affine subspace that contains it. If dimC = 0, then by convexity
C is reduced to one point and the result is trivial.

We assume now that the result is true for every n < dimC.
Replacing E by an affine subset we might assume that C has a
non empty interior. Therefore the convex set C is contained in
the closure of its interior C̊, see Lemma 1.5.5 below. Let us define
v0 =

∫

X ϕ(x)dµ(x). If v0 /∈ C̊, since C̊ is open and convex, by
Hahn-Banach Theorem there exists a linear form θ : E → R such
that θ(v) > θ(v0), for each v ∈ C̊. Since C is contained in the
closure of C̊, we obtain

∀v ∈ C, θ(v) ≥ θ(v0).

Therefore, we have the inequality

∀x ∈ X, θ ◦ ϕ(x) ≥ θ(v0). (†)

If we integrate this inequality we get
∫

X θ◦ϕ(x) dµ(x) ≥ θ(v0). By
linearity of θ, the integral

∫

X θ◦ϕ(x)dµ(x) is equal to θ(
∫

X ϕ(x) dµ(x)),
hence to θ(v0), by the definition of v0. This means that the in-
tegration of the inequality (†) leads to an equality, therefore we
have θ ◦ ϕ(x) = θ(v0), for µ-almost every x ∈ X. It follows that,
on a set of full µ-measure ϕ(x) ∈ θ−1(θ(v0)) ∩ C. But the subset
θ−1(θ(v0)) ∩ C is convex and has a dimension < dimC = dimE,
because it is contained in the affine hyperplane θ−1(θ(v0)). By
induction

∫

X ϕ(x) dµ(x) ∈ θ−1(θ(v0)) ∩ C.
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Lemma 1.5.5. If C is a convex subset of the topological vector
space E, then its interior C̊ is convex. Moreover if C̊ is non-empty,
then C is contained in the closure of C̊.

Proof. Suppose x ∈ C̊, and y ∈ C. For t > 0, the map Ht : E →
E, z 7→ tz + (1 − t)y is a homeomorphism of E. Moreover, for
if 0 < t ≤ 1, by convexity of C, we have Ht(C) ⊂ C, therefore
tx + (1 − t)y = Ht(x) ∈ Ht(C̊) ⊂ C. Since Ht(C̊) is open, we
obtain that tx + (1 − t)y ∈ C̊, for 0 < t ≤ 1. This implies the
convexity of C̊. Now, if C̊ is non-empty, we can find x0 ∈ C̊, for
y ∈ C, and 0 < t ≤ 1, we know that tx0 + (1 − t)y ∈ C̊. Since
y = limt→0 tx0 + (1− t)y. Therefore C is contained in the closure
of C̊.

Proposition 1.5.6. Suppose that f : C → R is a quasi-convex
function defined on the convex subset C of the finite dimensional
normed space E. If (X,A, µ) is a probability space, and ϕ : X →
C is a measurable function with

∫

X‖ϕ(x)‖ dµ(x) < +∞, then

f(

∫

X
ϕ(x) dµ(x)) ≤ sup

x∈X
f(ϕ(x)).

Proof. The set D = {c ∈ C | f(c) ≤ supx∈X f(ϕ(x))} is convex,
and, by definition, contains ϕ(x) for every x ∈ X. Therefore by
Lemma 1.5.4, we obtain

∫

X ϕ(x) dµ(x) ∈ D.

1.6 Exposed Points of a Convex Set

Let us recall the definition of an extremal point.

Definition 1.6.1 (Extremal Point). A point p in a convex set C
is said to be extremal if each time we can write p = tx+ (1− t)y,
with x, y ∈ C and t ∈ [0, 1], then p = x or p = y.

Theorem 1.6.2 (Krein-Milman). IfK is a convex compact subset
of a normed space, then K is the closed convex envelope of its
extremal points.

The proof of the Krein-Milman Theorem can be found in most
books on Functional Analysis, see [Bou81, Théorème 1, page II.59],
[RV73, Theorem D, page 84] or [Rud91, Theorem 3.23, page 75]
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C

BA

D

Figure 1.3: Stadium: The four points A,B,C,D are extremal but
not exposed.

Let us recall that an affine hyperplane in a R-vector space E,
determines two open (resp. closed) half-spaces. If H is the set of
points where the affine function a : E → R is 0, then the two
open (resp. closed) half-spaces are given by a > 0 and a < 0 (resp.
a ≥ 0 and a ≤ 0). An hyperplane H is said to be an hyperplane of
support of a subset A ⊂ E if A∩H 6= ∅ and A is entirely contained
in one of the two closed half-spaces determined by H.

We will need a concept a little finer than that of extremal
point, it is the concept of exposed point.

Definition 1.6.3 (Exposed Point). Let C be a convex subset of a
normed space. A point p of C is exposed, if there is a hyperplane
H of support of C with H ∩C = {p}.

An exposed point is necessarily an extremal point (exercise).
The converse is not necessarily true, as it can be seen on the
example of a stadium, see figure 1.3.

Theorem 1.6.4 (Straszewicz). If C is a convex compact subset
of R

n, then C is the closed convex envelope of its exposed points.

Proof. We will use the Euclidean norm on R
n. Let us denote by

C1 the closure of the convex envelope of the set of the exposed
points of C. Let us suppose that there exists x ∈ C \ C1. As
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y

C1e x a

Figure 1.4: Proof of Straszewicz’s Theorem.

closed subset of C, the set C1 is also compact. By the Theorem
of Hahn Banach, we can find a hyperplane H strictly separating
x from C1. We consider the line D orthogonal to H and passing
through x. We denote by a the intersection D ∩H, see figure 1.4.
If c ∈ R

n, we call cD the orthogonal projections of c on D. We
set d = supc∈C1

‖c − cD‖. By compactness of C1, and continuity
of c 7→ cD, this sup d is finite.

Let us fix y a point in D on the same side of H as C1, we can



33

write

d(y, c) =
√

‖y − cD‖2 + ‖c− cD‖2

≤
√

‖y − a‖2 + d2

≤ ‖y − a‖

√

1 +
d2

‖y − a‖2

≤ ‖y − a‖

(

1 +
d2

2‖y − a‖2

)

= ‖y − a‖ +
d2

2‖y − a‖
.

Since x /∈ H, we get x 6= a, and 0 < ‖a− x‖. Therefore, since d
is finite, for y far away on D so that d2/[2‖y − a‖] < ‖a− x‖, we
obtain

d(y, c) < ‖y − a‖ + ‖a− x‖.

But x, a, y are all three on the line D, and a is between x and y,
hence ‖y − a‖ + ‖a− x‖ = ‖y − x‖. It follows that for y far away
enough

∀c ∈ C1, d(y, c) < ‖y − x‖. (*)

Let us then set R = supc∈C d(y, c). We have R ≥ ‖y − x‖ because
x ∈ C. This supremum R is attained at a point e ∈ C. By (∗)
we must have e /∈ C1. The hyperplane H̃ tangent, at the point
e, to the Euclidean sphere S(y,R) = {x ∈ R

n | ‖x − y‖ = R}
is a hyperplane of support for C which cuts C only in e, since
C ⊂ B̄(y,R). Therefore e is an exposed point of C and e /∈ C1.
This is a contradiction since C1 contains all the exposed points of
C.

Theorem 1.6.5. Suppose L : R
n → R is convex and superlinear.

We consider the graph of L

GraphL = {(x,L(x)) | x ∈ Rn} ⊂ R
n × R.

Any point of GraphL belongs to the closed convex envelope of the
exposed points of the convex set

Graph≥ L = {(x, t)|t ≥ L(x)},
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formed by the points of R
n × R which are above GraphL.

In fact, for each x ∈ R
n we can find a compact subset C ⊂

R
n × R such that (x,L(x)) is in the closed convex envelope of the

exposed points of Graph≥ L which are in C.

Proof. Let p be a linear form of support for L at x0. Since L(x)−
L(x0) ≥ p(x− x0), the function L̃ defined by L̃(v) = L(v + x0) −
p(v)−L(x0) is ≥ 0 everywhere and takes the value 0 at 0. It is also
superlinear, since L is so. Moreover Graph L̃ is obtained starting
from GraphL using the affine map (v, t) 7→ (v−x0, t−p(v)−L(x0)),
therefore the exposed points of Graph L̃ are the images by this
affine map of the exposed points of GraphL. From what we have
just done without loss of generality, we can assume that x0 =
0, L(0) = 0, L ≥ 0, and that we have to show that the point (0, 0)
is in the closure of the convex envelope of the exposed points of
Graph≥ L. For this, we consider the convex subset

C = {(x, t) ∈ R
n × R | L(x) ≤ t ≤ 1}.

The exposed points of C are either of the form (x, 1) or of the
form (x,L(x)) with L(x) < 1. These last points are also exposed
points of Graph≥ L, see Lemma 1.6.6 below. By the superlinearity
of L, the subset C is compact. We apply Straszewicz Theorem to
conclude that (0, 0) is in the closure of the convex envelope of the
exposed points of C. We can then gather the exposed points of C
of the form (x, 1) and replace them by their convex combination.
This allows us to find, for each n ≥ 1, exposed points of C of the
form (xi,n, L(xi,n)), 1 ≤ i ≤ ℓn, with L(xi,n) < 1, a point yn with
(yn, 1) ∈ C, and positive numbers α1,n, . . . , αℓn,n and βn such that

βn +
∑ℓn

i=1 αi,n = 1 and

(0, 0) = lim
n→∞

βn(yn, 1) +

ℓn∑

i=1

αi,n(xi,n, L(xi,n)).

As L(xi,n) ≥ 0 we see that βn → 0 and
∑ℓn

i=1 αi,nL(xi,n) → 0. It

follows that αn =
∑ℓn

i=1 αi,n → 1, since αn + βn = 1. Moreover,
since C is compact, the yn are bounded in norm, therefore βnyn →
0, because βn → 0. It results from what we obtained above that

(0, 0) = lim
n→∞

ℓn∑

i=1

αi,n

αn
(xi,n, L(xi,n)).
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This is the required conclusion, because
∑ℓn

i=1 αi,n/α
n = 1 and the

(xi,n, L(xi,n)) are exposed points of Graph≥ L.

Lemma 1.6.6. Let C be a convex subset in the topological vector
space E. Suppose H is a hyperplane containing x0 ∈ C. If there
exists a neighborhood V of x0 such that H is a hyperplane of
support of C ∩ V , then H is a hyperplane of support of C.

Moreover, if H ∩C ∩ V = {x0} then x0 is an exposed point of
C.

Proof. This is almost obvious. Call H+ is a closed half-space de-
termined by H and containing C ∩ V . If v ∈ E, then the open
ray D+

v = {x0 + tv | t > 0} is either entirely contained in H+ or
disjoint from it. Now if x ∈ C, by convexity of C, for t ≥ 0 small
enough tx+ (1 − t)x0 = x0 + t(x− x0) ∈ C ∩ V ⊂ H+, therefore
the open ray D+

x−x0
⊂ H+. But x = x0 + 1(x− x0) ∈ D

+
x−x0

.
Suppose H ∩ C ∩ V = {x0}. If y 6= x0 and y ∈ C ∩ H then

the ray D+
y−x0

is contained in H, therefore for every t ∈ [0, 1]
small enough ty+ (1− t)x0 ∈ H ∩C ∩ V . This is impossible since
ty + (1 − t)x0 6= x0 for t > 0.
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Chapter 2

Calculus of Variations

Our treatment of the Calculus of Variations is essentially the clas-
sical treatment (up to Tonelli) of the one-dimensional setting in
a modern setting. We have mainly used [Cla90], [Mn] and the
appendix of [Mat91]. After most of it was typed we learned from
Bernard Dacorogna the existence of an excellent recent introduc-
tion to the subject [BGH98].

In this chapter, we treat general Lagrangians (i.e. not neces-
sarily convex in the fibers). In the second chapter, we will treat the
Lagrangians convex in fibers, therefore all properties concerning
existence of minimizing curves will be in next chapter.

2.1 Lagrangian, Action, Minimizers, and Ex-

tremal Curves

In this chapter (and the following ones) we will us the standard
notations that we have already seen in the introduction, namely:

If M is a manifold (always assumed C∞, and without bound-
ary), we denote by TM its tangent bundle, and by π : TM → M
the canonical projection. A point of TM is denoted by (x, v),
where x ∈ M , and v ∈ TxM = π−1(x). With this notation, we
of course have π(x, v) = x. The cotangent bundle is π∗ : T ∗M →
M . A point of T ∗M is denoted by (x, p), where x ∈ M , and
p ∈ T ∗

xM = L(TxM → R).

37
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Definition 2.1.1 (Lagrangian). A Lagrangian L on the manifold
M is a continuous function L : TM → R.

Notice that although L is a function on TM , we will nonethe-
less say that L is a Lagrangian on M .

Definition 2.1.2 (Action of a Curve). If L is a Lagrangian on
the manifold M , and γ : [a, b] → M is a continuous piecewise C1

curve, with a ≤ b, the action L(γ) of γ for L is

L(γ) =

∫ b

a
L(γ(s), γ̇(s)) ds.

We are interested in curves that minimize the action.

Definition 2.1.3 (Minimizer). Suppose L is a Lagrangian on M .
If C is some set of (parametrized) continuous curves in M , we will
say that γ : [a, b] → M is a minimizer for the class C if for every
curve δ : [a, b] → M , with δ(a) = γ(a), δ(b) = γ(b), and δ ∈ C, we
have L(γ) ≤ L(δ).

If C is the class of continuous piecewise C1 curves, then mini-
mizers for this class are simply called minimizers.

It should be noticed that to check that γ : [a, b] → M is a
minimizer for some class, we only use curves parametrized by the
same interval, and with the same endpoints.

In order to find minimizers, we will use differential calculus so
that minimizers are to be found among citical points of the action
functional L. In section 2.2 we will first treat the linear case, i.e.
the case where M is an open subset of R

n. In section 2.3 we will
treat the case of a general manifold.

We conclude this section with some definitions that will be
used in the following sections.

Definition 2.1.4 (Non-degenerate Lagrangian). If L is a C2 Lag-
rangian on the manifold M , we say that L is non-degenerate if for
each (x, v) ∈ TM the second partial derivative ∂2L/∂v2(x, v) is
non-degenerate as a quadratic form.

Notice that the second partial derivative ∂2L/∂v2(x, v) makes
sense. In fact, this is the second derivative of the restriction of L to
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the vector space TxM , and defines therefore a quadratic form on
TxM . In the same way, the first derivative ∂L/∂v(x, v) is a linear
form on TxM , and therefore ∂L/∂v(x, v) ∈ (TxM)∗ = T ∗

xM .

Definition 2.1.5 (Global Legendre Transform). If L is a C1 Lag-
rangian on the manifold M , we define the global Legendre trans-
form L̃ : TM → T ∗M associated to L by

L̃(x, v) = (x,
∂L

∂v
(x, v)).

Of course, if L is Cr, then L̃ is Cr−1.

Proposition 2.1.6. If L is a Cr Lagrangian, with r ≥ 2, on the
manifold M , then the following statements are equivalent

(1) the Lagrangian L is non-degenerate;

(2) the global Legendre transform L̃ : TM → T ∗M is a Cr−1

local diffeomorphism;

(3) the global Legendre transform L̃ : TM → T ∗M is a Cr−1

local diffeomorphism.

Moreover, the following statements are equivalent

(i) the Lagrangian L is non-degenerate, and L̃ is injective;

(ii) the global Legendre transform L̃ : TM → T ∗M is a (global)
Cr−1 diffeomorphism onto its image;

(iii) the global Legendre transform L̃ : TM → T ∗M is a (global)
Cr−1 diffeomorphism onto its image.

Proof. Statements (1), (2), and (3) above are local in nature, it
suffices to prove them when M is an open subset of R

n.We use the
canonical coordinates on M ⊂ R

n, TM = M × R
n, and T ∗M =

M × R
n∗. In these coordinates , at the point (x, v) ∈ TM , the

derivative DL̃(x, v) : R
n × R

n → R
n × R

n∗ of the global Legendre
transform L̃ has the following matrix form

DL̃(x, v) =

[

IdRn
∂2L
∂x∂v (x, v)

0 ∂2L
∂v2 (x, v)

]
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therefore DL̃(x, v) is invertible as a linear function R
n × R

n →

R
n × R

n∗ if and only if ∂2L
∂v2 (x, v) is non-degenerate as a quadratic

form. The equivalence of (1), (2), and (3) (resp. (i), (ii), and (iii))
is now a consequence of the inverse function theorem.

Finally a last definition for this section.

Definition 2.1.7 (Cr Variation of a Curve). Let M be an ar-
bitrary differentiable manifold. Let us consider a Cr curve γ :
[a, b] →M . A variation of class Cr of γ is a map Γ : [a, b]×]−ǫ, ǫ[→
M of class Cr, where ǫ > 0, such that Γ(t, 0) = γ(t), for all
t ∈ [a, b]. For such a variation, we will denote by Γs the curve
t 7→ Γ(t, s) which is also of class Cr.

2.2 Lagrangians on Open Subsets of R
n

We suppose that M is an open subset contained in R
n. In that

case TM = M × R
n, and the canonical projection π : TM → M

is the projection on the first factor.

We study the differentiability properties of L, for this we have
to assume that L is C1.

Lemma 2.2.1. Suppose that L is a C1 Lagrangian the open subset
M of R

n. Let γ, γ1 : [a, b] → R
n be two continuous piecewise C1

curves, with γ([a, b]) ⊂ M . The function → L(γ + tγ1) is defined
for t small. It has a derivative at t = 0, which is given by

d

dt
L(γ + tγ1)|t=0 =

∫ b

a
DL[γ(s), γ̇(s)](γ1(s), γ̇1(s)) ds

=

∫ b

a

[
∂L

∂x
[γ(s), γ̇(s)](γ1(s)) +

∂L

∂v
[γ(s), γ̇(s)](γ̇1(s))

]

ds.

Proof. Both γ, and γ1 are continuous, hence the map Γ : [a, b] ×
R → R

n(s, t) 7→ γ(s) + tγ1(s) is continuous, and therefore uni-
formly continuous on [a, b]× [−1, 1]. Since Γ(s, 0) = γ(s) is in the
open subset M , for every s ∈ [a, b], we conclude that there exists
ǫ > 0 such that Γ([a, b]× [−ǫ, ǫ]) ⊂M . Therefore the action of the
curve Γ(·, t) = γ + tγ1 is defined for every t ∈ [−ǫ, ǫ].
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Pick F a finite subset of [a, b] such that both γ, and γ1 are
differentiable at each point of [a, b] \ F . The function λ : ([a, b] \
F ) × R defined by

λ(s, t) = L(γ(s) + tγ1(s), γ̇(s) + tγ̇1(s)),

has a partial derivative with respect to t given by

∂λ

∂t
(t, s) = DL[γ(s) + tγ1(s), γ̇(s) + tγ̇1(s)](γ1(s), γ̇1(s)).

Moreover, this partial derivative is uniformly bounded on ([a, b] \
F ) × [−1, 1], because DL is continuous, and the curves γ, γ1 are
continuous, and piecewise C1. Therefore we can differentiate L(γ+

tγ1) =
∫ b
a L(γ(s)γ̇(s)) dt under the integral sign to obtain the de-

sired result.

Exercise 2.2.2. Suppose that L is a C1 Lagrangian on the open
subset M of R

n. If γ : [a, b] → M is a Lipschitz curve, then γ̇(s)
exists almost everywhere. Show that the almost everywhere defined
function s 7→ L(γ(s), γ̇(s)) is integrable. If γ1 : [a, b] → M is also
Lipschitz, show that L(γ + tγ1) is well defined for t small, finite,
and differentiable.

Definition 2.2.3 (Extremal Curve). An extremal curve for the
Lagrangian L is a continuous piecewise C1 curve γ : [a, b] → M
such that d

dtL(γ+ tγ1)t=0 = 0, for every C∞ curve γ1 : [a, b] → R
n

satisfying γ1 = 0 in the neighborhood of a and b.

By lemma 2.2.1, it is equivalent to say that

∫ b

a

[
∂L

∂x
(γ(s), γ̇(s))(γ1(s)) +

∂L

∂v
(γ(s), γ̇(s))(γ̇1(s))

]

ds = 0,

for each curve γ1 : [a, b] → M of class C∞ which satisfies γ1 = 0
in the neighborhood of a and b.

Remark 2.2.4. If γ is an extremal curve, then for all a′, b′ ∈ [a, b],
with a′ < b′, the restriction γ|[a′, b′] is also an extremal curve.

The relationship between minimizers and extremal curves is
given by the following proposition.
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Proposition 2.2.5. If L is a Lagrangian onM , and γ : [a, b] →M
is a Cr curve, with r ≥ 1 (resp. continuous piecewise C1) curve,
which minimizes the action on the set of Cr (resp. continuous
piecewise C1), then γ is an extremal curve for L.

Proposition 2.2.6 (Euler-Lagrange). Let us assume that L is
a Lagrangian is of class C2 on the open subset M of R

n. If γ :
[a, b] → M is a curve of class C2, then γ is an extremal curve if
and only if it satisfies the Euler-Lagrange equation

d

dt

∂L

∂v
(γ(t), γ̇(t)) =

∂L

∂x
(γ(t), γ̇(t)), (E-L)

for all t ∈ [a, b].

Proof. Since L and γ are both C2, if γ1 : [a, b] → M is C∞ and
vanishes in the neighborhood of a and b, then the map

t 7→
∂L

∂v
[γ(t), γ̇(t)](γ1(t))

is C1 and is 0 at a and b. It follows that
∫ b

a

d

dt

[
∂L

∂v
[γ(t), γ̇(t)](γ1(t))

]

dt = 0,

which implies

∫ b

a

∂L

∂v
[γ(t), γ̇(t)](γ̇1(t)) dt = −

∫ b

a

d

dt

[
∂L

∂v
(γ(t), γ̇(t))

]

(γ1(t)) ds.

We thus obtain that γ is an extremal curve if and only if

∫ b

a

{
∂L

∂x
(γ(t), γ̇(t)) −

d

dt

[
∂L

∂v
(γ(t), γ̇(t))

]}

(γ1(t)) ds = 0,

for every C∞ curve γ1 : [a, b] →M satisfying γ1 = 0 in the neigh-
borhood of a and b. It is then enough to apply the following
lemma:

Lemma 2.2.7 (Dubois-Raymond). Let A : [a, b] → L(Rn,R) =

R
n∗ be a continuous map such that

∫ b
a A(t)(γ1(t))dt = 0, for each

C∞ curve γ1 : [a, b] → R
n which vanishes in the neighborhood of

a and b, then A(t) = 0, for all t ∈ [a, b].
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Proof. Suppose that there exists t0 ∈]a, b[ and v0 ∈ R
n such that

A(t0)(v0) 6= 0. Replacing v0 by −v0 if necessary, we can sup-
pose that A(t0)(v0) > 0. We fix ǫ > 0 small enough so that
A(t)(v0) > 0, for all t ∈ [t0 − ǫ, t0 + ǫ] ⊂]a, b[. We then choose
C∞ curve φ : [a, b] → [0, 1] with φ = 0 outside of the inter-

val [t0 − ǫ, t0 + ǫ] and φ(t0) = 1. Of course
∫ b
a A(t)(φ(t)v0)dt =

0, but
∫ b
a A(t)(φ(t)v0)dt =

∫ t0+ǫ
t0−ǫ φ(t)A(t)(v0) dt and the function

φ(t)A(t)(v0) is continuous, non-negative on [t0 − ǫ, t0 + ǫ] and
φ(t0)A(t0)(v0) > 0, since φ(t0) = 1, hence its integral cannot
vanish. This is a contradiction.

In the remainder of this section, we show that, under natural
assumptions on the Lagrangian L, the extremal curves which are
C1 or even continuous piecewise C1 are necessarily of class C2, and
must thus verify the Euler-Lagrange equation.

Lemma 2.2.8. Let L be a Lagrangian on the open subset M of
R

n, and let γ : [a, b] →M be an extremal curve of class C1 for L,
then there exists p ∈ R

n∗ such that

∀t ∈ [a, b],
∂L

∂v
(γ(t), γ̇(t)) = p+

∫ t

a

∂L

∂x
(γ(s), γ̇(s)) ds.

Proof. If γ1 : [a, b] → M is C∞ and vanishes in the neighborhood
of a and b, then the map

t 7→

[∫ t

a

∂L

∂x
(γ(s), γ̇(s)) ds

]

(γ1(t))

is C1 and is 0 at a and b. It follows that
∫ b

a

d

dt

{[∫ t

a

∂L

∂x
(γ(s), γ̇(s)) ds

]

(γ1(t))

}

dt = 0,

which implies

∫ b

a

∂L

∂x
(γ(t), γ̇(t))(γ1(t)) dt = −

∫ b

a

[∫ t

a

∂L

∂x
(γ(s), γ̇(s)) ds

]

(γ̇1(t)) dt.

Thus the condition
∫ b

a

[
∂L

∂x
(γ(t), γ̇(t))(γ1(t)) +

∂L

∂v
(γ(t), γ̇(t))(γ̇1(t))

]

dt = 0
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is equivalent to

∫ b

a

[
∂L

∂v
(γ(t), γ̇(t)] −

∫ t

a

∂L

∂x
(γ(s), γ̇(s)) ds

]

(γ̇1(t)) dt = 0.

It is then enough to apply the following lemma:

Lemma 2.2.9 (Erdmann). If A : [a, b] → R
n∗ is a continuous

function such that
∫ b
a A(t)(γ̇1(t)) dt = 0, for every curve γ1 :

[a, b] → R
n of C∞ class and vanishing in the neighborhood of

a and b, then, the function A(t) is constant.

Proof. Let us choose φ0 : [a, b] → R of class C∞ with
∫ b
a φ0(t)dt =

1 and φ0 = 0 in a neighborhood of a and b. Let γ̃1 : [a, b] → R
n

be a C∞ curve which is 0 in the neighborhood of a and b, then, if
we set C =

∫ b
a γ̃1(s) ds, the curve γ1 : [a, b] → R

n, defined by

γ1(t) =

∫ t

a
γ̃1(s) −Cφ0(s) ds

is C∞ and is 0 in a neighborhood of a and b. Therefore, since
γ̇1(t) = γ̃1(t) −Cφ0(t), we have

∫ b

a
A(t)[γ̃1(t) − Cφ0(t)] dt = 0,

consequently

∫ b

a
A(t)[γ̃1(t)]dt −

∫ b

a
[φ0(t)A(t)](C)dt = 0. (∗)

If we define p =
∫ b
a φ0(t)A(t)dt ∈ R

n∗, then
∫ b
a [φ0(t)A(t))](C) dt is

nothing but p(C). On the other hand by the definition of C and

the linearity of p, we have that p(C) =
∫ b
a p(γ̃1(t))dt. We then can

rewrite the equation (∗) as

∫ b

a
[A(t) − p](γ̃1(t)) dt = 0.

Since γ̃1 : [a, b] → R
n is a map which is subject only to the two

conditions of being C∞ and equal to 0 in a neighborhood of a and
b, Dubois-Raymond’s Lemma 2.2.7 shows that A(t) − p = 0, for
all t ∈ [a, b].
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Remark 2.2.10. Of course, the proofs of both the Dubois-Raymond
and the Erdmann lemmas are reminiscent of now classical proofs
of analogous statements in Laurent Schwartz’s Theory of Distri-
butions, but these statements are much older.

Corollary 2.2.11. If L is a non-degenerate, Cr Lagrangian, with
r ≥ 2, on the open subset M of R

n, then every extremal C1 curve
is Cr.

Proof. Let γ : [a, b] → M be a C1 extremal curve. Let us fix
t0 and consider (x0, v0) = (γ(t0), γ̇(t0)) ∈ TM . From proposi-
tion 2.1.6, the Legendre transform L̃ : (x, v) → (x, ∂L

∂v (x, v)) is

a local diffeomorphism Let us call K a local inverse of L̃ with
K(x0,

∂L
∂v (x0, v0)) = (x0, v0). The map K is of class Cr−1. By

continuity of γ and γ̇, for t near to t0, we have

(γ(t), γ̇(t)) = K
[
γ(t),

∂L

∂v
(γ(t), γ̇(t))

]
. (∗)

But, by lemma 2.2.8, we have

∂L

∂v
(γ(t), γ̇(t)) = p+

∫ t

a

∂L

∂x
(γ(s), γ̇(s)) ds.

It is clear that the right-hand side of this equality is of class C1.
Referring to (∗) above, as K is Cr−1, we see that (γ(t), γ̇(t)) is also
of class C1, for t near to t0. We therefore conclude that γ is C2.
By induction, using again (∗), we see that γ is Cr.

Corollary 2.2.12. Suppose that the Lagrangian L on M is of
class Cr, r ≥ 2, and that its global Legendre transform L̃ : TM →
T ∗M is a diffeomorphism on its image L̃(TM)), then every con-
tinuous piecewise C1 extremal curve of L is in fact Cr, and must
therefore satisfy the Euler-Lagrange equation.

Proof. The assumption that L̃ is a diffeomorphism implies by
proposition 2.1.6 that L is non-degenerate. Therefore by corollary
2.2.11, we already know that the extremal C1 curves are all Cr.
Let γ : [a, b] → M be a continuous piecewise C1 extremal curve.
Let us consider a finite subdivision a0 = a < a1 < · · · < an = b
such that the restriction γ|[ai, ai+1] is C1. Since γ|[ai, ai+1] is also
an extremal curve, we already know that γ|[ai, ai+1] is Cr. Using
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that γ is an extremal curve, for every C∞ curve γ1 : [a, b] → M
which is equal to 0 in a neighborhood of a and b, we have

∫ b

a

∂L

∂x
[γ(t), γ̇(t)](γ1(t)) +

∂L

∂v
[γ(t), γ̇(t)](γ̇1(t)) dt = 0. (∗)

Since γ|[ai, ai+1] is of class at least C2, we can integrate by parts
to obtain

∫ ai+1

ai

∂L

∂v
[γ(t), γ̇(t)](γ̇1(t))dt =

∂L

∂v
[γ(ai+1), γ̇−(ai+1)](γ1(ai+1))

−
∂L

∂v
[γ(ai), γ̇+(ai)](γ1(ai))−

∫ ai+1

ai

{
d

dt

[
∂L

∂v
[γ(s), γ̇(s)]

]}

(γ1(s)) ds,

where γ̇−(t) is the left derivative and γ̇+(t) is the right derivative
of γ at t ∈ [a, b]. Using this, we conclude that

∫ ai+1

ai

∂L

∂x
[γ(t), γ̇(t)](γ1(t)) +

∂L

∂v
[γ(t), γ̇(t)](γ̇1(t)) dt =

∫ ai+1

ai

∂L

∂x
[γ(t), γ̇(t)](γ1(t)) −

{
d

dt

[
∂L

∂v
[γ(s), γ̇(s)]

]}

(γ1(s)) ds

+
∂L

∂v
[γ(ai+1), γ̇−(ai+1)](γ1(ai)) −

∂L

∂v
[γ(ai), γ̇+(ai)](γ1(ai))

=
∂L

∂v
[γ(ai+1), γ̇−(ai+1)](γ1(ai)) −

∂L

∂v
[γ(ai), γ̇+(ai)](γ1(ai))

where the last equality holds, because γ|[ai, ai+1] is a C2 extremal
curve, and therefore must satisfy the Euler-Lagrange equation (E-
L) on the interval γ|[ai, ai+1]. Summing on i, and using (∗), we
get that

n−1∑

i=1

[
∂L

∂v
[γ(ai+1), γ̇−(ai+1)](γ1(ai)) −

∂L

∂v
[γ(ai), γ̇+(ai)](γ1(ai))

]

= 0,

for every C∞ curve γ1 : [a, b] → M which vanishes in a neighbor-
hood of a and b. For 1 ≤ i ≤ n − 1, we can choose the C∞ curve
γ1, vanishing in a neighborhood of the union of the two intervals
[a, ai−1] and [ai+1, b], and taking at ai an arbitrary value fixed in
advance. This implies that

∀i = 1, . . . , N,
∂L

∂v
(γ(ai), γ̇−(ai)) =

∂L

∂v
(γ(ai), γ̇+(ai)).
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The injectivity of the Legendre transform gives γ̇−(ai) = γ̇+(ai).
Hence, the curve γ is in fact of class C1 on [a, b] and, consequently,
it is also of class Cr.

The proof of following lemma is essentially the same as that of
lemma 2.2.1.

Lemma 2.2.13. If Γ is a C2 variation of the C2 curve γ : [a, b] →
M with values in the open subset M of R

n, then the map s 7→
L(Γs) is differentiable and its derivative in 0 is

d

ds
L(Γs)s=0 =

∫ b

a
DL[(γ(t), γ̇(t))]

(∂Γ

∂s
(t, 0),

∂2Γ

∂s∂t
(t, 0)

)
dt.

We now obtain a characterization of extremal curves that does
not use the fact that M is contained in an open subset of an
Euclidean space.

Lemma 2.2.14. A C2 curve γ : [a, b] → M is an extremal curve
of the Lagrangian L if and only if d

dsL(Γs)s=0 = 0, for any C2

variation Γ of γ such that Γ(a, s) = γ(a),Γ(b, s) = γ(b) for s in a
neighborhood of 0.

Proof. The variations of the type γ(t)+bγ1(t) with γ1 of C∞ class
are particular variations of class C2.

It thus remains to be seen that, if γ is a C2 extremal curve,
then we have d

dsL(Γs)s=0 = 0 for variations of class C2 of γ such
that Γ(a, s) = γ(a) and Γ(b, s) = γ(b). That results from the
following theorem.

Theorem 2.2.15 (First Variation Formula). If γ : [a, b] → M is
a C2 extremal curve, then for any variation Γ of class C2 of γ, we
have

d

ds
L(Γs)s=0 =

∂L

∂v
[γ(b), γ̇(b)]

(∂Γ

∂s
(b, 0)

)
−
∂L

∂v
[γ(a), γ̇(a)]

(∂Γ

∂s
(a, 0)

)
.

Proof. We have

d

ds
L(Γs)s=0 =

∫ b

a
DL[γ(t), γ̇(t)]

(∂Γ

∂s
(t, 0),

∂2Γ

∂t∂s
(t, 0)

)
dt

=

∫ b

a

[
∂L

∂x
[γ(t), γ̇(t)]

(∂Γ

∂s
(t, 0)

)
+
∂L

∂v
[γ(t), γ̇(t)]

( ∂2Γ

∂t∂s
(t, 0)

)
]

dt.
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As γ is a C2 extremal curve, it satisfies the Euler-Lagrange equa-
tion

∂L

∂x
[γ(t), γ̇(t)] =

d

dt

[
∂L

∂v
(γ(t), γ̇(t))

]

,

plugging in, we find

d

ds
L(Γs)s=0 =

∫ b

a

[
d

dt

[
∂L

∂v

]

(γ(t), γ̇(t))

]
(∂Γ

∂s
(t, 0)

)
+
∂L

∂v
[γ(t), γ̇(t)]

( ∂2Γ

∂t∂s
(t, 0)

)
dt.

However the quantity under the last integral is nothing but the
derivative of the function t 7→ ∂L

∂v [γ(t), γ̇(t)](∂Γ
∂s (t, 0)) which is of

class C1 thus

d

ds
L(Γs)s=0 =

∂L

∂v
[γ(b), γ̇(b)]

(∂Γ

∂s
(b, 0)

)
−
∂L

∂v
[γ(a), γ̇(a)]

(∂Γ

∂s
(a, 0)

)
.

2.3 Lagrangians on Manifolds

We consider an arbitrary C∞ manifold M endowed with a Lag-
rangian L of class Cr, with r ≥ 2.

Lemma 2.3.1. Consider Γ : [a, b]× [c, d] →M of class C2. Define
Γs : [a, b] →M by Γs(t) = Γ(t, s). The map s 7→ L(Γs) is C1.

Proof. To simplify notation we assume that 0 ∈ [c, d] and we show
that s 7→ L(Γs) is C1 on some interval [−η, η], with η > 0. We can
cover the compact set Γ([a, b]×{0}) by a finite family of coordinate
charts. We then find a subdivision a0 = a < a1 < · · · < an = b
such that Γ([ai, ai+1] × {0})) is contained in a Ui the domain of
definition of one of these charts. By compactness, for η small
enough, we have Γ([ai, ai+1] × [−η, η]) ⊂ Ui, for i = 0, . . . , n − 1.
Transporting the situation via the chart to an open set in R

n, we
can apply 2.2.13 to obtain that s 7→

∫ ai+1

ai
L[Γ(t, s), ∂Γ

∂t (t, s)] dt is

C1 on some interval [−η, η]. It is now enough to notice that

L(Γs) =

n−1∑

i=0

∫ ai+1

ai

L
[
Γ(s, t),

∂Γ

∂t
(s, t)

]
dt,

to be able to finish the proof.
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We can then introduce the concept of an extremal curve for
the C2 Lagrangian L in the case of C2 curves γ : [a, b] →M with
values in arbitrary manifold M .

Definition 2.3.2 (Extremal C2 Curve). A C2 curve γ : [a, b] →
M is an extremal curve for the C2 Lagrangian L, if for each C2

variation Γ : [a, b]×] − ǫ, ǫ[→ M of γ, with Γ(t, s) = γ(t) in the
neighborhood of (a, 0) and (b, 0), we have d

dsL(Γs)s=0 = 0.

Remark 2.3.3. By lemma 2.2.14, if the curve and the Lagrangian
are of class C2, this definition coincides with the definition given
for the case where the manifold is an open subset of R

n.

Lemma 2.3.4. If γ : [a, b] → M is a C2 extremal curve and
[a′, b′] ⊂ [a, b] then, the restriction γ|[a′, b′] is also an extremal
curve

Proof. For any C2 variation Γ : [a′, b′]×] − ǫ, ǫ[→ M of γ|[a′, b′],
with Γ(t, s) = γ(t) in the neighborhood of (a′, 0) and (b′, 0), we
find ǫ′ with 0 < ǫ′ ≤ ǫ, and δ > 0 such that with Γ(t, s) = γ(t) for
every (t, s) ∈ ([a′, a′ + δ] ∪ [b′ − δ, b′]) × [−ǫ′, ǫ′]. We can therefore
extend Γ|[a′, b′]× [−ǫ′, ǫ′] to Γ̃[a, b] × [−ǫ′, ǫ′] by Γ(t, s) = γ(t), for
t /∈ [a′, b′] × [−ǫ′, ǫ′]. It is clear that Γ̃ is a C2 variation, with
Γ(t, s) = γ(t) in the neighborhood of (a, 0) and (b, 0). Moreover,
for s ∈ [−ǫ′, ǫ′], the difference L(Γ̃s)−L(Γs) is equal to L(γ|[a, a′])+
L(γ|[b′, b]).

Theorem 2.3.5 (Euler-Lagrange). Suppose L is a C2 Lagrangian
on the manifold M . Let γ : [a, b] → M , be a C2 curve. If γ
is extremal, then, for each subinterval [a′, b′] ⊂ [a, b] such that
γ([a′, b′]) is contained in a domain U of a coordinate chart, the
restriction γ|[a′, b′] satisfies (in coordinates) the Euler-Lagrange
equation.

Conversely, if for every t0 ∈ [a, b], we can find an ǫ > 0 and a
domain U of a coordinate chart such that γ([t0−ǫ, t0+ǫ]∩ [a, b]) ⊂
U and γ|[t0−ǫ, t0+ǫ]∩[a, b] satisfies in the chart the Euler-Lagrange
equation, then the curve γ is an extremal curve.

Proof. If γ is an extremal curve, then γ|[a′, b′] is also an extremal
curve. Since γ([a′, b′]) ⊂ U , where U is a domain of a coordi-
nate chart, we can then transport, via the coordinate chart, the
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situation to an open subset of R
n hence γ|[a′, b′] must verify the

Euler-Lagrange equation.
To prove the second part, we remark that by compactness s,

we can find a subdivision a0 = a < a1 < · · · < an = b, and a
sequence U0, . . . , Un−1 of domains of coordinate charts such that
γ([ai, ai+1]) ⊂ Ui. If Γ is a variation of class C2 of γ, we can find
η > 0 such that Γ([ai, ai+1] × [−η, η]) ⊂ Ui, i = 1, · · · , n). The
first variation formula 2.2.15 shows that

d

ds
L(Γs|[ai, ai+1])s=0 =

∂L

∂v
[γ(ai+1), γ̇(ai+1)]

(∂Γ

∂s
(ai+1)

)
−
∂L

∂v
[γ(ai), γ̇(ai)]

(∂Γ

∂s
(ai)

)
.

Adding these equalities, we find

d

ds
L(Γs)s=0 =

∂L

∂v
[γ(b), γ̇(b)]

(∂Γ

∂s
(b, 0)

)
−
∂L

∂v
[γ(a), γ̇(a)]

(∂Γ

∂s
(a, 0)

)
.

If Γ(a, s) = γ(a) and Γ(s, b) = γ(b) in a neighborhood of s = 0,
we get that both ∂Γ

∂s (a, 0), and ∂Γ
∂s (b, 0) are equal to 0,therefore the

second member of the equality above is 0.

The previous proof also shows that the first variation formula
is valid in the case of arbitrary manifolds.

Theorem 2.3.6 (First Variation Formula). Let L be a C2 Lag-
rangian on the manifold M . If γ : [a, b] → M is a C2 extremal
curve, for each C2 variation Γ : [a, b]×]− ǫ, ǫ[→M, (t, s) 7→ Γ(t, s)
of γ, we have

d

ds
L(Γs)s=0 =

∂L

∂v
[ (γ(b), γ̇(b)]

(∂Γ

∂s
(b, 0)

)
−
∂L

∂v
[γ(a), γ̇(a)]

(∂Γ

∂s
(a, 0)

)
.

By the same type chart by chart argument, using proposition
2.2.12, we can show the following proposition.

Proposition 2.3.7. Suppose the Cr Lagrangian L, with r ≥ 2,
on the manifold M is such that its global Legendre transform L̃ :
TM → T ∗M is a diffeomorphism onto its image. If γ : [a, b] →M
is a Ck curve, with k ≥ 1, (resp. a continuous piecewise C1 curve)
which is a minimizer for the class of Ck curves (resp. of continuous
piecewise C1 curves), then γ is an extremal of class at least Cr.
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2.4 The Euler-Lagrange Equation and its

Flow

We will first consider an open subsetM of R
n and a non-degenerate

Cr Lagrangian L : TM → R, with r ≥ 2. We will assume that
for each (x, v) ∈ TM the bilinear form ∂2L/∂v2(x, v) is non-
degenerate. It follows from 2.2.11 that every C1 (locally) extremal
curve γ : [a, b] → M is necessarily of class C2, and satisfies the
Euler-Lagrange equation

∂L

∂x
(γ(t), γ̇(t)) =

d

dt

∂L

∂v
(γ(t), γ̇(t)),

and hence by differentiation we obtain

∂2L

∂v2
[γ(t), γ̇(t)](γ̈(t), ·)=

∂L

∂x
[γ(t), γ̇(t)](·)−

∂2L

∂x∂v
[γ(t), γ̇(t)](γ̇(t), ·),

where this is to be understood as an equality between elements
of R

n∗. Since ∂2L/∂v2(x, v) is non-degenerate, we can in fact
solve for γ̈(t), and therefore we see that γ satisfies a second order
differential equation. This suggests to define a vector field XL on
TM = M × R

n by

XL(x, v) = (v, X̃L(x, v)) ∈ T(x,v)(TM),

where, due to the non-degeneracy of ∂2L/∂v2(x, v) , the function
X̃L is uniquely defined by

∂2L

∂v2
(x, v)[X̃L(x, v), ·] =

∂L

∂x
(x, v)(·) −

∂2L

∂x∂v
(x, v)(v, ·).

This function X̃L is Cr−2, if L is Cr.
From our previous computation, if γ is a curve satisfying the

Euler-Lagrange equation, its speed curve t 7→ (γ(t), γ̇(t)) is an
integral curve of XL. Conversely, since the first of the coordinates
of XL(x, v), (v, X̃L(x, v)) is v, the solutions of this vector field are
curves of the form t 7→ (γ(t), γ̇(t)) with γ : [a, b] → M of class
C2, and γ̈(t) = X̃L(γ(t), γ̇(t)), and therefore γ satisfies the Euler-
Lagrange equation. Thus, these integral curves are the curves of
the form t 7→ (γ(t), γ̇(t)) with γ : [a, b] → M of class C2 which
satisfy the Euler-Lagrange equation, in other words with γ an
extremal curve.



52

Theorem 2.4.1. Let L be a Cr Lagrangian on M , with r ≥ 2.
Assume that for each (x, v) ∈ TM the bilinear form ∂2L/∂v2(x, v)
is non-degenerate. Then for every (x, v) ∈ TM , we can find an
extremal γ : [−ǫ, ǫ] → M with γ(0) = x, and γ̇(0) = v; moreover,
if L is at least C3, then any two such extremals coincide on their
common domain of definition.

Proof. Suppose (x, v) ∈ TM is given. Since XL is at least con-
tinuous, we can apply the Cauchy-Peano theorem, see [Bou76], to
find an integral curve Γ of XL defined on some interval [−ǫ, ǫ],
with ǫ > 0 and passing through (x, v) at time t = 0. But as we
have seen above such a solution if of the form Γ(t) = (γ(t), γ̇(t)),
with γ an extremal. This γ is obviously the required extremal.

If L is C3, then XL is C1, and we therefore have uniqueness
of solution by the Cauchy-Lipschitz theorem. Therefore, if γ1 :
[[−ǫ′, ǫ′] →M is another extremal with γ1(0) = x, and γ̇1(0) = v,
then Γ1(t) = (γ1(t), γ̇1(t)) is another solution of XL with the same
initial condition as Γ, therefore Γ = Γ′ on the intersection of their
domain of definition.

We can, then, summarize what we obtained in the following
theorem.

Theorem 2.4.2 (Euler-Lagrange). Let M be an open subset of
R

n. If L is a Lagrangian onM of class Cr, with r ≥ 2, and for every
(x, v) ∈ TM the quadratic form ∂2L

∂v2 (x, v)) is non-degenerate, then
there exists one and only one vector field XL on TM such that the
solutions of XL are precisely the curves the form t 7→ (γ(t), γ̇(t))
where γ : [a, b] → M is an extremal curve of L. This vector field
is of class Cr−2. The vector field XL is called the Euler-Lagrange
vector field of the Lagrangian L.

Everything in this theorem was proved above, but maybe we
should say a word about the uniqueness. In fact, we can obtain
XL(x, v) from the extremals of L. In fact, if we choose an extremal
γ : [−ǫ, ǫ] → M with γ(0) = x, and γ̇(0) = v (this is possible by
theorem 2.4.1), then XL(x, v) is nothing but the speed at 0 of the
curve t 7→ (γ(t), γ̇(t)).

Let us extend this result to the case of an arbitrary manifold
M .
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Theorem 2.4.3 (Euler-Lagrange). LetM be a differentiable man-
ifold. If L : TM → R is a Cr Lagrangian, with r ≥ 2, and for
every (x, v)

inTM the quadratic form ∂2L
∂v2 (x, v)) is non-degenerate, then there

exists one and only one vector field XL on TM such that the
solutions of XL are precisely of the form t 7→ (γ(t), γ̇(t)) where
γ : [a, b] → M is an extremal curve of L. This vector field is of
class Cr−2.

Proof. By theorem 2.4.2 above, for every open subset U ⊂ M
which is contained in the domain of a coordinate chart, we can
find such a vector field XU

L on TU for which the solutions are
precisely of the form t 7→ (γ(t), γ̇(t)) where γ : [a, b] → U with
γ an extremal curve having values in U . But if U and V are
two such open subsets, for both restrictions XU

L |U ∩ V ,XU
L |U ∩ V ,

the solution curves are the curves t 7→ (γ(t), γ̇(t)) where γ is an
extremal curve of L whose image is contained in U ∩ V , so they
both coincide with XU∩V

L .

Definition 2.4.4 (The Euler-Lagrange Vector Field and its Flow).
If L : TM → R is a Cr Lagrangian, with r ≥ 2, and for every
(x, v) ∈ TM the quadratic form ∂2L

∂v2 (x, v)) is non-degenerate, the
vector field XL defined by theorem 2.4.3 above is called the Euler-
Lagrange vector field of the Lagrangian L. If L is Cr with r ≥ 3,
then, by the Cauchy-Lipschitz theorem, the field XL generates a
partial flow on TM of class Cr−2. We will denote this partial flow
by φL

t and we will call it the Euler-Lagrange flow of the Lagrangian
L.

In fact, under the stronger hypothesis that the global Legendre
transform L̃ : TM → T ∗M , defined by

L̃(x, v)(x, v) =
(
x,
∂L

∂v
(x, v)

)
,

is a C1 diffeomorphism onto its image, we will see in Theorem 2.6.5
that the partial flow is of class Cr−1 and that, even if L is only of
class C2, the vector field XL is uniquely integrable and generates
a partial flow φL

t of class C1 which is also called in that case the
Euler-Lagrange flow of the Lagrangian L.
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2.5 Symplectic Aspects

Let M be differentiable manifold of class C∞, denote by π∗ :
T ∗M → M the canonical projection of the cotangent space T ∗M
onto M and denote by Tπ∗ : TT ∗M → TM the derivative of π∗.
On T ∗M , we can define a canonical differential 1-form α called the
Liouville form. Thus the value this form at a given (x, p) ∈ T ∗M
is a linear map α(x,p) : T(x,p)(T

∗M) → R. To define it, we just
remark that the two linear maps T(x,p)π

∗ : T(x,p)(T
∗M) → TxM ,

and p : TxM → R can be composed, and thus we can define α(x,p)

by
∀W ∈ T(x,p)(T

∗M), α(x,p)(W ) = p[T(x,p)π
∗(W )].

To understand this differential 1-form α on the T ∗M manifold, we
take a chart θ : U → θ(U) ⊂ R

n, we can consider the associated
chart T ∗θ : T ∗U → T ∗(θ(U)) = θ(U) × R

n∗. In these charts the
canonical projection π∗ is nothing but the projection θ(U)×R

n∗ →
θ(U) on the first factor. This gives us coordinates (x1, . . . , xn) on
U , and therefore coordinates (x1, · · · , xn, p1, · · · , pn) on T ∗U such
that the projection π∗ is nothing but (x1, · · · , xn, p1, · · · , pn) →
(x1, · · · , xn). A vector W ∈ T(x,p)(T

∗M) has therefore coordinates
(X1, · · · ,Xn, P1, · · · , Pn), and the coordinates of T(x,p)π

∗(W ) ∈
TxU are (X1, · · · ,Xn). It follows that α(x,p)(W ) =

∑n
i=1 piXi.

Since Xi is nothing but the differential form dxi evaluated on W ,
we get that

α|T ∗U =

n∑

i=1

pi dxi.

We therefore conclude that α is of class C∞.
Let ω be a differential 1-form defined on the open subset U of

M . This 1-form is a section ω : U → T ∗U, x 7→ ωx. The graph of
ω is the set

Graph(ω) = {(x, ωx) | x ∈ U} ⊂ T ∗M.

Lemma 2.5.1. Let ω be a differential 1-form defined on the open
subset U of M . We have

ω∗α = ω,

where ω∗α is the pull-back of the Liouville form α on T ∗M by the
map ω : U → T ∗U
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Proof. Using coordinates charts, it suffices to verify in the case
where U is an open subset of R

n. Using the canonical coordinates
on U ⊂ R

n, we can write ωx =
∑n

i=1 ωi(x)dxi. As a map ω : U →
T ∗U it is thus given in these coordinates by

(x1, . . . , xn) 7→ (x1, . . . , xn, ω1(x), . . . , ωn(x)).

But in these coordinates, it is clear that the pull-back ω∗α is
∑n

i=1 ωi(x)dxi = ω.

By taking, the exterior derivative Ω of α we can define a sym-
plectic structure on T ∗M . To explain what that means, let us
recall that a symplectic form on a vector space E is an alternate
(or antisymmetric) bilinear form a : E × E → R which is non-
degenerate as a bilinear form, i.e. the map a♯ : E → E∗, x 7→
a(x, ·) is an isomorphism.

Lemma 2.5.2. If the finite dimensional vector space E admits a
symplectic form, then its dimension is even.

Proof. We choose a basis on E. If A is the matrix of a in this
base, its transpose tA is equal to −A (this reflects the antisymme-
try). Therefore taking determinants, we get det(A) = det(tA) =
det(−A) = −1dimE det(A). The matrix of a♯ : E → E∗, using
on E∗ the dual basis, is also A. the non degeneracy of a♯ gives
det(A) 6= 0. It follows that −1dim E = 1, and therefore dimE is
even.

Definition 2.5.3 (Symplectic Structure). A symplectic structure
on a C∞ differentiable manifold V is a C∞ closed differential 2-
form Ω on V such that, for each x ∈ V , the bilinear form Ωx :
TxV × TxV → R is a symplectic form on the vector space TxV .

As an exterior derivative is closed, to check that Ω = −dα is a
symplectic form on T ∗M , it is enough to check the non-degeneracy
condition. We have to do it only in an open subset U of R

n, with
the notations introduced higher, we see that

Ω = −dα = −
n∑

i=1

dpi ∧ dxi =

n∑

i=1

dxi ∧ dpi,
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it is, then, easy to check the non-degeneracy condition. In fact,
using coordinates we can write a W ∈ T(x,p)(T

∗M) as

W =

n∑

i=1

Xi
∂

∂xi
+

n∑

i=1

Pi
∂

∂pi
,

Therefore Ω(x,p)(W, ·) =
∑n

i=1Xidpi−
∑n

i=1 Pidxi, and Ω(x,p)(W, ·) =
0 implies Xi = Pi = 0, for i = 1, . . . , n, by the independence of
the family (dx1, . . . , dxn, dp1, . . . , dpn).

In the following, we will suppose that V is a manifold provided
with a symplectic structure Ω. If H is a Cr function defined on
the open subset O of V , By the fact that Ω♯

x is an isomorphism,
we can associate to H a vector field XH on O well defined by

Ωx(XH(x), ·) = dxH(·).

Since Ω is non-degenerate, the vector field XH is as smooth as
the derivative of H, therefore it is Cr−1. In particular, if H is
C2, then the solutions of the vector field XH define a partial flow
φH

t : O → O.

Definition 2.5.4 (Hamiltonian Flow). Suppose H : O → R is
a C1 function, defined on the open subset O of the symplectic
manifold V . The Hamiltonian vector of H is the vector field XH

on O, uniquely defined by

Ωx(XH(x), ·) = dxH(·),

where Ω is the symplectic form on V . If, moreover, the function
H is Cr, the vector XH field is Cr−1. Therefore for r ≥ 2, the
partial flow φH

t generated by H exists, it is called the Hamitonian
flow of H, and H is called the Hamiltonian of the flow φH

t .

Lemma 2.5.5. H : O → R is a C2 function, defined on the open
subset O of the symplectic manifold V , then H is constant on the
orbits of its Hamiltonian flow φH

t .

Proof. We must check that dxH(XH(x)) is 0, for all x ∈ O. But
dxH(XH(x)) is Ωx(XH(x),XH(x)) vanishes because the bilinear
form Ωx is alternate.
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Definition 2.5.6 (Lagrangian Subspace). In a vector space E en-
dowed with a symplectic bilinear form a : E×E → R, a Lagrangian
subspace is a vector subspace F of E with dimE = 2dimF and
a is identically 0 on F × F .

Lemma 2.5.7. Let F be a subspace of the vector space E which
is Lagrangian for the symplectic form a on E. If x ∈ E is such
that a(x, y) = 0, for all y ∈ F , then, the vector x is itself in F .

Proof. Define F⊥ = {x ∈ E | ∀y ∈ F, a(x, y) = 0}. We have F⊥ ⊃
F , since a is 0 on F×F . Since a♯ : E → E∗ is an isomorphism, the
dimension of F⊥ is the same as that of its image a♯(F⊥) = {p ∈
E∗ | p|F = 0}. This last subspace can be identified with the dual
(E/F )∗ of the quotient of E by F . Therefore dimF⊥ = dimE −
dimF = 2dimF − dimF = dimF . Therefore F⊥ = F .

Definition 2.5.8 (Lagrangian Submanifold). If V is a symplectic
manifold, a Lagrangian submanifold of V is a submanifold N of
class at least C1, and such that the subspace TxN of TxV is, for
each x ∈ N , a Lagrangian subspace for the symplectic bilinear
form Ωx.

By the lemma 2.5.7 above, if x ∈ N , any vector v ∈ TxV such
that Ωx(v, v

′) = 0, for all v′ ∈ TxN , is necessarily in TxN .

Lemma 2.5.9. If ω is a C1 differential 1-form on the manifold
M , then the graph Graph(ω) of ω is a Lagrangian submanifold of
T ∗M if and only if ω is a closed form.

Proof. Indeed,by lemma 2.5.1, we have ω = ω∗α, and thus also
dω = ω∗dα = −ω∗Ω. However, the form ω regarded as map
of M → T ∗M induces a diffeomorphism of C1 class of M on
Graph(ω), consequently dω = 0 if and only if Ω|Graph(ω) = 0.

Theorem 2.5.10 (Hamilton-Jacobi). Let H : O → R be a C2

function defined on the open subset O of the symplectic manifold
V . If N ⊂ O is a connected C1 Lagrangian submanifold of V , it is
locally invariant by the partial flow φH

t if and only if H is constant
on N .
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Proof. If H is constant on N , we have

∀x ∈ N, dxH|TxN = 0,

and thus Ωx(XH(x), v) = 0, for all v ∈ TxN , which implies that
XH(x) ∈ TxN . By the theorem of Cauchy-Peano [Bou76], if N is
of class C1 (or Cauchy-Lipschitz, if N is of C2 class), the restric-
tion XH |N has solutions with values in N . By uniqueness of the
solutions of XH in O (which holds because XH is C1 on O), the
solutions with values in N must be orbits of φH

t . We therefore
conclude that N is invariant by φH

t as soon as H is constant on
N . Conversely, if N is invariant by φH

t , the curves t 7→ φH
t (x)

have a speed Xh(x) for t = 0 which must be in TxN , therefore
Xh(x) ∈ TxN and dxH|N = Ω(XH(x), ·) vanishes at every point
of N , since N is a Lagrangian submanifold. By connectedness of
N , the restriction H|N is constant.

2.6 Lagrangian and Hamiltonians

Definition 2.6.1 (Hamiltonian). If L is a C1 Lagrangian on the
manifold M , its Hamiltonian Ĥ : TM → R is the function defined
by

Ĥ(x, v) =
∂L

∂v
(x, v)(v) − L(x, v).

Obviously, if L is Ck, with k ≥ 1, then, its associated Hamil-
tonian Ĥ is of class Ck−1.

Proposition 2.6.2. Suppose that L is a C2 Lagrangian on the
manifold M . If γ : [a, b] → M is a C2 extremal curve then the
Hamiltonian Ĥ is constant on its speed curve t 7→ (γ(t), γ̇(t)).

In particular, the Hamiltonian Ĥ is invariant under the Euler-
Lagrange flow φL

t when it exists.

Proof. We have

Ĥ(γ(t), γ̇(t)) =
∂L

∂v
(γ(t), γ̇(t))(γ̇(t)) − L(γ(t), γ̇(t)),

We want to show that its derivative is zero. This is a local result,
we can suppose that γ takes its values in a chart on M , and there-
fore use coordinates. Performing the differentiation with respect
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to t in coordinates, after simplifications, we get

d

dt
Ĥ(γ(t), γ̇(t)) =

[
d

dt

(∂L

∂v
(γ(t), γ̇(t))

)
]

(γ̇(t))−
∂L

∂x
(γ(t), γ̇(t))(γ̇(t)).

This last quantity is zero since γ satisfies the Euler-Lagrange equa-
tion, see 2.2.6.

Suppose that the restriction of the global Legendre transform
L̃ to some open subset O ⊂M is a diffeomorphism onto its image
Õ = L̃(O), we will define the function HÕ : Õ → R by HÕ = Ĥ ◦

(L̃|O)−1, where (L̃|O)−1 : Õ → O is the inverse of the restriction
L̃|O. This functionHÕ is also called the (associated) Hamiltonian.

Proposition 2.6.3. Let L be a Ck Lagrangian, with k ≥ 2, on
a manifold M . Suppose that the restriction L̃|O of the global
Legendre transform to the open O ⊂M is a diffeomorphism onto
its image Õ. Then the Hamiltonian HÕ = Ĥ ◦ (L̃|O)−1 is also

of class Ck on the open subset Õ ⊂ T ∗M . If M = U is an open
subset of R

n, then, in the natural coordinates on TU and T ∗U ,
we have

∂HÕ

∂p
(x, p) =v

∂HÕ

∂x
(x, p) = −

∂L

∂x
(x, v),

with L(x, v) = p.

Proof. To simplify notations we will set H = HÕ. We know that L̃

is Ck−1. It follows that the diffeomorphism (L̃|O)−1 is also Ck−1,
and hence H is Ck−1, since obviously Ĥ is Ck−1. therefore H is
at least C1 We then take coordinates to reduce the proof to the
case where M = U is an open subset of R

n. Using the canonical
coordinates on R

n, we write (x, v) = (x1, · · · , xn, v1, · · · , vn). By
definition of Ĥ, and H, we have

H
(
x,
∂L

∂v
(x, v)

)
= −L(x, v) +

n∑

j=1

∂L

∂vj
(x, v)vj . (*)



60

If we differentiate both sides with respect to the variable vi, we
find

n∑

j=1

∂H

∂pj

(
x,
∂L

∂v
(x, v)

) ∂2L

∂vi∂vj
(x, v) =

n∑

j=1

vj
∂2L

∂vi∂vj

(
x,
∂L

∂x
(x, v)

)
,

for all i = 1, . . . , n. Since we have

DL̃(x, v) =

[

IdRn
∂2L
∂x∂v (x, v)

0 ∂2L
∂v2 (x, v)

]

the matrix
[

∂2L
∂vi∂vj

]

is invertible, for (x, v) ∈ O. Thereore we

obtain
∂H

∂pj

(
x,
∂L

∂v
(x, v)

)
= vj.

If p = ∂L
∂x (x, v) = L(x, v), we indeed found the first equation. If

we differentiate both sides of the equality (∗) with respect to the
variable xi, using what we have just found, we obtain

∂H

∂xi

(
x,
∂L

∂v
(x, v)

)
+

n∑

j=1

vj
∂2L

∂xi∂vj
(x, v) =

n∑

j=1

∂2L

∂xi∂vj
(x, v)vj −

∂L

∂xi
(x, v),

hence
∂H

∂xi
[x,

∂L

∂v
(x, v)] = −

∂L

∂xi
.

As L̃|O is a diffeomorphism of class Ck−1 and L is of class Ck,
writing the formulas just obtained as

∂H

∂p
(x, p) =p2L̃

−1(x, p)

∂H

∂x
(x, p) = −

∂L

∂x
[L̃−1(x, p)]

where p2 is the projection of TU = U × R
n on the second factor,

we see that the derivative of H is Ck−1, and thus H is Ck.
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Let us recall that, for U an open subset of R
n, the Euler-

Lagrange flow is the flow of the vector field XL on TU = U × R
n

defined by XL(x, v) = (x, v1, v, X̃L(x, v)) with

∂L

∂x
(x, v) =

∂2L

∂v2
(x, v)(X̃L(x, v), ·) +

∂2L

∂x∂v
(x, v)(v, ·). (**)

Suppose now that L̃|O is a diiffeomorphism onto its image for the
open subset O ⊂ TM . Since the diffeomorphism L̃ is Ck−1, with
k ≥ 2, we can transport by this diffeomorphism the vector field
XL|O to a vector field defined on Õ.

Theorem 2.6.4. Let L be a Ck Lagrangian, with k ≥ 2, on
a manifold M . Suppose that the restriction L̃|O of the global
Legendre transform to the open O ⊂M is a diffeomorphism onto
its image Õ. If we transport on Õ = L̃(O) the Euler-Lagrange
vector field XL, using the diffeomorphism L̃|O, we find on Õ the
Hamiltonian vector field XHO

associated to HO = Ĥ ◦ (L̃|O)−1.
In particular, even if k = 2, the Euler-Lagrange vector field XL

is uniquely integrable on O, therefore the partial Euler-Lagrange
flow φL

t is defined and C1 on O. More generally, for every r ≥ 2,
the Euler-Lagrange flow φL

t on O is of class Cr−1.

Proof. Let us fix (x, v) ∈ O. We set p = ∂L
∂v (x, v). As the Euler-

Lagrange vector field is of the form XL(x, v) = (x, v, v, X̃L(x, v)),
we have

T(x,v)L̃
(
XL(x, v)

)
=

(
x, p, v,

∂L

∂v
(x, v)(X̃L(x, v)) +

∂L

∂x
(x, v)(v)

)
.

But ∂L
∂v (x, v) = ∂2L

∂v2 et ∂L
∂x = ∂2L

∂x∂v . Using equation (∗∗), we then
find

T L̃
(
X̃(x, v)

)
=

(
x, p, v,

∂L

∂x
(x, v)

)
=

(
x, p,

∂H

∂p
,−

∂H

∂x

)
,
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this is precisely XHO
, because

Ω(x,p)(
∂HO

∂p

∂

∂x
−
∂HO

∂x

∂

∂p
, ·)

= (

n∑

i=1

dxi ∧ dpi)(
∂HO

∂p

∂

∂x
−
∂HO

∂x

∂

∂p
, ·)

=
n∑

i=1

∂HO

∂pi
dpi +

∂H

∂xi
dxi

= dHO.

Since the Hamiltonian is Ck, the vector field XHO
is of class Ck−1,

its local flow φHO
t is, by the theorem of Cauchy-Lipschitz, well

defined and of class Ck−1. However, the diffeomorphism L̃|O is of
class Ck−1 and sends the vector field XL on XHO

, consequently

the local flow of XL|O is well defined and equal to (L̃|O)−1φHO
t L̃

which is Cr−1.

The following theorem is clearly a consequence of 2.6.4, propo-
sitions 2.6.3 and 2.1.6.

Theorem 2.6.5. Suppose that L is a non-degenerate Cr Lagran-
gian, with r ≥ 2, on the manifold M . Then for r = 2, the the
Euler-Lagrange vector field XL is uniquely integrable and defines
a local flow φL

t which is of class C1. More generally, for every
r ≥ 2, the Euler-Lagrange flow φL

t is of class Cr−1.

Remark 2.6.6. When L is non degenerate of class Cr, with r ≥ 2,
we can define ΩL = L̃∗Ω, where Ω is the canonical symplectic form
on T ∗M . Since L̃ is a local diffeomorphism, for each (x, v) ∈ TM ,
the bilinear form ΩL

(x,v) is non-degenerate. Obviously, the 2-form is

of class Cr−2. To be able to say that ΩL is closed, we need to have
r ≥ 3. Under this condition ΩL defines a symplectic structure
of class Cr−2 on TM , and we can interpret what we have done
by saying that XL is the Hamiltonian flow associated to Ĥ by
ΩL. Notice however that we cannot conclude from this that XL is
uniquely integrable because Ĥ is only Cr−1, and we do not gain
one more degree of differentiabilty, like in proposition 2.6.3, for
the Hamiltonian. Note that this also gives an explanation for the
invariance of Ĥ by the Euler-Lagrange flow.
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2.7 Existence of Local Extremal Curves

We will use the following form of the inverse function theorem.

Theorem 2.7.1 (Inverse Function). Let U be an open subset of
R

m and K a compact space. We suppose that ϕ : K × U → R
m

is a continuous map such that

(1) for each k ∈ K, the map ϕk : U → R
m, x 7→ ϕ(k, x) is C1,

(2) The map ∂ϕ
∂x : K × U → L(Rm,Rm), (k, x) 7→ ∂ϕ

∂x (k, x) is
continuous.

If C ⊂ U is a compact subset such that

(i) for each k ∈ K, and each x ∈ C, the derivative ∂ϕ
∂x (k, x) is

an isomorphism,

(ii) for each k ∈ K, the map ϕk is injective on C,

then there exists an open subset V such that

(a) we have the inclusions C ⊂ V ⊂ U ,

(b) for each k ∈ K, the map ϕk induces a C1 diffeomorphism of
V on an open subset of R

m.

Proof. Let ‖·‖ denote a norm on R
m, and let d denote its associ-

ated distance. Let us show that there is an integer n such that, if
we set

Vn =
{
x | d(x,C) <

1

n

}
,

then, the restriction ϕk|Vn is injective, for each k ∈ K. We argue
by contradiction. Suppose that for each positive integer n we can
find vn, v

′
n ∈ U and kn ∈ K with

vn 6= v′n, d(vn, C) <
1

n
, d(v′n, C) <

1

n
and ϕ(kn, vn) = ϕ(kn, v

′
n).

By the compactness of C and K, we can extract subsequences
vni
, v′ni

and kni
which converge respectively to v∞, v

′
∞ ∈ C and

k∞ ∈ K. By continuity of ϕ, we see that ϕ(k∞, v∞) = ϕ(k∞, v
′

∞).
From (ii), it results that v∞ = v′∞. Since vn 6= v′n, we can set un =
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vn−v′n
‖vn−v′n‖

. Extracting a subsequence if necessary, we can suppose

that uni
→ u∞. This limit u∞ is also of norm 1. As vni

and v′ni

both converge to v∞ = v′∞, for i large, the segment between vni

and v′ni
is contained in the open set U . Hence for i big enough we

can write

0 = ϕ(kni
, vni

) − ϕ(kni
, v′ni

)

=

∫ 1

0

∂ϕ

∂v
(kni

, svni
+ (1 − s)v′ni

)(vni
− v′ni

) ds,

dividing by ‖v′ni
− vni

‖ and taking the limit as ni → ∞, we obtain

0 =

∫ 1

0

∂ϕ

∂v
(k∞, v∞)(u∞) ds

=
∂ϕ

∂v
(k∞, v∞)(u∞).

However ∂ϕ
∂v (k∞, v∞) is an isomorphism, since (k∞, v∞) ∈ K ×

C. But ‖u∞‖ = 1, this is a contradiction. We thus showed the
existence of an integer n such that the restriction of ϕk on Vn is
injective, for each k ∈ K. The continuity of (k, v) 7→ ∂ϕ

∂v (k, v)

and the fact that ∂ϕ
∂v (k, v) is an isomorphism for each (k, v) in the

compact set K×C, show that, taking n larger if necessary, we can
suppose that ∂ϕ

∂v (k, v) is an isomorphism for each (k, v) ∈ K × Vn.
The usual inverse function theorem then shows that ϕk restricted
to Vn is a local diffeomorphism for each k ∈ K. Since we have
already shown that ϕk is injective on Vn, it is a diffeomorphism of
Vn on an open subset of Rm.

The following lemma is a simple topological result that de-
serves to be better known because it simplifies many arguments.

Lemma 2.7.2. Let X be a topological space, and let Y be a
locally compact locally connected Hausdorff space. Suppose that
ϕ : X × U → Y is continuous, where U is an open subset of Y
, and that, for each x ∈ X, the map ϕx : U → Y, y 7→ ϕ(x, y)
is a homeomorphism onto an open subset of Y . Then, the map
Φ : X × U → X × Y, (x, y) 7→ (x, ϕ(x, y)) is an open map, i.e. it
maps open subsets of X × U to open subsets of X × Y . It is thus
a homeomorphism onto an open subset of X × Y .
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Proof. It is enough to show that if V is open and relatively com-
pact in Y , with V̄ ⊂ U , and x0 ∈ X, y0 ∈ Y are such that
y0 ∈ ϕx0(V ), then, there exists a neighborhood W of x0 in X
and a neighborhood N of y0 in Y , such that ϕx(V ) ⊃ N , for each
x ∈W . In fact, this will show the inclusion W ×N ⊂ Φ(W × V ).
As ϕx0(V ) is an open set containing y0, there exists N , a compact
and connected neighborhood of y0 in Y , such that N ⊂ ϕx0(V ).
Since ∂V = V̄ \V is compact and N ∩ϕx0(∂V ) = ∅, by continuity
of ϕ, we can find a neighborhood W of x0 such that

∀x ∈W,ϕx(∂V ) ∩N = ∅. (*)

We now choose ỹ0 ∈ V , such that ϕx0(ỹ0) = y0. Since N is
a neighborhood of y0 and ϕ is continuous, taking W smaller if
necessary we can assume that

∀x ∈W,ϕx(ỹ0) ∈ N. (**)

By condition (∗), for x ∈ W , we have ϕx(V ) ∩ N = ϕx(V̄ ) ∩ N ,
therefore the intersection ϕx(V )∩N is both open and closed as a
subset of the connected space N . This intersection is not empty
because it contains ϕx(ỹ0) by condition (∗∗). By the connectedness
of N , this of course implies that ϕx(V ) ∩N = N .

Lemma 2.7.3 (Tilting). Let ‖·‖ be a norm on R
n. We denote

by B̊‖·‖(0, R) (resp. B̄‖·‖(0, R)) the open (resp. closed) ball of R
n

of center 0 and radius R for this norm. We suppose that K is a
compact space and that ǫ, η, C1 and C2 are fixed > 0 numbers,
with C1 > C2.

Let θ : K×] − ǫ, ǫ[×B̊‖·‖(0, C1 + η) → R
n be continuous map

such that

(1) for each fixed k ∈ K, the map (t, v) 7→ θ(k, t, v) has every-
where a partial derivative ∂θ

∂t , and this partial derivative is
itself C1;

(2) the map θ and its partial derivatives ∂θ
∂t ,

∂2θ
∂t2
, ∂2θ

∂v∂t = ∂
∂v

[
∂θ
∂t

]

are continuous on the product space K×]−ǫ, ǫ[×B̊‖·‖(0, C1+
η);
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(3) for each k ∈ K and each v ∈ B̄‖·‖(0, C1 + η), we have

∂θ

∂t
(k, 0, v) = v;

(4) for each (k, v) ∈ K ×B(0, C1 + η), we have

θ(k, 0, v) = θ(k, 0, 0).

Then, there exists δ > 0 such that, for each t ∈ [−δ, 0[∪]0, δ]
and each k ∈ K, the map v 7→ θ(k, t, v) is a diffeomorphism of
B̊‖·‖(0, C1 + η/2) onto an open subset of R

n, and moreover

{θ(k, t, v) | v ∈ B̄‖·‖(0, C1)} ⊃ {x ∈ R
n | ‖x− θ(k, 0, 0)‖ ≤ C2|t|}.

Proof. Let us consider the map

Θ(k, t, v) =
θ(k, t, v) − θ(k, 0, v)

t
,

defined on K × ([−ǫ, 0[∪]0, ǫ]) × B̊‖·‖(0, C1 + η). We can extend it
by continuity at t = 0 because

Θ(k, t, v) =

∫ 1

0

∂θ

∂t
(k, st, v) ds (∗)

The right-hand side is obviously well-defined for t = 0, and equal
to ∂θ/∂t(k, 0, v) = v. Moreover, upon inspection of the right-hand
side of (∗), the extension Θ : K×] − ǫ, ǫ[×B̊‖·‖(0, C1 + η) → R

n is
such that for each fixed k ∈ K, the map (t, v) → Θ(k, t, v) is C1,
with

∂Θ

∂t
(k, t, v) =

∫ 1

0

∂2θ

∂t2
(k, st, v)s ds,

∂Θ

∂v
(k, t, v) =

∫ 1

0

∂2θ

∂v∂t
(k, st, v) ds.

Therefore both the partial derivatives ∂Θ/∂t, ∂Θ/∂v are continu-
ous on the product space K×]− ǫ, ǫ[×B̊‖·‖(0, C1 + η). Let us then

define the map Θ̃ : K×] − ǫ, ǫ[×B̊‖·‖(0, C1 + η) → R × R
n by

Θ̃(k, t, v) = (t,Θ(k, t, v)).
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To simplify, we will use the notation x = (t, v) to indicate the
point (t, v) ∈ R×R

n = R
n+1. The map Θ̃ is obviously continuous,

and the derivative ∂Θ̃/∂x is also continuous on the product space
K×]− ǫ, ǫ[×B̊‖·‖(0, C1 + η). Since Θ(k, 0, v) = v, for each (k, v) ∈

K × B̊‖·‖(0, C1 + η), we find that

∂Θ̃

∂x
(k, 0, v) =

[
1 0

∂Θ
∂t (k, 0, v) IdRn

]

,

where we used a block matrix to describe a linear map from the

product R×R
n into itself. It follows that ∂Θ̃

∂x (k, 0, v) is an isomor-

phism for each (k, v) ∈ K × B̊‖·‖(0, C1 + η).

Since K and B̄‖·‖(0, C1 + η/2) are compact, using the inverse
function theorem 2.7.1, we can find δ1 > 0 and η′ ∈]η/2, η[ such
that, for each k ∈ K, the map (t, v) 7→ Θ(k, t, v) is a C1 diffeomor-
phism from the open set ] − δ1, δ1[×B̊‖·‖(0, C1 + η′) onto an open
set R×R

n. It follows that, for each (k, t) ∈ K×]− δ1, δ1[, the map
v 7→ Θ̃(k, t, v) is a C1 diffeomorphism B̊‖·‖(0, C1 + η/2) onto some
open subset of R

n. By lemma 2.7.2, we obtain that the image of
K×] − δ1, δ1[×B̊‖·‖(0, C1) by the map (k, s, v) 7→ (k, Θ̃(k, s, v)) is
an open subset of K × R × R

n. This open subset contains the
compact subset K × {0} × B̄‖·‖(0, C2), since Θ̃(k, 0, v) = (0, v).
We conclude that there exists δ > 0 such that the image of K×]−
δ1, δ1[×B̊‖·‖(0, C1) by map the (k, s, v) 7→ (k, Θ̃(k, s, v)) contains
K× [−δ, δ]× B̄‖·‖(0, C2). Hence, for (k, t) ∈ K× [−δ, δ], the image

of B̊‖·‖(0, C1) by the map v 7→ Θ(k, t, v) contains B̄‖·‖(0, C2).

Since we have

θ(k, s, v) = sΘ(k, s, v) + θ(k, 0, v)

θ(k, 0, v) = θ(k, 0, 0),

we can translate the results obtained for Θ in terms of θ. This
gives that, for s 6= 0, and |s| ≤ δ, the map v 7→ θ(k, s, v) is also
a diffeomorphism of B̊‖·‖(0, C1 + η/2) on an open subset of R

n

and that the image of B̄‖·‖(0, C1) by this map contains the ball
B̄(θ(k, 0, 0), C2s).

Theorem 2.7.4 (Existence of local extremal curves). Let L :
TM → M be a non-degenerate Cr Lagrangian, with r ≥ 2. We
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fix a Riemannian metric g on M . For x ∈ M , we denote by ‖·‖x

the norm induced on TxM by g. We call d the distance on M
associated with g.

If K ⊂ M is compact and C ∈ [0,+∞[, then, there exists
ǫ > 0 such that for x ∈ K, and t ∈ [−ǫ, 0[∪]0, ǫ], the map π ◦φL

t is
defined, and induces a diffeomorphism from an open neighborhood
of {v ∈ TxM | ‖v‖x ≤ C} onto an open subset of M . Moreover,
we have

π ◦ φL
t ({v ∈ TxM | ‖v‖x ≤ C}) ⊃ {y ∈M | d(y, x) ≤ C|t|/2}.

To prove the theorem, it is enough to show that for each
x0 ∈ M , there exists a compact neighborhood K, such that the
conclusion of the theorem is true for this compact neighborhood
K. For such a local result we can assume that M = U is an
open subset of R

n, with x0 ∈ U . In the sequel, we identify
the tangent space TU with U × R

n and for x ∈ U , we identify
TxU = {x} × R

n with R
n. We provide U × R

n with the natu-
ral coordinates (x, v) = (x1, · · · , xn, v1, · · · , vn). We start with a
lemma which makes it possible to replace the norm obtained from
the Riemannian metric by a constant norm on R

n.

Lemma 2.7.5 (Distance Estimates). For each α > 0, there exists
an open neighborhood V of x0 with V̄ compact ⊂ U and such that

(1) for each v ∈ TxU ∼= R
n and each x ∈ V̄ we have

(1 − α)‖v‖x0 ≤ ‖v‖x ≤ (1 + α)‖v‖x0 ;

(2) for each (x, x′) ∈ V̄ we have

(1 − α)‖x− x′‖x0 ≤ d(x, x′) ≤ (1 + α)‖x − x′‖x0 .

Proof. For (1), we observe that, for x→ x0, the norm ‖v‖x tends
uniformly to 1 on the compact set {v | ‖v‖x0 = 1}, by continuity
of the Riemannian metric. Therefore for x near to x0, we have

∀v ∈ R
n, (1 − α) <

∥
∥
∥
∥

v

‖v‖x0

∥
∥
∥
∥

x

< (1 + α).

For (2), we use the exponential map expx : TxU → U , induced
by the Riemannian metric. It is known that the map exp : TU =
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U×R
n → U×U, (x, v) 7→ (x, expx v) is a local diffeomorphism on a

neighborhood of (x0, 0), that expx(0) = x, and D[expx](0) = IdRn .
Thus, there is a compact neighborhood W̄ of x0, such that any pair
(x, x′) ∈ W̄ ×W̄ is of the form (x, expx[v(x, x′)]) with v(x, x′) → 0
if x and x′ both tend to x0. The map (x, v) 7→ expx(v) is C1,
therefore, using again expx(0) = x,D[expx](0) = IdRn , we must
have

expx v = x+ v + ‖v‖x0k(x, v),

with limv→0 k(x, v) = 0, uniformly in x ∈ W̄ . Since d(x, expx v) =
‖v‖x, for v small, it follows that for x, x′ close to x0

‖x− x′‖x

d(x, x′)
=

‖v(x, x′)+‖v(x, x′)‖x0k(x, v(x, x
′))‖x

‖v(x, x′)‖x
.

We can therefore conclude that ‖x−x′‖x

d(x,x′) → 1, when x, x′ → x0.

But we also have ‖x−x′‖x

‖x−x′‖x0
→ 1 when x → x0, we conclude that

d(x,x′)
‖x−x′‖x0

is close to 1, if x and x′ are both in a small compact

neighborhood of x0.

Proof of the theorem 2.7.4. Let us give α and η two > 0 numbers,
with α enough small to have

C

1 − α
<

C

1 + α
+
η

2
1

2(1 − α)
<

1

1 + α
.

We set C1 = C/(1 + α). Let W̄ ⊂ U be a compact neighborhood
of x0. Since W̄ × B̄‖·‖x0

(0, C1 + η) is compact, there exists ǫ > 0

such that φL
t is defined on W̄ × B̄‖·‖x0

(0, C1 + η) for t ∈] − ǫ, ǫ[.

We then set θ(x, t, v) = π ◦φL
t (x, v). The map θ is well defined on

W̄ × [−ǫ, ǫ]× B̄‖·‖x0
(0, C1 +η). Moreover, since t 7→ φL

t (x, v) is the
speed curve of its projection t 7→ θ(t, x, v), we have

φL
t (x, v) = (θ(x, t, v),

∂θ

∂t
(x, t, v)),

and

θ(x, 0, v) = x, and
∂θ

∂t
(x, 0, v) = v.
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Since the flow φL
t is of class Cr−1, see theorem 2.6.5, both maps

θ and ∂θ
∂t are of class Cr−1, with respect to all variables. Since r ≥

2, we can then apply the tilting lemma 2.7.3, with C1 = C/(1+α)
and C2 = C/2(1 − α), to find δ > 0 such that, for each x ∈ W̄ ,
and each t ∈ [−δ, 0[∪]0, δ], the map (x, v) 7→ π ◦ φL

t (x, v) induces
a C1 diffeomorphism from {v | ‖v‖x0 < η/2 + C/(1 + α)} onto an
open subset of R

n with

{π ◦φL
t (x, v) | ‖v‖x0 ≤

C

1 + α
} ⊃ {y ∈ R

n | ‖y−x‖x0 ≤
Ct

2(1 − α)
}.

Since π ◦ φL
0 (x, v) = x, taking W̄ and δ > 0 smaller if necessary,

we can assume that W̄ ⊂ V and

{πφL
t (x, v) | t ∈ [−δ, δ], x ∈ W̄ , v ∈ B̄(0, C/(1 + α) + η)} ⊂ V,

where V is given by lemma 2.7.5. Since W̄ ⊂ V , by what we
obtained in lemma 2.7.5, for x ∈ W̄ , for every R ≥ 0, we have

{v ∈ TxU | ‖v‖x0 ≤
R

1 + α
} ⊂ {v ∈ TxU | ‖v‖x ≤ R}

⊂ {v ∈ TxU | ‖v‖x0 ≤
R

1 − α
}.

As W̄ is compact and contained in the open set V , for t > 0 small
and x ∈ W̄ , we have

{y ∈M | d(y, x) ≤
Ct

2
} ⊂ V,

hence again by lemma 2.7.5

{y ∈M | d(y, x) ≤
Ct

2
} ⊂ {y ∈ V | ‖y − x‖x0 ≤

Ct

2(1 − α)
}.

Therefore by the choices made, taking δ > 0 smaller if necessary,
for t ∈ [−δ, δ], and x ∈ W̄ , the map π◦φL

t is a diffeomorphism from
a neighborhood of {v ∈ TxU | ‖v‖x ≤ C} onto an open subset of
U such that

π ◦ φL
t ({v ∈ TxU | ‖v‖x ≤ C}) ⊃ {y ∈ V | d(y, x) ≤

C|t|

2
}.
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2.8 The Hamilton-Jacobi method

We already met an aspect of the theory of Hamilton and Jacobi,
since we saw that a connected Lagrangian submanifold is invariant
by a Hamiltonian flow if and only if the Hamiltonian is constant
on this submanifold. We will need a little more general version for
the case when functions depend on time.

We start with some algebraic preliminaries.
Let a be an alternate 2-form on a vector space E. By definition,

the characteristic subspace of a is

ker a = {ξ ∈ E | a(ξ, ·) = 0},

i.e. ker a is the kernel of the linear map a# : E → E∗, ξ 7→ a(ξ, ·).
If E is of finite dimension, then Ker(a) = 0 if and only if a is a
symplectic form. Since a space carrying a symplectic form is of
even dimension, we obtain the following lemma.

Lemma 2.8.1. Let a be an alternate 2-form on the vector space
E is provided with the alternate bilinear 2-form. If the dimension
of E is finite and odd, then Ker(a) is not reduced to {0}.

We will need the following complement.

Lemma 2.8.2. Let a be an alternate bilinear 2-form on the vec-
tor space E of finite odd dimension. We suppose that there is a
codimension one subspace E0 ⊂ E such that the restriction a|E0

is a symplectic form, then, the dimension of the characteristic sub-
space Ker(a) is 1.

Proof. Indeed, we have E0 ∩ Ker(a) = 0, since E0 is symplectic.
As E0 is a hyperplane, the dimension of Ker(a) is ≤ 1. But we
know by the previous lemma that Ker(a) 6= 0.

Definition 2.8.3 (Odd Lagrangian Subspace). Let E be a vector
space of dimension 2n + 1 provided with an alternate 2-form a,
such that the dimension of Ker(a) is 1. A vector subspace F of E
is said to be odd Lagrangian if dimF = n+ 1 and the restriction
a|F is identically 0.

Lemma 2.8.4. Let E be a vector space of dimension 2n + 1
provided with an alternate 2-form a, such that the dimension of
Ker(a) is 1. If F is an odd Lagrangian subspace, then Ker(a) ⊂ F .



72

Proof. We set F⊥ = {ξ ∈ E | ∀f ∈ F, a(ξ, f) = 0}. We have
F⊥ ⊃ F + Ker(a), therefore dim a#(F⊥) = dimF⊥ − 1, since
Ker(a)# = Ker(a), where a# : E → E∗, ξ 7→ a(ξ, ·). But a#(F⊥) ⊂
{ϕ ∈ E∗ | ϕ(F ) = {0}} which is of dimension n. It follows that
dimF⊥−1 ≤ n and thus dimF⊥ ≤ n+1. Since F⊥ ⊃ F +Ker(a)
and dimF = n+ 1, we must have F⊥ = F and Ker(a) ⊂ F .

In the sequel of this section, we fix a manifoldM and O an open
subset of its cotangent space T ∗M . We denote by π∗ : T ∗M →M
the canonical projection.

We suppose that a C2 Hamiltonian H : O → R is given. We
denote by XH the Hamiltonian vector field associated to H, and
by φH

t the local flow of XH . We define the differential 1-form αH

on O × R by
αH = α−Hdt,

where α is the Liouville form on T ∗M . More precisely, we should
write

αH = p∗1α− (H ◦ p1) dt,

where p1 : T ∗M × R → T ∗M is the projection on the first factor
and dt is the differential on T ∗M×R of the projection T ∗M×R →
R on the second factor. The exterior derivative ΩH = −dαH

defines a differential 2-form which is closed on O × R. We have

ΩH = p∗1Ω + (p∗1dH) ∧ dt,

where Ω = −dα is the canonical symplectic form on T ∗M . If
(x, p, t) ∈ (O × R), then, the tangent space T(x,p,t)(O × R) =
T(x,p)(T

∗M) × R is of odd dimension. Since, moreover, the re-
striction (ΩH)(x,p,t)|T(x,p)T

∗M is nothing but the symplectic form
Ω = −dα, the lemmas above show that the characteristic space of
(ΩH)(x,p,t) is of dimension 1, at each point (x, p, t) ∈ O × R.

Lemma 2.8.5. At a point (x, p, t) in O × R, the characteristic
subspace of ΩH is generated by the vector XH + ∂

∂t , where XH is
the Hamiltonian vector field on O associated with H.

Proof. The vector field XH + ∂
∂t is never 0, because of the part ∂

∂t ,
it is then enough to see that

ΩH(XH +
∂

∂t
, ·) = 0.
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But, we have

ΩH

(
XH +

∂

∂t
, ·

)
= Ω(XH , ·) + (dH ∧ dt)

(
XH +

∂

∂t
, ·

)

= dH + dH(XH)dt − dH

= 0,

since dH(XH) = Ω(XH ,XH) = 0.

Definition 2.8.6 (Odd Lagrangian Submanifold). We say that a
C1 submanifold V of O×R is odd Lagrangian for ΩH , if dimV =
dimM + 1 and the restriction ΩH |V is identically 0. This last
condition is equivalent to the fact that the restriction αH |V is
closed as differential 1-form.

Lemma 2.8.7. If the C1 submanifold V of O×R is odd Lagran-
gian for ΩH , then, the vector field XH + ∂

∂t is tangent everywhere
to V .

It is not difficult to see that the local flow of XH + ∂
∂t on O×R

is
ΦH

s (x, p, t) = (φH
s (x, p), t+ s).

Corollary 2.8.8. If the C1 submanifold V of O × R is odd Lag-
rangian for ΩH , then, it is invariant by the local flow ΦH

s .

Proof. Again since we are assuming that V is only C1, the re-
striction of XH + ∂

∂t to V which is tangent to V is only C0, as
a section V → TV . We cannot apply the Cauchy-Lipschitz theo-
rem. Instead as in the proof of 2.5.10, if (x, p, t) ∈ V , we apply the
Cauchy-Peano [Bou76] to find a a curve in V which is a solution
of the vector field. Then we apply the uniqueness in O where the
vector field to conclude that this curve in V is a part of an orbit
of the flow.

Lemma 2.8.9. the form ΩH is preserved by the flow ΦH
s .

Proof. By the Cartan formula, a closed differential form β is pre-
served by the flow of the vector field X, if and only if the exterior
derivative d[β(X, ·)] of the form β(X, ·) is identically 0. However
in our case

ΩH(XH +
∂

∂t
, ·) = 0.
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Let us consider U , an open subset of M , and a local C1 section
s : U×]a, b[→ T ∗M×R of projection π∗×IdR : T ∗M×R →M×R

such that s(x, t) ∈ O, for each (x, t) ∈ U×]a, b[. If we set s(x, t) =
(x, p(x, t), t), then the image of the section s is an odd Lagrangian
submanifold for ΩH if and only if the form: s∗[α−H(x, p(x, t)) dt]
is closed. If we choose coordinates x1, . . . . . . , xn in a neighborhood
of a point in U , we get

s∗[α−H(x, p(x, t)) dt] = −H(x, p(x, t)) dt +

n∑

i=1

pi(x, t) dxi

and thus the image of the section s is an odd Lagrangian sub-
manifold if and only if the differential 1-form −H(x, p(x, t)) dt +
∑n

i=1 pi(x, t) dxi is closed. If this is the case and U is simply
connected, this form is then exact and there is a C2 function
S : U×]a, b[→ R such that

dS = −H(x, p(x, t)) dt +

n∑

i=1

pi(x, t) dxi,

which means that we have

∂S

∂x
= p(x, t) and

∂S

∂t
= −H(x, p(x, t)).

This brings us to the Hamilton-Jacobi equation

∂S

∂t
+H(x,

∂S

∂x
) = 0. (H-J)

Conversely, any C2 solution S : U×]a, b[→ R of this equation
gives us an invariant odd Lagrangian submanifold, namely the
image of the section s : U×]a, b[→ T ∗M × R defined by s(x, t) =
(
x, ∂S

∂x (x, t), t
)
. Indeed, with this choice and using coordinates, we

find that

s∗(αH) =

n∑

i=1

∂S

∂xi
(x, t) dxi −H(x, p(x, t)) dt.

Since S satisfies the Hamilton-Jacobi equation, we have

s∗(αH) =
∂S

∂t
(x, t) dt +

n∑

i=1

∂S

∂xi
(x, t) dxi,
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which implies that s∗(αH) = dS is closed.

The following theorem partly summarizes what we obtained:

Theorem 2.8.10. Let H : O → R be a C2 Hamiltonian, defined
on the open subset O of the cotangent space T ∗M of the manifold
M . We denote by φH

t the local flow of the Hamiltonian vector field
XH associated withH. Let U be an open subset ofM and a, b ∈ R,
with a < b. Suppose that the C2 function S : U×]a, b[→ R is such
that

(1) for each (x, t) ∈ U×]a, b[, we have
(
x, ∂S

∂x (x, t)
)
∈ O;

(2) the function S satisfies the Hamilton-Jacobi equation

∂S

∂t
+H(x,

∂S

∂x
) = 0.

We fix (x0, t0) a point in U×]a, b[, and to simplify notations we
denote the point φH

t

(
x0,

∂S
∂x (x0, t0)

)
by (x(t), p(t)). If ]α, β[⊂]a, b[

is the maximum open interval such that φH
t

(
x0,

∂S
∂x (x0, t0)

)
is de-

fined, and its projection x(t) is in U , for each t ∈]α, β[, then, we
have

∀t ∈]α, β[, p(t) =
∂S

∂x
(x(t), t + t0).

Moreover, for t tending to α or β, the projection x(t) leaves every
compact subset of U .

Proof. By what we have already seen, the image of the section
s : U×]a, b[→ T ∗M × R, (x, t) defined by s(x, t) =

(
x, ∂S

∂x (x, t), t
)

is odd Lagrangian for ΩH , it is thus invariant by the local flow ΦH
t

of XH + ∂
∂t . If we denote by ]α0, β0[ the maximum open interval

such that ΦH
t

(
x0,

∂S
∂x (x0, t0), t0

)
is defined and in the image of the

section s, it results from the invariance that

∀t ∈]α0, β0[, p(t) =
∂S

∂x
(x(t), t+ t0).

We of course have ]α0, β0[⊂]α, β[. If we suppose that β0 < β,
then x(β0) ∈ U and, by continuity of the section s, we also have
ΦH

β0

(
x0,

∂S
∂x (x0, t0), t0

)
= s(x(β0)). By the invariance of the image

of s by ΦH
t , we then find ǫ > 0 such that ΦH

t

(
x0,

∂S
∂x (x0, t0), t0

)
=
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ΦH
t−β0

(
s(x(β0))

)
is defined and in the image of the section s, for

each t ∈ [β0, β0 + ǫ]. This contradicts the definition of β0.
It remains to see that x(t) comes out of every compact sub-

set of U , for example, when t → β. Indeed if this would not be
the case, we could find a sequence ti → β such that x(ti) would
converge to a point x∞ ∈ U , but, by continuity of s, the se-
quence φH

ti

(
x0,

∂S
∂x (x0, t0)

)
= s[x(ti)] would converge to a point in

T ∗U , which would make it possible to show that φH
t

(
x0,

∂S
∂x (x0, t0)

)

would be defined and in T ∗U for t near to β and t > β. This con-
tradicts the definition of β.

We know consider the problem of constructing (local) solu-
tions of the Hamilton-Jacobi equation. We will include in this
construction a parameter that will be useful in the sequel.

Theorem 2.8.11 (Method of Characteristics). Let H : O → R

be a C2 Hamiltonian, defined on the open subset O of cotangent
space T ∗M of the manifold M . We denote by φH

t the local flow
of the Hamiltonian vector field XH associated with H. Let U
be open in M and let K be a compact space. We suppose that
S0 : K × U → R is a function such that

(1) for each k ∈ K, the map S0,k : U → R is C2;

(2) the map (k, x) 7→ (x, ∂S0
∂x (k, x)) is continuous on the product

K×U with values in T ∗M , and its image is contained in the
open subset O ⊂ T ∗M ;

(3) the derivative with respect to x of (k, x) 7→ (x, ∂S0
∂x (k, x)) is

also continuous on the product K × U (this is equivalent to

the continuity of the (k, x) 7→ ∂2S0
∂x2 (k, x) in charts contained

in U).

Then, for each open simply connected subset W , with W̄ compact
and included in U , there exists δ > 0 and a continuous map S :
K ×W×] − δ, δ[ satisfying

(i) for each (k, x) ∈ K ×W , we have S(k, x, 0) = S0(k, x);

(ii) for each k ∈ M , the map Sk : W×] − δ, δ[→ R, (x, t) 7→
S(k, x, t) is C2, and satisfies the Hamilton-Jacobi equation

∂Sk

∂t
+H(x,

∂Sk

∂x
) = 0;
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(iii) both maps (k, x, t) 7→ DSk(x, t), (k, x, t) 7→ D2Sk(x, t) are
continuous on the product K ×W×]− δ, δ[.

Proof. We want to find a function S(k, x, t) such that S(k, x, 0) =
S0(k, x), and Sk(x, t) = S(k, x, t) is a solution of the Hamilton-
Jacobi equation, for each k ∈ K. As we already know the graph
{(x, ∂Sk

∂x , t) | x ∈ U} ⊂ T ∗M × R must be invariant by the local
flow ΦH

t . This suggests to obtain this graph like a part of the
image of the map σk defined by

σk(x, t) = ΦH
t

(
x,
∂S0

∂x
(k, x), 0

)
= (φH

t [x,
∂S0

∂x
(k, x)], t).

The map σ(k, x, t) = σk(x, t) is well defined and continuous on
an open neighborhood U of K × U × {0} in K × O × R. The
values of σ are in O×R. Moreover, the map σk is C1 on the open
subset Uk = {(x, t) | (k, x, t) ∈ U}, and both maps (k, x, t) 7→
∂σk

∂t (k, x, t), (k, x, t) 7→ ∂σk

∂x (k, x, t) are continuous on U .
Given its definition, it is not difficult to see that σk is injec-

tive. Let us show that the image of σk is a C1 odd-Lagrangian
submanifold of O × R. Since σk(x, t) = ΦH

t

(
x, ∂S0

∂x (k, x), 0
)

and
ΦH

t is a local diffeomorphism which preserves ΩH , it is enough to
show that the image of the derivative of σk at a point of the form
(x0, 0) is odd Lagrangian for ΩH (and thus of dimension n+1 like
Uk). Since we have

σk(x, 0) = (x,
∂S0

∂x
(k, x), 0),

σk(x0, t) = ΦH
t

(
σk(x0, 0)

)
,

we see that the image of Dσk(x0, 0) is the sum of the subspace

E = T
(x0,

∂S0
∂x

(k,x0))
Graph(dxS0) × {0} ⊂ Tσk(x0,0)(T

∗
xM × R)

and the subspace generated by XH(x0,
∂S0
∂x (k, x0))+ ∂

∂t . Note now
that the restriction ΩH |T ∗

xM×{0} is Ω, and that Graph(dxS0) is a
Lagrangian subspace for Ω. Moreover the vectorXH

(
x0,

∂S0
∂x (k, x0)

)
+

∂
∂t is not in E and generates the characteristic subspace of ΩH .
Therefore the image of Dσk(x0, 0) is indeed odd Lagrangian for
ΩH . This image is the tangent space to the image σk at the point
σk(x0, 0). We thus have shown that the whole image of σk is an odd
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Lagrangian submanifold for ΩH . In the remainder of this proof, we
denote by π̃∗ the projection π∗× IdR : T ∗M ×R →M ×R. Let us
show that the derivative of π̃∗σk : Uk →M ×R is an isomorphism
at each point (x, 0) ∈ U×{0}. Indeed, we have π̃∗σk(x, 0) = (x, 0),
for each x ∈ U , and π̃∗σk(x, t) = (π∗φH

t (x, ∂S0
∂x (k, x)), t), therefore,

by writing the derivative D(π̃∗σk)(x, 0) : TxM ×R → TxM ×R in
matrix form, we find a matrix of the type

D(π̃∗σk)(x, 0) =

[
IdTxM ⋆

0 1

]

which is an isomorphism. As K×W̄×{0} is a compact subset of U
and the derivative of π∗σk is an isomorphism at each point (x, 0) ∈
U × {0}, we can apply the inverse function theorem 2.7.1 to find
an open neighborhood W̃ of W̄ in U and ǫ > 0 such that, for each
k ∈ K, the map π̃∗σk induces a C1 diffeomorphism of W̃×] − ǫ, ǫ[
onto an open subset of M × R. Since moreover π∗σk(x, 0) = x,
we can apply lemma 2.7.2 to obtain δ > 0 such that π∗σk(W̃×]−
ǫ, ǫ[) ⊃ W̄ × [−δ, δ], for each k ∈ K. Let us then define the
C1 section σ̃k : W×] − δ, δ[→ T ∗M × R of the projection π̃∗ :
T ∗M × R →M × R by

σ̃k(x, t) = σk

[
(π̃∗σk)

−1(x, t)].

Since σ̃k is a section of π̃∗, we have

σ̃k(x, t) = (x, pk(x, t), t),

with pk(x, t) ∈ T ∗
xM , and pk(x, 0) = ∂S0

∂x (k, x). Moreover, the
image of σ̃k is an odd Lagrangian submanifold for ΩH , since it is
contained in the image of σk, consequently, the differential 1-form

σ̃∗kαH = pk(x, t) −H(x, pk(x, t))dt

is closed on W×] − δ, δ[. However, the restriction of this form
to W × {0} is ∂S0

∂x (k, x) = dS0,k which is exact, therefore, there
exists a function Sk : W×]− δ, δ[→ R such that Sk(x, 0) = S0,k(x)

and dSk = p(x, t) − H(x, pk(x, t))dt. We conclude that ∂Sk

∂x =

pk(x, t) and ∂Sk

∂t = −H(x, pk(x, t)). Consequently, the function
Sk is a solution of the Hamilton-Jacobi equation and Sk(x, t) =
S0(k, x)−

∫ t
0 H(x, pk(x, s)) ds, which makes it possible to see that

(k, x, t) 7→ Sk(x, t) is continuous. The property (iii) results from
the two equalities ∂Sk

∂x = pk(x, t) and ∂Sk

∂t = −H(x, pk(x, t)).
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Corollary 2.8.12. Let H : O → R be a C2 Hamiltonian, defined
on the open subset O of the cotangent space T ∗M of the manifold
M . Call φH

t the local flow of the Hamiltonian vector field XH

associated to H. Denote by d a distance defining the topology of
M . The open ball of center x and radius r for this distance will
be denoted by B̊d(x, r).

For every compact C ⊂ O, we can find δ, ǫ > 0 such that, for
each (x, p) ∈ C, there exists a C2 function S(x,p) : B̊d(x, ǫ)×] −

δ, δ[→ R, with
∂S(x,p)

∂x (x, 0) = p, and satisfying the Hamilton-
Jacobi equation

∂S(x,p)

∂t
+H

(
x,
∂S(x,p)

∂x

)
= 0.

Proof. Since we do not ask that S(x,p) depends continuously on
(x, p), it is enough to show that, for each point (x0, p0) in O,
there is a compact neighborhood C of (x0, p0), contained in O,
and satisfying the corollary. We can of course assume that M
is an open subset of R

n. In this case T ∗M = M × R
n∗. To

begin with, let us choose a compact neighborhood of (x0, p0) of
the form Ū × K ⊂ O, with Ū ⊂ M and K ⊂ R

n∗. The function
S0 : K × U → R defined by

S0(p, x) = p(x),

is C∞ and verifies (x, ∂S0
∂x ) = (x, p) ∈ U ×K ⊂ O. Let us choose

a neighborhood compact W̄ of x0 with W̄ ⊂ U . By the previous
theorem, there exists δ > 0, and a function S : K×W×]−δ, δ[→ R

satisfying the following properties

• S(p, x, 0) = S0(p, x) = p(x), for each (p, x) ∈ K ×W ;

• for each p ∈ K, the map Sp : W×] − δ, δ[→ R is C2, and is
a solution of the Hamilton-Jacobi equation.

We now choose V̄ a compact neighborhood of x0 contained in W .
By compactness of V̄ , we can find ǫ > 0 such that Bd(x, ǫ) ⊂ W ,
for each x ∈ V̄ . It then remains to take C = V̄ ×K and to define,
for (x, p) ∈ C, the function S(x,p) : Bd(x, ǫ)×] − δ, δ[→ R by

S(x,p)(y, t) = Sp(y, t).

It is not difficult to obtain the required properties of S(x,p) from
those of Sp.
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Chapter 3

Calculus of Variations for

a Lagrangian Convex in

the Fibers: Tonelli’s

Theory

The goal of this chapter is to prove Tonelli’s theorem which estab-
lishes the existence of minimizing extremal curves. This theory
requires the convexity of the Lagrangian in the fibers, and the use
of absolutely continuous curves.

Another good reference for this chapter is [BGH98]. Again, we
have mainly used [Cla90], [Mn] and the appendix of [Mat91]. How-
ever, we have departed from the usual way of showing minimizing
properties using Mayer fields. Instead we have systematically used
(local solutions) of the the Hamilton-Jacobi equation, since this is
the main theme of this book.

3.1 Absolutely Continuous Curves.

Definition 3.1.1 (Absolutely Continuous Curve). A curve γ :
[a, b] → R

n is said to be absolutely continuous, if for each ǫ > 0,
there exists δ > 0 such that for each family ]ai, bi[i∈N of disjoint
intervals included in [a, b], and satisfying

∑

i∈N bi − ai < δ, we
have

∑

i∈N
‖γ(bi) − γ(ai)‖ < ǫ.

81
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It is clear that such an absolutely continuous map is (uni-
formly) continuous.

Theorem 3.1.2. A curve γ : [a, b] → R
n is absolutely continuous

if and only if the following three conditions are satisfied

(1) the derivative γ̇(t) exists almost everywhere on [a, b];

(2) the derivative γ̇ is integrable for the Lebesgue measure on
[a, b].

(3) For each t ∈ [a, b], we have γ(t) − γ(a) =
∫ t
a γ̇(s) ds.

Proofs of this theorem can be found in books on Lebesgue’s
theory of integration, see for example [WZ77, Theorem 7.29, page
116]. A proof can also be found in [BGH98, Theorem 2.17]

Lemma 3.1.3. Suppose that γ : [a, b] → Rk is an absolutely
continuous curve. 1) If f : U → R

m is a locally Lipschitz map,
defined on the neighborhood U of the image γ([a, b]), then f ◦ γ :
[a, b] → Rm is also absolutely continuous.

2) We have

∀t, t′ ∈ [a, b], t ≤ t′, ‖γ(t′) − γ(t)‖ ≤

∫ t′

t
‖γ̇(s)‖ ds.

Proof. To prove the first statement, since γ([a, b]) is compact, we
remark that, cutting down U if necessary, we can assume that f is
(globally) Lipschitz. If we call K a Lipschitz constant for f , then
for each family ]ai, bi[i∈N of disjoint intervals included in [a, b], we
have

∑

i∈N

‖f ◦ γ(bi) − f ◦ γ(ai)‖ ≤ K
∑

i∈N

‖γ(bi) − γ(ai)‖ǫ.

Therefore the absolute continuity of f ◦ γ follows from that of γ.

To prove the second statement, we choose some p ∈ R
k with

‖p‖ = 1. The curve p ◦ γ : [a, b] → R is absolutely continuous
with derivative equal almost everywhere to p(γ̇(t)). Therefore by



83

theorem 3.1.2 above

p(γ(t′) − γ(t)) = p ◦ γ(t′) − p ◦ γ(t))

=

∫ t′

t
p(γ̇(s)) ds

‖eq

∫ t′

t
‖p‖‖γ̇(s)‖ ds

=

∫ t′

t
‖γ̇(s)‖ ds.

It now suffices to observe that

‖γ(t′) − γ(t)‖ = sup
‖p‖=1

p(γ(t′) − γ(t))

to finish the proof.

The following proposition will be useful in the sequel.

Proposition 3.1.4. Let γn : [a, b] → R
k be a sequence of abso-

lutely continuous curves. We suppose that the sequence of deriva-
tives γ̇n : [a, b] → R

k (which exist a.e.) is uniformly integrable for
the Lebesgue measure m on [a, b], i.e. for each ǫ > 0, there exists
δ > 0, such that if A ⊂ [a, b] is a Borel subset with its Lebesgue
measure m(A) < δ then

∫

A‖γ̇n(s)‖ ds < ǫ, for each n ∈ N.
If for some t0 ∈ [a, b] the sequence γn(t0) is bounded in norm,

then there is a subsequence γnj
: [a, b] → R

k which converges
uniformly to a curve γ : [a, b] → R

k. The map γ is absolutely
continuous, and the sequence of derivatives γ̇nj

converges to the
derivative γ̇ in the weak topology σ(L1, L∞), which means that
for each function Φ : [a, b] → R

k∗ measurable and bounded, we
have ∫ b

a
Φ(s)(γ̇n(s)) ds →n→+∞

∫ b

a
Φ(s)(γ̇(s)) ds.

Proof. We first show that the sequence γn is equicontinuous. If
ǫ > 0 is fixed, let δ > 0 be the corresponding given by the condition
that the sequence γn is uniformly integrable. If t < t′ are such that
t′ − t < δ then, for each n ∈ N

‖γn(t′) − γn(t)‖ ≤

∫ t

t′
‖γ̇n(s)‖ ds

< ǫ.
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Since the γn(t0) form a bounded sequence, and the γn are equicon-
tinuous, by Ascoli’s theorem, we can find a subsequence γnj

such
that γnj

converges uniformly to γ : [a, b] → R
n, which is therefore

continuous. Let us show that γ is absolutely continuous. We fix
ǫ > 0, and pick the corresponding δ > 0 given by the condition
that the sequence γn is uniformly integrable. If (]ai, bi[)i∈N is a se-
quence of disjoint open intervals, and such that

∑

i∈N
(bi−ai) < δ,

we have

∀n ∈ N,
∑

i∈N

‖γn(bi) − γn(ai)|‖ ≤
∑

i∈N

∫ bi

ai

‖γ̇n(s)‖ ds

=

∫

S

i∈N
]ai,bi[

‖γ̇n(s)‖ds

< ǫ,

Taking the limit we also get
∑

i∈N

‖γ(bi) − γ(ai)‖ ≤ ǫ.

The curve γ is thus absolutely continuous. The derivative γ̇ :
[a, b] → R

n therefore exists, for Lebesgue almost any point of
[a, b], and we have

∀t,∈ [a, b], γ(t) − γ(t′) =

∫ t

t′
γ̇(s) ds.

It remains to show that γ̇nj
tends to γ̇ in the σ(L1, L∞) topology.

The convergence of γnj
to γ shows that for any interval [t, t′] ⊂

[a, b] we have

∫ t′

t
γ̇nj

(s) ds = γnj
(t′) − γnj

(t) → γ(t′) − γ(t) =

∫ t′

t
γ̇(s) ds.

If U is an open subset of [a, b] let us show that
∫

U γ̇nj
(s) ds →

∫

U γ̇(s) ds. We can write U =
⋃

i∈I ]ai, bi[ with the ]ai, bi[ disjoint,
where I is at most countable. If the set of the indices I is finite, we
apply what precedes each interval ]ai, bi[, and adding, we obtain
the convergence

∫

U
γ̇nj

(s) ds→

∫

U
γ̇(s) ds.
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To deal with the case were I is infinite and countable, we fix ǫ > 0
and choose the corresponding δ > 0 given by the fact that the
sequence γn is uniformly integrable. We can find a finite subset
I0 ⊂ I such that

∑

i∈I\I0
(bi − ai) < δ. We have

∀n ∈ N,
∑

i∈I\I0

‖γn(bi) − γn(ai)‖ < ǫ.

Taking limits, we then obtain

∑

i∈I\I0

‖γ(bi) − γ(ai)‖ ≤ ǫ.

We pose U0 =
⋃

i∈I0
]ai, bi[, so we can write

‖

∫

U\U0

γ̇n(s) ds‖ = ‖
∑

i∈I\I0

γ̇n(bi) − γn(ai)‖

≤
∑

i∈I\I0

‖γn(bi) − γn(ai)‖

< ǫ,

and also

‖

∫

U\U0

γ̇(s) ds‖ ≤ ǫ.

As I0 is finite, we have

lim
j→∞

∫

U0

γ̇nj
(s) ds =

∫

U0

γ̇(s) ds.

We conclude that

lim sup
j→∞

‖

∫

U
γ̇nj

(s) ds−

∫

U
γ̇(s) ds‖ ≤ 2ǫ.

Since ǫ is arbitrary, we see that
∫

U
γ̇nj

(s) ds →

∫

U
γ̇(s) ds.

If we take now an arbitrary measurable subset A of [a, b], we
can find a decreasing sequence (Uℓ)ℓ∈N of open subset with A ⊂
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⋂

ℓ∈N
Uℓ and the Lebesgue measure m(Uℓ) decreasing to m(A),

where m is the Lebesgue measure. We fix ǫ > 0, and we choose
the corresponding δ > 0 given by the fact that the sequence γn

is uniformly integrable. As the Uℓ form a decreasing sequence of
sets of finite measure and m(Uℓ) ց m(A), by Lebesgue’s theorem
of dominated convergence, we have

∫

Uℓ

γ̇(s) ds →

∫

A
γ̇(s) ds.

We now fix an integer ℓ big enough to satisfy

‖

∫

Uℓ

γ̇(s) ds−

∫

A
γ̇(s)ds‖ ≤ ǫ,

and m(Uℓ \ A) < δ. By the choice of δ, we have

∀n ∈ N, ‖

∫

Uℓ\A
γ̇n(s) ds‖ ≤

∫

Uℓ\A
‖γ̇n(s)‖ds ≤ ǫ.

Since Uℓ is a fixed open set, taking the limit for j → ∞, we obtain
∫

Uℓ

γ̇nj
(s) ds→

∫

Uℓ

γ̇(s) ds.

We conclude that

lim sup
j→∞

‖

∫

A
γ̇nj

(s) ds −

∫

A
γ̇(s) ds‖ ≤ 2ǫ,

and thus, since ǫ > 0 is arbitrary
∫

A
γ̇nj

(s) ds→

∫

A
γ̇(s) ds.

We then consider the vector space L∞([a, b],Rk∗), formed by the
Φ : [a, b] → R

k∗ measurable bounded maps, and provided with
the standard norm ‖Φ‖∞ = supt∈[a,b]‖Φ(t)‖. The subset E formed
by the characteristic functions χA, where A ⊂ [a, b] is measurable,
generates a vector subspace Ẽ which is dense in L∞([a, b],Rk∗), see
exercise 3.1.5 below. The maps θn : L∞([a, b],Rk∗) → R defined
by

θn(Φ) =

∫ b

a
Φ(s)(γ̇n(s)) ds
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are linear and continuous on L∞([a, b],Rk∗,m), with

‖θn‖ ≤

∫ b

a
‖γ̇n(s)‖ds.

We also define θ : L∞([a, b],Rk∗,m) → R by

θ(Φ) =

∫ b

a
Φ(s)(γ̇(s)) ds,

which is also linear and continuous on L∞([a, b],Rk∗,m). We now
show that the sequence of norms ‖θn‖ is bounded. Applying the
fact that the sequence of derivatives γ̇n is uniformly integrable
with ǫ = 1, we find the corresponding δ1 > 0. We can then cut the
interval [a, b] into [(b − a)/δ1] + 1 intervals of length ≤ δ1, where
[x] indicates the integer part of the real number x. On each one
of these intervals, the integral of ‖γ̇n‖ is bounded by 1, hence

∀n ∈ N, ‖θn‖ ≤

∫ b

a
‖γ̇n(s)‖ ds ≤ [(b− a)/δ1] + 1.

As θnj
(Φ) → θ(Φ), for Φ ∈ E , by linearity the same conver-

gence is true for Φ ∈ Ẽ . As Ẽ is dense in L∞([a, b],Rk∗,m) and
supn∈N‖θn‖ < +∞, a well-known argument of approximation (see
the exercise below 3.1.6) shows, then, that

∀Φ ∈ L∞([a, b],Rk∗,m), θnj
(Φ) → θ(Φ).

Exercise 3.1.5. Consider the vector space L∞([a, b],Rk∗), formed
by the measurable bounded maps Φ : [a, b] → R

k∗, and provided
with the standard norm ‖Φ‖∞ = supt∈[a,b]‖Φ(t)‖. The subset
E formed by the characteristic functions χA, where A ⊂ [a, b]
is measurable, generates a vector subspace which we will call Ẽ.
Show that Ẽ which is dense in L∞([a, b],Rk∗). [Indication: Con-
sider first ϕ : [a, b] →] − K,K[, with K ∈ R+, and define ϕn =
∑n−1

i=−n ϕ(iK/n)χAi,n
, where Ai,n is the set {t ∈ [a, b] | iK/n ≤

ϕ(x) < (i+ 1)K/n}.]

Exercise 3.1.6. Let θn : E → F be a sequence of continuous
linear operators between normed spaces. Suppose that the sequence



88

of the norms ‖θn‖ is bounded, and that there exists a continuous
linear operator θ : E → F and a subset E ⊂ E generating a dense
subspace of E such that θn(x) → θ(x) for every x ∈ E. Show then
that θn(x) → θ(x) for every x ∈ E

We can replace in the definition of an absolutely continuous
curve, the norm by any distance Lipschitz-equivalent to a norm.
This makes it possible to generalize the definition of absolutely
continuous curve to a manifold.

Definition 3.1.7 (Absolutely continuous Curve). Let M be a
manifold, we denote by d the metric obtained on M from some
fixed Riemannian metric.

A curve γ : [a, b] →M is said to be absolutely continuous if, for
each ǫ > 0, there exists δ > 0 such that for any countable family
of disjoint intervals (]ai, bi[)i∈N all included in [a, b] and satisfying
∑

i∈N
(bi − ai) < δ, we have

∑

i∈N
d(γ(bi), γ(ai)) < ǫ.

Definition 3.1.8. We denote by Cac([a, b],M) the space of ab-
solutely continuous curves defined on the compact interval [a, b]
with values in the manifold M . This space Cac([a, b],M) is pro-
vided with the topology of uniform convergence.

Lemma 3.1.9. If γ : [a, b] → M is absolutely continuous, then,
the derivative γ̇(t) ∈ Tγ(t)M exists for almost every t ∈ [a, b]. If
γ([a′, b′]) ⊂ U , where U is the domain of definition of the coordi-
nate chart θ : U → R

n, then, we have

∀t ∈ [a′, b′], θ ◦ γ(t) − θ ◦ γ(a′) =

∫ t

a′

d(θ ◦ γ)

dt
(s) ds.

Exercise 3.1.10. Suppose that the manifold M is provided with
a Riemannian metric. We denote by d the distance induced by
this Riemannian metric on M , and by ‖·‖x the norm induced on
the fiber TxM , for x ∈ M . If γ : [a, b] → M is an absolutely
continuous curve, show that

d(γ(b), γ(a)) ≤

∫ b

a
‖γ̇(s)‖γ(s) ds.

[Indication: Use lemmas 2.7.5, and 3.1.3.]
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Definition 3.1.11 (Bounded Below). Let L : TM → R be a
Lagrangian on the manifold M . We will say that L is bounded
below above every compact subset of M , if for every compact
K ⊂M , we can find a constant CK ∈ R such that

∀(x, v) ∈ π−1(K), L(x, v) ≥ CK ,

where π : TM →M is the canonical projection.

If the Lagrangian L : TM → R is bounded below above every
compact subset of the manifold, we can define the action of the
Lagrangian for an absolutely continuous curve admitting possibly
+∞ as a value. Indeed, if γ ∈ Cac([a, b],M), since γ([a, b]) is
compact, there exists a constant Cγ ∈ R such that

∀t ∈ [a, b],∀v ∈ Tγ(t)M, L(γ(t), v) ≥ Cγ .

In particular, the function t 7→ L(γ(t), γ̇(t))−Cγ is well defined and
positive almost everywhere for the Lebesgue measure. Therefore
∫ b
a [L(γ(t), γ̇(T ))−Cγ ] ds makes sense and belongs to [0,+∞]. We

can then set

L(γ) =

∫ b

a
L(γ(t), γ̇(t))ds

=

∫ b

a
[L(γ(t), γ̇(t)) −Cγ ]ds+ Cγ(b− a).

This quantity is clearly in R∪{+∞}. It is not difficult to see that
the action L(γ) is well defined (i.e. independent of the choice of
lower bound Cγ).

3.2 Lagrangian Convex in the Fibers

In this section, we consider a manifold M provided with a Rie-
mannian metric of reference. For x ∈ M , we denote by ‖·‖x the
norm induced on TxM by the Riemannian metric. We will denote
by d the distance induced on M by the Riemannian metric. The
canonical projection of TM on M is as usual π : TM →M .

We will consider a C1 Lagrangian L on M which is convex in
the fibers, and superlinear above every compact subset of M , see
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definitions 1.3.11 and 1.3.13. Note that, for Lagrangians convex in
the fibers, the superlinearity above compact subset is equivalent to
the restriction L|TxM : TxM → R is superlinear, for each x ∈M ,
see 1.3.14. It is clear that a Lagrangian superlinear above every
compact subset of M is also bounded below above every compact
subset of M , therefore we can define the action for absolutely
continuous curves.

Theorem 3.2.1. Suppose that L : TM → R is a C1 Lagrangian
convex in the fibers, and superlinear above compact subsets of M .
If a sequence of curves γn ∈ Cac([a, b],M) converges uniformly to
the curve γ : [a, b] →M and

lim inf
n→∞

L(γn) < +∞,

then the curve γ is also absolutely continuous and

lim inf
n→∞

L(γn) ≥ L(γ).

Proof. Let us start by showing how we can reduce the proof to the
case where M is an open subset of R

k, where k = dimM .
Consider the set K = γ([a, b]) ∪

⋃

n γn([a, b]), it is compact
because γn converges uniformly to γ. By superlinearity of L above
each compact subset of M , we can find a constant C0 such that

∀x ∈ K,∀v ∈ TxM, L(x, v) ≥ C0.

If [a′, b′] is a subinterval of [a, b], taking C0 as a lower bound of
L(γn(s), γ̇n(s)) on [a, b] \ [a′, b′], we see that

∀n, L(γn|[a
′, b′]) ≤ L(γn) − C0[(b− a) − (b′ − a′)].

It follows

∀[a′, b′] ⊂ [a, b], lim inf
n→∞

L(γn|[a
′, b′]) < +∞. (*)

By continuity of γ : [a, b] →M , we can find a finite sequence a0 =
a < a1 < · · · < ap = b and a sequence of domains of coordinate
charts U1, . . . , Up such that γ([ai−1, ai]) ⊂ Ui, for i = 1, . . . , p.
Since γn converges uniformly to γ, forgetting the first curves γn if
necessary, we can assume that γn([ai−1, ai]) ⊂ Ui, for i = 1, . . . , p.
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By condition (∗), we know that lim infn→∞ L(γn|[ai−1, ai]) <∞, it
is then enough to show that this condition implies that γ|[ai−1, ai]
is absolutely continuous and that

L(γ|[ai−1, ai]) ≤ lim inf
n→∞

L(γn|[ai−1, ai]),

because we have lim inf(αn + βn) ≥ lim inf αn + lim inf βn, for
sequences of real numbers αn and βn. As the Ui are domains of
definition of coordinates charts, we do indeed conclude that it is
enough to show the theorem in the case where M is an open subset
of R

k.
In the sequel of the proof, we will thus suppose that M = U is

an open subset of R
k and thus TU = U×R

k and that γ([a, b]) and
all the γn([a, b]) are contained in the same compact subsetK0 ⊂ U .
Let us set ℓ = lim infγn→∞ L(γn). Extracting a subsequence such
that L(γn) → ℓ < +∞ and forgetting some of the first curves γn,
we can suppose that

L(γn) → ℓ and ∀n ∈ N, L(γn) ≤ ℓ+ 1 < +∞.

We denote by ‖·‖ a norm on R
k.

Lemma 3.2.2. If C ≥ 0 is a constant, K ⊂ U is compact, and
ǫ > 0, we can find η > 0 such that for each x, y ∈ U with x ∈ K
and ‖y − x‖ < η, and for each v,w ∈ R

k with ‖v‖ ≤ C, we have

L(y,w) ≥ L(x, v) +
∂L

∂v
(x, v)(w − v) − ǫ.

Proof. Let us choose η0 > 0 such that the set

V̄η0(K) = {y ∈ R
k | ∃x ∈ K, ‖y − x‖ ≤ η0}

is a compact subset of U .
We denote by A the finite constant

A = sup{‖
∂L

∂x
(x, v)‖ | x ∈ K, ‖v‖ ≤ C}.

Since L is uniformly superlinear above every compact subset of
M = U , we can find a constant C1 > −∞ such that

∀y ∈ V̄η0(K),∀w ∈ R
k, L(y,w) ≥ (A+ 1)‖w‖ + C1.
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We then set

C2 = sup{L(x, v) −
∂L

∂x
(x, v)(v) | x ∈ K, ‖v‖ ≤ C}.

By compactness the constant C2 is finite. We remark that if ‖w‖ ≥
C2 − C1, then for y ∈ V̄η0(K), x ∈ K and ‖v‖ ≤ C, we have

L(y,w) ≥ (A+ 1)‖w‖ + C1

≥ A‖w‖ + (C2 − C1) + C1

= A‖w‖ + C2

≥
∂L

∂v
(x, v)(w) +

(
L(x, v) −

∂L

∂v
(x, v)(v)

)

= L(x, v) +
∂L

∂v
(x, v)(w − v).

It then remains to find η ≤ η0, so that we satisfy the sought
inequality when ‖w‖ ≤ C2 − C1. But the set

{(x, v,w) | x ∈ K, ‖v‖ ≤ C, ‖w‖ ≤ C2 − C1}

is compact and L(x,w) ≥ L(x, v) + ∂L
∂v (x, v)(w − v) by convexity

of L in the fibers of the tangent bundle TU . It follows that for
ǫ > 0 fixed, we can find η > 0 with η ≤ η0 and such that, if
x ∈ K, ‖y − x‖ ≤ η, ‖v‖ ≤ C et ‖w‖ ≤ C2 −C1, we have

L(y,w) > L(x, v) +
∂L

∂x
(x, v)(w − v) − ǫ.

We return to the sequence of curves γn : [a, b] → U which
converges uniformly to γ : [a, b] → U . We already have reduced
the proof to the case where γ([a, b]) ∪

⋃

n∈N γn([a, b]) is included
in a compact subset K0 ⊂ U with U an open subset of R

k. We
now show that the derivatives γ̇n are uniformly integrable. Since
L is superlinear above each compact subset of U , we can find a
constant C(0) > −∞ such that

∀x ∈ K0,∀v ∈ R
k, L(x, v) ≥ C(0).

We recall that

∀n ∈ N,L(γn) ≤ ℓ+ 1 < +∞.
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We then fix ǫ > 0 and we take A > 0 such that

ℓ+ 1 − C(0)(b− a)

A
< ǫ/2.

Again by the superlinearity of L above compact subsets of the
base M , there exists a constant C(A) > −∞ such that

∀x ∈ K0,∀v ∈ R
k, L(x, v) ≥ A‖v‖ + C(A).

Let E ⊂ [a, b] be a measurable subset, we have

C(A)m(E) +A

∫

E
‖γ̇n(s)‖ds ≤

∫

E
L(γn(s), γ̇n(s)) ds

and also

C(0)(b − a−m(E)) ≤

∫

[a,b]\E
L(γn(s), γ̇n(s)) ds.

Adding the inequalities and using L(γn) ≤ ℓ+ 1, we find

[C(A) − C(0)]m(E) +C(0)(b − a) +A

∫

E
‖γ̇n(s)‖ds ≤ ℓ+ 1,

this in turn yields

∫

E
‖γ̇n(s)‖ds ≤

ℓ+ 1 − C(0)(b− a)

A
+

[C(0) − C(A)]

A
m(E)

≤ ǫ/2 +
[C(0) − C(A)]

A
m(E).

If we choose δ > 0 such that C(0)−C(A)
A δ < ǫ/2, we see that

m(E) < δ ⇒ ∀n ∈ N,

∫

E
‖γ̇n(s)‖ ds < ǫ.

This finishes to proves the uniform integrability of the sequence γ̇n.
We can then conclude by proposition 3.1.4 that γ̇n converges to γ̇
in the σ(L1, L∞) topology. We must show that limn→∞ L(γn) ≥
L(γ).

Let C be a fixed constant, we set

EC = {t ∈ [a, b] | ‖γ̇(t)‖ ≤ C}.
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We fix ǫ > 0 and we apply lemma 3.2.2 with this ǫ, the constant C
fixed above and the compact set K = K0 ⊃ γ([a, b])∪

⋃

n∈N
γn[a, b]

to find η > 0 as in the conclusion of the lemma 3.2.2. Since γn → γ
uniformly, there exists an integer n0 such that for each n ≥ n0,
we have ‖γn(t) − γ(t)‖ < η, for each t ∈ [a, b]. Lemma 3.2.2 then
shows that for each n ≥ n0 and almost all t ∈ EC , we have

L(γn(t), γ̇n(t)) ≥ L(γ(t), γ̇(t)) +
∂L

∂v
(γ(t), γ̇(t))(γ̇n(t) − γ̇(t)) − ǫ,

hence using this, together with the inequality L(γn(t), γ̇n(t)) ≥
C(0) which holds almost everywhere, we obtain

L(γn) ≥

∫

EC

L(γ(t), γ̇(t)) dt + C(0)[(b− a) −m(EC)]

+

∫

EC

∂L

∂v
(γ(t), γ̇(t))(γ̇n(t) − γ̇(t)) dt − ǫm(EC). (*)

Since ‖γ̇(t)‖ ≤ C, for t ∈ EC , the map t → χEC
(t)∂L

∂v (γ(t), γ̇(t))
is bounded. But γ̇n → γ̇ for topology σ(L1, L∞), therefore

∫

EC

∂L

∂v
(γ(t), γ̇(t))(γ̇n(t) − γ̇(t)) dt → 0, when n→ ∞.

Going to the limit in the inequality (*), we find

ℓ = lim
n→∞

L(γn)

≥

∫

EC

L(γ(t), γ̇(t)) dt + C(0)[(b − a) −m(EC)] − ǫm(EC).

We can then let ǫ→ 0 to obtain

ℓ ≥

∫

EC

L(γ(t), γ̇(t)) dt + C(0)[(b− a) −m(EC)]. (**)

Since the derivative γ̇(t) exists and is finite for almost all t ∈ [a, b],
we find EC ր E∞, when C ր +∞, with [a, b] \ E∞ of zero
Lebesgue measure. Since L(γ(t), γ̇(t)) is bounded below by C(0),
we have by the monotone convergence theorem

∫

EC

L(γ(t), γ̇(t)) dt →

∫ b

a
L(γ(t), γ̇(t)) dt, when C → ∞.
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If we let C ր +∞ in (∗∗), we find

ℓ = lim
n→∞

L(γn) ≥

∫ b

a
L(γ(t), γ̇(t)) dt = L(γ).

Corollary 3.2.3. Suppose L : TM → R is a C1 Lagrangian
convex in the fibers, and superlinear above every compact sub-
set of M . Then the action L : Cac([a, b],M) → R ∪ {+∞} is
lower semi-continuous for the topology of uniform convergence on
Cac([a, b],M). In particular, on any compact subset of Cac([a, b],M),
the action L achieves its infimum.

Proof. It is enough to see that if γn → γ uniformly, with all the
γn and γ in Cac([a, b],M), then, we have

lim inf
γn→∞

L(γn) ≥ L(γ).

If lim infn→∞ L(γn) = +∞, there is nothing to show. The case
where we have lim infn→∞ L(γn) < +∞ results from theorem
3.2.1.

3.3 Tonelli’s Theorem

Corollary 3.3.1 (Compact Tonelli). Let L : TM → R be a C1

Lagrangian convex in the fibers, and superlinear above every com-
pact subset of the manifold M . If K ⊂M is compact, and C ∈ R,
then the subset

ΣK,C = {γ ∈ Cac([a, b],M) | γ([a, b]) ⊂ K,L(γ) ≤ C}

is a compact subset of Cac([a, b],M) endowed with the topology of
uniform convergence.

Proof. By the compactness of K, and theorem 3.2.1, the subset
ΣK,C is closed in the space C([a, b],M) of all the continuous curves,
for the topology of uniform convergence. Since γ([a, b]) ⊂ K, for
each γ ∈ ΣK,C , by Ascoli’s theorem, it is enough to see that the
family of the γ ∈ ΣK,C is equicontinuous. Let us then fix some
Riemannian metric on M . We denote by d the distance induced
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on M , and by ‖·‖x the norm induced on TxM , for x ∈ M . Using
the superlinearity of L above the compact the compact set K, for
each A ≥ 0, we can find C(A) such that

∀q ∈ K,∀v ∈ TqM,C(A) +A‖v‖x ≤ L(q, v).

Applying this with (q, v) = (γ(s), γ̇(s)), and integrating, we see
that for each γ ∈ ΣK,C , we have

C(A)(t′ − t) +A

∫ t′

t
‖γ̇(s)‖γ(s) ds ≤

∫ t′

t
L(γ(s), γ̇(s)) ds

C(0)[(b− a) − (t′ − t)] ≤

∫

[a,b]\[t,t′]
L(γ(s), γ̇(s)) ds.

Adding these two inequalities and using the following one

d(γ(t′), γ(t)) ≤

∫ t′

t
‖γ̇(s)‖γ(s) ds,

we obtain

Ad(γ(t′), γ(t)) ≤ [L(γ) − C(0)(b− a)] + (C(0) − C(A))(t′ − t).

If ǫ > 0 is given, we choose A such that [C−C(0)(b−a)]/A ≤ ǫ/2.
It follows that for γ ∈ ΣK,C and t, t′ ∈ [a, b], we have

d(γ(t′), γ(t)) ≤
ǫ

2
+
C(0) − C(A)

A
(t′ − t).

We therefore conclude that the family of curves in ΣK,C is equicon-
tinuous.

Definition 3.3.2. We will say that the Lagrangian L : TM → R

is bounded below by the Riemannian metric g on M , if we can
find a constant C ∈ R such that

∀(x, v) ∈ TM,L(x, v) ≥ ‖v‖x + C,

where ‖·‖x is the norm on TxM obtained from the Riemannian
metric.

This is a global condition which is relevant only when M is not
compact and the Riemannian metric g is complete.



97

Theorem 3.3.3 (Non Compact Tonelli). Let L be a C1 Lagran-
gian on the manifold M . Suppose that the Lagrangian L is convex
in fibers, superlinear above every compact subset of M , and that
it is bounded below by a complete Riemannian metric on M . If
K ⊂M is compact and C ∈ R, then the subset

Σ̃K,C = {γ ∈ Cac([a, b],M) | γ([a, b]) ∩K 6= ∅,L(γ) ≤ C}

is a compact subset of Cac([a, b],M) for the topology of uniform
convergence.

Proof. We denote by d the distance on M obtained from the Rie-
mannian metric, and, for x ∈ M , by ‖·‖x the norm induced on
TxM by this same Riemannian metric. We first show that there
exists a constant r < +∞ such that

∀γ ∈ Σ̃K,C, γ([a, b]) ⊂ V̄r(K),

where V̄r(K) = {y ∈ M | ∃x ∈ K,d(y, x) ≤ r}. Indeed, there
exists a constant C0 ∈ R such that

∀(x, v) ∈ TM,L(x, v) ≥ ‖v‖x + C0.

Therefore for every absolutely continuous curve γ : [a, b] → M ,
and every t, t′ ∈ [a, b], with t ≤ t′, we have

C0(t
′ − t) +

∫ t′

t
‖γ̇(s)‖γ(s)ds ≤ L(γ),

For γ ∈ ΣK,C , it follows that

d(γ(t′), γ(t)) ≤ C + |C0|(b− a).

If we set r = C + |C0|,we get

∀γ ∈ Σ̃K,C, γ([a, b]) ⊂ V̄r(K).

Since the Riemannian metric on M is complete, the d-balls of M
of finite radius are compact, and thus V̄r(K) is also a compact
subset of M . By the compact case of Tonelli’s Theorem 3.3.1, the
set ΣV̄r(K),C is compact in Cac([a, b],M). Since Σ̃K,C is closed, and
contained in ΣV̄r(K),C , it is thus also compact in Cac([a, b],M).
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Corollary 3.3.4 (Tonelli Minimizers). Let M be a connected
manifold. Suppose L : TM → R is a C1 Lagrangian convex in
fibers, superlinear above every compact subset of M , and bounded
below by a complete Riemannian metric on M . Then, for each
x, y ∈M , and each a, b ∈ R, with a < b, there exists an absolutely
continuous curve γ : [a, b] → M with γ(a) = x, γ(b) = y which is
a minimizer for Cac([a, b],M).

Proof. Let us set Cinf = inf L(γ1), where the infimum is taken on
the absolutely continuous curves γ1 : [a, b] → M with γ1(a) = x
and γ1(b) = y, Cinf < +∞. This quantity makes sense since there
exists a C1 curve between x to y. For each integer n ≥ 1, we define
the subset Cn of Cac([a, b],M) formed by the curves γ : [a, b] →M
such that

γ(a) = x, γ(b) = y and L(γ) ≤ Cinf +
1

n
.

This set is by definition a nonempty subset of Cinf . It is also
compact in Cac([a, b],M) by the previous theorem 3.3.3. Since the
sequence Cn is decreasing, the intersection

⋂

n≥1 Cn is nonempty.
Any curve γ : [a, b] → M in this intersection is such that γ(a) =
x, γ(b) = y and L(γ) = Cinf .

3.4 Tonelli Lagrangians

Definition 3.4.1 (Tonelli Lagrangian). A Lagrangian L on the
manifold M is called a Tonelli Lagrangian if it satisfies the follow-
ing conditions:

(1) L : TM → R is of class at least C2.

(2) For each (x, v) ∈ TM , the second partial derivative ∂2L/∂v2(x, v)
is positive definite as a quadratic form.

(3) L is superlinear above compact subset of M .

Condition (2) is equivalent to:

(2’) L non-degenerate and convex in the fibers.

Theorem 3.4.2. If L is a Cr Tonelli Lagrangian on the manifold
M , then we have the following properties:
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(1) For each x ∈M , the restriction L|TxM is strictly convex.

(2) The Legendre transform

L̃ : TM → T ∗M, (x, v) 7→
(
x,
∂L

∂v
(x, v)

)

is a diffeomorphism of class Cr−1.

(3) The Euler-Lagrange vector field XL on TM is well defined,
of class Cr−1 and uniquely integrable, and the(local) flow φL

t

of XL is of class Cr−1.

(4) The extremal curves are Cr.

(5) The (continuous) piecewise C1 minimizing curves are ex-
tremal curves, and therefore of class Cr.

(6) The Hamiltonian associated with L, denoted H : T ∗M → R,
is well-defined by

∀(x, v) ∈ TM, H(L̃(x, v)) =
∂L

∂v
(x, v)(v) − L(x, v).

It is of class Cr. We have the have the Fenchel inequality

p(v) ≤ L(x, v) +H(x, p),

with equality if and only if p = ∂L/∂v(x, v), or equivalently
(x, p) = L̃(x, v). Therefore

∀(x, p) ∈ T ∗M, H(x, p) = sup
v∈TxM

p(v) − L(x, v).

(7) The (local) Hamiltonian flow φH
t of H is conjugated by L̃ to

the Euler-Lagrange flow φL
t .

Proof. (1) This is clear since ∂2L/∂v2(x, v) is positive definite, see
Proposition 1.1.2.

(2) Note that, by the superlinearity and the strict convex-
ity of L|TxM , for each x ∈ M the Legendre transtorm TxM →
T ∗

xM,v 7→ ∂L/∂v(x, v) is bijective, see 1.4.6. Therefore the global
Legendre transform L̃ : TM → T ∗M is bijective, and we obtain
from Proposition 2.1.6 that it is a diffeomorphism.



100

(3) See Theorem 2.6.5.
(4) In fact, if γ is an extremal, its speed curve t 7→ (γ(t), γ̇(t))

is a piece of an orbit of φL
t , and is therefore of class Cr−1.

(5) See Proposition 2.3.7.
(6) See Proposition 2.6.3, and Fenchel’s Theorem 1.3.6.
(7) See Theorem 2.6.4.

Lemma 3.4.3. Suppose that L is a Tonelli Lagrangian on the
manifold M . Its associated Hamiltonian H : T ∗M → R is also
superlinear above each compact subset of M . In particular, if
C ∈ R and K ⊂M is compact, the set

{(x, p) ∈ T ∗M | x ∈ K,H(x, p) ≤ C},

is a compact subset of T ∗M .

Proof. We know that in this case

H(x, p) = sup
v∈TxM

〈p, v〉 − L(x, v).

Therefore we can apply theorem 1.3.12 to conclude that H is su-
perlinear above compact subset. In particular, if K ⊂ M is com-
pact, and we fix Riemannian metric g on M , we can find a constant
C1(K) > −∞ such that

∀(x, p) ∈ T ∗
xM,H(x, p) ≥ ‖p‖x + C1(K),

where ‖·‖x is the norm on T ∗
xM obtained from g. Therefore the

closed set {(x, p) ∈ T ∗M | x ∈ K,H(x, p) ≤ C} is contained in
{(x, p) ∈ T ∗M | x ∈ K, ‖p‖x ≤ C − C1(K)}. But this last set is a
compact subset of T ∗M .

Corollary 3.4.4. Let L be a C2 Lagrangian on the manifold
M which is non-degenerate, convex in the fibers, and superlin-
ear above every compact subset of M . If (x, v) ∈ TM , denote
by ]α(x,v), β(x,v)[ is the maximal interval on which t 7→ φL

t (x, v) is

defined. If β(x,v) < +∞ (resp. α(x,v) > −∞), then t → πφL
t (x, v)

leaves every compact subset of M as t→ β(x,v) (resp. t→ α(x,v)).
In particular, if M is a compact manifold, the Euler-Lagrange vec-
tor field XL is complete, i.e. the flow φL

t : M → M is defined for
each t ∈ R.
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Proof. We know that the global Legendre transform L̃ : TM →
T ∗M is a diffeomorphism, and it conjugates φL

t to the Hamil-
tonian flow φH

t of the Hamiltonian associated to L. Therefore
HL̃(φt(x, v)) = HL̃(x, v) by conservation of the Hamiltonian. Let
us suppose that there exists βi → β(x,v) such that πφL

βi
(x, v) →

x∞. The set K = {x∞} ∪ {πφL
βi

(x, v) | i ∈ N} is then a compact
subset of M . The sequence φβi

(x, v) is contained in the subset
{(y,w) | y ∈ K,HL̃(y,w) ≤ HL̃(x, v)} of TM . But this last set is
compact by lemma 3.4.3, and the fact that L̃ is a diffeomorphism.
Therefore, extracting a subsequence if necessary, we can suppose
that φL

βi
(x, v) → (x∞, v∞). By the theory of differential equa-

tions, the solution φL
t (x, v) can be extended beyond β(x,v), which

contradicts the maximality of the interval ]α(x,v), β(x,v)[.

Definition 3.4.5 (Lagrangian Gradient). Let L : TM → R be a
Cr Tonelli Lagrangian, with r ≥ 2, on the manifold M . Suppose
ϕ : U → R be a Ck, k ≥ 1 function, defined on the open subset U
of M , we define the Lagrangian gradient of ϕ as the vector field
gradL ϕ on U given by

∀x ∈ U,
∂L

∂v
(x, gradL ϕ(x)) = dxϕ.

Note that is well-defined, because the global Legendre transform
L̃ : TM → T ∗M is a Cr−1 diffeomorphism, and (x, gradL ϕ(x)) =
L̃−1(x, dxu). It follows that gradL ϕ is of class Cmin(r,k)−1.

More generally, for a function S :]a, b[×U → R of class Ck, k ≥
1, where ]a, b[ is an open interval in R, we define its Lagrangian
gradient as the vector field gradL St, where we St(x) = S(t, x).
It is a vector field gradL St defined on U and dependent on time
t ∈]a, b[. As a function defined on ]a, b[×U , it is of class Ck−1.

3.5 Hamilton-Jacobi and Minimizers

Theorem 3.5.1 (Lagrangian Gradient and Hamilton-Jacobi). Let
L : TM → R be a Cr Tonelli Lagrangian. If S :]a, b[×U → R is a
C1 solution of the Hamilton-Jacobi equation

∂S

∂t
+H(x,

∂S

∂x
) = 0,
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then, for every absolutely continuous curve γ : [α, β] → U , with
[α, β] ⊂]a, b[, we have

L(γ) =

∫ β

α
L(γ(s), γ̇(s)) ds ≥ S(β, γ(β)) − S(α, γ(α)).

The inequality above is an equality if and only if γ is a solution of
the time dependent vector field gradL St.

The solutions of the vector field gradL St are necessarily ex-
tremal curves of L. If γ : [α, β] → U is such a solution, then
for every absolutely continuous curve γ1 : Cab([α, β], U), with
γ1(α) = γ(α), γ1(β) = γ(β), and γ1 6= γ, we have L(γ1) > L(γ).

The vector field gradL St is uniquely integrable, i.e. if γi : Ii →
U are 2 solutions of gradL St and γ1(t0) = γ2(t0), for some t0 ∈
I1 ∩ I2, then γ1 = γ2 on I1 ∩ I2.

Proof. Let γ : [α, β] → U be an absolutely continuous curve. Since
S is C1, by lemma 3.1.3 the map [α, β] → R, t 7→ S(t, γ(t)) is
absolutely continuous and thus by theorem 3.1.2

S(β, γ(β))−S(α, γ(α)) =

∫ β

α

{
∂S

∂t
(t, γ(t))+

∂S

∂x
(t, γ(t))[γ̇(t)]

}

dt.

By the Fenchel inequality, for each t where γ̇(t) exists, we have

∂S

∂x
(t, γ(t))[γ̇(t)] ≤ H

(
γ(t),

∂S

∂x
(t, γ(t))

)
+ L(γ(t), γ̇(t)). (∗)

Since S satisfies the Hamilton-Jacobi equation, and γ̇(t) exists for
almost all t ∈ [a, b], adding ∂S/∂t(t, γ(t)) to both sides in (∗), we
find that for almost all t ∈ [α, β]

∂S

∂t
(t, γ(t)) +

∂S

∂x
(t, γ(t))[γ̇(t)] ≤ L(γ(t), γ̇(t))

By integration, we then conclude that

S(β, γ(β)) − S(α, γ(α)) ≤

∫ β

α
L(γ(t), γ̇(t)) dt. (∗∗)

We have equality in this last inequality if and only if we have
equality almost everywhere in the Fenchel inequality (∗), therefore
if and only if γ̇(t) = gradL St(γ(t)).
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But the right-hand side of this last equality is continuous and
defined for each t ∈ [α, β]. It follows that γ̇(t) can be extended by
continuity to the whole interval [α, β], hence that γ is C1 and that
it is a solution of the vector field gradL St. To sum up we have
shown that (∗∗) is an equality if and only if γ is a (C1) solution
of the time dependent vector field gradL St.

If a curve γ : [α, β] → U satisfies the equality

S(α, γ(α)) − S(β, γ(β)) = L(γ),

we have already shown that γ is C1. Moreover, for every curve
γ1 : [α, β] → U with γ1(α) = γ(α) and γ1(β) = γ(β), we have

L(γ1) ≥ S(α, γ(α)) − S(β, γ(β)) = L(γ).

It follows that γ is an extremal curve (and thus of class Cr).
Suppose now that for γ1, and γ as above we have L(γ1) =

L(γ). Therefore L(γ1) = S(α, γ(α)) − S(β, γ(β)). By what we
already know, the curve γ1 is also an extremal curve and γ̇1(α) =
gradL Sα(γ(α)). However, we have γ̇(α) = gradL Sα(γ(α)). The
two extremal curves γ and γ1 go through the same point with the
same speed at t = α. Since the Euler-Lagrange vector field XL is
uniquely integrable, these two extremal curves are thus equal on
their common interval of definition [α, β].

The last argument also shows the unique integrability of the
vector field gradL St.

In fact, it is possible to show that, under the assumptions
made above on L, a C1 solution of the Hamilton-Jacobi equation
has a derivative which is Lipschitzian, see [Lio82, Theorem 15.1,
page 255] or [Fat03, Theorem 3.1]. The proof uses the Lagran-
gian gradient of the solution. Consequently, note that we are a
posteriori in the situation of uniqueness of solutions given by the
Cauchy-Lipschitz theorem, since gradL St is Lipschitzian.

3.6 Small Extremal Curves Are Minimizers

In this section, we will suppose that our manifold M is provided
with a Riemannian metric g. We denote by d the distance on
M associated to g. If x ∈ M , the norm ‖·‖x on TxM is the one
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induced by g. The projection TM → M is denoted by π. We
suppose that L : TM → M is a C2 bounded below, such that,
for each (x, v) ∈ TM , the second vertical derivative ∂2L

∂v2 (x, v) is
positive definite as a quadratic form, and that L is superlinear in
each fiber of the tangent bundle π : TM →M .

Theorem 3.6.1. Suppose that L is a Tonelli Lagrangian on the
manifold M , and that inf(x,v)∈TM L(x, v) is finite. Then for each
compact subset K ⊂ TM there exists a constant δ0 > 0 such that

– For (x, v) ∈ K, the local flow φt(x, v) is defined for |t| ≤ δ0.

– For each (x, v) ∈ K and for each δ ∈]0, δ0], the extremal
curve γ(x,v,δ) : [0, δ] → M, t 7→ πφt(x, v) is such that for any
absolutely continuous curve γ1 : [0, δ] → M , with γ1(0) =
x, γ1(δ) = πφδ(x, v), and γ1 6= γ we have L(γ1) > L(γ(x,v,δ)).

Proof. By the compactness of K, we can find a δ1 > 0, such that
φt(x, v) is defined for (x, v) ∈ K and |t| ≤ δ1.

Since
⋃

t∈[0,δ1] φt(K) is compact, we can find a constant C0,
which is an upper bound for L on the set

⋃

t∈[0,δ1] φt(K). With
the notations of the statement, we see that

∀(x, v) ∈ K,∀δ ∈ [0, δ1], L(γ(x,v,δ)) ≤ C0δ.

In the sequel of the proof, we consider A0 a compact neighborhood
of π

(⋃

t∈[0,δ1] φt(K)
)

in M . Since L is superlinear above compact
subsets of M , we can find C1 > −∞ such that

∀x ∈ A0,∀v ∈ TxM,L(x, v) ≥ ‖v‖x + C1. (*)

Therefore d(γ(x,v,δ)(δ), x) ≤ L(γ(x,v,δ)) − C1δ ≤ (C0 − C1)δ, and
consequently, applying this for each δ′ ≤ δ, we find that the diam-
eter diam

(
γ(x,v,δ)([0, δ])

)
of the image of γ(x,v,δ) satisfies

∀(x, v) ∈ K,∀δ ∈ [0, δ], diam
(
γ(x,v,δ)([0, δ])

)
≤ 2(C0 − C1)δ.

By the corollary 2.8.12 and the compactness of K, we can find
δ2 ∈]0, δ1] and ǫ > 0 such that for each (x, v) ∈ K

– we have B̄d(x, ǫ) ⊂ A0;
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– there exists a function S(x,v) :]−δ2, δ2[×B̊d(x, ǫ) → R, which
is a solution of the Hamilton-Jacobi equation

∂S(x,v)

∂t
+H(x,

∂S(x,v)

∂x
) = 0,

with ∂S(x,v)

∂x (x, 0) = ∂L
∂v (x, v).

In particular, we have v = gradL S
(x,v)
0 (x), where we set S

(x,v)
t (x) =

S(x,v)(t, x). Consequently, the solution of the vector field gradL St,
going through x at time t = 0, is t 7→ πφt(x, v), see theorem
3.5.1. Since for δ3 ≤ δ2, such that (C0 − C1)δ3 < ǫ, the curve
γ(x,v,δ) takes its values in B̊d(x, ǫ) for each (x, v) ∈ K and all
δ ∈]0, δ3], by the same Theorem 3.5.1 we obtain that for every
γ1 : [0, δ] → B̊d(x, ǫ) which is absolutely continuous and satisfies
γ1(0) = x and γ1(δ) = γ(x,v,δ)(δ), we have L(γ1) > L(γ(x,v,δ)).

It remains to check that a curve γ1 : [0, δ] →M with γ1(0) = x
and γ1([0, δ]) 6⊂ B̊d(x, ǫ) has a much too large action. This is where
we use that

C2 = inf{L(x, v) | (x, v) ∈ TM} > −∞.

In fact, if γ1([0, δ]) 6⊂ B̊d(x, ǫ), there exists η > 0 such that
γ1([0, η[) ⊂ B̊d(x, ǫ) and d(γ1(0), γ1(η)) = ǫ. Since B̄d(x, ǫ) ⊂ A0,
we then obtain from inequality (∗) above

L(γ1|[0, η]) ≥ ǫ+ C1η.

We can use C2 as a lower bound of L(γ1(s), γ̇1(s)) on [η, δ] to
obtain

L(γ1) ≥ ǫ+C1η + C2(δ − η),

from which, setting C3 = min(C1, C2) > −∞, it follows that

L(γ1) ≥ ǫ+ C3δ,

as soon as γ1(0) = x and γ1([0, δ]) 6⊂ B̊d(η, ǫ). Since L(γ(x,v,δ)) ≤
C0δ, to finish the proof of the theorem, we see that it is enough
to choose δ0 with δ0 ≤ δ3, and (C0 − C3)δ0 < ǫ.
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Theorem 3.6.2. Suppose that L is a Tonelli Lagrangian on the
manifold M , and that inf(x,v)∈TM L(x, v) is finite. Fix d a distance
on M coming from a Riemannian metric. If K ⊂ M is compact,
and C is a strictly positive constant, then there exists a constant
δ0 > 0 such that, if x ∈ K, y ∈M , and δ ∈]0, δ0], satisfy d(x, y) ≤
Cδ, then there exists an extremal curve γ(x,y,δ) : [0, δ] → M with
γ(x,y,δ)(0) = x, γ(x,y,δ)(δ) = y, and for every curve absolutely con-
tinuous γ : [0, δ] → M which satisfies γ(0) = x, γ(δ) = y, and
γ 6= γ(x,y,δ), we have L(γ) > L(γ(x,y,δ)).

Proof. By the theorem of existence of local extremal curves 2.7.4,
we know that there exists a constant δ1 > 0 such that, if d(x, y) ≤
Cδ with δ ∈]0, δ1], then there exists an extremal curve γ(x,y,δ) with
γ(x,y,δ)(0) = x, γ(x,y,δ) = y, and ‖γ̇(x,y,δ)(0)‖x ≤ 2C. However the
set {(x, v) ∈ TM | x ∈ K, ‖v‖x ≤ 2C} is compact in TM and we
can apply the previous theorem 3.6.1 to find δ0 ≤ δ1 satisfying the
conclusions of the theorem we are proving.

3.7 Regularity of Minimizers

In this section we will assume that the Lagrangian L : TM → R is
Cr , with ∂2L

∂v2 (x, v) definite positive as a quadratic form, for each
(x, v) ∈ TM , and L superlinear in the fibers of the tangent bundle
TM . We still provide M with a Riemannian metric of reference.

Theorem 3.7.1 (Regularity). Suppose that L is a Tonelli Lag-
rangian on the manifold M . Let γ : [a, b] → M be an absolutely
continuous curve such that L(γ) ≤ L(γ1), for each other absolutely
continuous curve γ1 : [a, b] →M , with γ1(a) = γ(a), γ1(b) = γ(b),
then the curve γ is an extremal curve, and is therefore Cr.

Proof. By an argument already used many times previously, it
suffices to consider the case M = U is an open subset of of R

k.
Let W̄ be a compact subset of U , containing γ([a, b]) in its interior
W . By the compactness of W̄ and the uniform superlinearity of
L above compact subsets of M , we have

inf{L(x, v) | x ∈ W̄ , v ∈ R
k} > −∞.

We can then apply theorem 3.6.2 to the compact subset γ([a, b])
contained in the manifold W ⊂ R

k (which then plays the role of
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the M of theorem 3.6.2). Let us first show that if the derivative
γ̇(t0) exists for some t0 ∈ [a, b], then γ coincides with an extremal
curve in the neighborhood of t0. We have

lim
t→t0

‖
γ(t) − γ(t0)

t− t0
‖ = ‖γ̇(t0)‖.

Choosing C > ‖γ̇(t0)‖, we can then find η > 0 such that

0 < |t− t0| ≤ η ⇒ ‖γ(t) − γ(t0)‖ < C|t− t0|. (∗)

Let us apply theorem 3.6.2 with γ([a, b]) as the compact subset
and C as the constant, to find the δ0 > 0 given by this theorem.
We can assume that δ0 ≤ η. We will suppose t0 ∈]a, b[, and let
the reader make the trivial changes in the cases t0 = a or t0 = b.
From (∗) we get

‖γ(t0 + δ0/2) − γ(t0 − δ0/2)‖ < Cδ0.

By theorem 3.6.2, the curve γ1 : [0, δ0] → M which minimizes
the action among the curves connecting γ(t0 − δ0/2) to γ(t0 +
δ0/2) is an extremal curve. However, the curve [0, δ0] → M,s 7→
γ(s+ t0−δ0/2) minimizes the action among the curves connecting
γ(t0 − δ0/2) with γ(t0 + δ0/2), since the curve γ : [a, b] → M
minimizes the action for the curves connecting γ(a) to γ(b). We
conclude that the restriction of γ to the interval [t0−δ0/2, t0+δ0/2]
is an extremal curve.

Let then O ⊂ [a, b] be the open subset formed by the points t0
such that γ coincides with an extremal curve in the neighborhood
of t0. For every connected component I of O, the restriction γ|I
is an extremal because it coincides locally with an extremal, and
the Euler-Lagrange flow is uniquely integrable. Notice also that
γ(I) ⊂ γ([a, b]) which is compact therefore by corollary 3.4.4 the
extremal curve γ|I can be extended to the compact closure Ī ⊂
[a, b], therefore by continuity γ|Ī is an extremal. If O 6= [a, b],
let us consider a connected component I of O, then Ī \ I is non-
empty and not contained in O. This component can be of one
of the following types ]α, β[, [a, β[, ]α, b]. We will treat the case
I =]α, β[⊂ O. We have α, β /∈ O. Since [α, β] is compact and
γ|[α, β] is an extremal curve, its speed is bounded. Therefore
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there exists a finite constant C, such that

∀s ∈]α, β[, ‖γ̇(s)‖ < C.

Once again we apply theorem 3.6.2 to the compact subset γ([a, b])
and the constant C, to find δ0 > 0 given by that theorem. We
have

‖γ(β) − γ(β − δ0/2)‖ ≤

∫ β

β−δ0/2
‖γ̇(s)‖ ds

< C
δ0
2
.

By continuity, for t > β and close to β, we do also have

‖γ(t) − γ(β − δ0/2)‖ < C[t− (β − δ0/2)].

We can take t > β close enough to β so that t − β < δ0/2. By
theorem 3.6.2, the curve γ coincides with an extremal curve on
the interval [β − δ0/2, t]. This interval contains β in its interior,
and thus β ∈ O, which is absurd. Therefore we necessarily have
O = [a, b], and γ is an extremal curve.

Let us summarize the results obtained for M compact.

Theorem 3.7.2. Let L : TM → R be a Cr Tonelli Lagrangian,
with r ≥ 2, where M is a compact manifold. We have:

• the Euler-Lagrange flow is well-defined complete and Cr−1;

• the extremal curves are all of class Cr;

• for each x, y ∈ M , each and a, b ∈ R, with a < b, there
exists an extremal curve γ : [a, b] → M with γ : [a, b] → M
with γ(a) = x, γ(b) = y and such that for every absolutely
continuous curves γ1 : [a, b] →M , with γ1(a) = x, γ1(b) = y,
and γ1 6= γ we have L(γ1) > L(γ);

• if γ : [a, b] → M is an absolutely continuous curve which is
a minimizer for the class Cac([a, b],M , then it is an extremal
curve. In particular, it is of class Cr;

• if C ∈ R, the set ΣC = {γ ∈ Cac([a, b],M) | L(γ) ≤ C} is
compact for the topology of uniform convergence.



Chapter 4

The Weak KAM

Theorem

In this chapter, as usual we denote by M a compact and connected
manifold. The projection of TM on M is denoted by π : TM →
M . We suppose given a Cr Lagrangian L : TM → R, with r ≥
2, such that, for each (x, v) ∈ TM , the second partial vertical

derivative ∂2L
∂v2 (x, v) is definite > 0 as a quadratic form, and that

L is superlinear in each fiber of the tangent bundle π : TM →M .
We will also suppose that M is provided with a fixed Riemannian
metric. We denote by d the distance on M associated with this
Riemannian metric. If x ∈ M , the norm ‖ · ‖x on TxM is the one
induced by the Riemannian metric.

4.1 The Hamilton-Jacobi Equation Revis-

ited

In this section we will assume that we have a Tonelli Lagrangian
L of class Cr, r ≥ 2, on the manifold M . The global Legendre
transform L̃ : TM → T ∗M is a Cr−1 diffeomorphism, see Theorem
3.4.2. Its associated Hamiltonian H : T ∗M → R given by

H ◦ L̃(x, v) =
∂L

∂v
(x, v)(v) − L(x, v),

is Cr, and satisfies the Fenchel inequality

p(v) ≤ L(x, v) +H(x, p),

109
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with equality if and only if p = ∂L/∂v(x, v), or equivalently (x, p) =
L̃(x, v). The Hamiltonian flow φH

t of H is conjugated by L̃ to the
Euler-Lagrange flow φL

t of L.

Theorem 4.1.1 (Hamilton-Jacobi). Suppose that L is a Cr Tonelli
Lagrangian, with r ≥ 2 on the manifold M . Call H : T ∗M → R

the Hamiltonian associated to the Lagrangian L.
Let u : M → R be a C1 function. If for some constant c ∈ R

it satisfies the Hamilton-Jacobi equation

∀x ∈M,H(x, dxu) = c

then the graph of du, defined by Graph(du) = {x, dxu) | x ∈ M},
is invariant under the Hamiltonian flow φH

t of H.
Moreover, for each x ∈ M , the projection t 7→ π∗φH

t (x, du) is
minimizing for the class of absolutely continuous curves.

Of course, if u is of class C2 the first part theorem follows from
2.5.10. The second part can be deduced from Theorem 3.5.1. In
fact, as we will see below, the main argument in proof of Theorem
4.1.1 is just a mere repetition of the main argument in the proof
of Theorem 3.5.1. Although this proof of Theorem 4.1.1 could be
rather short, we will cut it down in several pieces, because on doing
so we will be able to find a notion of C0 solution of the Hamilton-
Jacobi equation. With this notion we will prove, in contrast to
the C1 case, that such a C0 solution does always exist, see 4.7.1
below, and we will explain its dynamical significance.

We start by studying the meaning for C1 functions of the
Hamilton-Jacobi inequality.

Proposition 4.1.2. Suppose that L is a Tonelli Lagrangian on
the manifold M . Call H : T ∗M → R the Hamiltonian associated
to the Lagrangian L.

Let c ∈ R be a constant, and let u : U → R be a C1 function
defined on the open subset U ⊂M . If u satisfies the inequality

∀x ∈ V,H(x, dxu) ≤ c (∗)

then for every absolutely continuous curve γ : [a, b] → U , with
a < b, we have

u(γ(b)) − u(γ(a)) ≤

∫ b

a
L(γ(s), γ̇(s)) ds + c(b− a). (∗∗)
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Conversely, if inequality (∗∗) holds for every C∞ curve γ : [a, b] →
M then (∗) holds.

Proof. If γ : [a, b] → U is absolutely continuous then by Lemma
3.1.3 the function u◦γ is also absolutely continuous, and therefore

u(γ(b)) − u(γ(a)) ≤

∫ b

a
dγ(s)u(γ̇(s)), ds. (∗ ∗ ∗)

By Fenchel’s inequality, at each point s ∈ [a, b] where γ̇(s) exists
we can write

dγ(s)u(γ̇(s)) ≤ L(γ(s), γ̇(s)) +H(γ(s), dγ(s)u).

Suppose that (∗) holds, we get

dγ(s)u(γ̇(s)) ≤ L(γ(s), γ̇(s)) + c.

Integrating, and comparing with (∗ ∗ ∗), yields (∗∗).
Conversely, suppose that (∗∗) for every C∞ curve γ : [a, b] →

U . Fix x ∈ U . For a given v ∈ TxM we can find a C∞ curve
γ : [−ǫ, ǫ] → U , with ǫ > 0, γ(0) = x, and γ̇(0) = v. Then writing
condition (∗∗) for every restriction γ|[0, t], t ∈]0, ǫ], we obtain

u(γ(t)) − u(γ(0)) ≤

∫ t

0
dγ(s)u(γ̇(s)), ds + c(t− 0).

Dividing both sides by t > 0, and letting t→ 0 yields

dxu(v) ≤ L(x, v) + c.

Since this is true for every v ∈ TxM , we conclude that H(x, dxu) =
supv∈TxM dxu(v) − L(x, v) ≤ c.

This suggests the following definition.

Definition 4.1.3 (Dominated Function). Let u : U → R be a
function defined on the open subset U ⊂M . If c ∈ R, we say that
u is dominated by L + c on U , which we denote by u ≺ L+ c, if
for each continuous piecewise C1 curve γ : [a, b] → U we have

u(γ(b)) − u(γ(a)) ≤

∫ b

a
L(γ(s), γ̇(s)) ds + c(b− a). (D)

If U = M , we will simply say that u is dominated by L+ c.
We will denote by D

c(U) the set of functions u : U → R

dominated by L+ c
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In the definition above, we have used continuous piecewise C1

curves in (D) instead of C∞ curves because if condition (D) holds
for C∞ curves it also holds for continuous piecewise C1 curves, and
even for absolutely continuous curves, see the following exercise.

Exercise 4.1.4. Suppose L is a Tonelli Lagrangian on the man-
ifold M . Let u : U → R be a function defined on the open subset
U of M such that the inequality (D) of Definition 4.1.3 holds for
every C∞ curve γ.

1) Show that (D) holds for C1 curves. [Indication: Use a den-
sity argument.]

2) Show that (D) holds for a continuous piecewise C1 curve.
[Indication: If γ : [a, b] → U , there exists a0 < a1 < · · · < an = b
such that γ|[ai, ai+1] is C1.]

3) Show that (D) holds for absolutely continuous curves. For
this fix such a curve γ : [a, b] → U , if L(γ) = +∞, there is nothing
to prove. Therefore we can assume that

∫ b

a
L(γ(s), γ̇(s)) ds < +∞.

We set

ω(η) = sup{

∫ t

t′
L(γ(s), γ̇(s)) ds | t′ ≤ t, t− t′ ≤ η}.

a) Show that ω(η) → 0, when η → 0.

Fix K,K ′ ⊂ U compact neighborhoods of γ([a, b]) with K ⊂ K̊ ′.

b) Show that there exists η0 such that any absolutely continu-
ous curve δ : [c, d] → K̊ ′, with a ≤ c ≤ d ≤ b, c − d ≤ η0, δ(c) =
γ(c), δ(d) = γ(d), and L(δ) ≤ ω(η0), takes values only in K. [In-
dication: See the proof of Theorem 3.6.1. Notice that L is bounded
below on the subset {(x, v) ∈ TM | x ∈ K ′}.]

c) Show that for for every c, d ∈ [a, b], with c ≤ d and d−c ≤ η0,
there exists an absolutely continuous curve δ : [c, d] → M which
satisfies:

– δ(c) = γ(c), δ(d) = γ(d).

– δ([c, d]) ⊂ K.
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– δ is a minimizer for the class of absolutely continuous curves
with values in K̊ ′.

d) Conclude.

Of course, the notion of dominated function does not use any
differentiability assumption on the function. Therefore we can use
it as a notion of subsolution of the Hamilton-Jacobi equation. This
notion is equivalent to the notion of viscosity subsolution as we
will see in chapters 7 and 8.

The next step necessary to prove Theorem 4.1.1 is the intro-
duction of the Lagrangian gradient. Let us recall, see definition
3.4.5, that for u : U → R is a C1 function, its Lagrangian gradient
gradL u is the vector field defined on U by

(x, dxu) = L̃(x, gradL u(x)).

It follows that

Graph(du) = L̃[Graph(gradL u)],

where Graph(gradL u) = {(x, gradL u(x)) | x ∈ U}. Since φH
t

and φL
t are conjugated by L̃, invariance of Graph(du) under φH

t is
equivalent to invariance of Graph(gradL u) under φL

t . Therefore
the following proposition finishes the proof of Theorem 4.1.1

Proposition 4.1.5. Let L be a Tonelli Lagrangian on the man-
ifold M . If u : U → R is a C1 function which satisfies on U the
Hamilton-Jacobi equation

H(x, dxu) = c,

for some fixed c ∈ R, then every solution γ : [a, b] → U of the
vector field gradL u satisfies

u(γ(b)) − u(γ(a)) =

∫ a

b
L(γ(s), γ̇(s)) ds + c(b− a).

It follows that solutions of gradL u are minimizing for the class of
absolutely continuous curves with values in U , and that it must
be an extremal of class C2.

Moreover, the graph of gradL u is locally invariant by the
Euler-Lagrange flow. If U = M and M is compact then the graph
Graph(gradL u) is invariant by the Euler-Lagrange flow.
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Proof. Since (y, dyu) = L̃(y, gradL u(y)), we have the following
equality in the Fenchel inequality

dyu(gradL u(y)) = L(y, gradL u(y)) +H(y, dyu).

Taking into account that H(y, dyu) = c, and using the equality
along a solution γ : [a, b] → U of the vector field gradL u, we get

dγ(t)u(γ̇(t)) = L(γ(t), γ̇(t)) + c.

If we integrate we get

u(γ(b)) − u(γ(a)) =

∫ a

b
L(γ(s), γ̇(s)) ds + c(b− a).

This implies that γ is a minimizer for absolutely continuous curves,
and is therefore a C2 extremal. In fact, if δ : [a, b] → U is a
curve, by Proposition 4.1.2, we have u(δ(b)) − u(δ(a)) ≤ L(δ). If
δ(a) = γ(a) and δ(b) = γ(a), we obtain

L(γ) + c(b− a) = u(γ(b)) − u(γ(a))

= u(δ(b)) − u(δ(a))

≤ L(δ).

We now show that the Graph(gradL u) is locally invariant by
the Euler-Lagrange flow. Given x ∈ U , since the vector field
gradL u is continuous, we can apply the Cauchy-Peano Theorem,
see [Bou76], to find a map Γ : [−ǫ, ǫ] × V , with ǫ > 0 and V an
open neighborhood of x, such that for every y ∈ V the curve t 7→
Γy(t) = Γ(y, t) is a solution of gradL u with Γy(0) = y. Therefore

Γ̇y(t) = gradL u(Γy(t)).

But we know that Γy is an extremal, hence its speed curve is
t 7→ φL

t (y, Γ̇y(0)). Therefore, for every (t, y) ∈ [−ǫ, ǫ]×V , we have

φL
t (y, Γ̇y(0)) = (Γy(t), gradL u(Γy(t))) ∈ Graph(gradL u). (∗)

If U = M is compact we can find a finite family of [−ǫi, ǫi] ×
Vi, i = 1, . . . , ℓ satisfying (∗), and such that M = ∪ℓ

i=1Vi. Setting
ǫ = minℓ

i=1 ǫi > 0, we obtain

∀t ∈ [−ǫ, ǫ], φL
t (Graph(gradL u)) ⊂ Graph(gradL u).



115

Since φL
t is a flow defined for all t ∈ R, we obtain

∀t ∈ R, φL
t (Graph(gradL u)) ⊂ Graph(gradL u).

Using the inclusion above for t and −t yields φL
t (Graph(gradL u)) =

Graph(gradL u), for all t ∈ R.

Exercise 4.1.6. Under the hypothesis of Proposition 4.1.5, if x ∈
U , show that the orbit φL

t (x, gradL u(x)) is defined at least on an
interval ]α, β[ such that γ(t) = πφL

t (x, gradL u(x)) ∈ U for every
t ∈]α, β[, and t 7→ γ(t) leaves every compact subset of U as t tends
to either α or β. Show that this curve γ is a solution of gradL u
on ]α, β[. Show that, any other solution γ̃ : I → U of , gradL u,
with γ̃(0) = x, satisfies I ⊂]α, β[ and γ̃ = γ on I.

Proposition 4.1.5 suggests the following definition

Definition 4.1.7 (Calibrated Curve). Let u : U → R be a func-
tion and let c ∈ R be a constant, where U is an open subset of
M . We say that the (continuous) piecewise C1 curve γ : I → U ,
defined on the interval I ⊂ R is (u,L, c)-calibrated, if for every
t ≤ t′ ∈ I, with t ≤ t′, we have

u(γ(t′)) − u(γ(t)) =

∫ t′

t
L(γ(s), γ̇(s)) ds + c(t′ − t).

Although the following proposition is an immediate conse-
quence of the definition of calibrated curve, it will be used often.

Proposition 4.1.8. Let L be a Tonelli Lagrangian defined on the
manifold M . Suppose u : U → R is a C1 function defined on
the open subset U ⊂ M , and c ∈ R. If the curve γ : I → U is
(u,L, c)-calibrated, then for any subinterval I ′ ⊂ I the restriction
γ|I ′ is also (u,L, c)-calibrated.

The following theorem explains why calibrated curves are spe-
cial.

Theorem 4.1.9. Suppose that L is a Tonelli Lagrangian on the
manifold M . Let u : U → R be a function defined on the open
subset U ⊂ M . Assume that u ≺ L + c, where c ∈ R. Then any
continuous piecewise C1 (u,L, c)-calibrated curve γ : I → U is



116

necessarily a minimizing curve for the class of continuous piecewise
C1 on U . Therefore it is an extremal curve and it is as smooth as
the Lagrangian L.

Proof. We fix a compact interval [t, t′] ⊂ I, with t ≤ t′. If δ :
[t, t′] → U is a (continuous) piecewise C1, from u ≺ L + c, it
follows that

u(δ(t′)) − u(δ(t)) ≤ L(δ) + c(t′ − t).

Moreover, since γ is (u,L, c)-calibrated, we have equality when
δ = γ|[t, t′]. If δ(t′) = γ(t′) and δ(t) = γ(t), we obtain

L(γ|[t, t′]) + c(t′ − t) = u(γ(t′)) − u(γ(t)) ≤ L(δ) + c(t′ − t),

hence L(γ|[t, t′]) ≤ L(δ), and γ is therefore a minimizing curve.
This implies that γ is an extremal and is as smooth as L, see
Proposition 2.3.7.

We now can give a characterization of C1 solutions of the
Hamilton-Jacobi equation which does not involve the derivative.

Proposition 4.1.10. Let L be a Tonelli Lagrangian defined on
the manifold M . If u : U → R is a C1 function defined on the open
subset U ⊂M , and c ∈ R, the following conditions are equivalent:

(i) The function u satisfies Hamilton-Jacobi equation

∀x ∈ U,H(x, dxu) = c.

(ii) The function u is dominated by L+ c, and for every x ∈ U
we can find ǫ > 0 and a C1 curve γ : [−ǫ, ǫ] → U which is
(u,L, c)-calibrated, and satisfies γ(0) = x.

(iii) The function u is dominated by L+ c, and for every x ∈ U
we can find ǫ > 0 and a C1 curve γ : [−ǫ, 0] → U which is
(u,L, c)-calibrated, and satisfies γ(0) = x.

(iv) The function u is dominated by L+ c, and for every x ∈ U
we can find ǫ > 0 and a C1 curve γ : [0, ǫ] → U which is
(u,L, c)-calibrated, and satisfies γ(0) = x.
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Proof. We prove that (i) implies (ii). The fact that u ≺ L + c
follows from Proposition 4.1.2. By Proposition 4.1.5, we can take
for γ any solution of gradL u with γ(0) = x. Again such a solution
exists by the Cauchy-Peano Theorem, see [Bou76], since gradL u
is continuous.

Obviously (ii) implies (iii) and (iv).

It remains to prove that either (iii) or (iv) implies (i). We
show that (iii) implies (i), the other implication being similar.
From Proposition 4.1.2, we know that

∀x ∈ U,H(x, dxu) ≤ c.

To show the reversed inequality, we pick a (u,L, c)-calibrated C1

curve γ : [−ǫ, 0] →M with γ(0) = x. For every t ∈ [0, ǫ], we have

u(γ(0)) − u(γ(−t)) =

∫ 0

−t
L(γ(s), γ̇(s)) ds+ ct.

If we divide by t > 0, after changing signs in the numerator and
denominator of the left hand side, we get

u(γ(−t)) − u(γ(0))

−t
=

1

t

∫ 0

−t
L(γ(s), γ̇(s)) ds + c.

If we let t → 0 taking into account that γ(0) = x, and that both
u and γ are C1, we obtain

dxu(γ̇(0)) = L(x, γ̇(0)) + c.

But by Fenchel’s inequality H(x, dxu) ≥ dxu(γ̇(0)) − L(x, γ̇(0)),
therefore H(x, dxu)) ≥ c.

Therefore we could take any one of condition (ii), (iii) or (iv)
above as a definition of a continuous solution of the Hamilton-
Jacobi equation. In fact, a continuous function satisfying (ii) is
necessarily C1, see ?? below. Condition (iii) and (iv) lead both to
the notion of continuous solutions of the Hamilton-Jacobi equa-
tion. The two sets of solutions that we obtain are in general dif-
ferent, and they both have a dynamical meaning as we will see
later.
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We will be mainly using continuous solution of the Hamilton-
Jacobi equation which are defined on a compact manifold M . No-
tice that for C1 solutions of the Hamilton-Jacobi equation defined
on M , by the last part of Proposition 4.1.5, in condition (ii), (iii),
and (iv) of Proposition 4.1.10 we can impose ǫ = +∞. This justi-
fies the following definition (see also ?? below).

Definition 4.1.11. Let L be a Tonelli Lagrangian on the compact
manifold M . A weak KAM solution of negative type (resp. of
positive type) is a function u : M → R for which there exists
c ∈ R such that

(1) The function u is dominated by L+ c.

(2) For every x ∈ M we can find a (u,L, c)-calibrated C1 curve
γ :] −∞, 0] →M (resp. γ : [0,+∞[→M) with γ(0) = x.

We denote by S− (resp. S+) the set of weak KAM solutions of
negative (resp. positive) type.

We will usually use the notation u− (resp. u+) to denote an
element of S− (resp. S+).

4.2 Dominated Functions and the Mañé Crit-

ical Value

We now establish some properties of dominated function. Before
doing that let us recall that the notion of locally Lipschitz function
makes perfect sense in a manifold M . In fact, a function u :
M → R is said to be locally Lipschitz if for every coordinate
chart ϕ : U → M , the function u ◦ ϕ is locally Lipschitz on the
open subset U of some Euclidean space. Since all Riemannian
metrics are equivalent above compact subsets, it is equivalent to
say that u is locally Lipschitz for one distance (or for all distances)
d coming from a Riemannian metric. If u : X → Y is a Lipschitz
map between the metric spaces X,Y we will denote by Lip(u) its
smallest Lipschitz constant

Lip(u) = sup
d(u(x), u(x′))

d(x, x′)

where the supremum is taken over all x, x′ ∈ X, with x 6= x′.
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Proposition 4.2.1. Suppose L is a Tonelli Lagrangian on the
manifoldM . EndowM with a distance d and TM a norm (x, v) 7→
‖V ‖x both coming from the same Riemannian metric on M (Note
that d well defined and finite on each connected component of M).

Let U be an open subset of M , and c ∈ R. We have the
following properties:

(i) The set D
c(U) of functions u : U → R dominated by L + c

is a closed convex subset of the set of functions U → R for
the topology of point-wise convergence. Moreover, if k ∈ R,
we have u ∈ Dc(U) if and only if u+ k ∈ Dc(U).

(ii) Every function in D
c(U) is locally Lipschitz. More precisely,

for every x0 ∈ U , we can find a compact neighborhood Vx0

such that for every u ∈ D
c(U) the Lipschitz constant of u|Vx0

is ≤ AVx0
+ c, where

AVx0
= sup{L(x, v) | (x, v) ∈ TM,x ∈ Vx0 , ‖v‖x = 1} < +∞.

In particular the family of functions in D
c(U) is locally equi-

Lipschitzian.

(iii) If M is compact and connected, and u : M → R is defined
on the whole of M and is dominated by L + c, then u is
Lipschitz. More precisely, then Lipschitz constant Lip(u) of
u is ≤ A+ c, where

A = sup{L(x, v) | (x, v) ∈ TM, ‖v‖x = 1}.

In particular the family of functions in D
c(M) is l equi-

Lipschitzian.

(iv) Moreover, if M is compact and connected, then every Lip-
schitz function u : M → R is dominated by L + c for some
c ∈ R. More precisely, given K ∈ [0,+∞[, we can find cK
such that every u : M → R, with Lip(u) ≤ K, satisfies
u ≺ L+ cK .

(v) Suppose that c, k ∈ R, and that U is a connected open subset
of M . If x0 ∈ U is fixed, then the subset {u ∈ D

c(U) |
|u(x0)| ≤ k} is a compact convex subset of C0(U,R) for the
topology of uniform convergence on compact subsets.
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Proof. Its is obvious from the definition of domination that D
c(U)

is convex and that u ∈ D
c(U) if and only if u+ k ∈ D

c(U). For a
fixed continuous piecewise C1 curve γ : [a, b] → U the set Fγ,c of
function u : U → R such that

u(γ(b)) − u(γ(a)) =

∫ b

a
L(γ(s), γ̇(s)) ds + c(b− a)

is clearly closed in the topology of point-wise convergence. Since
D

c(U) is the intersection of the Fγ,c for all γ’s with values in U ,
it is also closed.

To prove (ii), let u ∈ D
c(U). Fix x0 ∈ U . We can find a

compact neighborhood Vx0 ⊂ U of x0, such that for every x, y ∈
V̊x0 we can find a geodesic γ : [a, b] → M parametrized by unit
length such that γ(a) = x, γ(b) = y and length(γ) = b − a =
d(x, y). Since Vx0 is compact, the constant

AVx0
= sup{L(x, v) | (x, v) ∈ TM,x ∈ Vx0 , ‖v‖x = 1}

is finite. Since ‖γ̇(s)‖ = 1, for every s ∈ [a, b], we have L(γ(s), γ̇(s)) ≤
AVx0

, therefore we obtain

u(γ(b)) − u(γ(a)) ≤

∫ b

a
L(γ(s), γ̇(s)) ds + c(b− a)

≤

∫ b

a
AVx0

ds+ c(b− a)

= (AVx0
+ c) length(γ)

= (AVx0
+ c)d(x, y).

To prove (iii), it suffices to observe that, when M is compact
and connected, we can take Vx0 = M in the argument above.

Suppose now that M is compact and connected. If we fix
K ≥ 0, by the superlinearity of L we can find A(K) > −∞ such
that

∀(x, v) ∈ TM,L(x, v) ≥ K‖v‖x +A(K).

therefore if γ : [a, b] → M is a continuous piecewise C1 curve,
applying this inequality for (x, v) = (γ(s), γ̇(s)) and integrating
we get

K length(γ) ≤ L(γ) −A(K)(b − a),
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and hence

Kd((γ(b), γ(a)) ≤ L(γ) −A(K)(b − a).

If u : M → R has Lipschitz constant ≤ K, we therefore obtain

u(γ(b)) − u(γ(b)) ≤ L(γ) −A(K)(b − a).

This proves (iv) with cK = −A(K) < +∞.
It remains to prove (v). Set E = {u ∈ D

c(U) | |u(x0)| ≤ k}.
By (1) this set is clearly closed for the topology of point-wise
convergence. It suffices to show that for each compact subset
K ⊂ U , the set of restrictions E|K = {u|K | u ∈ E} is relatively
compact in C0(K,R). We apply Ascoli’s Theorem, since this the
family E|K is locally equi-Lipschitz by (ii), it suffices to check that

sup{|u(x)| | x ∈ K,u ∈ E} < +∞.

Since U is connected locally compact and locally connected, en-
larging K if necessary, we can assume that K is connected and
contains x0. Again by (ii), we can cover K by a finite number of
open sets V1, . . . , Vn, and find finite numbers ki ≥ 0, i = 1, . . . , n
such Lip(u|Vi) ≤ ki for every u ∈ D

c(U), and every i = 1, . . . , n. If
x ∈ K, by connectedness of K, we can find i1, . . . , iℓ ∈ {1, . . . , n}
such that Vij ∩ Vij+1 ∩ K 6= ∅, j = 1, . . . , ℓ, x0 ∈ Vi1 , x ∈ Viℓ . By
assuming ℓ minimal with this properties, we get that the ij are all
distinct, therefore ℓ ≤ n. We can choose xj ∈ Vij ∩ Vij+1 ∩K, for
i = 1, . . . , ℓ− 1. Therefore setting xℓ =, for u ∈ D

c(U), we obtain

|u(x) − u(x0)| ≤
ℓ−1∑

j=0

|u(xj+1) − u(xj)|

≤
ℓ−1∑

j=0

kijd(xj+1, xj)

≤ ℓdiam(K)
n

max
i=1

ki

≤ n diam(K)
n

max
i=1

ki.

Therefore |u(x)| ≤ k + n diam(K)maxn
i=1 ki, for every x ∈ K and

every u ∈ E .
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Proposition 4.2.2. Let L be a Tonelli Lagrangian on the man-
ifold M . Suppose that u : U → R is defined on the open subset
U ⊂ M and that it is dominated by L + c. Then at each point
x ∈ U where the derivative dxu exists, we have

H(x, dxu) ≤ c.

By Rademacher’s Theorem 1.1.10, the derivative dxu exists almost
everywhere on U , the above inequality is therefore satisfied almost
everywhere.

Proof. Suppose that dxu exists. We fix v ∈ Tx(M). Let γ : [0, 1] →
U be a C1 curve such that γ(0) = x and γ̇(0) = v. Since u ≺ L+c,
we have

∀t ∈ [0, 1], u(γ(t)) − u(γ(0)) ≤

∫ t

0
L(γ(s), γ̇(s)) ds + ct.

By dividing this inequality by t > 0 and letting t tend to 0, we
find dxu(v) ≤ L(x, v) + c and hence

H(x, dxu) = sup
v∈TxM

dxu(v) − L(x, v) ≤ c.

We now prove the converse of Proposition 4.2.2.

Proposition 4.2.3. Let L be a Tonelli Lagrangian on the man-
ifold M . Call H the Hamiltonian associated to L. Suppose that
u : U → R is a locally Lipschitz function defined on the open
subset U of M . By Rademacher’s Theorem 1.1.10, the derivative
dxu exists for almost all x ∈ U . If there exists a c such that
H(x, dxu) ≤ c, for almost all x ∈ U , then u ≺ L+ c.

Proof. Using a covering of a curve by coordinates charts, it is not
difficult to see that we can assume that U is an open convex set
in R

k. We call R the set of points x ∈ U were dxu exists and
H(x, dxu) ≤ c. By assumption U \ R is negligible for Lebesgue
measure.

We show that first that u(γ(b)) − u(γ(a)) ≤ L(γ) + c(b − a),
for an affine segment γ : [a, b] → U . To treat the case where γ is
constant we have to show that L(x, 0) + c ≥ 0 for every x ∈ U .
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If x ∈ R, this is true since L(x, 0) + c ≥ L(x, 0) + H(x, dxu) ≥
dxu(0) = 0, where the second inequality is a consequence of part (i)
of Fenchel’s Theorem 1.3.6. Since R is dense in U , the inequality
L(x, 0) + c ≥ 0 is therefore true on the whole of U . We now
assume that the affine segment is not constant. We can then write
γ(s) = x + (t − a)v, with ‖v‖ = r > 0. We call S the set of
vectors w such that ‖w‖ = r, and the line Dw = {x+ tw | t ∈ R}
intersects R in a set of full linear measure in U ∩Dw. By Fubini’s
Theorem, the set S itself is of full Lebesgue measure in the sphere
{w ∈ R

k | ‖w‖ = r}. Hence we can find a sequence vn ∈ S with
vn → v, when n→ ∞. Dropping the first n’s, if necessary, we can
assume that the affine curve γn : [a, b] → Rk, t 7→ x+ (t− a)vn is
contained in fact in U . By the definition of the set S, for each n,
the derivative dγn(t)u exists and verifies H(γn(t), dγn(t)u) ≤ c for
almost every t ∈ [a, b]. It follows that the derivative of u ◦ γn is
equal to dγn(t)u(γ̇n(t)) at almost every t ∈ [a, b]. Using again part
(i) of Fenchel’s Theorem 1.3.6, we see that

du ◦ γn

dt
(t) = dγn(t)u(γ̇n(t))

≤ H(γn(t), dγn(t)u) + L(γn(t), γ̇n(t))

≤ c+ L(γn(t), γ̇n(t)),

Since u ◦ γn is Lipschitz, we obtain

u(γn(b)) − u(γn(a)) =

∫ b

a

du ◦ γn

dt
(t) dt

≤

∫ b

a
c+ L(γn(t), γ̇n(t)) dt

= L(γn) + c(b− a).

Since γn converges in the C1 topology to γ we obtain

u(γ(b)) − u(γ(a)) ≤ L(γ) + c(b− a).

Of course, we now have the same inequality for any continuous
piecewise affine segment γ : [a, b] → U . To show the inequality
u(γ(b)) − u(γ(a)) ≤ L(γ) + c(b − a) for an arbitrary C1 curve
γ : [a, b] → U , we introduce piecewise affine approximation γn :
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[a, b] → U in the usual way. For each integer n ≥ 1, the curve γn

is affine on each of the intervals [a+i(b−a)/n, a+(i+1)(b−a)/n],
for i = 0, . . . , n − 1, and γn(a + i(b − a)/n) = γ(a + i(b − a)/n),
for i = 0, . . . , n. The sequence γn converges uniformly on [a, b] to
γ. Since γn(a) = γ(a) and γn(b) = γ(b), we obtain from what we
just proved

u(γ(b)) − u(γ(a)) ≤ L(γn) + c(b− a). (∗)

The derivative γ̇n(t) exists for each n at each t in the complement
A of the countable set {a+ i(b−a)/n | n ≥ 1, i = 0, . . . , n}. More-
over, using the Mean Value Theorem, the sequence γ̇n|A converges
uniformly to γ̇|A, as n→ ∞, since γ is C1. Using the fact the the
set {(γ(t), γ̇(t)) | t ∈ [a, b]} is compact and the continuity of L, it
follows that the sequence of maps A→ R, t 7→ L(γn(t), γ̇n(t)) con-
verges uniformly to A → R, t 7→ L(γ(t), γ̇(t)), therefore L(γn) →
L(γ), since [a, b]\A is countable. passing to the limit in the above
inequality (∗) we indeed obtain

u(γ(b)) − u(γ(a)) ≤ L(γ) + c(b− a).

Definition 4.2.4 (Hamiltonian constant of a function). If u :
U → R is a locally Lipschitz function, we define HU (u) as the es-
sential supremum on U of the almost everywhere defined function
x 7→ H(x, dxu).

We summarize the last couples of Propositions 4.2.2 and 4.2.3
in the following theorem.

Theorem 4.2.5. Suppose that L is a Tonelli Lagrangian on the
manifold M . Let U be an open subset of M . A function u : U → R

is dominated by L + c on U , for some c ∈ R, if and only if it is
locally Lipschitz and c ≥ HU (u).

Definition 4.2.6 (Mañé’s Critical Value). If L is a Tonelli Lag-
rangian on the connected compact manifold M , the Mañé critical
value of L is the constant c[0] (or cL[0], if we need to precise the
Lagrangian) defined by

c[0] = inf{c ∈ R | ∃u : M → R, u ≺ L+ c}.
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Theorem 4.2.7. The Mañé critical value c[0] of L is finite. In
fact we have c[0] ≥ − infx∈M L(x, 0).

If u : M → R is dominated by L + c for some c ∈ R, then
c ≥ c[0]. Moreover, there exists a function u0 : M → R such that
u0 ≺ L+ c.

Proof. For a given x, the constant curve γx : [0, 1] 7→ x has action
equal to L(x, 0). Therefore, if u ≺ L+c,we have 0 = u(x)−u(x) ≤
L(x, 0)+c·1 hence c ≤ −L(x, 0). Since this is true for every x ∈M ,
we obtain c ≥ − infx∈M L(x, 0), for every c for which we can find
u : M → R with u ≺ L + c.taking the infimum over all such
c yields c[0] ≥ − infx∈M L(x, 0), which is of course finite by the
compactness of M .

By definition of c[0], if c is such that there exists u : M → R

with u ≺ L+ c we have c ≥ c[0].
It remains to find u : M → R such that u ≺ L + c[0]. By

definition of c[0] we can find a sequence cn → c[0] of numbers, and
a sequence of functions un : M → R, with un ≺ L + cn, for each
n. We now fix x0 ∈ M . By (i) of Proposition 4.2.1, the function
un −un(x0) is also dominated by L+ cn. therefore we can assume
un(x0) = 0, for every n. We could apply part (v) of Proposition
4.2.1, to finish the proof by having a subsequence of un converge.
In fact, it is easier to argue directly. We define u : M → [−∞,+∞]
by

∀x ∈M,u(x) = lim inf
n→∞

un(x).

Since un(x0) = 0, we have u(x0) = 0. Given a continuous piecewise
C1 curve γ : [a, b] →M , since un ≺ L+ cn, we have

un(γ(b)) ≤ un(γ(a)) +

∫ b

a
L(γ(s), γ̇(s)) ds + cn(b− a).

Since cn → c[0], by taking the lim inf in the equality above, we
obtain

u(γ(b)) ≤ u(γ(a)) +

∫ b

a
L(γ(s), γ̇(s)) ds + c[0](b − a). ((*))

Since u(x0) = 0, using a continuous piecewise C1 curve starting
at a given point x ∈ M and ending at x0, we obtain from (*)
that u(x) > −∞. Using a curve starting at x0 and ending at x
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we conclude u(x) < +∞. Finally, the function u is finite valued
everywhere. since (*) is true for an arbitrary continuous piecewise
C1 curve γ : [a, b] →M . We obtain u ≺ L+ c[0].

4.3 Defect and Calibration of Curves

We now study the properties of calibrated curves. It is convenient
to introduce the notion of defect of a curve on an interval with
respect to a function u ≺ L+ c.

Definition 4.3.1 (Defect of a Curve). Let U be an open subset of
M , and c ∈ R. If u : U → R is dominated by L+ c and γ : I → U
is a continuous piecewise C1 curve, for [α, β] ⊂ I, with α ≤ β,
we define the defect D(γ, u, c;α, β) of the curve γ on the interval
[α, β] for the (L+ c)-dominated function u by

D(γ, u, c;α, β) =

∫ β

α
L(γ(s), γ̇(s)) ds−c(β−α)−(u(γ(β)−u(γ(α)).

‘ Of course, in the definition of defect, there is no need to
assume u ≺ L + c. However, this definition is useful only when
u ≺ L+ c, as we will presently see.

Proposition 4.3.2. Let L be a Tonelli Lagarangian on the man-
ifold M . Suppose that u : U → R is a continuous function defined
on the open subset U ⊂M , with u ≺ L+c, and that γ : I → U is a
continuous piecewise C1 curve. We have the following properties:

(1) If [α, β] ⊂ I, with α ≤ β, then

D(γ, u, c;α, β) ≥ 0.

(2) For every k ∈ R, we have D(γ, u, c;α, β) = D(γ, u+k, c;α, β).

(3) If we define the curve γt0 by γt0(s) = γ(t0 + s), then its
interval of definition is I − t0 = {s− t0 | s ∈}, and for every
[α, β] ⊂ I − t0, with α ≤ β, then

D(γt0 , u, c;α, β) = D(γ, u, c;α + t0, β + t0).



127

(4) [Chasles Property] If a,a2, a3 ∈ I, with a1 ≤ a2 ≤ a3,
then

D(γ, u, c; a1, a3) = D(γ, u, c; a1, a2) + D(γ, u, c; a2, a3).

(5) If α1, β1, α, β ∈ I, with α ≤ α1 ≤ β1 ≤ β, then

D(γ, u, c;α, β) ≥ D(γ, u, c;α1, β1) ≥ 0.

(6) The function (α, β) 7→ D(γ, u, c;α, β) is continuous on the
set {(α, β) ∈ I × I | α ≤ β}.

(7) If γn : [a, b] → U is a sequence of C1 curves which converges
to the C1 curve γ∞ : [a, b] → U in the C1 topology then
D(γn, u, c; a, b) → D(γ∞, u, c; a, b).

(8) Let un : U → R is a sequence of functions, with un ≺ L+cn,
where cn ∈ R. If cn → c and un(x) → u(x) at every point
x ∈ U , then D(γ, un, cn; a, b) → D(γ, u, c; a, b).

Proof. Claim (1) is easy since U ≺ L+ c on U implies

u(γ(β) − u(γ(α) ≤

∫ β

α
L(γ(s), γ̇(s)) ds + c(β − α).

Claims (2,3,4) follow easily from the definition of the defect.

For claim (5), by Chasles Property (4), we have

D(γ, u, c;α, β) = D(γ, u, c;α,α1)+D(γ, u, c;α1, β1)+D(γ, u, c;β1, β).

But by claim (1), we have D(γ, u, c;α,α1) ≥ 0 and D(γ, u, c;β1, β) ≥
0.

Claims (6,7) and (8) can also be obtained from the definition
of the defect since a dominated function is locally Lipschitz, and
the action of the Lagrangian for C1 curves is continuous in the C1

topology on the space of C1 curves.

The first corollary we obtain is a simplification of the definition
of a (u,L, c)-calibrated curve on a compact interval when u ≺ L+c.
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Corollary 4.3.3. Let L be a Tonelli Lagarangian on the manifold
M . Suppose that u : U → R is a continuous function defined on
the open subset U ⊂ M , with u ≺ L+ c, and that γ : [a, b] → U
is a continuous piecewise C1 curve. the following properties are
equivalent

(i) The curve γ is (u,L, c)-calibrated.

(ii) We have

u(γ(b)) − u(γ(a) =

∫ b

a
L(γ(s), γ̇(s)) ds + c(b− a).

(iii) The defect D(γ, u, c; a, b) is equal to 0.

Proof. It is clear that (ii) and (iii) are equivalent. Obviously if γ
is (u,L, c)-calibrated we have

u(γ(b)) − u(γ(a) =

∫ b

a
L(γ(s), γ̇(s)) ds + c(b− a).

It remains to prove that (iii) implies (i). If D(γ, u, c; a, b) = 0,
from claims (1) and (5) of Proposition 4.3.2 above, we get that
D(γ, u, c;α, β) = 0, for every subinterval [α, β] ⊂ [a, b], and hence

u(γ(β) − u(γ(α) =

∫ β

α
L(γ(s), γ̇(s)) ds + c(β − α),

hence γ is (u,L, c)-calibrated on the interval [a, b].

We now state some of the properties of calibrated curves.

Corollary 4.3.4. Let L be a Tonelli Lagarangian on the manifold
M . Suppose that u : U → R is a continuous function defined on
the open subset U ⊂M , that γ : I → U is a continuous piecewise
C1 curve. We have the following properties:

(1) If γ : I →M is (u,L, c)-calibrated, then for every subinterval
I ′ ⊂ I the restriction γ|I ′ is also (u,Lc)-calibrated.

(2) If I ′ is a subinterval of I and the restriction γ|I ′ is (u,L, c)-
calibrated, then γ is (u,L, c)-calibrated on the interval Ī ′∩I.
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(3) Suppose that I is a finite union of subintervals I1, . . . , In. If
γ|Ii is (u,L, c)-calibrated, for i = 1, . . . , n, then γ is (u,L, c)-
calibrated (on I).

(4) Suppose that I = ∪n∈NIi, where each Ii is an interval and
Ii ⊂ Ii+1. If each γ|Ii is (u,L, c)-calibrated, then γ is
(u,L, c)-calibrated (on I).

(5) For every t0 ∈ I, there exists a largest subinterval It0 ⊂ I
containing x0 on which γ is (u,L, c)-calibrated. Moreover
It0 = Īt0 ∩ I.

(6) If k ∈ R, then γ is (u,L, c)-calibrated if and only if it is
(u+ k, L, c)-calibrated.

(7) If t0 ∈ R, then γ is (u,L, c)-calibrated on I if and only if
the curve s 7→ γ(s+ t0) is (u,L, c)-calibrated on the interval
I − t0 = {t− t0 | t ∈ I}.

(8) If γn : [a, b] → U is a sequence of C1 curves which converges
to the C1 curve γ∞ : [a, b] → U in the C1 topology, and
γn is (u,L, c)-calibrated for every n then the curve γ is also
(u,L, c)-calibrated.

Proof. Claim (1) was already given as Proposition 4.1.8. It is a
simple consequence of the definition of a calibrated curve.

To prove claim (2), consider a compact subinterval [a, b] ⊂
I ∩ Ī ′, with a < b. For n large enough we have a+ 1/n < b− 1/n,
and [a+1/n, b−1/n] ⊂ I ′, therefore by by claim (1) and Corollary
4.3.3 above we get D(γ, u, c; a + 1/n, b − 1/n) = 0. By claim (6)
of Proposition 4.3.2 above D(γ, u, c; a, b) = 0. Therefore γ|[a, b] is
(u,L, c)-calibrated for every compact subinterval [a, b] of Ī ′. Hence
γ|Ī ′ is (u,L, c)-calibrated.

To prove (3), we fix [a, b] ⊂ I. By (2) we can assume that each
Ii ∩ [a, b] is a compact interval [ai, bi]. Extracting a minimal cover
and reindexing, we can assume

a = a1 ≤ a2 ≤ b1 ≤ a3 ≤ b2 ≤ · · · ≤

≤ ai+1 ≤ bi ≤ · · · ≤ an ≤ bn−1 ≤ bn = b. (∗)
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It suffices to prove by induction on i that D(γ, u, c; a1, bi) = 0
For i = 1, this follows from the hypothesis that γ|I1 is (u,L, c)-
calibrated. Let us now do the induction step from i to i + 1.
By (∗), we have [bi, bi+1] ⊂ [ai+1, bi+1] ⊂ Ii+1. Since γ|Ii+1

is (u,L, c)-calibrated, we therefore obtain D(γ, u, c; bi, bi+1) = 0.
From Chasles Property, claim (4) of Proposition 4.3.2, it follows
that D(γ, u, c; a1, bi+1) = 0.

To prove (4), it suffices to observe that if [a, b] ∈ I is a compact
subinterval, then for n large enough we have [a, b] ⊂ In.

To prove (5), call Λ the family of subinterval J ⊂ I such that
t0 ∈ J and γ|J is (u,L, c)-calibrated. Notice that Λ is not empty
since [t0, t0] ∈ Λ. Since t0 ∈

⋂

J∈Λ J , the union It0
⋃

J∈Λ J is an
interval. We have to show that γ is (u,L, c)-calibrated on It0 . Let
[a, b] ⊂ It0 . We can find J1, J2 ∈ Λ with a ∈ J1, b ∈ J2. the union
J3 = J1 ∪ J2 is an interval because t0 ∈ J1 ∩ J2. Therefore by (3),
the restriction γ|J3 is (u,L, c)-calibrated. This finishes the proof
since [a, b] ⊂ J3.

Claim (6), follows from Corollary 4.3.3 above and claim (2)
of Proposition 4.3.2. In the same way claim (7), follows from
Corollary 4.3.3 above and claim (3) of Proposition 4.3.2. Claim
(8) follows from Corollary 4.3.3 above and claim (7) of Proposition
4.3.2.

Exercise 4.3.5. Let L be a Tonelli Lagarangian on the manifold
M . Suppose that u : U → R is a continuous function defined on
the open subset U ⊂ M , that γ : I → U is a continuous piecewise
C1 curve. Suppose that I =

⋃

n∈N
In, with In a subinterval I of I

on which γ is (u,L, c)-calibrated. (Do not assume that the family
In, n ∈ N is increasing.) Show that γ is (u,L, c)-calibrated on I.
[Indication: Reduce to the case I = [a, b] and each In compact.
Show, using part (5) of Proposition 4.3.4 above, that you can as-
sume that the In are pairwise disjoint. Call F the complement in
[a, b] of the union

⋃

n∈N
I̊n. Show that F is countable. Use Baire’s

Category Theorem to show that if F \ {a, b} is not empty then it
must has an isolated point.]

Let us now show that infinite calibrated curves can only exist
for the Ma né critical value c[0].
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Proposition 4.3.6. Suppose u : M → R is ≺ L+ c. If it admits
a (u,L, c)-calibrated curve γ : I → M , with I an infinite interval
then necessarily c is equal to the Ma né critical value c[0].

Proof. By the definition of the Ma né critical value, since u ≺ L+c
and u is defined on the whole of M , we have c ≥ c[0]. To prove
the converse inequality, we pick a continuous function u0 : M → R

with u0 ≺ L+ c[0]. For any a, b ∈ I with a ≤ b, we have

u(γ(b)) − u(γ(a)) =

∫ b

a
L(γ(s), γ̇(s)) ds + c(b− a)

u0(γ(b)) − u0(γ(a)) ≤

∫ b

a
L(γ(s), γ̇(s)) ds + c[0](b − a).

Subtracting the first equality from the second inequality, we get

u0(γ(b)) − u0(γ(b)) − u(γ(b)) + u(γ(a)) ≤ (c[0] − c)(b− a).

Since both u and u0 are continuous functions on the compact space
M , the constant

K = supx ∈M |u0(x)| + supx ∈M |u(x)|

is finite, and we obtain from the inequality above

−2K ≤ (c[0] − c)(b− a),

for all a, b ∈ I with a ≤ b. Since I is an infinite interval, we can
find sequences an, bn ∈ I with an < lbn such that bn − an → ∞,
as n → ∞. This yields c[0] − c ≥ −2L/(bn − an) → 0. Hence we
obtain c[0] ≥ c.

The following corollary is now a consequence of Definition
4.1.11 of a weak KAM solution and Proposition 4.3.6 above.

Corollary 4.3.7. If u : M → R is a negative (resp. positive) weak
KAM solution with the constant c, on the compact manifold M ,
then c is necessarily c is equal to the Ma né critical value c[0].

Theorem 4.3.8. Suppose that L is a Tonelli Lagrangian on the
manifold M . Let u : U → R be a function defined on the open
subset U ⊂ M . Assume that u ≺ L + c, where c ∈ R, and that
γ : [a, b] → M is a (u,L, c)-calibrated curve, with a < b, then we
have:
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(i) If for some t, the derivative of u at γ(t) exists then

dγ(t)u =
∂L

∂v
(γ(t), γ̇(t)) and H(γ(t), dγ(t)u) = c,

where H is the Hamiltonian associated to L.

(ii) For every t ∈]a, b[ the derivative of u at γ(t) exists.

Proof. We prove (i). We will assume t < b (for the case t = b
use a t′ < t in the argument). For t′ ∈ [a, b] satisfying t′ > t, the
calibration condition implies

u(γ(t′)) − u(γ(t)) =

∫ t′

t
L(γ(s), γ̇(s)) ds + c(t′ − t).

Dividing by t′ − t and letting t′ → t, we obtain

dγ(t)u(γ̇(t)) = L(γ(t), γ̇(s)) + c.

Combining with the Fenchel Inequality 1.3.1 we get

c = dγ(t)u(γ̇(t)) − L(γ(t), γ̇(s)) ≤ H(γ(t), dγ(t)u). (∗)

But by Proposition 4.2.2, we know that H(γ(t), dγ(t)u) ≤ c. This
yields equality in (∗). Therefore H(γ(t), dγ(t)u) = c. But also the
equality

dγ(t)u(γ̇(t)) − L(γ(t), γ̇(s)) = H(γ(t), dγ(t)u)

means that we have equality in the Fenchel inequality, therefore
we conclude

dγ(t)u =
∂L

∂v
(γ(t), γ̇(t))

To prove (ii), we choose a open C∞ chart ϕ : U ′ → R
k on M ,

such that ϕ(U ′) = R
k and x = γ(t) ∈ U ′ ⊂ U . We can find a′, b′

such that a ≤ a′ < t < b′ ≤ b and γ([a′, b′] ⊂ U . To simplify
notations, we identify U ′ and R

k via ϕ. For every y ∈ U ′ = R
k,

we define the curve γy : [a′, t] → U ′ by

γy(s) = γ(s) +
s− a′

t− a′
(y − x).
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We have γy(a
′) = γ(a′), and γy(t) = y, since x = γ(t). Moreover,

we also have γx = γ|[a′, t]. Since u ≺ L+ c, we obtain

u(y) ≤ u(γ(a′)) +

∫ t

a′

L(γy(s), γ̇y(s)) ds + c(t− a′),

with equality at x = γ(t) since γx = γ is (u,L, c)-calibrated. If we
define ψ+ : U ′ → R by

ψ+(y) = u(γ(a′)) +

∫ t

a′

L(γy(s), γ̇y(s)) ds + c(t− a′)

= u(γ(a′))+

∫ t

a′

L(γ(s) +
s− a′

t− a′
(y − x), γ̇(s) +

y − x

t− a′
) ds

+ c(t− a′),

we easily see that ψ+ is as smooth as L (note that γ is a minimizer,
and is therefore as smooth as L). Moreover we have u(y) ≤ ψ+(y),
with equality at x.

We now will find a function ψ− : U ′ → R satisfying ψ− ≤ u
with equality at x = γ(t). For this, given y ∈ U ′ = R

k we define
γ̃y : [t, b′] → U ′ by

γ̃y(s) = γ(s) +
b′ − s

b′ − t
(y − x).

Again we get γ̃y(b
′) = γ(b′), γ̃y(t) = y and γ̃x = γ|[t, b′]. Since

u ≺ L+ c, we obtain

u(γ(b′)) − u(y) ≤

∫ b′

t
L(γ̃y(s), ˙̃γy(s)) ds + c(b′ − t),

with equality at x since γ̃x = γ is (u,L, c)-calibrated. If we define
ψ− : U ′ → R by

ψ−(y) = u(γ(b′)) −

∫ b′

t
L(γ̃y(s), ˙̃γy(s)) ds − c(b′ − t)

= u(γ(b′))) −

∫ b′

t
L(γ(s) +

b′ − s

b′ − t
(y − x), γ̇(s) −

y − x

b′ − t
) ds

− c(b′ − t).
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Again we easily see that ψ− is as smooth as L. Moreover we have
u(y) ≥ ψ−(y), with equality at x.

Since ψ−(y) ≤ u(y) ≤ ψ+(y), with equality at 0, the C1 func-
tion ψ+ − ψ− is non negative and is equal to 0 at x therefore
its derivative at x is 0. Call p the common value dxψ+ = dxψ−.
By the definition of the derivative, using ψ−(x) = u(x) = ψ+(x),
we can write ψ±(y) = u(x) + p(y − x) + ‖y − x‖β±(y − x), with
limh→0 β±(h) = 0. The inequality ψ−(y) ≤ u(y) ≤ ψ+(y) now
gives

u(x) + p(y − x) + ‖y − x‖β−(y − x) ≤ u(y) ≤

≤ u(x) + p(y − x) + ‖y − x‖β+(y − x).

This obviously implies that p is the derivative of u at x = γ(t).

Another important property of calibrated curves and domi-
nated functions is given in the following theorem. We will call this
result the Lyapunov property for reasons that will become clear
later, see ????? below.

Theorem 4.3.9 (Lyapunov Property). Let L be a Tonelli Lag-
rangian on the manifold M . Suppose that γ : [a, b] → M is a
continuous piecewise C1 curve, and that u1, u2 are two real-valued
functions defined on a neighborhood of γ([a, b]). If, for some c ∈ R,
the curve γ is (u1, L, c)-calibrated and u2 ≺ L+ c on a neighbor-
hood of γ([a, b]), then the function t 7→ u2(γ(t)) − u1(γ(t)) is
non-increasing on [a, b].

Proof. Since γ is (u1, L, c)-calibrated, for t, t′ ∈ [a, b] with t ≤ t′

we have

u1(γ(t
′)) − u1(γ(t)) =

∫ t′

t
L(γ(s), γ̇(s)) ds + c(t′ − t).

Using that u2 ≺ L+ c on a neighborhood of γ([a, b]), we get

u2(γ(t
′)) − u2(γ(t)) ≤

∫ t′

t
L(γ(s), γ̇(s)) ds + c(t′ − t).

Comparing we obtain u2(γ(t
′)) − u2(γ(t)) ≤ u1(γ(t

′)) − u1(γ(t)),
therefore u2(γ(t

′)) − u1(γ(t
′)) ≤ u2(γ(t)) − u1(γ(t)).
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4.4 Minimal Action for a Given Time

As we said minimizers are the important object of the theory.
Therefore if we fix a pair of points x, y and a time t > 0, the
minimal action of a curve joining x to y in time t will enjoy some
special properties.

Definition 4.4.1 (Minimal Action). If L is a Tonelli Lagrangian
on the compact connected manifold M , for t > 0 fixed, we define
the function ht : M ×M → R by

ht(x, y) = inf
γ

∫ t

0
L(γ(s), γ̇(s)) ds,

where the infimum is taken over all the (continuous) piecewise C1

curves γ : [0, t] →M with γ(0) = x and γ(t) = y.
The quantity ht(x, y) is called the minimal action to go from

x to y in time t.

Note that ht is well-defined since we are assuming that M is
connected, therefore any pair of points in M can be joined by a
smooth path. Moreover, the function ht is finite valued since L is
bounded from below, by superlinearity and compactness of M .

Of course, in the definition of ht(x, y), we could have taken the
infimum on all absolute continuous paths. this would have note
changed the value of ht(x, y), since minimizers for a given posi-
tive time between two points do always exist by Tonelli’s theorem
3.3.4 and are in fact as smooth as the Lagragian by the regularity
theorem 3.7.1.

Here are some of the important properties of ht.

Proposition 4.4.2 (Properties of ht). The properties of ht are

(1) For each x, y ∈M , and each t > 0, we have

ht(x, y) ≥ t inf
TM

L.

(2) For each x, z ∈M and each t, t′ > 0, we have

ht+t′(x, z) = inf
y∈M

ht(x, y) + ht′(y, z).
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(3) If u : M → R is a function defined on the whole of M , then
u ≺ L+ c if and only if

∀x, y ∈M,∀t > 0, u(y) − u(x) ≤ ht(x, y) + ct.

(4) A continuous piecewise C1 curve γ : [a, b] →M , with a < b,
is minimizing if and only if

hb−a(γ(a), γ(b)) =

∫ b

a
L(γ(s), γ̇(s)) ds.

(5) For each t > 0 and each x, y ∈ M , there exists an extremal
curve γ : [0, t] → M with γ(0) = x, γ(t) = y and ht(x, y) =
∫ t
0 L(γ(s), γ̇(s)) ds.

Proof. Property (1) is obvious since for any continuous piecewise
C1 curve γ : [0, t] →M , with t > 0, we have

∫ t

0
L(γ(s), γ̇(s)) ds ≥

∫ t

0
inf
TM

Lds = t inf
TM

L.

To prove property (2), let us consider two continuous piecewise
linear curves γ1 : [0, t] → M , with γ1(0) = x, γ1(t) = y, and
γ2 : [0, t′] → M , with γ2(0) = y, γ2(t

′) = y. We can define the
curve γ3 = γ1 ∗ γ2 : [0, t+ t′] →M by

γ3(s) = γ1(s), for s ∈ [0, t]

= γ2(s− t), for s ∈ [t, t+ t′].

The curve γ3 is continuous piecewise C1, with γ3(0) = x and
γ3(t+ t

′) = z. Moreover, its action L(γ3) is equal to L(γ1)+L(γ2).
Therefore, we have

ht+t′(x, z) ≤ L(γ1) + L(γ2).

Taking the infimum over all possible γ1 and γ2 gives

ht+t′(x, z) ≤ ht(x, y) + ht′(y, z).

Taking now the infimum over y ∈M , we obtain

ht+t′(x, z) ≤ inf
y∈M

ht(x, y) + ht′(y, z).
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We now prove that the inequality above is an equality. Given ǫ >
0, we can find a continuous piecewise C1 curve γ : [0, t+ t′] →M ,
with γ(0) = x, γ(t+ t′) = z, and

∫ t+t′

0
L(γ(s), γ̇(s)) ds ≤ ht+t′(x, z) + ǫ.

Using the curve γ|[0, t], we obtain that

ht(x, γ(t)) ≤

∫ t

0
L(γ(s), γ̇(s)) ds.

Using a reparametrization of γ|[t, t+ t′] by [0, t′], we obtain

ht′(γ(t), z) ≤

∫ t+t′

t
L(γ(s), γ̇(s)) ds.

Adding these inequalities, we get

ht(x, γ(t)) + ht′(γ(t), z) ≤

∫ t+t′

0
L(γ(s), γ̇(s)) ds ≤ ht+t′(x, z) + ǫ.

Therefore infy∈M ht(x, y) + ht′(y, z) ≤ ht+t′(x, z) + ǫ, for every
ǫ > 0. We conclude by letting ǫ→ 0.

For property (3), we observe that if γ : [a, b] → M is a con-
tinuous piecewise C1 curve, then the reparametrized curve γ̃ :
[0, b− a] →M defined by

γ̃(s) = γ(a+ s),

has the same endpoints as γ, and also the same action, since L is
time-independent. In particular we could have defined ht by

ht(x, y) = inf
γ

∫ b

a
L(γ(s), γ̇(s)) ds,

where the infimum is taken over all the continuous piecewise C1

curves γ : [a, b] →M with γ(a) = x, γ(b) = y, and b−a = t. With
this observation, we get that for a given t > 0, the inequality

u(y) − u(x) ≤ ht(x, y) + ct
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is equivalent to

u(γ(b)) − u(γ(a)) ≤

∫ b

a
L(γ(s), γ̇(s)) ds,

for every continuous piecewise C1 curves γ : [a, b] → M with
γ(a) = x, γ(b) = y, and b− a = t.

For property (4), we observe that, by definition of ht, we have

ht(γ(0), γ(t)) =

∫ t

0
L(γ(s), γ̇(s)) ds,

for a curve γ : [0, t] →M if and only if γ is a minimizer. It remains
to observe as indicated above that we can reparametrize any curve
by an interval starting at 0 without changing neither its endpoints
nor its action.

Property (5) results from Tonelli’s Theorem 3.3.1.

It is probably difficult to find out when the next theorem ap-
peared, in some of its forms, for the first time in the literature. It
has certainly been known for some time now, at least in its equiv-
alent form given as Lemma 4.6.3 below, see for example [Fle69,
Theorem1, page 518]. It has of course been, in a form or another,
been rediscovered by several people, including the author himself,
for whom it started weak KAM Theory since it has as an “obvi-
ous” consequence the existence of a fixed point (up to a constant)
for the Lax–Oleinik semi-group, see section 4 below.

Theorem 4.4.3 (Fleming’s Lemma). For each t0 > 0, there exists
a constant κt0 ∈ [0,+∞[ such that, for each t ≥ t0 the function
ht : M ×M → R is Lipschitzian with a Lipschitz constant ≤ κt0 .

Before proving the theorem, we need to prove some preliminary
results.

Proposition 4.4.4. Let L be a Tonelli Lagrangian on the compact
connected manifold M . For every given t > 0, there exists a
constant Ct < +∞, such that, for each x, y ∈ M , we can find a
C∞ curve γ : [0, t] →M with γ(0) = x, γ(t) = y and

L(γ) =

∫ t

0
L(γ(s), γ̇(s)) ds ≤ Ct.
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Proof. Choose a Riemannian metric g on M . By the compactness
of M , we can find a geodesic (for the metric g) between x and y
and whose length is d(x, y). Let us parametrize this geodesic by
the interval [0, t] with a speed of constant norm and denote by
γ : [0, t] → M this parametrization, with γ(0) = x, γ(t) = y. As
the length of this curve is d(x, y), we find that

∀s ∈ [0, t], ‖γ̇(s)‖γ(s) =
d(x, y)

t
.

Since the manifold M is compact, the diameter diam(M) of M for
the metric d is finite, consequently, the set

At = {(x, v) ∈ TM | ‖v‖x ≤
diam(M)

t
}

is compact. We have (γ(s), γ̇(s)) ∈ At, for all s ∈ [0, t]. By
compactness of At, we can find a constant C̃t < +∞ such that

∀(x, v) ∈ At, L(x, v) ≤ C̃t.

If we set Ct = tC̃t, we do indeed have L(γ) ≤ Ct.

Corollary 4.4.5 (A Priori Compactness). Let L be a Tonelli Lag-
rangian on the compact manifold M . If t > 0 is fixed, there exists
a compact subset Kt ⊂ TM such that for every minimizing ex-
tremal curve γ : [a, b] →M , with b− a ≥ t, we have

∀s ∈ [a, b], (γ(s), γ̇(s)) ∈ Kt.

Proof. Let us recall that we are assuming in this chapter that M
is compact and connected. We first observe that it is enough to
show the corollary if [a, b] = [0, t]. Indeed, if t0 ∈ [a, b], we can
find an interval of the form [c, c + t], with t0 ∈ [c, c + t] ⊂ [a, b].
The curve γc : [0, t] → M,s 7→ γ(c + s) satisfies the assumptions
of the corollary with [0, t] in place of [a, b].

Thus let us give the proof of the corollary with [a, b] = [0, t].
With the notations of the previous Proposition 4.4.4, we necessar-
ily have

L(γ) =

∫ t

0
L(γ(s), γ̇(s)) ds ≤ Ct.
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Since s 7→ L(γ(s), γ̇(s)) is continuous on [0, t], by the Mean Value
Theorem, we can find s0 ∈ [0, t] such that

L(γ(s0), γ̇(s0)) ≤
Ct

t
. (*)

The set B = {(x, v) ∈ TM | L(x, v) ≤ Ct

t } is a compact subset
of TM . By continuity of the flow φt, the set Kt =

⋃

|s|≤t φs(B)
is also compact subset of TM . As γ is an extremal curve, the
inequality (∗) shows that

∀s ∈ [0, t], (γ(s), γ̇(s)) ∈ φs−s0(B) ⊂ Kt.

Proof of Theorem 4.4.3. We fix some t0 > 0, and we will study ht

only for t ≥ t0.

Let us consider B̄(0, 3) the closed ball of center 0 and radius
3 in the Euclidean space R

k, where k is the dimension of M . By
compactness ofM , we can find a finite number of coordinate charts
ϕi : R

k → M, i = 1, . . . , p, such that M =
⋃p

i=1 ϕi(B̊(0, 1)). We
denote by η > 0, a constant such that

∀i = 1, . . . , p,∀x, x′ ∈M, d(x, x′) ≤ η and x ∈ ϕi

(
B̄(0, 1)

)
⇒

x′ ∈ ϕi

(
B̊(0, 2)

)
and ‖ϕ−1

i (x′) − ϕ−1
i (x)‖ ≤ 1,

where the norm ‖ · ‖ is the Euclidean norm. Let us denote by
Kt0 the compact set obtained from corollary 4.4.5. We can find a
constant A < +∞ such that

∀(x, v) ∈ Kt0 , ‖v‖x ≤ A.

In the remaining part of the proof, we set

ǫ = min
(
t/2,

η

A

)
.

In the same way by the compactness of Kt0 , we can find a constant
B < +∞ such that

∀x ∈ B̄(0, 3),∀v ∈ R
k,∀i = 1, . . . , p, Tϕi(x, v) ∈ Kt0 ⇒ ‖v‖ ≤ B.
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Consider two points x, y ∈ M , and suppose that i, j ∈ {1, . . . , p}
are such that x ∈ ϕi

(
B̊(0, 1)

)
and y ∈ ϕj

(
B̊(0, 1)

)
. For a fixed

t ≥ t0, we can find a minimizing extremal curve γ : [0, t] → M
such that γ(0) = x, γ(t) = y and

ht(x, y) =

∫ t

0
L(γ(s), γ̇(s)) ds. (*)

By the a priori compactness given by Corollary 4.4.5, since t ≥ t0,
we have (γ(s), γ̇(s)) ∈ Kt0 , for each s ∈ [0, t]. Consequently,
by the choice of A, we obtain d(γ(s), γ(s′)) ≤ A|s − s′|, for all
s, s′ ∈ [0, t]. In particular, since x = γ(0) ∈ ϕi

(
B̊(0, 1)

)
and

y = γ(t) ∈ ϕj

(
B̊(0, 1)

)
by the choice of ǫ, we find that

γ([0, ǫ]) ⊂ ϕi

(
B̊(0, 2)

)

γ([t− ǫ, t]) ⊂ ϕj

(
B̊(0, 2)

)
.

We can then define the two curves γ̃0 : [0, ǫ] → B̊(0, 2) and γ̃1 :
[t − ǫ, t] → B̊(0, 2) by ϕi(γ̃

0(s)) = γ(s) and ϕj(γ̃
1(s)) = γ(s) .

If d(x, x′) ≤ η and d(y, y′) ≤ η, there are unique x̃′, ỹ′ ∈ B̊(0, 2)
such that ϕi(x̃

′) = x′ and ϕj(ỹ
′) = y′. By the definition of η, we

also have ‖x̃′ − x̃‖ ≤ 1 and ‖ỹ′ − ỹ‖ ≤ 1. Let us define curves
γ̃0

x′,y′ : [0, ǫ] → B̊(0, 3) and γ̃1
x′,y′ : [t− ǫ, t] → B̊(0, 3) by

γ̃0
x′,y′(s) =

ǫ− s

ǫ
(x̃′ − x̃) + γ̃(s), for s ∈ 0, ǫ],

γ̃1
x′,y′(s) =

s− (t− ǫ)

ǫ
(ỹ′ − ỹ) + γ̃(s), for s ∈ [t− ǫ, t].

The curve γ̃0
x′,y′ |[0, ǫ] connects the point x̃′ to the point γ̃(ǫ), and

the curve γ̃1
x′,y′ |[t − ǫ, t] connects the point γ̃(t − ǫ) to the point

ỹ′. Since ǫ ≤ T/2 we can, then, define the curve γx′,y′ : [0, t] →
M by γx′,y′ = γ on [ǫ, t − ǫ], γx′,y′ = ϕi ◦ γ̃

0
x,′y′ on [0, ǫ], and

γx′,y′ = ϕj ◦ γ̃
1
x,′y′ on [t− ǫ, t]. The curve γx′,y′ is continuous on the

interval [0, t], moreover, it of class C1 on each of each the intervals
[0, ǫ], [ǫ, t−ǫ] and [t−ǫ, t]. We of course have γx,y = γ. As γx′,y′(s)
is equal to x′, for s = 0, and to y′, for s = t, we have

ht(x
′, y′) ≤

∫ t

0
L(γx′,y′(s), γ̇x′,y′(s)) ds.
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Subtracting the equality (∗) above from this inequality and using
the fact that γx′,y′ = γ on [ǫ, t− ǫ], we find

ht(x
′, y′) − ht(x, y) ≤

∫ ǫ

0
L(γx′,y′(s), γ̇x′,y′(s)) ds −

∫ ǫ

0
L(γ(s), γ̇(s)) ds

+

∫ t

t−ǫ
L(γx′,y′(s), γ̇x′,y′(s)) ds −

∫ t

t−ǫ
L(γ(s), γ̇(s)) ds.

We will use the coordinate charts ϕi and ϕj to estimate the right-
hand side of this inequality. For that, it is convenient, for ℓ =
1, . . . , p, to consider the Lagrangian L̃ℓ : B̄(0, 3)×R

k → R defined
by

L̃ℓ(z,w) = L
(
ϕℓ(z),Dϕℓ(w)[w]

)
.

This Lagrangian L̃ℓ is of class Cr on B̄(0, 3) × R
k. Using these

Lagrangian for ℓ = i, j, we have

ht(x
′, y′) − ht(x, y) ≤

∫ ǫ

0
L̃i(γ̃

0
x′,y′(s), ˙̃γ0

x′,y′(s)) ds −

∫ ǫ

0
L̃i(γ̃

0(s), ˙̃γ0(s)) ds

+

∫ t

t−ǫ
L̃(γ̃1

x′,y′(s), ˙̃γ1
x′,y′(s)) ds −

∫ t

t−ǫ
L(γ̃1(s), ˙̃γ1(s)) ds. (*)

By the choice of B, we have ‖ ˙̃γ(s)‖ ≤ B, for each s ∈ [0, ǫ]. By
the definition of γ̃0

x′,y′ and the fact that ‖x̃′ − x̃‖ ≤ 1, we obtain

∀s ∈ [0, ǫ], ‖ ˙̃γ
0
x′,y′(s)‖ ≤

‖x̃′ − x̃‖

ǫ
+B

≤ B + ǫ−1.

Since L̃i is C1 and the set

EB,ǫ = {(z, v) ∈ B̄(0, 3) × R
k | ‖v‖ ≤ B + ǫ−1}

is compact, we see that there exists a constant Ci, which depends
only on the restriction of the derivative of L̃i on this set EB,ǫ, such
that

∀(z, v), (z′, v′) ∈ EB,ǫ,

|L̃i(z, v) − L̃i(z
′, v′)| ≤ Ci max(‖z − z′‖, ‖v − v′‖).
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Since the two points (γ̃0
x′,y′(s), ˙̃γ

0
x′,y′(s)), (γ̃0(s), ˙̃γ

0
(s)) are in EB,ǫ,

and γ̃0
x′,y′(s) − γ̃0(s) = ǫ−s

ǫ (x̃′ − x̃), we find

|L̃i(γ̃
0
x′,y′(s), ˙̃γ0

x′,y′(s)) − L̃(γ̃0(s), ˙̃γ
0
(s))|

≤ Ci max
[
‖
ǫ− s

ǫ
(ỹ − x̃)‖, ‖

1

ǫ
(ỹ − x̃)‖

]

≤ Ci max(1,
1

ǫ
)‖ỹ − x̃‖.

By integration on the interval [0, ǫ], it follows that

∫ ǫ

0
L̃i(γ̃

0
x′,y′(s), ˙̃γ

0
x′,y′(s)) ds −

∫ ǫ

0
L̃i(γ̃

0(s), ˙̃0γ(s)) ds

≤ Ci max(ǫ, 1)‖ỹ − x̃‖.

Since ϕi is a diffeomorphism of class C∞, its inverse is Lipschitzian
on the compact subset ϕi

(
B̄(0, 3)

)
. We then see that there exists

a constant C̃i, independent of x, x′, y, y′ and t ≥ t0, and such that

x ∈ ϕi

(
B̊(0, 1)

)
and d(x′, x) ≤ η ⇒

∫ ǫ

0
L̃i(γ̃

0
x′,y′(s), ˙̃γ

0
x′,y′(s)) ds −

∫ ǫ

0
L̃i(γ̃

0(s), ˙̃0γ(s)) ds ≤ C̃id(x
′, x).

In the same way we can prove the existence of a constant C̃ ′
j ,

independent of x, x′, y, y′ and t ≥ t0, and such that

y ∈ ϕj

(
B̊(0, 1)

)
and d(y′, y) ≤ η ⇒

∫ t

t−ǫ
L̃j(γ̃

1
x′,y′(s), ˙̃γ

1
x′,y′(s)) ds −

∫ t

t−ǫ
L̃j(γ̃

1(s), ˙̃1γ(s)) ds ≤ C̃ ′
jd(y

′, y).

Therefore by the inequality (*) above, we obtain

x ∈ ϕi

(
B̊(0, 1)

)
, y ∈ ϕj

(
B̊(0, 1)

)
, d(x′, x) ≤ η and d(y′, y) ≤ η ⇒

ht(x
′, y′) − ht(x, y) ≤ C̃id(x

′, x) + C̃ ′
jd(y

′, y).

Setting κt0 = maxp
i=1 max(C̃i, C̃

′
i), we find that we have

d(x′, x) ≤ η, d(y′, y) ≤ η and t ≥ t0 ⇒

ht(x
′, y′) − ht(x, y) ≤ κt0 [d(x

′, x) + d(y′, y)].
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If x, x′, y, y′ are arbitrary points, and γ0 : [0, 1] → M,γ1 : [0, 1] →
M are geodesics of length respectively d(x, y) and d(x′, y′), param-
eterized proportionally arclength and connecting respectively x to
y and x′ to y′ , we can find a finite sequence t0 = 0 ≤ t1 ≤ · · · ≤
tℓ = 1 such that d(γ0(ti+1), γ

0(ti)) ≤ η and d(γ1(ti+1), γ
1(ti)) ≤ η.

Applying what we did above, we obtain

∀i ∈ {0, 1, . . . , ℓ− 1}, ht(γ
0(ti+1), γ

1(ti+1)) − ht(γ
0(ti), γ

1(ti))

≤ κt0 [d(γ
0(ti+1), γ

0(ti)) + d(γ1(ti+1), γ
1(ti))].

Adding these inequalities, we find

ht(x
′, y′) − ht(x, y) ≤ κt0 [d(x

′, x) + d(y′y)].

We finish the proof by exchanging the roles of (x, y) and (x′, y′)

The following theorem is a consequence of Corollary 4.4.5 and

Theorem 4.4.6. Let L be a Cr Tonelli Lagrangian, with r ≥ 2, on
the compact connected manifold M . Given a, b ∈ R with a < b,
call Ma,b the set of curves γ : [a, b] → M which are minimizers
for the class of continuous piecewise C1 curves. Then Ma,b is a
compact subset of Cr([a, b],M) for the Cr topology.

Moreover, For every t0 ∈ [a, b] the map Ma,b → TM, γ 7→
(γ(t0), γ̇(t0)) is a homeomorphism on its image (which is therefore
a compact subset of TM .)

4.5 The Lax-Oleinik Semi-group.

We call F(M, [−∞,+∞]) the set of arbitrary functions from the
manifold M to the set [−∞,+∞] of extended real numbers. We
will also use the notation F(M,R) for the set of arbitrary functions
M :→ R.

4.6 The Lax-Oleinik semi-group

We introduce a semi-group of non-linear operators (T−
t )t≥0 from

F(M, [−∞,+∞]) into itself. This semigroup is well-known in PDE
and in Calculus of Variations, it is called the Lax-Oleinik semi-
group. Again it has been rediscovered many times in different
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forms; For the author, it came as a natural by-product of the
proof of the hamilton-Jacobi Theorem for C1 functions, see the
proof of Theorem 4.1.1 and the discussion in section 1.

Definition 4.6.1 (Lax-Oleinik semi-group). Fix u ∈ F0(M, [−∞,+∞])
and t > 0. The function T−

t u : M → [−∞,+∞] is defined at
x ∈M by

T−
t u(x) = inf

γ
{u(γ(0)) +

∫ t

0
L(γ(s), γ̇(s)) ds},

where the infimum is taken over all the absolutely continuous
curves γ : [0, t] → M such that γ(t) = x. By the definition of
the minimal action ht, see Definition 4.4.1, for t > 0, we have

T−
t u(x) = inf

y∈M
u(y) + ht(y, x).

We will also set T−
0 u = u. The family of maps T−

t : F(M, [−∞,+∞]) →
F(M, [−∞,+∞]), t ∈ [0,+∞[ is called the Lax-Oleinik semi-group.

Here are some properties of T−
t on F(M, [−∞,+∞]).

Proposition 4.6.2. Consider u ∈ F(M, [−∞,+∞]).

(1) For x ∈M and t > 0, we have

inf
M
u+ t inf

TM
L ≤ Ttu(x) ≤ inf

M
u+ max

M×M
ht.

Since infTM L > −∞ by the superlinearity of L and ht is contin-
uous on the compact space M ×M , we obtain that the following
properties are equivalent:

(a) there exists a t > 0 and and an x ∈ M such that T−
t u(x) is

finite;

(b) we have infM u ∈] −∞,+∞[;

(c) for every t > 0, the function T−
t u is finite, valued.

(2) (Semigroup Property) We have T−
t+t′ = T−

t ◦ T−
t′ , for

each t, t′ ≤ 0.
(3) for every c ∈ R, we have T−

t (c+ u) = c+ T−
t u.
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(4) (Inf Commutativity) If ui, i ∈ I is a family of functions
in u ∈ F(M, [−∞,+∞]), we have

T−
t (inf

i∈I
ui) = inf

i∈I
T−

t (ui).

(5) (Monotony) For each u, v ∈ F(M, [−∞,+∞])) and all
t > 0, we have

u ≤ v ⇒ T−
t u ≤ T−

t v.

(6) If c ∈ R, the function u ∈ F(M, [−∞,+∞]) satisfies u ≤
T−

t u+ ct if and only if one of the following three things happens:

(i) the function u is identically −∞;

(ii) the function u is identically +∞;

(iii) the function u is finite everywhere and u ≺ L+ c.

(7) Suppose that c ∈ R, and u : M → R are such that u ≺
L+ c, then, for every t ≥ 0, the function T−

t u is finite valued, and
T−

t u ≺ L+ c.

Proof. To prove assertion (1), we juste notice that T−
t u(x) =

infy∈M u(y) + ht(y, x) ≤ infy∈M u(y) + maxM×M ht = infM u +
maxM×M ht. Moreover by part (1) of Proposition 5.3.2, we have
ht(y, x) ≥ t infTM L, from which it follows that

T−
t u(x) ≥ inf

y∈M
u(y) + t inf

TM
L

= t inf
TM

L+ inf
M
u.

The rest of assertion (1) follows easily from this double inequality.

Assertion (2) follows from part (2) of Proposition 5.3.2, which
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states that ht′+t(y, x) = infz∈M ht′(y, z) + ht(z, x). Therefore

T−
t+t′u(x) = inf

y∈M
u(y) + ht′+t(x, y)

= inf
y∈M

[u(y) + inf
z∈M

ht′y, z) + ht(z, x)]

= inf
y∈M

inf
z∈M

[u(y) + ht′(y, z) + ht(z, x)]

= inf
z∈M

inf
y∈M

[u(y) + ht′(y, z) + ht(z, x)]

= inf
z∈M

[ inf
y∈M

[u(y) + ht′(y, z)] + ht(z, x)

= inf
z∈M

T−
t′ u(z) + ht(z, x)

= T−
t [T−

t′ u].

Assertion (3) is obvious from the definition of T−
t .

For assertion (4), we notice that

T−
t (inf

i∈I
ui)(x) = inf

y∈M
inf
i∈I

ui(y) + ht(y, x)

= inf
i∈I

inf
y∈M

ui(y) + ht(y, x)

= inf
i∈I

T−
t (ui)(x).

Assertion (5) is also an immediate consequence of the def-
inition of T−

t . It also easily follows from assertion (4), since
we have u = inf(u, v), which yields T−

t (u) = T−
t (inf(u, v)) =

inf(T−
t (u), T−

t (v)) ≤ T−
t (v).

For assertion (6), assume that u ≤ T−
t u + ct for every t. Ob-

viously, by assertion (1), if infM u = −∞, then T−
t u ≡ −∞ hence

u ≤ T−
t u+ ct is also ≡ −∞. If infM u = +∞, of course u ≡ +∞.

In the remaining case infM u ∈] − ∞,+∞[, we obtain from (1)
above that T−

t u is finite everywhere therefore u, which satisfies
u ≤ T−

t u+ct and u ≥ infM u > −∞, is also finite valued. The con-
dition u ≤ T−

t u+ct yields u(x) ≤ infy∈M u(y)+ht(y, x)+ct. There-
fore u(x) ≤ u(y)+ht(y, x)+ct, for every x, y ∈M and t > 0. Since
u is finite valued this is equivalent to u(x)−u(y) ≤ ht(y, x)+ct, for
every x, y ∈ M and t > 0. By Assertion (3) of Proposition 5.3.2
this is equivalent to u ≺ L+ c. Note that reversing the reasoning
just done we can show that if u is finite valued and u ≺ L + c
then u ≤ T−

t u + ct, for every t ≥ 0. Moreover, if u ≡ −∞ (resp.
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u ≡ +∞) we have T−
t (u) ≡ −∞ (resp. T−

t (u) ≡ +∞) which of
course yields u = T−

t u+ ct.
For assertion (7), we first observe that by part (iii) of Propo-

sition 4.2.1, then function u is continuous (it is even Lipschitz)
on the compact manifold M . Therefore it is bounded from below
and by Assertion (1, the function T−

t u is finite everywhere. By
Assertion (6), we have

u ≤ T−
t′ u+ ct′,

for every t′ ≥ 0. Using Assertions (2), (3), and (5), we get

T−
t u ≤ T−

t [T−
t′ u+ ct′]

= T−
t [T−

t′ u] + ct′

= T−
t+t′u = T−

t′ [T−
t u] + ct′

Therefore T−
t u ≤ T−

t′ [T−
t u] + ct′, for every t′ ≥ 0. Since T−

t u is
finite, from Assertion (6), we get T−

t u ≺ L+ c.

Let us now introduce the space B(M,→ R) of bounded func-
tions u : M → R. As usual, we endow this space of the norm ‖·‖
defined by

‖u‖∞ = sup
x∈M

|u(x)‖.

By assertion (1) of Proposition 4.6.2, if u ∈ F(M,R) satisfies
infM u > −∞, then T−

t u ∈ B(M,R). Fleming’s Lemma 4.4.3
yields the following much stronger property on the Lax-Oleinik
semi-group.

Lemma 4.6.3. For each t0 > 0, there exists a constant κt0 such
that for every u ∈ F̃(M,R) with infM u > −∞, and every t ≥ t0
the functionT−

t u : M → R is κt0-Lipschitzian.
In particular for every t > 0, we have T−

t (B(M,R) ⊂ C0(M,R).

Proof. By Fleming’s Lemma 4.4.3, we can find a constant κt0 such
that for every t ≥ t0, the function ht : M ×M : toR is Lipschitz
with Lipschitz constant κt0 . If follows that for any u inC0(M,R)
and any t ≥ t0, the family of function u(y)+h(y, ·), y ∈M is equi-
Lipschitzian with Lipschitz constant κt0 . Since, by the condition
infM u > −∞, its infimum T−

t u(x) = infy∈M u(y)+h(y, x) is finite
everywhere, it is also Lipschitz with Lipschitz constant κt0 .
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Before giving further properties of the semi-group T−
t , we recall

the following well-known definition

Definition 4.6.4 (Non-expansive Map). A map ϕ : X → Y ,
between the metric spaces X and Y , is said to be non-expansive
if it is Lipschitzian with a Lipschitz constant ≤ 1.

Proposition 4.6.5 (Non-expansiveness of the Lax Oleinik semi–
group). The maps T−

t : are non-expansive for the norm ‖·‖∞, i.e.

∀u, v ∈ B(M,R),∀t ≥ 0, ‖T−
t u− T−

t v‖∞ ≤ ‖u− v‖∞.

Proof. If u, v ∈ B(M,R), we have

−‖u− v‖∞ + v ≤ u ≤ ‖u− v‖∞ + v.

By parts (5) and (3) of Proposition 4.6.2, we get

−‖u− v‖∞ + T−
t v ≤ T−

t u ≤ ‖u− v‖∞ + T−
t v.

This clearly implies ‖T−
t u− T−

t v‖∞ ≤ ‖u− v‖∞.

We now turn to the properties of the semi-group on the space
C0(M,R) of continuous functions, endowed with the topology of
uniform convergence, i.e. the topology induced by the norm ‖·‖.

Proposition 4.6.6. The semi-group T−
t sends C0(M,R) to itself.

It satisfies the following properties:
(1) For each u ∈ C0(M,R), we have limt→0 T

−
t u = u.

(2) For each u ∈ C0(M,R), the map t 7→ T−
t u is uniformly

continuous.

(3) For each u ∈ C0(M,R), the function (t, x) 7→ T−
t u(x) is con-

tinuous on [0,+∞[×M and locally Lipschitz on ]0,+∞[×M . In
fact, for each t0 > 0, the family of functions (t, x) 7→ T−

t u(x), u ∈
C0(M,R), is equi-Lipschitzian on [t0,+∞[×M .

(4) For each u ∈ C0(M,R), each x ∈ M , and each t > 0 we
can find a a continuous piecewise C1 curve γx,t : [0, t] → M with
γx,t(t) = x and

T−
t (x) = u(γx,t(0))+ht(γx,t(0), x)) = u(γx,t(0))+

∫ t

0
L(γx,t(s), γ̇x,t(s)) ds.
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Proof. As the C1 maps form a dense subset of C0(M,R) in the
topology of uniform convergence, it is not difficult to see, using
Proposition 4.6.5 above, that it is enough to show property (1)
when u is Lipschitz. We denote by K the Lipschitz constant of u.
By the compactness of M and the superlinearity of L, there is a
constant CK such that

∀(x, v) ∈ TM, L(x, v) ≥ K‖v‖x + CK .

It follows that for every curve γ : [0, t] →M , we have

∫ t

0
L(γ(s), γ̇(s)) ds ≥ Kd(γ(0), γ(t)) + CKt.

Since the Lipschitz constant of u is K, we conclude that

∫ t

0
L(γ(s), γ̇(s)) ds + u(γ(0)) ≥ u(γ(t)) + CKt,

which gives
T−

t u(x) ≥ u(x) + CKt.

Moreover, using the constant curve γx : [0, t] → M,s 7→ x, we
obtain

T−
t u(x) ≤ u(x) + L(x, 0)t.

Finally, if we set A0 = maxx∈M L(x, 0), we have obtained

‖T−
t u− u‖∞ ≤ tmax(CK A0),

which does tend to 0, when t tends to 0.
To show (2), we notice that by the semi-group property of T−

t ,
see part (2) of Proposition 4.6.2, we have

‖T−
t′ u− T−

t u‖∞ ≤ ‖T−
|t′−t|u− u‖∞,

and we apply (1) above.
To prove (3), we remark that the continuity of (t, x) 7→ T−

t u(x)
follows from (1) and the fact that T−

t u is continuous for ever t ≥ 0.
To prove the equi-Lipschitzianity, we fix t0 > 0. By Lemma 4.6.3,
we know that there exists a finite constant K(t0) such that T−

t u is
Lipschitz with Lipschitz constant ≤ K(t0), for each u ∈ C0(M,R)
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and each t ≥ t0. It follows from the semi-group property and the
proof of (1) that

‖T−
t′ u− T−

t u‖∞ ≤ (t′ − t)max(CK(t0), A0),

for all t′ ≥ t ≥ t0. It is then easy to check that (t, x) 7→ T−
t u(x) is

Lipschitz on [t0,+∞[×M , with Lipschitz constant ≤ max(CK(t0), A0)+
K(t0), for anyone of the standard metrics on the product R ×M .
To prove (4), we recall that T−

t (x) = infy∈M u(y) + ht(y, x). since
the function y 7→ u(y)+ht(y, x) is continuous on the compact space
M , we can find yx ∈ M such that T−

t (x) = u(yx) + ht(yx, x). We
can apply part (5) of Proposition 5.3.2 to find a continuous piece-
wise C1 curve γx,t : [0, t] → M with γx,t(0) = yx, γx,t(t) = x and

ht(yx, x) =
∫ t
0 L(γx,t(s), γ̇x,t(s)) ds. Therefore T−

t (x) = u(yx) +

ht(yx, x)) = u(yx) +
∫ t
0 L(γx,t(s), γ̇x,t(s)) ds.

We now give the connection of the semi-group T−
t with weal

KAM solutions of the negative type.

Proposition 4.6.7. Suppose that u : M → R s a function and
c ∈ R. We have T−

t u+ ct = u, for each t ∈ [0,+∞[, if and only if
u is a negative weak KAM solution, i.e.we have

(i) u ≺ L+ c;

(ii) for each x ∈M , there exists a (u,L, c)-calibrated curve γx
− :

] −∞, 0] →M such that γx
−(0) = x.

Proof. We suppose that T−
t u + ct = u, for each t ∈ [0,+∞[. In

particular, we have By part (6) of Proposition 4.6.2 above, since u
is finite-valued, we obtain u ≺ L+c. In particular, the function u is
continuous. It remains to show the existence of γx

− : ]−∞, 0] →M ,
for a given x ∈ M . We already know by part (4) of Proposition
4.6.6 that, for each t > 0, there exists a continuous piecewise C1

curve γt : [0, t] →M , with γt(t) = x and

u−(x)−ct = Ttu−(x) = u−(γt(0))+ht(γt(0), γt(t)) = u−(γt(0))+

∫ t

0
L(γt(s), γ̇t(s)) ds.

We set γ̄t(s) = γt(s+ t), this curve is parametrized by the interval
[−t, 0], is equal to x at 0, and satisfies

u−(γ̄t(0))−u−(γ̄t(−t)) = ht(γ̄t(−t), γ̄t(0))+ct

∫ 0

−t
L(γ̄t(s), ˙̄γt(s)) ds+ct.
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It follows from Proposition ?? above that γ̄t is (u,L, c)-calibrated.
In particular, the curve γ̄t, and we have

∀t′ ∈ [−t, 0], u−(x)−u−(γ̄t(t
′)) = −ct′+

∫ 0

t′
L(γ̄t(s), ˙̄γt(s)) ds. (*)

As the γ̄t are minimizing extremal curves, by the a priori com-
pactness given by corollary 4.4.5, there exists a compact subset
K1 ⊂ TM , such that

∀t ≥ 1,∀s ∈ [−t, 0], (γ̄t(s), ˙̄γt(s)) ∈ K1.

Since the γ̄t are extremal curves, we have (γ̄t(s), ˙̄γt(s)) = φs(γ̄t(0), ˙̄γt(0)).
The points (γ̄t(0), ˙̄γt(0)) are all in the compact subset K1, we can
find a sequence tn ր +∞ such that the sequence (γ̄tn(0), ˙̄γtn (0)) =
(x, ˙̄γtn(0)) tends to (x, v∞), when n → +∞. The negative orbit
φs(x, v∞), s ≤ 0 is of the form (γx

−(s), γ̇x
−(s)), where γx

− :]−∞, 0] →
M is an extremal curve with γx(0) = x. If t′ ∈]−∞, 0] is fixed, for n
large enough, the function s 7→ (γ̄tn(s), ˙̄γtn(s)) = φs(γ̄tn(0), ˙̄γtn (0))
is defined on [t′, 0], and, by continuity of the Euler-Lagrange flow,
this sequence converges uniformly on the compact interval [t′, 0]
to the map s 7→ φs(x, v∞) = (γx(s), γ̇x(s)). We can then pass to
the limit in the equality (∗) to obtain

u−(x) − u−(γ−(t′)) = −ct′ +

∫ 0

t′
L(γx

−(s), γ̇x
−(s)) ds.

Conversely, let us suppose that u ≺ L+c and that, for each x ∈M ,
there exists a curve γx

− : ]−∞, 0] →M , with γx
−(0) = x, and such

that for each t ∈ [0,+∞[

u−(x) − u−(γx
−(−t)) = ct+

∫ 0

−t
L(γx

−(s), γ̇x
−(s)) ds.

Let us show that T−
t u + ct = u, for each t ∈ [0,+∞[. If x ∈ M

and t > 0, we define the curve γ : [0, t] →M by γ(s) = γx
−(s− t).

It is not difficult to see that γ(t) = x and that

u−(x) = ct+

∫ t

0
L(γ(s), γ̇(s)) ds + u−(γ(0)).

It follows that T−
t u(x) + ct ≤ u(x) and thus T−

t u + ct ≤ u. The
inequality u ≤ T−

t u+ ct results from u ≺ L+ c.
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4.7 Existence of Negative Weak KAM So-

lutions

Our goal in this section is to prove the existence of negative weak
KAM solutions.

Theorem 4.7.1 (Weak KAM). There exists a function u− : M →
R which is a negative weak KAM solution with constant c[0].

Note that we already know by Corollary 4.3.7 that a weak
KAM solution can only have c[0] as a constant. By Proposition
the weak KAM theorem above is equivalent to

Theorem 4.7.2. There exists a function u− : M → R such that
T−

t u− + tc[0] = u−, for each t ∈ [0,+∞[.

We will give two proofs of this theorem.
For the first proof we need some lemmas.

Lemma 4.7.3. Let u : M → R be a function (not necessarily
continuous or even bounded), and c ∈ R. If the function ũ defined
on M by

ũ(x) = inf
t≥0

T−
t u(x) + ct

is finite at some point, then it is finite everywhere and ũ ≺ L+ c.

Proof. We use parts (4), (3), (2) of Proposition 4.6.2 to obtain

T−
t′ ũ = T−

t′ [inf
t≥0

T−
t u+ ct]

= inf
t≥0

T−
t′ [T−

t u+ ct]

= inf
t≥0

T−
t′ [T−

t u] + ct

= inf
t≥0

T−
t′+tT

−
t u+ ct.

Therefore

T−
t′ ũ+ ct′ = ct′ + inf

t≥0
T−

t′+tT
−
t u+ ct

= inf
t≥0

T−
t′+tT

−
t u+ ct+ ct′

= inf
t≥0

T−
t′+tT

−
t u+ c(t′ + t)

geq inf
t≥0

T−
t u+ ct = ũ.
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Since ũ is finite at some point it follows from part (6) of Proposi-
tion 4.6.2 that it is finite everywhere and u ≺ L+ c.

Lemma 4.7.4. Let u : M → R be a function with infM u > −∞,
but not necessarily continuous or even bounded. Suppose t > 0
and c ∈ R are such that u ≤ T−

t u+ c, then c/t ≥ c[0].

Proof. Using parts (2), (3) and (5) of Proposition 4.6.2, we obtain
for n ∈ N

u ≤ T−
t u+ c ≤ T−

2tu+ 2c ≤ · · · ≤ T−
ntu+ nc.

This implies that for s ≥ 0

T−
s u ≤ T−

nt+su+ nc.

If we set c̃ = c/t, this yields

T−
s u+ sc̃ ≤ T−

nt+su+ (nt+ s)c̃,

for all s ≥ 0, and all n ∈ N. In particular, we have

ũ = inf
s≥0

T−
s u+ sc̃ = inf

0≤s≤t
T−

s u+ sc̃.

We now note that by part (1) of Proposition 4.6.2 we have

Tsu ≥ inf
M
u+ s inf

TM
L ≥ inf

M
u− s| inf

TM
L|.

Therefore

ũ = inf
0≤s≤t

T−
s u+ sc̃

≥ inf
0≤s≤t

inf
M
u− s| inf

TM
L| + sc̃

≥ inf
M
u− s(| inf

TM
L| + |c̃| > −∞.

Hence we can apply Lemma 4.7.3 to obtain that ũ ≺ L+ c̃. Hence
c̃ = c/t ≥ c[0].

Lemma 4.7.5. Let u : M → R be dominated by L+ c[0] on the
compact manifold M . then for every t ≥ 0, we can find a point
xt ∈M such that u(xt) = T−

t u(xt) + tc[0].
In particular, we have supt≥0‖T

−
t u+ tc[0]‖∞ < +∞.
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Proof. Let us observe that, part (iii) of Proposition 4.2.1 and part
(7) of Proposition 4.6.2, the family of functions T−

t u, t ≥ 0, is
equi-Lipschitzian. We call L < +∞ a common Lipschitz constant
for T−

t u, t ≥ 0.
To prove the first part we can assume t > 0. Suppose that

no such xt exists, since u ≤ T−
t u + tc[0], we obtain that T−

t u +
tc[0] − u > 0 everywhere. Since both u and T−

t u are continuous,
the compactness of M now implies that there exists ǫ > 0 such
that T−

t u + tc[0] − u ≥ ǫ everywhere. This can be rewritten as
u ≤ T−

t u+ tc[0] − ǫ. By Lemma 4.7.4 above, this implies (tc[0] −
ǫ)/t ≥ c[0]. Which is obviously false. This proves the existence of
xt.

For each t ≥ 0 the function T−
t u+ tc[0]−u is Lipschitzian with

Lipschitz constant ≥ 2L. Since it vanishes at some point xt ∈M ,
we have for every x ∈M

|T−
t u(x) + tc[0] − u(x)| = |(T−

t u+ tc[0] − u(x)) − (T−
t u(xt) + tc[0] − u(x))|

≤ 2Ld(x, xt)

≤ 2Ldiam(M).

Therefore we, obtain supt≥0‖T
−
t u+tc[0]‖∞ ≤ ‖u‖∞+2Ldiam(M) <

+∞.

We can now prove the following theorem which yields imme-
diately the weak KAM Theorem 4.7.1.

Theorem 4.7.6. Let L be a Tonelli Lagrangian on the compact
connected manifold M . Suppose uIf u : M → R is dominated by
L + c[0]. Then T−

t u + tc[0] converges uniformly to a continuous
function u− : M → R which is a negative weak KAM solution.

Proof. We note that by parts (6), (5) and (2) of Proposition 4.6.2
we have for s, t ≥ 0

T−
s u ≤ T−

s (T−
t u+ tc[0])

= T−
t+su+ tc[0].

Hence T−
s u+ sc[0] ≤ T−

t+su+ (t+ s)c[0], this implies that T−
t u+

tc[0] ≤ T−
t′ u + t′c[0], for every t, t′ ≥ 0, with t ≤ t′. Since by

Lemma 4.7.5, the family T−
t u + tc[0], t ≥ 0 is equibounded, it
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follows that the point-wise limit u−(x) = limt→+∞ T−
t u(x) + tc[0]

exists everywhere and is finite. We now remark as at the beginning
of the proof of Lemma 4.7.5 above that the family T−

t u+tc[0, t ≥ 0
is equicontinuous, to conclude that the limit u− = limt→+∞ T−

t u+
tc[0] is uniform.

It remains to prove that u− : M → R which is a negative
weak KAM solution. By Proposition 4.6.7, we have to check that
T−

s u + sc[0] = u, for each s ≥. Using the non-expansiveness of
the Lax Oleinik semi-group Proposition 4.6.5, we obtain T−

s u− =
limt→+∞ T−

s [T−
t u + tc[0]] = limt→+∞ T−

t+su + tc[0]. Therefore
T−

s u− + sc[0] = limt→+∞ T−
t+su+ (t+ s)c[0] = u−.

Before giving a second proof of the weak KAM Theorem 4.7.1,
we will need to recall some fixed point theorems. We leave this as
an exercise, see also [GK90, Theorem 3.1, page 28].

Exercise 4.7.7. 1) Let E be a normed space and K ⊂ E a com-
pact convex subset. We suppose that the map ϕ : K → K is
non-expansive. Show that ϕ has a fixed point. [Hint: Reduce first
to the case when 0 ∈ K, and then consider x 7→ λϕ(x), with
λ ∈]0, 1[.]

2) Let E be a Banach space and let C ⊂ E be a compact subset.
Show that the closed convex envelope of C in E is itself compact.
[Hint: It is enough to show that, for each ǫ > 0, we can cover the
closed convex envelope of C by a finite number of balls of radius
ǫ.]

3) Let E be a Banach space. If ϕ : E → E is a non-expansive
map such that ϕ(E) has a relatively compact image in E, then the
map ϕ admits a fixed point. [Hint: Take a compact convex subset
containing the image of ϕ.]

4) Let E be a Banach space and ϕt : E → E be a family of maps
defined for t ∈ [0,∞[. We suppose that the following conditions
are satisfied

• For each t, t′ ∈ [0,∞[, we have ϕt+t′ = ϕt ◦ ϕt′ .

• For each t ∈ [0,∞[, the map ϕt is non-expansive.

• For each t > 0, the image ϕt(E) is relatively compact in E.

• For each x ∈ E, the map t 7→ ϕt(x) is continuous on [0,+∞[.
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Show then that the maps ϕt have a common fixed point. [Hint:
A fixed point of ϕt is a fixed point of ϕkt for each integer k ≥ 1.
Show then that the maps ϕ1/2n , with n ∈ N, admit a common fixed
point.]

We notice that we can use Brouwer’s Fixed Point Theorem
(instead of Banach’s Fixed Point Theorem) and an approximation
technique to show that the result established in part 1) of the
exercise above remains true if ϕ is merely continuous. This is the
Schauder-Tykhonov Theorem, see [Dug66, Theorems 2.2 and 3.2,
pages 414 and 415] or [DG82, Theorem 2.3, page 74]. It follows
that the statements in parts 3) and 4) are also valid when the
involved maps are merely continuous.

Second proof of Weak KAM Theorem 4.7.1. Let us denote by 1
the constant function equal to 1 everywhere onM and consider the
quotient E = C0(M,R)/R.1. This quotient space E is a Banach
space for the quotient norm

‖[u]‖ = inf
a∈R

‖u+ a1‖∞,

where [u] is the class in E of u ∈ C0(M,R). Since T−
t (u + a1) =

T−
t (u) + a1, if a ∈ R, the maps T−

t pass to the quotient to a
semigroup T̄−

t : E → E consisting of non-expansive maps. Since,
for each t > 0, the image of T−

t is an equi-Lipschitzian family
of maps, Ascoli’s Theorem, see for example [Dug66, Theorem 6.4
page 267], then shows that the image of T̄−

t is relatively compact
in E (exercise). Using part 4) in the exercise above, we find a
common fixed point for all the T̄−

t . We then deduce that there
exists u− ∈ C0(M,R) such that T−

t u− = u− + ct, where ct is a
constant. The semigroup property gives ct+t′ = ct + ct′ ; since
t 7→ T−

t u is continuous, we obtain ct = −tc with c = −c1. We
thus have T−

t u− + ct = u−.

FROM HERE ON NOTES HAVE TO REVISED.
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4.8 Invariant Measures and Ma né’s Criti-

cal Value

Corollary 4.8.1. If T−
t u− = u− − ct, then, we have

−c = inf
µ

∫

TM
Ldµ,

where µ varies among Borel probability measures on TM invariant
by the Euler-Lagrange flow φt. This lower bound is in fact achieved
by a measure with compact support. In particular, the constant c
is unique.

Proof. If (x, v) ∈ TM , then γ : [0,+∞[→ M , defined by γ(s) =
πφs(x, v), satisfies (γ(s), γ̇(s)) = φs(x, v). Since u− ≺ L + c, we
find

u−(πφ1(x, v)) − u−(π(x, v)) ≤

∫ 1

0
L(φs(x, v)) ds + c.

If µ is a probability measure invariant by φt, the function u− ◦ π
is integrable since it is bounded. Invariance of the measure by φt

gives
∫

TM
[u−(πφ1(x, v)) − u−(π(x, v))] dµ(x, v) = 0,

from where, by integration of the inequality above, we obtain

0 ≤

∫

TM
[

∫ 1

0
L(φs(x, v)) ds + c] dµ(x, v).

Since L is bounded below and µ is a probability measure, we can
apply Fubini Theorem to obtain

0 ≤

∫ 1

0

[
∫

TM
(L(φs(x, v)) + c) dµ(x, v)

]
ds.

By the invariance of µ under φs, we find that 0 ≤
∫

(L + c)dµ.
Since µ is a probability measure, this yields

−c ≤

∫

TM
Ldµ.
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It remains to see that the value −c is attained. For that, we fix
x ∈ M , and we take a curve γ−x :] − ∞, 0] → M with γ−x (0) = x
and such that

∀t ≤ 0, u−(γ−x (0)) − u−(γ−x (t)) =

∫ 0

t
L(γ−x (s), γ̇−x (s)) ds − ct.

The curve γx is a minimizing extremal curve with γ−x (0) = x,
therefore, we have

φs(x, γ̇
−
x (0)) = (γ−x (s), γ̇−x (s))

and the curve (γ−x (s), γ̇−x (s)), s ≤ 0 is entirely contained in a com-
pact subsetK1 of TM as given by corollary 4.4.5. Using Riesz Rep-
resentation Theorem [Rud87, Theorem 2.14, page 40], for t > 0,
we define a Borel probability measure µt on TM by

µt(θ) =
1

t

∫ 0

−t
θ(φs(x, γ̇

−
x (0))) ds,

for θ : TM → R a continuous function. All these probability
measures have their supports contained in the compact subset K1,
consequently, we can extract a sequence tn ր +∞ such that µtn

converges weakly to a probability measure µ with support in K1.
Weak convergence means that for each continuous function θ :
TM → R, we have

∫

TM
θ dµ = lim

n→∞

1

tn

∫ 0

−tn

θ(φs(x, γ̇
−
x (0)) ds.

We have
∫

TM (L+ c) dµ = 0, because

∫

TM
(L+ c) dµ = lim

n→∞

1

tn

∫ 0

−tn

(
L(γ−x (s), γ̇−x (s)) + c

)
ds

and
∫ 0

−tn

L(γ−n (s), γ̇−x (s)) ds + ctn = u−(γ−x (0)) − u−(γ−x (−tn))

which is bounded by 2‖u−‖∞. This does indeed show that for the
limit measure µ, we have

∫

TM Ldµ = −c.
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In the second part of the previous proof, we have in fact shown
the following proposition.

Proposition 4.8.2. If T−
t u− = u− + ct, for every t ≥ 0, and

γ−x :]−∞, 0] →M is an extremal curve, with γ−x (0) = x, and such
that

∀t ≥ 0, u−(x) − u−(γ−x (−t)) =

∫ 0

−t
L(γ−x (s), γ̇−x (s)) ds.+ ct,

the following properties are satisfied

• for each s ≥ 0, we have φ−s(x, γ̇
−
x (0)) = (γ−x (−s), γ̇−x (−s));

• the α-limit set of the orbit of (x, γ̇−x (0)) for φs is compact;

• there exists a Borel probability measure µ on TM , invariant
by φt, carried by the α-limit set of the orbit of (x, γ̇−x (0)),
and such that

∫
Ldµ = −c.

We define c[0] ∈ R by

c[0] = − inf
µ

∫

TM
Ldµ,

where the lower bound is taken with respect to all Borel probability
measures on TM invariant by the Euler-Lagrange flow. We will
use the notation cL[0], if we want to specify the Lagrangian.

Definition 4.8.3 (Minimizing Measure). A measure µ on TM
is said to be minimizing if it is a Borel probability measure µ,
invariant by the Euler-Lagrange flow, which satisfies

c[0] = −

∫

TM
Ldµ.

Exercise 4.8.4. Show that each Borel probability measure µ, in-
variant by the Euler-Lagrange flow, and whose support is contained
in the α-limit set of a trajectory of the form t 7→ (γx

−(t), γ̇x
−(t)),

must be minimizing.

Corollary 4.8.5. If a weak KAM solution u− is differentiable at
x ∈M , we have

H(x, dxu−) = c[0].
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Proof. If u− is a weak KAM solution, we have u− ≺ L+ c[0] and
thus

H(x, dxu−) = sup
v∈TxM

dxu−(v) − L(x, v) ≤ c[0].

It remains to find v0 ∈ TxM such that dxu−(v0) = L(x, v0) + c[0].
For that, we pick extremal curves γx

− :]−∞, 0] such that γx
−(0) = x

and

∀t ≥ 0, u−(γx
−(0)) − u−(γx

−(−t)) =

∫ 0

−t
L(γx

−(s), γ̇x
−(s)) ds + c[0]t.

By dividing this equality by t > 0 and letting t tend to 0, we find

dxu−(γ̇x
−(0)) = L(x, γ̇x

−(0)) + c[0].

4.9 The Symmetrical Lagrangian

Definition 4.9.1 (Symmetrical Lagrangian). If L : TM → R is
a Lagrangian we define its symmetrical Lagrangian Ľ : TM → R

by

Ľ(x, v) = L(x,−v).

If γ : [a, b] →M is a curve, we define the curve γ̌ : [a, b] →M
by γ̌(s) = γ(a + b − s). It is immediate to check that ˙̌γ(s) =
−γ̇(a+ b− s) and thus

Ľ(γ̌) = L(γ),

where Ľ is the action associated with Ľ, i.e.

Ľ(γ̌) =

∫ b

a
Ľ(γ̌(s), ˙̌γ(s)) ds.

It clearly results that γ is an extremal curve of L if and only if
γ̌ is an extremal curve of Ľ. We want to express the Lax-Oleinik
semigroup Ť−

t : C0(M,R) → C0(M,R) associated with Ľ in terms
of L only. For that, we notice that when γ : [0, t] → M varies
among all the curves such that γ(0) = x, then γ̌ varies among all
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all the curves such that γ̌(t) = x, and we have γ̌(0) = γ(t). We
thus find

Ť−
t u(x) = inf

γ
{

∫ t

0
Ľ(γ̌(s), ˙̌γ(s)) ds + u(γ̌(0))}

= inf
γ
{

∫ t

0
L(γ(s), γ̇(s)) ds + u(γ(t))},

where the lower bound is taken all the piecewise C1 curves γ :
[0, t] →M such that γ(0) = x.

We then introduce the semigroup T+
t : C0(M,R) → C0(M,R)

defined by T+
t (u) = −Ť−

t (−u). We find

T+
t u(x) = sup

γ
{u(γ(t)) −

∫ t

0
L(γ(s), γ̇(s)) ds},

where the upper bound is taken on the (continuous) piecewise C1

curves γ : [0, t] →M such that γ(0) = x.
The following lemma is easily verified.

Lemma 4.9.2. We have u ≺ L+ c if and only if T+
t u− ct ≤ u.

By the Weak KAM Theorem 4.7.1, we can find ǔ− ∈ C0(M,R)
and č such that Ť−

t ǔ+ čt = ǔ−. If we set u+ = −ǔ−, and we find
T+

t u+ = u+ + čt. If γ : [a, b] → M is an arbitrary (continuous)
piecewise C1 curve of C1, we see that

u+(γ(a))+č(b−a) = T+
(b−a)u+(γ(a)) ≥ u+(γ(b))−

∫ b

a
L(γ(s), γ̇(s))ds,

which gives u+ ≺ L+ č.
By arguments similar to the ones we made for u−, we obtain:

Theorem 4.9.3 (Weak KAM). There exists a Lipschitzian func-
tion u+ : M → R and a constant c such that T+

t u+ − ct = u+.
This function u+ satisfies the following properties

(a) u+ ≺ L+ c.
(b) For each x ∈M , there exists a minimizing extremal curve

γx
+ : [0,+∞[→M with γx

+(0) = x and such that

∀t ∈ [0,+∞[, u+(γx
+(t)) − u+(x) =

∫ t

0
L(γx

+(s), γ̇x
+(s))ds + ct.
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Conversely, if u+ ∈ C0(M,R) satisfies the properties (a) and (b)
above, then, we have T+

t u+ − ct = u+.
We also have

−c = inf
µ

∫

Ldµ,

where the lower bound is taken over all the Borel probability mea-
sures µ on TM invariant by the Euler-Lagrange flow φt. It follows
that c = c[0]. For a curve γx

+ of the type above, we have

∀s ≥ 0, (γx
+(s), γ̇x

+(s)) = φs(x, γ̇
x
+(0)),

since it is a minimizing extremal curve. This implies that φs(x, γ̇
x
+(0)), s ≥

0 is relatively compact in TM . Moreover, we can find a Borel prob-
ability measure µ on TM , invariant by the Euler-Lagrange flow
φt, such that −c[0] =

∫
Ldµ, and whose support is contained in

the ω-limit set of the orbit φs(x, γ̇
x
+(0)). At each point x ∈ M ,

where u+ has a derivative, we have H(x, dxu+) = c[0].

4.10 The Mather Function on Cohomology.

Let us first give several characterizations of c[0].

Theorem 4.10.1. Suppose that u ∈ C0(M,R), and that c ∈ R.
If c > c[0] then T−

t u+ ct tends uniformly to +∞, as t→ +∞,
and T+

t u− ct tends uniformly to −∞, as t→ +∞.
If c < c[0], then T−

t u + ct tends uniformly to −∞, when t →
+∞, and T+

t u− ct tends uniformly to +∞, as t→ +∞.
Moreover, we have supt≥0 ‖T

−
t u+c[0]t‖ < +∞ and supt≥0 ‖T

+
t u−

c[0]t‖ < +∞.

Proof. By the Weak KAM Theorem 4.7.1, there exists u− ∈ C0(M,R)
with T−

t u− + c[0]t = u−, for each t ≥ 0. As the T−
t are non-

expansive maps, we have

‖T−
t u− T−

t u−‖ ≤ ‖u− u−‖∞

and thus

−‖u− u−‖∞ − ‖u−‖∞ ≤ T−
t u+ c[0]t ≤ ‖u− u−‖∞ + ‖u−‖∞.
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Theorem 4.10.2. We have the following characterization of the
constant c[0]:

• The constant c[0] is the only constant c such that the semi-
group u 7→ T−

t u+ ct (resp. u 7→ T+
t u− ct) has a fixed point

in C0(M,R).

• The constant c[0] is the greatest lower bound of the set of
the numbers c ∈ R for which there exists u ∈ C0(M,R) with
u ≺ L+ c.

• The constant c[0] is the only constant c ∈ R such that there
exists u ∈ C0(M,R) with supt≥0 ‖T

−
t u+ ct‖∞ < +∞ (resp.

supt≥0 ‖T
+
t u− ct‖∞ < +∞.)

Proof. The first point results from the Weak KAM Theorem. The
last point is a consequence of the previous Theorem 4.10.1. The
second point also results from the previous theorem, because we
have u ≺ L+ c if and only if u ≤ T−

t u+ ct and in addition, by the
weak KAM theorem, there exists u− with u− = Ttu− + c[0]t.

If ω is a C∞ differential 1-form, it is not difficult to check the
Lagrangian Lω : TM → R, defined by

Lω(x, v) = L(x, v) − ωx(v),

is Cr like L, with r ≥ 2, that ∂2Lω

∂v2 = ∂2L
∂v2 is thus also > 0 definite

as a quadratic form, and that Lω is superlinear in the fibers of the
tangent bundle TM . We then set

c[ω] = cL[ω] = cL−ω[0].

Proposition 4.10.3. If θ : M → R is a differentiable function,
then we have

c[ω + dθ] = c[ω].

In particular, for closed forms ω, the constant c[ω] depends only
on the cohomology class.

Proof. We have u ≺ (L − [ω + dθ]) + c if and only if u + θ ≺
(L− ω) + c.



165

The following definition is due to Mather, see [Mat91, page
177].

Definition 4.10.4 (Mather’s α Function). The function α of
Mather is the function α : H1(M,R) → R defined by

α(Ω) = c[ω],

where ω is a class C∞ differential 1-form representing the class of
cohomology Ω.

The next theorem is due to Mather, see [Mat91, Theorem 1,
page 178].

Theorem 4.10.5 (Mather). The function α is convex and super-
linear on the first cohomology group H1(M,R).

Proof. Let ω1 and ω2 be two differential 1-forms of class C∞. By
the weak KAM Theorem applied to Lω1 and Lω2 , we can find
u1, u2 ∈ C0(M,R) such that

ui ≺ (L− ωi) + c[ωi].

If t ∈ [0, 1], it is not difficult to conclude that

tu1 + (1 − t)u2 ≺ (L− [tω1 + (1 − t)ω2]) + (tc[ω1] + (1 − t)c[ω2].

It follows that

c[tω1 + (1 − t)ω2] ≤ tc[ω1] + (1 − t)c[ω2].

Let us show the superlinearity of α. Let us recall that by com-
pactness of M , the first group of homology is a vector space of
finite dimension. Let us fix a finite family γ1, · · · , γn : [0, 1] →M
of C∞ closed (i.e. γi(0) = γi(1) curves such that the homology
H1(M,R) is generated by the homology classes of γ1, · · · , γℓ. We
can then define a norm on H1(M,R) by

‖Ω‖ = max
(∣
∣

∫

γ1

ω
∣
∣, . . . ,

∣
∣

∫

γℓ

ω
∣
∣
)
,

where ω is a C∞ closed differential 1-form representing the coho-
mology class Ω. Let k be an integer. Let us note by γk

i the closed
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curve γk
i : [0, 1] →M obtained by going k times through γi in the

direction of the increasing t and reparametrizing it by the interval
[0, 1]. Let us also note by γ̌k

i : [0, 1] →M the curve opposite to γi,
i.e. γ̌k

i (s) = γk
i (1 − s). We then have

∫

γk
i

ω = k

∫

γi

ω

∫

γ̌k
i

ω = −k

∫

γi

ω,

from which we obtain the equality

k‖Ω‖ = max
(∣
∣

∫

γk
1

ω
∣
∣, . . . ,

∣
∣

∫

γk
ℓ

ω
∣
∣,

∣
∣

∫

γ̌k
1

ω
∣
∣, . . . ,

∣
∣

∫

γ̌k
ℓ

ω
∣
∣
)
,

where ω is a C∞ closed differential 1-form representing Ω. By the
Weak KAM Theorem 4.7.1, there exists uω ∈ C0(M,R) such that
uω ≺ (L− ω) + c[ω]. We deduce from it that for every closed (i.e.
γ(b) = γ(a)) curve γ : [a, b] →M , we have

L(γ) −

∫

γ
ω + c[ω](b− a) ≥ 0.

In particular, we find

c[ω] ≥

∫

γi
k

ω − L(γk
i ),

c[ω] ≥

∫

γ̌i
k

ω − L(γ̌k
i ).

Hence, if we set Ck = max(L(γk
1 ), . . . ,L(γk

ℓ ),L(γ̌k
1 ), . . . ,L(γ̌k

ℓ )),
which is a constant which depends only on k, we find

α(Ω) = c[ω] ≥ k‖Ω‖ − Ck.

Theorem 4.10.6. If ω is a closed 1-form, the Euler-Lagrange
flows φL−ω

t and φL
t coincide.
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Proof. Indeed, if γ1, γ2 : [a, b] → M are two curves with the same
ends and close enough, they are homotopic with fixed ends and
thus

∫

γ1
ω =

∫

γ2
ω. It follows that the actions for L and Lω are

related by

Lω(γi) = L(γi) −

∫

γ1

ω.

Hence, the critical points of Lω and of L on the space of curves with
fixed endpoints are the same ones. Consequently, the Lagrangians
L and Lω have same the extremal curves.

Corollary 4.10.7. We have c[ω] = − infµ
∫

TM (L − ω)dµ, where
µ varies among the Borel probability measures on TM invariant
under the Euler-Lagrange flow φt of L. Moreover, there exists
such a measure µ with compact support and satisfying c[ω] =
∫

TM (L− ω)dµ.

4.11 Differentiability of Dominated Func-

tions

In the sequel we denote by B̊(0, r) (resp. B̄(0, r)) the open ball
(resp. closed) of center 0 and radius r in the Euclidean space R

k,
where k is the dimension of M .

Proposition 4.11.1. Let ϕ : B̊(0, 5) →M be a coordinate chart
and t0 > 0 be given. There is a constant K ≥ 0 such that for each
function u ∈ C0(M,R), for each x ∈ B̄(0, 1), and for each t ≥ t0,
we have:

(1) For each y ∈ B̄(0, 1) and each extremal curve γ : [0, t] →M
with γ(t) = ϕ(x) and

T−
t u[ϕ(x)] = u(γ(0)) +

∫ t

0
L(γ(s), γ̇(s))ds,

we have

T−
t u[ϕ(y)]−T−

t u[ϕ(x)] ≤
∂L

∂v
(ϕ(x), γ̇(t))(Dϕ(x)[y−x])+K‖y−x‖2.

In particular, if T−
t u is differentiable at ϕ(x) then

dϕ(x)T
−
t u = ∂L/∂v(ϕ(x), γ̇(t))
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and the curve γ is unique.
(2) For each y ∈ B̄(0, 1) and each curve γ : [0, t] → M with

γ(0) = ϕ(x) and

T+
t u[ϕ(x)] = u(γ(t)) −

∫ t

0
L(γ(s), γ̇(s))ds,

we have

T+
t u[ϕ(y)]−T+

t u[ϕ(x)] ≥
∂L

∂v
(ϕ(x), γ̇(0))(Dϕ(x)[y−x])−K‖y−x‖2.

In particular, if T+
t u is differentiable at ϕ(x) then

dϕ(x)T
+
t u = ∂L/∂v(ϕ(x), γ̇(0))

and the curve γ is unique.

Proof. We use some auxiliary Riemannian metric on M to have a
norm on tangent space and a distance on M .

Since T−
t u = T−

t0 T
−
t−t0u by the semigroup property, we have

only to consider the case t = t0. By corollary 4.4.5, we can find a
finite constant A, such that any minimizer defined on an interval
of time at least t0 > 0 has speed uniformly bounded in norm
by A.This means that such curves are all A-Lipschitz. We then
pick ǫ > 0 such that for each ball B̄(y,Aǫ), for y ∈ ϕ(B̄(0, 1)) is
contained in ϕ(B̊(0, 2)). Notice that this ǫ does not depend on u.
Since any curve γ, as in part (1) of the proposition is necessary a
minimizer, we therefore have

γ([t0 − ǫ, t0]) ⊂ ϕ(B̊(0, 2)).

We then set γ̃ = ϕ−1 ◦ γ and L̃(x,w) = L(ϕ(x),Dϕ(x)w) for
(x,w) ∈ B̊(0, 5) × R

k. Taking derivatives, we obtain

∂L̃(x,w)

∂w
=
∂L

∂v
(ϕ(x),Dϕ(x)(w))[Dϕ(x)(·)].

The norm of the vector h = y − x is ≤ 2, hence if we define
γ̃h(s) = s−(t0−ǫ)

ǫ h+γ̃(s), for s ∈ [t0−ǫ, t0], we have γ̃h(s) ∈ B̊(0, 4),
and

T−
t0 u[ϕ(x+h)]−T−

t0 u[ϕ(x)] ≤

∫ t0

t0−ǫ
[L̃(γ̃h(s), ˙̃γh(s))−L(γ̃(s), ˙̃γ(s))] ds.



169

Since the speed of γ is bounded in norm by A, we see that (γ̃(s), ˙̃γ(s))
is contained in a compact subset of B̄(0, 2) × R

k independent of

u, x and γ. Moreover, we have γ̃h(s) − γ̃(s) = s−(t−ǫ)
ǫ h, which

is of norm ≤ 2, and ˙̃γh(s) − ˙̃γ(s) = 1
ǫh, which is itself of norm

≤ 2/ǫ. We then conclude that there exists a compact convex sub-
set C ⊂ B̄(0, 4) × R

k, independent of u, x and γ, and containing
(γ̃(s), ˙̃γ(s)) and (γ̃h(s), ˙̃γh(s)), for each s ∈ [t0 − ǫ, t0]. Since we
can bound uniformly on the compact subset C the norm of the
second derivative of L̃, by Taylor’s formula at order 2 applied to
L̃, we see that there exists a constant K̃ independent of u, x and
of γ such that for each s ∈ [t0 − ǫ, t0]

|L̃(γ̃h(s), ˙̃γh(s)) − L̃(γ̃(s), γ̇(s))

−
∂L̃

∂x
(γ̃(s), γ̇(s))

(s− (t− ǫ)

ǫ
h
)
−
∂L̃

∂w
(γ̃(s), ˙̃γ(s))

(h

ǫ

)
|

≤ K̃max
( |s− (t− ǫ)|

ǫ
‖h‖,

‖h‖

ǫ

)2

≤
K̃

ǫ2
‖h‖2,

supposing that ǫ < 1. As γ̃ is an extremal curve for the Lagrangian
L̃, it satisfies the Euler-Lagrange equation

∂L̃

∂x
(γ̃(s), γ̇(s)) =

d

ds

{∂L̃

∂w
(γ(s), γ̇(s))

}

hence

|L̃(γ̃h(s), ˙̃γh(s))−L̃(γ̃(s), γ̇(s))−
1

ǫ

d

ds

{
[s−(t−ǫ)]

∂L̃

∂w
(γ̃(s), γ̇(s))(h)

}
|

≤
K̃

ǫ2
‖h‖2.

If we integrate on the interval [t0 − ǫ, t0], we obtain

T−
t0 u[ϕ(x+ h)] − T−

t0 u[ϕ(x)] ≤
∂L̃

∂w
(ϕ(x), ˙̃γ(t0))(h) +

K̃

ǫ
‖h‖2.

We just have to take K ≥ K̃/ǫ.
If T−

t u is differentiable at ϕ(x), for v ∈ R
n and δ small enough,

we can write

T−
t u[ϕ(x+δv)]−T−

t u[ϕ(x)] ≤
∂L

∂v
(ϕ(x), γ̇(t))(Dϕ(x)[δv])+K‖δv‖2 .
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If we divide by δ > 0 and we let δ go to 0, we obtain

∀v ∈ R
ndϕ(x)T

−
t uDϕ(x)[v] ≤

∂L

∂v
(ϕ(x), γ̇(t))(Dϕ(x)[v]).

Since we can also apply the inequality above with −v instead of
v, we conclude that If we divide by δ > 0 and we let δ go to 0, we
obtain

∀v ∈ R
ndϕ(x)T

−
t uDϕ(x)[v] =

∂L

∂v
(ϕ(x), γ̇(t))(Dϕ(x)[v]),

by the linearity in v of the involved maps. Since ϕ is a diffeomor-
phism this shows that dϕ(x)T

−
t u∂L/∂v(ϕ(x), γ̇(t)). By the bijec-

tivity of the Legendre Transform the tangent vector γ̇(t) is unique.
Since γ is necessarily a minimizing extremal, it is also unique, since
both its position x and its speed γ̇(t) at t are uniquely determined.

To prove (2), we can make a similar argument for T+
t , or,

more simply, apply what we have just done to the symmetrical
Lagrangian Ľ of L.

Exercise 4.11.2. 1) Let u− : M → R be a weak KAM solution.
Show that u− has a derivative at x if and only if there is one and
only one curve γx

− :] −∞, 0] →M such that γx
−(0) = x and

∀t ≥ 0, u−(γx
−(0)) − u−(γx

−(−t)) =

∫ 0

−t
L(γx

−(s), γ̇x
−(s)) ds + c[0]t.

In that case we have dxu− = ∂L
∂v (x, γ̇x

−(0)).
2) Suppose that x ∈ M , and that γx

− :] −∞, 0] → M satisfies
γx
−(0) = x and

∀t ≥ 0, u−(γx
−(0)) − u−(γx

−(−t)) =

∫ 0

−t
L(γx

−(s), γ̇x
−(s)) ds + c[0]t.

Show that necessarily

H(x,
∂L

∂v
(x, γ̇x

−(0)) = c[0].

We will need a criterion to show that a map is differentiable
with a Lipschitz derivative. This criterion has appeared in dif-
ferent forms either implicitly or explicitly in the literature, see



171

[CC95, Proposition 1.2 page 8], [Her89, Proof of 8.14, pages 63–
65], [Kni86], [Lio82, Proof of Theorem 15.1, pages 258-259], and
also [Kis92] for far reaching generalizations. The simple proof
given below evolved from discussions with Bruno Sevennec.

Proposition 4.11.3 (Criterion for a Lipschitz Derivative). Let B̊
be the open unit ball in the normed space E. Fix a map u : B̊ → R.
If K ≥ 0 is a constant, denote by AK,u the set of points x ∈ B̊, for
which there exists ϕx : E → R a continuous linear form such that

∀y ∈ B̊, |u(y) − u(x) − ϕx(y − x)| ≤ K‖y − x‖2.

Then the map u has a derivative at each point x ∈ AK,u,
and dxu = ϕx. Moreover, the restriction of the map x 7→ dxu
to {x ∈ AK,u | ‖x‖ < 1

3} is Lipschitzian with Lipschitz constant
≤ 6K.

More precisely

∀x, x′ ∈ AK,u, ‖x−x
′‖ < min(1−‖x‖, 1−‖x′‖) ⇒ ‖dxu−dx′u‖ ≤ 6K‖x−x′‖.

Proof. The fact that dxu = ϕx, for x ∈ AK,u, is clear. Let us fix
x, x′ ∈ AK,u, with ‖x − x′‖ < min(1 − ‖x‖, 1 − ‖x′‖). If x = x′

there is nothing to show, we can then suppose that ‖x− x′‖ > 0.
If h is such that ‖h‖ = ‖x−x′‖, then the two points x+h et x′+h
are in B̊. This allows us to write

|u(x+ h) − u(x) − ϕx(h)| ≤ K‖h‖2

|u(x) − u(x′) − ϕx′(x− x′) ≤ K‖x− x′‖2

|u(x+ h) − u(x′) − ϕx′(x− x′ + h)| ≤ K‖x− x′ + h‖2.

As ‖h‖ = ‖x− x′‖, we obtain from the last inequality

|u(x′) − u(x+ h) + ϕx′(x− x′ + h)| ≤ 4K‖x− x′‖2.

Adding this last inequality with the first two above, we find that,
for each h such that ‖h‖ = ‖x− x′‖, we have

|ϕx′(h) − ϕx(h)| ≤ 6K‖x− x′‖2,

hence

‖ϕx′ − ϕx‖ = sup
‖h‖=‖x−x′‖

|ϕx′(h) − ϕx(h)|

‖x− x′‖
≤ 6K‖x− x′‖.
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Exercise 4.11.4. If Ak,u is convex, for example if AK,U = B̊,
show that the derivative is Lipschitzian on AK,u with Lipschitz
constant ≤ 6K.

Theorem 4.11.5. If ǫ > 0 is given, then there are constants
A ≥ 0 and η > 0, such that any map u : M → R, with u ≺
L+ c, is differentiable at every point of the set Aǫ,u formed by the
x ∈ M for which there exists a (continuous) piecewise C1 curve
γ : [−ǫ, ǫ] →M with γ(0) = x and

u(γ(ǫ)) − u(γ(−ǫ)) =

∫ ǫ

−ǫ
L(γ(s), γ̇(s)) ds + 2cǫ.

Moreover we have

(1) Such a curve γ is a minimizing extremal and

dxu =
∂L

∂x
(x, γ̇(0));

(2) the set Aǫ,u is closed;

(3) the derivative map Aǫ,u → T ∗M,x 7→ (x, dxu) is Lipschitzian
with Lipschitz constant ≤ A on each subset Aǫ,u with diam-
eter ≤ η.

Proof. The fact that γ is a minimizing extremal curve results from
u ≺ L+ c. This last condition does also imply that

u(γ(ǫ)) − u(x) =

∫ ǫ

0
L(γ(s), γ̇(s)) ds + cǫ,

u(x) − u(γ(−ǫ)) =

∫ 0

−ǫ
L(γ(s), γ̇(s)) ds + cǫ. (*)

Since ǫ > 0 is fixed, by the Corollary of A Priori Compactness, we
can find a compact subsetKǫ ⊂ TM such that for each minimizing
extremal curve γ : [−ǫ, ǫ] → M , we have (γ(s), γ̇(s)) ∈ Kǫ. It is
not then difficult to deduce that Aǫ,u is closed. It also results from
(∗) that

T+
ǫ u(x) ≥ u(x) + cǫ

T−
ǫ u(x) ≤ u(x) − cǫ. (**)
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As u ≺ L+ c, we have

T+
ǫ u ≤ u+ cǫ,

T−
ǫ u ≥ u− cǫ.

We then obtain equality in (∗∗). Subtracting this equality from
the inequality above, we find

∀y ∈M, T+
ǫ u(y) − T+

ǫ u(x) ≤ u(y) − u(x) ≤ T−
ǫ u(y) − T−

ǫ u(x).
(∗∗∗)

Let us then cover the compact manifold M by a finite number of
open subsets of the form ϕ1(B̊(0, 1/3)), · · · , ϕℓ(B̊(0, 1/3)), where
ϕi : B̊(0, 5) → M, i = 1, . . . , ℓ, is a C∞ coordinate chart. By
Proposition 4.11.1, there exists a constant K, which depends only
on ǫ and the fixed ϕp, p = 1, . . . , ℓ such that, if x ∈ ϕi(B̊(0, 1/3)),
setting x = ϕi(x̃), for each y ∈ B̊(0, 1), we have

T−
ǫ u(ϕi(y)) − T−

ǫ u(ϕi(x̃)) ≤
∂L

∂v
(x, γ̇(0)) ◦Dϕi(x̃)(y − x̃) +K‖y − x̃‖2

T+
ǫ u(ϕi(y) − T+

ǫ u(ϕi(x̃)) ≥
∂L

∂v
(x, γ̇(0)) ◦Dϕi(x̃)(y − x̃) −K‖y − x̃‖2,

Using the inequalities (∗∗∗) we get

|u(ϕi(y))− u(ϕi(x̃))−
∂L

∂v
(x, γ̇(0)) ◦Dϕi(x̃)(y − x̃)| ≤ K‖y− x̃‖2.

By the Criterion for a Lipschitz Derivative 4.11.3, we find that
dxu exists and is equal to ∂L

∂v (x, γ̇(0)). Moreover the restriction of

x 7→ dxu on Aǫ,U ∩ϕi(B̊(0, 1/3)) is Lipschitzian with a constant of
Lipschitz which depends only on ǫ. It is then enough to choose for
η > 0 a Lebesgue number for the open cover (ϕi(B̊(0, 1/3))i=1,··· ,ℓ

of the compact manifold M .

Definition 4.11.6 (The sets S− and S+). We denote by S− (resp.
S+) the set of weak KAM solutions of the type u− (resp. u+), i.e.
the continuous functions u : M → R such that T−

t u + c[0]t = u
(resp. T+

t u− c[0]t = u).

Exercise 4.11.7. If c ∈ R, show that u ∈ S− (resp. u ∈ S+) if
and only if u+c ∈ S− (resp. u+c ∈ S+). If x0 ∈M is fixed, show
that the set {u ∈ S− | u(x0) = 0} (resp. {u ∈ S+ | u(x0) = 0}) is
compact for the topology of uniform convergence.
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Theorem 4.11.8. Let u : M → R be a continuous function. The
following properties are equivalent

(1) the function u is C1 and belongs to S−,

(2) the function u is C1 and belongs to S+.

(3) the function u belongs to the intersection S− ∩ S+. (4)] the
function u is C1 and there exists c ∈ R such thatH(x, dxu) =
c, for each x ∈M .

In all the cases above, the derivative of u is (locally) Lipschitzian.

Proof. Conditions (1) or (2) imply (4). It is enough, then to show
that (4) implies (1) and (2) and that (3) implies that u is C1, and
that its derivative is (locally) Lipschitzian. Thus let us suppose
condition (3) satisfied. Indeed, in this case, if x ∈M , we can find
extremal curves γx

− :] − ∞, 0] → M and γx
+ : [0,∞[→ M , with

γx
−(0) = γx

+(0) = x and

∀t ≥ 0,u(γx
+(t)) − u(x) =

∫ t

0
L(γx

+(s), γ̇x
+(s)) ds + c[0]t,

u(x) − u(γx
−(−t)) =

∫ 0

−t
L(γx

−(s), γ̇x
−(s)) ds+ c[0]t.

The curve γ : [−1, 1] →M , defined by γ|[−1, 0] = γx
− and γ|[0, 1] =

γx
+, shows that x ∈ A1,u. By the previous theorem, the function
u is of class C1 and its derivative is (locally) Lipschitzian.

Let us suppose that u satisfies condition (4). By the Fenchel
inequality, we have

∀(x, v) ∈ TM, dxu(v) ≤ H(x, dxu) + L(x, v)

= c+ L(x, v).

Consequently, if γ : [a, b] →M is a C1 curve, we obtain

∀s ∈ [a, b], dγ(s)u(γ̇(s)) ≤ c+ L(γ(s), γ̇(s)), (*)

and by integration on the interval [a, b]

u(γ(b)) − u(γ(a)) ≤ c(b− a) +

∫ b

a
L(γ(s), γ̇(s)) ds, (∗∗)
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which gives us u ≺ L + c. If γ : [a, b] → M is an integral curve
of gradL u, we have in fact equality in (∗) and thus in (∗∗). Since
u ≺ L+ c, it follows that γ is a minimizing extremal curve. If two
solutions go through the same point x at time t0, they are, in fact,
equal on their common interval of definition, since they are two ex-
tremal curves which have the same tangent vector (x, gradL u(x))
at time t0. As we can find local solutions by the Cauchy-Peano
Theorem, we see that gradL u is uniquely integrable. Since M
is compact, for any point x ∈ M , we can find an integral curve
γx :] −∞,+∞[→ M of gradL u with γx(0) = x. This curve gives
at the same time a curve of the type γx

− and one of the type γx
+

for u. This establishes that u ∈ S− ∩ S+.

4.12 Mather’s Set.

The definition below is due to Mather, see [Mat91, page 184].

Definition 4.12.1 (Mather Set). The Mather set is

M̃0 =
⋃

µ

supp(µ) ⊂ TM,

where supp(µ) is the support of the measure µ, and the union is
taken over the set of all Borel probability measures on TM invari-
ant under the Euler-Lagrange flow φt, and such that

∫

TM Ldµ =
−c[0].

The projection M0 = π(M̃0) ⊂ M is called the projected
Mather set.

As the support of an invariant measure is itself invariant under
the flow, the set M̃0 is invariant by φt.

Lemma 4.12.2. If (x, v) ∈ M̃0 and u ≺ L+ c[0], then, for each
t, t′ ∈ R, with t ≤ t′, we have

u(π ◦ φt′(x, v)) − u(π ◦ φt(x, v)) =

∫ t′

t
L(φs(x, v)) ds + c[0](t′ − t).

Proof. By continuity, it is enough to see it when (x, v) ∈ supp(µ)
with µ a Borel probability measure on TM , invariant by φt and



176

such that
∫

TM Ldµ = −c[0] Since u ≺ L + c[0], for each (x, v) ∈
TM , we have

u(π ◦ φt′(x, v))− u(π ◦ φt(x, v)) ≤

∫ t′

t
L(φs(y,w)) ds+ c[0](t′ − t).

(∗)
If we integrate this inequality with respect to µ, we find by the
invariance of µ

∫

TM
u ◦ π dµ−

∫

TM
u ◦ π dµ ≤ (t′ − t)

(
∫

LTM dµ+ c[0]
)
,

which is in fact the equality 0 = 0. It follows that the inequality
(∗) is an equality at any point (x, v) contained in supp(µ).

Theorem 4.12.3. A function u ∈ C0(M,R), such that u ≺ L +
c[0], is differentiable at every point of the projected Mather set
M0 = π(M̃0). Moreover, if (x, v) ∈ M̃0, we have

dxu =
∂L

∂v
(x, v)

and the map M0 → T ∗M,x 7→ (x, dxu) is locally Lipschitzian
with a (local) Lipschitz constant independent of u.

Proof. If (x, v) ∈ M̃0, we set γx(s) = π ◦ φs(x, v). We then have
γx(0) = x, γ̇x(0) = v, and (γx(s), γ̇x(s)) = φs(x, v). In particular,
by Lemma 4.12.2 above

u(γx(1)) − u(γx(−1)) =

∫ 1

−1
L(γx(s), γ̇x(s)) ds + 2c[0],

thus x ∈ A1,u, where A1,u is the set introduced in 4.11.5. Conse-
quently, the derivative dxu exists and is equal to ∂L

∂v (x, v). More-
over, the map x 7→ (x, dxu) is locally Lipschitzian with a Lipschitz
constant independent of u.

Corollary 4.12.4 (Mather). The map π|M̃0 : M̃0 → M0 is
injective. Its inverse is Lipschitzian.

Proof. Let u ≺ L + c[0] be fixed, for example a weak KAM so-
lution. By the previous Theorem ??, the inverse of π on M0 is
x 7→ L̃−1(x, dxu), which is Lipschitz as a composition of Lipschitz
functions.
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The following corollary is due to Carneiro, see [Car95, Theorem
1, page 1078].

Corollary 4.12.5 (Carneiro). The Mather set M̃0 is contained
in the energy level c[0], i.e.

∀(x, v) ∈ M̃0,H(x,
∂L

∂v
(x, v)) = c[0].

Proof. Let u− be a weak KAM solution. It is known that for
(x, v) ∈ M̃0, the function u− is differentiable at x and dxu− =
∂L
∂v (x, v).

The functions of S− and S+ are completely determined by their
values on M0 as we show in the following theorem.

Theorem 4.12.6 (Uniqueness). Suppose that u−, ũ− are both in
S− (resp. u+, ũ+ are both in S+). If u− = ũ− (resp. u+ = ũ+) on
M0, then, we have u− = ũ− (resp. u+ = ũ+) everywhere on M .

Proof. Let us fix x ∈ M , we can find an extremal curve γx
− :

] −∞, 0] →M , with γx
−(0) = x and such that

∀t ≥ 0, u−(x) − u−(γx
−(−t)) =

∫ 0

−t
L(γx

−(s), γ̇x
−(s)) ds + c[0]t.

Since ũ− ≺ L+ c[0], we have

∀t ≥ 0, ũ−(x) − ũ−(γx
−(−t)) ≤

∫ 0

−t
L(γx

−(s), γ̇x
−(s)) ds + c[0]t.

It follows that

∀t ≥ 0, ũ−(x) − ũ−(γx
−(−t)) ≤ u−(x) − u−(γx

−(−t)). (*)

In addition, we know that s 7→ (γx
−(s), γ̇x

−(s)) is a trajectory of
the Euler-Lagrange flow φt and that the α-limit set of this tra-
jectory carries a Borel probability measure µ invariant by φt and
such that

∫

TM Ldµ = −c[0]. The support of this measure is thus

contained in M̃0. We conclude from it, that there exists a se-
quence tn ց +∞ such that (γx

−(−tn), γ̇x
−(−tn)) converges to a

point (x∞, v∞) ∈ M̃0, in particular, we have γx
−(−tn) → x∞

which is in M0. It follows that ũ−(γx
−(−tn))−u−(γx

−(−tn)) tends
to ũ−(x∞) − u−(x∞), which is 0 since x∞ ∈ M0. From (∗), we
then obtain the inequality ũ−(x) − u−(x) ≤ 0. We can of course
exchange the role of ũ− and that of u− to conclude.
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4.13 Complements

If u : M → R is a Lipschitz function, we will denote by dom(du)
the domain of definition of du, i.e. the set of the points x where
the derivative dxu exists. The graph of du is

Graph(du) = {(x, dxu) | x ∈ dom(u)} ⊂ T ∗M.

Let us recall that Rademacher’s theorem 1.1.10 says that M \
dom(u) is negligible (for the Lebesgue class of measures). Since
‖dxu‖x is bounded by the Lipschitz constant of u, it is not diffi-
cult to use a compactness argument to show that the projection
π∗

(
Graph(du)

)
is the whole of M .

Lemma 4.13.1. Suppose that u− ∈ S−. If x ∈ M and γx
− :

] −∞, 0] →M is such that γx
−(0) = x and

∀t ≥ 0, u−(x) − u−(γx
−(−t)) =

∫ 0

−t
L(γx

−(s), γ̇x
−(s)) ds + c[0]t,

then, the function u− has a derivative at each point γx
−(−t) with

t > 0, and we have

∀t > 0, dγx
−

(−t)u− =
∂L

∂v
(γx

−(−t), γ̇x
−(−t)).

It follows that

∀t, s > 0, (γx
−(−t− s), dγx

−
(−t−s)u−) = φ∗−s(γ

x
−(−t), dγx

−
(−t)u−).

We also have

∀t ≥ 0,H
[
γx
−(−t),

∂L

∂v
(γx

−(−t), γ̇x
−(−t))

]
= c[0].

Moreover, if u− has a derivative at x, we have

dxu− =
∂L

∂v
(x, γ̇x

−(0))

and dγx
−

(−t)u− = φ∗t (x, dxu−), for each t ≥ 0.

There is a similar statement for the functions u+ ∈ S+.
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Proof. For the first part, we notice that the curve γ : [−t, t] →M
defined by γ(s) = γx

−(s− t) shows that γ(0) = γx
−(−t) is in At,u−

,
for each t > 0. It follows that dγx

−
(−t)u− = ∂L

∂v (γx
−(−t), γ̇x

−(−t)).

The fact that (γx
−(−t − s), dγx

−
(−t−s)u−) = φ∗s(γ

x
−(−t), dγx

−
(−t)u−)

is, by Legendre transform, equivalent to φ−s(γ
x
−(−t), γ̇x

−(−t)) =
(γx

−(−t − s), γ̇x
−(−t − s)), which is true since γx

− is an extremal
curve. Let us suppose that u− has a derivative at x. The relation
u− ≺ L+ c[0] implies that

∀v ∈ TxM, dxu−(v) ≤ c[0] + L(x, v).

Moreover, taking the derivative at t = 0 of the equality

∀t ≥ 0, u−(x) − u−(γx
−(−t) =

∫ 0

−t
L(γx

−(s), γ̇x
−(s)) ds+ c[0]t,

we obtain the equality dxu−(γ̇x
−(0)) = c[0]+L(x, γ̇x

−(0)). We then
conclude that H(x, dxu−) = c[0] and that dxu− = ∂L

∂v (x, γ̇x
−(0)).

In particular, it follows that we have H(y, dyu−) = c[0] at any
point y ∈ M where u− has a derivative. By the first part, with-
out any assumption on the differentiability of u− at x, we find
that H

[
γx
−(−t), ∂L

∂v (γx
−(−t), γ̇x

−(−t))
]

= c[0], for each t > 0. By
continuity this equality is also true for t = 0.

Theorem 4.13.2. Let u− ∈ S−. The derivative map x 7→ (x, dxu−)
is continuous on its domain of definition dom(du−). The sets
Graph(du−) and Graph(du−) are invariant by φ∗−t, for each t ≥ 0.

Moreover, for each (x, p) ∈ Graph(du−), we have H(x, p) = c[0].
The closure Graph(du−) is the image by the Legendre trans-

form L̃ : TM → T ∗M of the subset of TM formed by the (x, v) ∈
TM such that

∀t ≥ 0, u−(x) − u−[π(φ−t(x, v))] =

∫ 0

−t
L(φs(x, v)) ds + c[0]t,

i.e. the set of the (x, v) such that the extremal curve γ : ]−∞, 0] →
M , with γ(0) = x and γ̇(0) = v, is a curve of the type γx

− for u−.

Proof. The above Lemma 4.13.1 shows that Graph(du−) is invari-
ant by φ∗−t, for each t ≥ 0 and that Graph(du−) ⊂ H−1(c[0]).

Since the flow φ∗t is continuous, the closure Graph(du−) is also
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invariant by φ∗−t, for each t ≥ 0. In the same way, the inclu-

sion Graph(du−) ⊂ H−1(c[0]) results from the continuity of H.
If we denote by D− the subset of TM defined in the last part of
the theorem, Lemma ?? also shows that Graph(du−) ⊂ L̃(D−) ⊂
Graph(du−). If xn is a sequence in dom(du−) and (xn, dxnu−) →
(x, p), let us then show that

∀t ≥ 0, u−(x)− u−[π(φ−t(x, v))] =

∫ 0

−t
L(φs(x, v)) ds+ c[0]t, (∗)

where v ∈ TxM is defined by p = ∂L
∂v (x, v). For that we define

vn ∈ TxnM by dxnu− = ∂L
∂v (xn, vn). We have (xn, vn) → (x, v).

By Lemma ??, the extremal curve γxn : ] − ∞, 0] → M is s 7→
π(φs(xn, vn)), hence we obtain

∀t ≥ 0, u−(xn)−u−[π(φ−t(xn, vn))] =

∫ 0

−t
L(φs(xn, vn)) ds+ c[0]t.

When we let n tend to +∞, we find (∗). We conclude that (x, v) ∈
D− and thus L̃(D−) = Graph(du−). Moreover by Lemma ??, if
x ∈ dom(du−) we necessarily have dxu− = ∂L

∂v (x, v) = p. As
Graph(du−) is contained in the compact subsetH−1(c[0]), we then
obtain the continuity of x 7→ (x, dxu−) on dom(du−).

We have of course a similar statement for the functions in S+.

Theorem 4.13.3. If u+ ∈ S+, the derivative map x 7→ (x, dxu+)
is continuous on its domain of definition dom(du+).

The sets Graph(du+) and Graph(du+) are invariant by φ∗t , for
each t ≥ 0. Moreover, for each (x, p) ∈ Graph(du+), we have
H(x, p) = c[0]. The closure Graph(du+) is the image by the Le-
gendre transform L̃ : TM → T ∗M of the subset of TM formed by
the (x, v) ∈ TM such that

∀t ≥ 0, u+ ◦ π(φt(x, v)) − u+(x) =

∫ t

0
L(φs(x, v)) ds + c[0]t,

i.e. the set of (x, v) such that the extremal curve γ : [0,+∞[→M ,
with γ(0) = x and γ̇(0) = v, is a curve of the type γx

+ for u+.
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4.14 Examples

Definition 4.14.1 (Reversible Lagrangian). The Lagrangian L
is said to be reversible if it satisfies L(x,−v) = L(x, v), for each
(x, v) ∈ TM .

Example 4.14.2. Let g be a Riemannian metric on M , we denote
by ‖ · ‖x the norm deduced from g on TxM . If V : M → R is C2,
the Lagrangian L defined by L(x, v) = 1

2‖v‖
2
x −V (x) is reversible.

Proposition 4.14.3. For a reversible Lagrangian L, we have

−c[0] = inf
x∈M

L(x, 0) = inf
(x,v)∈TM

L(x, v).

Moreover M̃0 = {(x, 0) | L(x, 0) = −c[0]}.

Proof. By the strict convexity and the superlinearity of L in the
fibers of the tangent bundle TM , we have L(x, 0) = infv∈TxM L(x, v),
for all x ∈M . Let us set k = infx∈M L(x, 0) = inf(x,v)∈TM L(x, v).
Since −c[0] = inf

∫
Ldµ, where the infimum is taken over all Borel

probability measures on TM invariant under the flow φt, we ob-
tain k ≤ −c[0]. Let then x0 ∈ M be such that L(x0, 0) = k,
the constant curve ] − ∞,+∞[→ M, t 7→ x0 is a minimizing ex-
tremal curve. Consequently φt(x0, 0) = (x0, 0) and the Dirac mass
δ(x0,0) is invariant by φt, but

∫
Ldδ(x0,0) = k. Therefore −c[0] = k

and (x0, 0) ∈ M̃0. Let µ be a Borel probability measure on TM
such that

∫

TM Ldµ = −c[0]. Since −c[0] = infTM L, we necessar-
ily have L(x, v) = infTM L on the support of µ. It follows that
supp(µ) ⊂ {(x, 0) | L(x, 0) = −c[0]}.

We then consider the case where M is the circle T = R/Z.
We identify the tangent bundle TT with T × R. As a Lagran-
gian L we take one defined by L(x, v) = 1

2v
2 − V (x), where

V : T → R is C2. We thus have −c[0] = infT×R L = − supV ,
hence c[0] = supV . Let us identify T ∗

T with T × R. The Hamil-
tonian H is given by H(x, p) = 1

2p
2 +V (x). The differential equa-

tion on T ∗
T which defines the flow φt is given by ẋ = p and

ṗ = −V ′(x). If u− ∈ S−, the compact subset Graph(du−) is con-
tained in the set H−1(c[0]) = {(x, p) | p = ±

√

supV − V (x)}.
We strongly encourage the reader to do some drawings FAIRE
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DES DESSINS of the situation in R × R, the universal cover
of T × R. To describe u− completely let us consider the case
where V reaches its maximum only at 0. In this case the set
H−1(c[0]) consists of three orbits of φ∗t , namely the fixed point
(0, 0), the orbit O+ = {(x,

√

supV − V (x)) | x 6= 0} and the orbit
O− = {(x,−

√

supV − V (x)) | x 6= 0}. On O+ the direction of the
increasing t is that of the increasing x (we identify in a natural way
T\0 with ]0, 1[). On O− the direction of the increasing t is that of
the decreasing x. Since Graph(du−) is invariant by the maps φ∗−t,

for t ≥ 0, if (x,
√

supV − V (x)) ∈ Graph(du−), then we must have

(y,
√

supV − V (y)) ∈ Graph(du−), for each y ∈]0, x]. By symme-

try we get (y,−
√

supV − V (y)) ∈ Graph(du−), for each y ∈ [x, 1[.

It follows that there is a point x0 such that Graph(du−) is the
union of (0, 0) and the two sets {(y,

√

supV − V (y)) | y ∈]0, x0]}
and {(y,−

√

supV − V (y)) | y ∈ [x0, 1[}. Moreover, since the
function u− is defined on T, we have limx→1 u−(x) = u−(0) and
thus the integral on ]0, 1[ of the derivative of u− must be 0. This
gives the relation

∫ x0

0

√

supV − V (x) dx =

∫ 1

x0

√

supV − V (x) dx.

This equality determines completely a unique point x0, since supV−
V (x) > 0 for x ∈]0, 1[. In this case, we see that u− is unique up
to an additive constant and that

u−(x) =

{

u−(0) +
∫ x
0

√

supV − V (x) dx, if x ∈ [0, x0];

u−(0) +
∫ 1
x

√

supV − V (x) dx, if x ∈ [x0, 1].

Exercise 4.14.4. 1) If V : T → R reaches its maximum exactly
n times, show that the solutions u− depend on n real parameters,
one of these parameters being an additive constant.

2) Describe the Mather function α : H1(T,R) → R,Ω 7→ c[Ω].
3) If ω is a closed differential 1-form on T, describe the func-

tion uω
− for the Lagrangian Lω defined by L(x, v) = 1

2v
2 − V (x) −

ωx(v).



Chapter 5

Conjugate Weak KAM

Solutions

In this chapter, as in the previous ones, we denote by M a com-
pact and connected manifold. The projection of TM on M is
denoted by π : TM → M . We suppose given a Cr Lagrangian
L : TM → R, with r ≥ 2, such that, for each (x, v) ∈ TM , the

second vertical derivative ∂2L
∂v2 (x, v) is definite > 0 as a quadratic

form, and that L is superlinear in each fiber of the tangent bundle
π : TM → M . We will also endow M with a fixed Riemannian
metric. We denote by d the distance on M associated with this
Riemannian metric. If x ∈ M , the norm ‖ · ‖x on TxM is the one
induced by this same Riemannian metric.

5.1 Conjugate Weak KAM Solutions

We start with the following lemma

Lemma 5.1.1. If u ≺ L+ c[0], then we have

∀x ∈ M0,∀t ≥ 0, u(x) = T−
t u(x) + c[0]t = T+

t u(x) − c[0]t.

Proof. Since u ≺ L + c[0], we have u ≤ T−
t u + c[0]t and u ≥

T+
t u − c[0]t. We consider the point (x, v) ∈ M̃0 above x. Let us

note by γ : ] −∞,+∞[→ M the extremal curve s 7→ π(φs(x, v)).
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By lemma 4.12.2, for each t ≥ 0, we have

u(γ(0)) − u(γ(−t)) =

∫ 0

−t
L(γ(s), γ̇(s)) ds + c[0]t,

u(γ(t)) − u(γ(0)) =

∫ t

0
L(γ(s), γ̇(s)) ds + c[0]t.

Since γ(0) = x, we obtain the inequalities u(x) ≥ T−
t u(x) + c[0]t

and u(x) ≤ T+
t u(x) − c[0]t.

Theorem 5.1.2 (Existence of Conjugate Pairs). If u : M → R

is a function such that u ≺ L + c[0], then, there exists a unique
function u− ∈ S− (resp. u+ ∈ S+) with u = u− (resp. u = u+) on
the projected Mather set M0. These functions verify the following
properties

(1) we have u+ ≤ u ≤ u−;

(2) if u1
− ∈ S− (resp. u1

+ ∈ S+) verifies u ≤ u1
− (resp. u1

+ ≤ u),
then u− ≤ u1

− (resp. u1
+ ≤ u+);

(3) We have u− = limt→+∞ T−
t u+c[0]t and u+ = limt→+∞ T+

t u−
c[0]t, the convergence being uniform on M .

Proof. It will be simpler to consider the modified semigroup T̂−
t v =

T−
t v + c[0]t. The elements of S− are precisely the fixed points of

the semigroup T̂−
t . The condition u ≺ L + c[0] is equivalent to

u ≤ T̂−
t u. As T̂−

t preserves the order, we see that T̂−
t u ≤ u1

− for

each u1
− ∈ S− satisfying u ≤ u1

−. As T̂−
t u = u on the projected

Mather set M0, it then remains to show that T̂−
t u is uniformly

convergent for t → ∞. However, we have T̂−
t u ≤ T̂−

t+su, if s ≥ 0,

because this is true for t = 0 and the semigroup T̂−
t preserves the

order. Since for t ≥ 1 the family of maps T̂−
t u is equi-Lipschitzian,

it is enough to see that this family of maps is uniformly bounded.
To show this uniform boundedness, we fix u0

− ∈ S−, by compact-
ness of M , there exists k ∈ R such that u ≤ u0

− + k. By what was

already shown, we have T̂−
t u ≤ u0

− + k.

Corollary 5.1.3. For any function u− ∈ S− (resp. u+ ∈ S+),
there exists one and only one function of u+ ∈ S+ (resp. u− ∈ S−)
satisfying u+ = u− on M0. Moreover, we have u+ ≤ u− on all M .
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Definition 5.1.4 (Conjugate Functions). A pair of functions (u−, u+)
is said to be conjugate if u− ∈ S−, u+ ∈ S+ and u− = u+ on M0.
We will denote by D the set formed by the differences u− − u+ of
pairs (u−, u+) of conjugate functions.

The following lemma will be useful in the sequel.

Lemma 5.1.5 (Compactness of the Differences). All the functions
in D are ≥ 0. Moreover, the subset D is compact in C0(M,R) for
the topology of uniform convergence.

Proof. If u− and u+ are conjugate, we then know that u+ ≤ u−
and thus u− − u+ ≥ 0. If we fix x0 ∈ M , the set Sx0

− = {u− |
u−(x0) = 0} (resp. Sx0

+ = {u+ | u+(x0) = 0}) is compact, since it
is a family of equi-Lipschitzian functions on the compact manifold
M which all vanishes at the point x0. However, for c ∈ R, it is
obvious that the pair (u−, u+) is conjugate if and only if the pair
(u− + c, u+ + c) is conjugate. We conclude that D is the subset
of the compact subset Sx0

− − Sx0
+ formed by the functions which

vanish on M0.

Corollary 5.1.6. Let us suppose that all the functions u− ∈ S−

are C1 (what is equivalent to S− = S+). Then, two arbitrary
functions in S− differ by a constant.

Proof. Conjugate functions are then equal, because the C1 func-
tions contained in S− or S+ are also in S− ∩ S+ by 4.11.8. Sup-
pose then that u1

− and u2
− are two functions in S−. We of course

do have u = (u1
− + u2

−)/2 ≺ L + c[0]. By the Theorem of Ex-
istence of Conjugate Pairs 5.1.2, we can find a pair of conju-
gate functions (u−, u+) with u+ ≤ u ≤ u−. As conjugate func-
tions are equal, we have u = (u1

− + u2
−)/2 ∈ S−. The three

functions u, u1
− and u2

− are C1 and in S−, we must then have
H(x, dx(u1

− + u2
−)/2) = H(x, dxu

1
−) = H(x, dxu

2
−) = c[0], for each

x ∈M . This is compatible with the strict convexity of H in fibers
of T ∗M only if dxu

1
− = dxu

2
−, for each x ∈M .



186

5.2 Aubry Set and Mañé Set.

Definition 5.2.1 (The Set I(u−,u+)). Let us consider a pair (u−, u+)
of conjugate functions. We denote by I(u−,u+), the set

I(u−,u+) = {x ∈M | u−(x) = u+(x)}.

We have I(u−,u+) ⊃ M0.

Theorem 5.2.2. For each x ∈ I(u−,u+), there exists an extremal
curve a γx : ] −∞,+∞[→M , with γx(0) = x, γ̇x(0) = v and such
that, for each t ∈ R, we have u−(π[φt(x, v)]) = u+(π[φt(x, v)]) and

∀t ≤ t′ ∈ R, u±(γx(t′))−u±(γx(t)) =

∫ t′

t
L(γx(s), γ̇x(s)) ds+c[0](t′−t).

It follows that the functions u− and u+ are differentiable at every
point of I(u−,u+) with the same derivative. Moreover, there exists
a constant K which depends only on L and such that the section
I(u−,u+) → T ∗M,x 7→ dxu− = dxu+ is Lipschitzian with Lipschitz
constant ≤ K.

Proof. Let us fix x ∈ I(u−,u+). There exists extremal curves γx
− :

]−∞, 0] →M and γx
+ : [0,+∞[→ M with γx

−(0) = γx
+(0) = x and

for each t ∈ [0,+∞[

u+(γx
+(t)) − u+(x) = c[0]t+

∫ t

0
L(γx

+(s), γ̇x
+(s)) ds,

u−(x) − u−(γx
−(−t)) = c[0]t+

∫ 0

−t
L(γx

−(s), γ̇x
−(s)) ds.

But, since u− ≺ L + c[0], u+ ≺ L + c[0], u+ ≤ u− and u−(x) =
u+(x), we have

u+(γx
+(t)) − u+(x) ≤ u−(γx

+(t)) − u−(x)

≤ c[0]t +

∫ t

0
L(γx

+(s), γ̇x
+(s)) ds,

and

u−(x) − u−(γx
−(−t)) ≤ u+(x) − u+(γx

−(−t))

≤ c[0]t+

∫ 0

−t
L(γx

−(s), γ̇x
−(s)) ds.
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We thus have equality everywhere. It is not difficult to deduce
that the curve γx which is equal to γx

− on ] −∞, 0] and to γx
+ on

[0,+∞[ satisfies

∀t ≤ t′ ∈ R, u±(γxt′)−u±(γxt) =

∫ t′

t
L(γx(s), γ̇x(s)) ds+c[0](t′−t).

It follows that γx is the sought extremal curve. The existence
of γx shows that x ∈ A1,u−

and x ∈ A1,u+ and thus u− and u+

are differentiable at x with dxu− = dxu+ = ∂L
∂v (x, γ̇x(0)). The

existence of K also results from x ∈ A1,u−
(or x ∈ A1,u+).

Definition 5.2.3 (The set Ĩ(u−,u+)). If (u−, u+) is a pair of con-

jugate functions, we define the set Ĩ(u−,u+) by

Ĩ(u−,u+) = {(x, v) | x ∈ I(u−,u+), dxu− = dxu+ =
∂L

∂v
(x, v)}.

Theorem 5.2.4. If (u−, u+) is a pair of conjugate functions, the
projection π : TM → induces a bi-Lipschitzian homeomorphism
Ĩ(u−,u+) on I(u−,u+). The set Ĩ(u−,u+) is compact and invariant by

the Euler-Lagrange flow φt. It contains M̃0. If (x, v) ∈ Ĩ(u−,u+),
for each t ∈ R, we have u−(π[φt(x, v)]) = u+(π[φt(x, v)]) and for
all t ≤ t′ ∈ R

u±(π[φt′(x, v)])− u±(π[φt(x, v)]) =

∫ t′

t
L(φs(x, v)) ds+c[0](t

′−t).

Proof. By the previous theorem 5.2.2 the projection π restricted
to Ĩ(u−,u+) is surjective onto I(u−,u+) with a Lipschitzian inverse.

In particular, the set Ĩ(u−,u+) is compact. Moreover, if (x, v) ∈

Ĩ(u−,u+) and γx is the extremal curve given by the previous theo-
rem, we have v = γ̇x(0), and, for each s ∈ R, we have (γx(s), γ̇x(s)) ∈
Ĩ(u−,u+), because γx(s) ∈ I(u−,u+) and the extremal curve t 7→

γx(s + t) can be used as γγx(s). Since (γx(s), γ̇x(s)) = φs(x, v),
it follows that Ĩ(u−,u+) is invariant by the flow φt. From theorem
4.12.3, if x ∈ M0, we have dxu± = ∂L/∂v(x, v), where (x, v) is
the point M̃0 above x. Since M0 ⊂ I(u−,u+), the definition of

Ĩ(u−,u+) implies (x, v) ∈ Ĩ(u−,u+).
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The Mañé set was introduced in [Mn97, page 144], where it is
denoted Σ(L).

Definition 5.2.5 (Mañé Set). The Mañé set is

Ñ0 =
⋃

Ĩ(u−,u+),

where the union is taken over all pairs (u−, u+) of conjugate func-
tions.

Proposition 5.2.6. The Mañé set Ñ0 is a compact subset of TM
which is invariant by φt. It contains M̃0.

Definition 5.2.7 (Aubry Set). The Aubry Set in TM is

Ã0 =
⋂

Ĩ(u−,u+),

where the intersection is taken on the pairs (u−, u+) of conjugate
functions. The projected Aubry set in M is A0 = π(Ã0).

Theorem 5.2.8. The Aubry sets A0 and Ã0 are both compact,
and satisfy M̃0 ⊂ Ã0 and M0 ⊂ A0. The compact set Ã0 ⊂ TM
is invariant by the Euler-Lagrange flow φt.

Moreover, there is a pair (u−, u+) of conjugate functions such
that A0 = I(u−,u+) and Ã0 = Ĩ(u−,u+).

Therefore the projection π : TM → M induces a bi-Lipschitz
homeomorphism Ã0 on A0 = π(Ã0).

Proof. The first part of the theorem is a consequence of the same
properties which hold true for Ĩ(u−,u+) and I(u−,u+) which are true
by theorem 5.2.4. The last part of the theorem is, again by 5.2.4,
a consequence of the second part.

It remains to prove the second part. We fix a base point x0 ∈
M0, any pair of conjugate function is of the form (u− + c, u+ + c),
where (u−, u+) is a pair of conjugate functions with u−(x0) =
u+(x0) = 0, and c ∈ R. Using the fact that C(M,R) is metric
and separable (i.e. contains a dense sequence) for the topology of
uniform convergence, we can find a sequence of pairs of conjugate
functions (un

− + cn, u
n
+cn), dense in the set of pairs of conjugate

functions, and such that un
−(x0) = un

+(x0) = 0, cn ∈ R. Since
the sets S− and S+ form equi-Lipschitzian families of functions on
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the compact space M , and un
−(x0) = un

+(x0) = 0, we can find a
constant C < +∞ such that ‖un

−‖∞ ≤ C and ‖un
+‖∞ ≤ C, for

each n ≥ 0. It follows that the series
∑

n≥0 2−n−1un
− converges to

a continuous function. The sum is dominated by L+ c[0], because
this is the case for each un

− and
∑

n≥0 2−n−1 = 1. By theorem
5.1.2, we can thus find u− ∈ S− with u− ≥

∑

n≥0 2−nun
− and

u− =
∑

n≥0 2−nun
− on M0. In the same way, we can find u+ ∈ S+

with u+ ≤
∑

n≥0 2−nun
+ and u+ =

∑

n≥0 2−nun
+ on M0. Since

un
+ ≤ un

− with equality on M0, we see that

u+ ≤
∑

n≥0

2−nun
+ ≤

∑

n≥0

2−nun
− ≤ u−,

with equalities on M0. It follows that functions u− and u+ are
conjugate. Moreover, if u−(x) = u+(x), we necessarily have un

−(x) =
un

+(x) for each n ≥ 0. By density of the sequence (un
− + cn, u

n
+cn)

we conclude that for each pair v−, v+) of conjugate functions, we
have I(u−,u+) ⊂ I(v−,v+). Therefore shows that I(u−,u+) = A0.

If (x, v) ∈ Ĩ(u−,u+), the curve γ(s) = π(φs(x, v)) is contained in
I(u−,u+) = A0, and (u±, L, c[0])-calibrated. Therefore, for example

∀t ≤ t′ ∈ R, u−(γ(t′))−u−(γ(t)) =

∫ t′

t
L(γ(s), γ̇(s)) ds+c[0](t′−t)..

(*)
Since un ≺ L+ c[0], for each n ≥ 1, we also have

∀t ≤ t′ ∈ R, un
−(γ(t′))−un

−(γ(t)) ≤ intt
′

t L(γ(s), γ̇(s)) ds+c[0](t′−t)..
(**)

From what we established we have

∀y ∈ I(u−,u+), u−(y) =
∑

n≥1

un
−(y)

2n
.. (***)

The equalities (*) and (***), taken with the fact that the image
of γ is contained in I(u−,u+), do imply that the inequality (**) is
in fact an equality, which means that γ is (un

−, L, c[0])-calibrated,
for every n ≥ 1. By denseness of the sequence (un

− + cn) in S−,
we obtain that γ is (v−, L, c[0])-calibrated, for every v− ∈ S−.
Therefore dxv− is the Legendre transform of (x, v) = (γ(0), γ̇(0)).
Since x ∈ A0 ⊂ I(v−,v+), this implies that (x, v) ∈ Ĩ(v−,v+). It

follows easily that Ĩ(u−,u+) = Ã0.
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5.3 The Peierls barrier.

This definition of the Peierls barrier is due to Mather, see [Mat93,
§7, page 1372].

Definition 5.3.1 (Peierls Barrier). The Peierls barrier is the func-
tion h : M → R defined by

h(x, y) = lim inf
t→+∞

ht(x, y) + c[0]t.

It is not completely clear that h is finite nor that it is contin-
uous. We start by showing these two points.

Lemma 5.3.2 (Properties of ht). The properties of ht are

(1) for each x, y, z ∈M and each t, t′ > 0, we have

ht(x, y) + ht′(y, z) ≥ ht+t′(x, z);

(2) if u ≺ L+ c, we have ht(x, y) + ct ≥ u(y) − u(x);

(3) for each t > 0 and each x ∈M , we have ht(x, x) + c[0]t ≥ 0;

(4) for each t0 > 0 and each u− ∈ S−, there exists a constant
Ct0,u−

such that

∀t ≥ t0,∀x, y ∈M, −2‖u−‖∞ ≤ ht(x, y)+c[0]t ≤ 2‖u−‖∞+Ct0,u−
;

(5) for each t > 0 and each x, y ∈ M , there exists an ex-
tremal curve γ : [0, t] → M with γ(0) = x, γ(t) = y and
ht(x, y) =

∫ t
0 L(γ(s), γ̇(s)) ds. Moreover, an extremal curve

γ : [0, t] → M is minimizing if and only if ht(γ(0), γ(t)) =
∫ t
0 L(γ(s), γ̇(s)) ds;

(6) for each t0 > 0, there exists a constant Kt0 ∈ [0,+∞[ such
that, for each t ≥ t0 the function ht : M × M → R is
Lipschitzian with a Lipschitz constant ≤ Kt0 .

Proof. Properties (1) and (2) are immediate, and property (3)
results from (2) taking for u a function in S−.

To prove property (4), we first remark that the inequality
−2‖u−‖∞ ≤ ht(x, y)+ c[0]t also results from (2). By compactness



191

of M , we can find a constant Ct0 such that for each x, z ∈M , there
exists a C1 curve γx,z : [0, t0] → M with γx,z(0) = x, γx,z(t0) = z,

and
∫ t0
0 L(γx,z(s), γ̇x,z(s)) ds ≤ Ct0 . By the properties of u−, we

can find an extremal curve γy
− :] − ∞, 0] → M , with γy

−(0) = y,
and

∀t ≥ 0, u−(y) − u−(γy
−(−t)) =

∫ 0

−t
L(γy

−(s), γ̇y
−(s)) ds + c[0]t.

If t ≥ t0, we can define a (continuous) piecewise C1 curve γ : [0, t]
by γ(s) = γx,γy

−
(t0−t)(s), for s ∈ [0, t0], and γ(s) = γy

−(s − t), for

s ∈ [t0, t]. This curve γ joins x with y, and we have

∫ t

0
L(γ(s), γ̇(s)) ds+ c[0]t ≤ Ct0 + c[0]t0 +u−(y)−u−(γy

−(t0 − t)).

It is then enough to set Ct0,u−
= Ct0 + c[0]t0 to finish the proof of

(4).

The first part of the property (5) results from Tonelli’s Theo-
rem 3.3.1. The second part is immediate starting from the defini-
tions.

To prove property (6), suppose that γ : [0, t] → M is an
extremal curve such that γ(0) = x, γ(t) = y, and ht(x, y) =
∫ t
0 L(γ(s), γ̇(s)) ds. Since t ≥ t0, we know by the Compactness

Lemma that there exists a compact subsetK of TM with (γ(s), γ̇(s)) ∈
K for each x, y ∈ M , each t ≥ t0 and each s ∈ [0, t]. It is then
enough to adapt the ideas which made it possible to show that the
family {T−

t u | t ≥ t0, u ∈ C0(M,R)} is equi-Lipschitzian.

Corollary 5.3.3 (Properties of h). The values of the map h are
finite. Moreover, the following properties hold

(1) the map h is Lipschitzian;

(2) if u ≺ L+ c[0], we have h(x, y) ≥ u(y) − u(x);

(3) for each x ∈M , we have h(x, x) ≥ 0;

(4) h(x, y) + h(y, z) ≥ h(x, z);

(5) h(x, y) + h(y, x) ≥ 0;
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(6) for x ∈ M0, we have h(x, x) = 0;

(7) for each x, y ∈ M , there exists a sequence of minimizing
extremal curves γn : [0, tn] → M with tn → ∞, γn(0) =
x, γn(tn) = y and

h(x, y) = lim
n→+∞

∫ tn

0
L(γn(s), γ̇n(s)) ds + c[0]tn;

(8) if γn : [0, tn] →M is a sequence of (continuous) piecewise
C1 curves with tn → ∞, γn(0) → x, and γn(tn) → y, then
we have

h(x, y) ≤ lim inf
n→+∞

∫ tn

0
L(γn(s), γ̇n(s)) ds + c[0]tn.

Proof. Properties (1) to (5) are easy consequences of the lemma
giving the properties of ht 5.3.2. Let us show the property (6). By
the continuity of h, it is enough to show that if µ is a Borel proba-
bility measure on TM , invariant by φt and such that

∫

T MLdµ =
−c[0], then, for each (x, v) ∈ supp(µ), the support of µ, we have
h(x, x) = 0. By Poincaré’s Recurrence Theorem, the recurrent
points for φt contained in supp(µ) form a dense set in supp(µ).
By continuity of h, we can thus assume that (x, v) is a recurrent
point for φt. Let us fix u− ∈ S−. We have

u−(πφt(x, v)) − u−(x) =

∫ t

0
L(φs(x, v)) ds + c[0]t

By the definition of a recurrent point, there exists a sequence tn →
∞ with φtn(x, v) → (x, v), it is not difficult, for each ǫ > 0 and each
t′ ≥ 0, to find a (continuous) piecewise C1 curve γ : [0, t] → M ,
with t ≥ t′, γ(0) = γ(t) = x, and such that

∫ t
0 L(γ(s), γ̇(s)) ds +

c[0]t ≤ ǫ. Consequently, we obtain h(x, x) ≤ 0. The inequality
h(x, x) ≥ 0 is true for each x ∈M .

Property (7) results from part (5) of the lemma giving the
properties of ht, since there is a sequence tn → +∞ such that
h(x, y) = limtn→+∞ htn(x, y) + c[0]tn.

Let us show property (8). By the previous lemma, there is a
constant K1such that

∀t ≥ 1,∀x, x′, y, y′ ∈M, |ht(x, y)−ht(x
′, y′)| ≤ K1(d(x, x

′)+d(y, y′)).
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In addition, we also have

htn(γn(0), γn(tn)) ≤

∫ tn

0
L(γn(s), γ̇n(s)) ds + c[0]tn.

For n large, it follows that

htn(x, y) + c[0]tn ≤ htn(γn(0), γn(tn)) + c[0]tn +K1(d(x, γn(0)) + d(y, γn(tn)))

≤ c[0]tn +K1(d(x, γn(0)) + d(y, γn(tn))) +

∫ tn

0
L(γn(s), γ̇n(s)) ds + c[0]tn.

Since d(x, γn(0))+d(y, γn(tn)) → 0, we obtain the sought inequal-
ity.

The following lemma is useful.

Lemma 5.3.4. Let V be an open neighborhood of M̃0 in TM .
There exists t(V ) > 0 with the following property:

If γ : [0, t] →M is a minimizing extremal curve, with t ≥ t(V ),
then, we can find s ∈ [0, t] with (γ(s), γ̇(s)) ∈ V .

Proof. If the lemma were not true, we could find a sequence of
extremal minimizing curves γi : [0, ti] → M , with ti → ∞, and
such that (γi(s), γ̇i(s)) /∈ V , for each s ∈ [0, ti]. Since ti → +∞,
by corollary 4.4.5, there exists a compact subset K ⊂ TM with
(γi(s), γ̇i(s)) ∈ K, for each s ∈ [0, ti] and each i ≥ 0. We then
consider the sequence of probability measures µn on TM defined
by

∫

TM
θ dµn =

1

tn

∫ tn

0
θ(γn(s), γ̇n(s)) ds,

for θ : TM → R continuous. All the supports of these mea-
sures are contained in the compact subset K of TM . Extract-
ing a subsequence, we can assume that µn converge weakly to a
probability measure µ. Since (γn(s), γ̇n(s)), s ∈ [0, tn] are pieces
of orbits of the flow φt, and since tn → +∞, the measure µ is
invariant by φt. Moreover, its support supp(µ) is contained in
TM\V , because this is the case for all supp(µn) = {(γn(s), γ̇n(s)) |
s ∈ [0, tn}. Since the γn are minimizing extremals, we have
∫
Ldµn = htn(γn(0), γ(tn))/tn. By the lemma giving the prop-

erties of ht 5.3.2, if u− ∈ S−, we can find a constant C1 such
that

∀t ≥ 1,∀x, y ∈M,−2‖u−‖0 ≤ ht(x, y) + c[0]t ≤ 2‖u−‖0 + C1.
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It follows that limn→+∞

∫
Ldµn = −c[0]. Hence

∫

TM Ldµ = −c[0]

and the support of µ is included in Mather’s set M̃0. This is
a contradiction, since we have already observed that supp(µ) is
disjoint from the open set V which contains M̃0.

Corollary 5.3.5. For each pair u− ∈ S−, u+ ∈ S+ of conjugate
functions, we have

∀x, y ∈M, u−(y) − u+(x) ≤ h(x, y).

Proof. We pick a sequence of extremals γn : [0, tn] →M joining x
to y, and such that

h(x, y) = lim
n→∞

∫ tn

0
L(γn(s), γ̇n(s)) ds + c[0]tn.

By the previous lemma 5.3.4, extracting a subsequence if neces-
sary, we can find a sequence t′n ∈ [0, tn] such that γn(t′n) → z ∈
M0. If u− ∈ S−, and u+ ∈ S+, we have

u+(γn(t′n)) − u+(x) ≤

∫ t′n

0
L(γn(s), γ̇n(s)) ds + c[0]t′n,

u−(y) − u−(γn(t′n)) ≤

∫ tn

t′n

L(γn(s), γ̇n(s)) ds + c[0](tn − t′n).

If we add these inequalities, and we let n go to +∞, we find

u−(y) − u−(z) + u+(z) − u+(x) ≤ h(x, y).

But the functions u− and u+ being conjugate, we have u+(z) =
u−(z), since z ∈ M0.

Theorem 5.3.6. For x ∈ M , we define the function hx : M → R

(resp. hx : M → R) by hx(y) = h(x, y) (resp. hx(y) = h(y, x)). For
each x ∈M , the function hx : M → R (resp. −hx) is in S− (resp.
S+). Moreover, its conjugate function ux

+ ∈ S+ (resp. ux
− ∈ S−)

vanishes at x.

Proof. We first show that the function hx is dominated by L+c[0].
If γ : [0, t] → M is a (continuous) piecewise C1 curve, we have
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ht(γ(0), γ(t)) ≤
∫ t
0 L(γ(s), γ̇(s)) ds and thus, by part (1) of the

lemma giving the properties of ht 5.3.2, we obtain

ht′+t(x, γ(t)) ≤ ht′(x, γ(0)) +

∫ t

0
L(γ(s), γ̇(s)) ds,

which gives by adding c[0](t+ t′) to the two members

ht′+t(x, γ(t))+c[0](t+t
′) ≤ ht′(x, γ(0))+c[0]t

′+

∫ t

0
L(γ(s), γ̇(s)) ds+c[0]t.

By taking the liminf for t′ → +∞, we find

h(x, γ(t)) ≤ h(x, γ(0)) +

∫ t

0
L(γ(s), γ̇(s)) ds + c[0]t,

which we can write as

hx(γ(t)) − hx(γ(0)) ≤

∫ t

0
L(γ(s), γ̇(s)) ds + c[0]t.

To finish showing that hx ∈ S−, it is enough to show that for
y ∈ M , we can find an extremal curve γ− : ] − ∞, 0] such that
γ−(0) = y and

∀t ≤ 0, h(x, y) ≥ h(x, γ−(t)) +

∫ 0

t
L(γ−(s), γ̇−(s)) ds− c[0]t.

We take a sequence of extremal curves γn : [0, tn] →M connecting
x to y, and such that

h(x, y) = lim
n→∞

∫ tn

0
L(γn(s), γ̇n(s)) ds + c[0]tn.

Since tn → ∞ and the γn are all minimizing extremal curves, by
extracting a subsequence if necessary, we can suppose that the
sequence of extremal curves γ′n : [−tn, 0] → M, t 7→ γn(tn + t)
converges to an extremal curve γ− : ] − ∞, 0] → M . We have
γ−(0) = limn→∞ γn(tn) = y. Let us fix t ∈] − ∞, 0], for n big
enough, we have tn + t ≥ 0 and we can write

∫ tn

0
L(γn(s), γ̇n(s)) ds+c[0]tn =

∫ tn+t

0
L(γn(s), γ̇n(s)) ds+c[0](tn+t)

∫ tn+t

0
L(γn(s), γ̇n(s)) ds+c[0](tn+t)+

∫ 0

t
L(γ′n(s), γ̇′n(s)) ds−c[0]t.

(∗)
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By convergence of the γ′n, we have

∫ 0

t
L(γ′n(s), γ̇′n(s)) ds →

∫ 0

t
L(γ−(s), γ̇−(s)) ds.

Since limn tn + t = ∞, and limn→∞ γn(tn + t) = limn→∞ γ′n(t) =
γ−(t), by part (8) of the corollary giving the properties of h, we
obtain h(x, γ−(t)) ≤ lim infn→∞

∫ tn+t
0 L(γn(s), γ̇n(s)) ds+c[0](tn+

t). By taking the liminf in the equality (∗), we do indeed find

h(x, y) ≥ h(x, γ−(t)) +

∫ 0

t
L(γ−(s), γ̇−(s)) ds − c[0]t.

It remains to be seen that ux
+ ∈ S+, the conjugate function of hx,

vanishes at x. For that, we define

a(t) = −c[0]t+ sup
γ
h(x, γ(t)) −

∫ t

0
L(γ(s), γ̇(s)) ds,

where γ : [0, t] →M varies among C1 curves with γ(0) = x. This
quantity a(t)is nothing but T+

t (hx)(x) − c[0]t, and thus ux
+(x) =

limt→∞ a(t). For each t > 0, we can choose an extremal curve
γt : [0, t] →M , with γt(0) = x and

a(t) = −c[0]t+ h(x, γt(t)) −

∫ t

0
L(γt(s), γ̇t(s)) ds.

We then choose a sequence tn → +∞ such that γtn(tn) converges
to a point of M which we will call y. By continuity of h we have
h(x, y) = limn→+∞ h(x, γtn (tn)). Moreover, by part (8) of the
corollary giving the properties of h, we have

h(x, y) ≤ lim inf
n→+∞

∫ t

0
L(γt(s), γ̇t(s)) ds + c[0]t.

It follows that ux
+(x) = lim a(tn) ≤ 0. Since we already showed

the inequality h(x, y) ≥ u−(y) − u+(x), for any pair of conjugate
functions u− ∈ S−, u+ ∈ S+, we have h(x, x) ≥ hx(x) − ux

+(x).
However h(x, x) = hx(x), which gives ux

+(x) ≥ 0.

Corollary 5.3.7. For each x, y ∈M , we have the equality

h(x, y) = sup
(u−,u+)

u−(y) − u+(x),
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the supremum being taken on pairs (u−, u+) of conjugate functions
u− ∈ S−, u+ ∈ S+.

We can also give the following characterization for the Aubry
set A0.

Proposition 5.3.8. If x ∈M , the following conditions are equiv-
alent

(1) x ∈ A0;
(2) the Peierls barrier h(x, x) vanishes;
(3) there exists a sequence γn : [0, tn] → M of (continuous)

piecewise C1 curves such that
–for each n, we have γn(0) = γn(tn) = x;
–the sequence tn tends to +∞, when n→ ∞;
–for n→ ∞, we have

∫ tn
0 L(γn(s), γ̇n(s)) ds + c[0]tn → 0;

(4) there exists a sequence γn : [0, tn] → M minimizing ex-
tremal curves such that

–for each n, we have γn(0) = γn(tn) = x;
–the sequence tn tends to +∞, when n→ ∞;
–for n→ ∞, we have

∫ tn
0 L(γn(s), γ̇n(s)) ds + c[0]tn → 0.

Proof. Equivalence of conditions (1) and (2) results from the pre-
vious corollary. Equivalence of (2), (3) and (4) results from the
definition of h.

5.4 Chain Transitivity

Proposition 5.4.1. Let (u−, u+) be a given pair of conjugate
functions. If t0 > 0 given, then for each ǫ > 0, there exists
δ > 0 such that if γ : [0, t] → M is an extremal curve, with
t ≥ t0, u−(γ(0)) ≤ u+(γ(0)) + δ and

∫ t
0 L(γ(s), γ̇(s)) ds + c[0]t ≤

u+(γ(t)) − u+(γ(0)) + δ, then for each s ∈ [0, t], we can find a
point in Ĩ(u−,u+) at distance at most ǫ from (γ(s), γ̇(s)).

Proof. Since u+ ≺ L+ c[0], for 0 ≤ a ≤ b ≤ t, we have

u+(γ(a)) − u+(γ(0)) ≤

∫ a

0
L(γ(s), γ̇(s)) ds + c[0]a,

u+(γ(t)) − u+(γ(b)) ≤

∫ t

b
L(γ(s), γ̇(s)) ds + c[0](t − b).
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Subtracting the last two inequalities from the inequality
∫ t
0 L(γ(s), γ̇(s)) ds+

c[0]t ≤ u+(γ(t)) − u+(γ(0)) + δ, we find

∫ b

a
L(γ(s), γ̇(s)) ds + c[0](b − a) ≤ u+(γ(b)) − u+(γ(a)) + δ. (*)

Moreover, since u− ≺ L+ c[0], we have

u−(γ(a)) − u−(γ(0)) ≤

∫ a

0
L(γ(s), γ̇(s)) ds+ c[0]a.

Since, by the inequality (∗), this last quantity is not larger than
u+(γ(a))−u+(γ(0))+δ, we obtain u−(γ(a))−u−(γ(0)) ≤ u+(γ(a))−
u+(γ(0)) + δ. The condition u−(γ(0)) ≤ u+(γ(0)) + δ gives then
u−(γ(a)) ≤ u+(γ(a)) + 2δ, for each a ∈ [0, t]. We conclude that it
is enough to show the lemma with t = t0, taking δ smaller if neces-
sary. Let us argue by contradiction. We suppose that there exists
a sequence of extremal curves γn : [0, t0] →M and a sequence δn,
such that the following conditions are satisfied

(1) δn → 0;
(2) u−(γn(0)) ≤ u+(γn(0)) + δn;
(3)

∫ t0
0 L(γn(s), γ̇n(s)) ds+c[0]t0 ≤ u+(γn(t0))−u+(γn(0))+δn;

(4) there exists sn ∈ [0, t0] such that the distance from (γn(sn), γ̇n(sn))
with Ĩ(u−,u+) is bigger than ǫ.

By conditions (1) and (3) above, there exists a constant C <
+∞ such that

∫ t0
0 L(γn(s), γ̇n(s)) ds ≤ C, for each n ≥ 0. It

follows that there exists s′n ∈ [0, t0] such that L(γn(s′n), γ̇n(s′n)) ≤
C/t0. Therefore the (γn(s′n), γ̇n(s′n)) are all in the compact subset
K = {(x, v) | L(x, v) ≤ C/t0} ⊂ TM . Since the γn are extremal
curves, we have (γn(t), γ̇n(t)) = φ(t−s′n)(γn(s′n), γ̇n(s′n)), and thus
the point (γn(t), γ̇n(t)) is in the compact subset

⋃

s∈[0,t0]
φs(K),

for each n ≥ 0 and each t ∈ [0, t0].
Extracting a subsequence if necessary, we can thus suppose

that the sequence of extremal curves γn converges in the C1 topol-
ogy to the extremal curve γ∞ : [0, t0] →M . As we saw above, we
have u−(γn(t)) ≤ u+(γn(t)) + 2δn, for each t ∈ [0, t0]. Going to
the limit and taking s∞ a value of adherence of the sequence sn,
we thus obtain

(1) for each t ∈ [0, t0], we have u−(γ∞(t)) ≤ u+(γ∞(t));
(2)

∫ t0
0 L(γ∞(s), γ̇∞(s)) ds+ c[0]t0 ≤ u+(γ∞(t0))− u+(γ∞(0));
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(3) there exists a number s∞ ∈ [0, t0] such that the distance
from the point (γ∞(s∞), γ̇∞(s∞)) to the set Ĩ(u−,u+) is at least ǫ.

However u− ≥ u+ thus u−(γ∞(t)) = u+(γ∞(t)), for each t ∈
[0, t0], which gives γ∞(t) ∈ I(u−,u+). In the same way, the fact that
u+ ≺ L+c[0], forces the equality in condition (2) above. This gives
∫ t0
0 L(γ∞(s), γ̇∞(s)) ds+c[0]t0 = u+(γ∞(t0))−u+(γ∞(0)). In par-

ticular, the derivative of u+ at γ∞(s), for s ∈]0, t0[ is the Legendre
transform of (γ∞(s), γ̇∞(s)). It follows that (γ∞(s∞), γ̇∞(s∞)) ∈
Ĩ(u−,u+), which contradicts condition (3) above.

Corollary 5.4.2. Let u− ∈ S− and u+ ∈ S+ be a pair of conjugate
functions. If x, y ∈ M is such that h(x, y) = u+(y) − u−(x), then
x, y ∈ I(u−,u+). Moreover, if (x, vx) and (y, vy) are the points of

Ĩ(u−,u+) above x and y, then for each ǫ > 0, we can find a sequence

of points (xi, vi) ∈ Ĩ(u−,u+), i = 0, 1, . . . , k, with k ≥ 1, such that
(x0, v0) = (x, vx), (xk, vk) = (y, vy), that there exists t ∈ [1, 2] with
the distance from φt(xk−1, vk−1) to (xk, vk) = (y, vy) is less than ǫ
and that, for i = 0, . . . , k − 2, the distance in TM from φ1(xi, vi)
to (xi+1, vi+1) is also less than ǫ.

Proof. We know that h(x, y) ≥ u−(y)−u+(x). Since u− ≥ u+, we
see that u−(x) = u+(x) and u−(y) = u+(y). By the properties of
h, there exist a sequence of extremals γn : [0, tn] →M , with tn →
∞, such that γn(0) = x, γn(tn) = y and

∫ tn
0 L(γn(s), γ̇n(s)) ds +

c[0]t0 ≤ u+(γn(tn)) − u+(γn(0)) + δn with δn → 0.

Let us fix ǫ > 0. The compactness of Ĩ(u−,u+) gives the exis-

tence of ǫ′ such that if (a, v) ∈ Ĩ(u−,u+) and (b, w) ∈ TM are at
distance less than ǫ′, then, for each s ∈ [0, 2], the distance from
φs(a, v) with φs(b, w) is smaller than ǫ/2. By the previous propo-
sition, for n large enough, (γn(s), γ̇n(s)), s ∈ [0, tn] is at distance
≤ min(ǫ′, ǫ/2) from a point of Ĩ(u−,u+). Let us fix such an inte-
ger n with tn ≥ 1 and call k the greatest integer ≤ t. We thus
have k ≥ 1 and t = tn − (k − 1) ∈ [1, 2[. For i = 1, 2, . . . , k − 2,
let us choose (xi, vi) ∈ Ĩ(u−,u+) at distance ≤ min(ǫ′, ǫ/2) from
(γn(i), γ̇n(i)) and let us set (x0, v0) = (x, vx), (xk, vk) = (y, vy).
For i = 0, . . . , k − 2, by the choice of ǫ′, the distance between
φ1(xi, vi) and φ1(γn(i), γ̇n(i)) = (γn(i + 1), γ̇n(i + 1)) is ≤ ǫ/2,
consequently the distance between φt(xi, vi) and (xi+1, vi+1) is
less than ǫ. In the same way, as t ∈ [1, 2[ the distance between
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φt(xk−1, vk−1) and φt(γn(k − 1), γ̇n(k − 1)) = (γn(k), γ̇n(k))) =
(y, vy) is less than ǫ/2.

The following theorem is due to Mañé, see [Mn97, Theorem V,
page 144]:

Theorem 5.4.3 (Mañé). The Mañé set Ñ0 is chain transitive for
the flow φt. In particular, it is connected.

Proof. We recall that Ñ0 =
⋃

Ĩ(u−,u+), where the union is taken on

all pairs of conjugate functions. Let us notice that M̃0 ⊂ Ĩ(u−,u+),
by definition of conjugate functions. If x, y ∈ M0, then by the
compactness of the set of differences u− − u+ and the character-
ization of h, there exists a pair (u−, u+) of conjugate functions
such that h(x, y) = u−(y) − u+(x), since x, y ∈ M0, we have also
h(x, y) = u+(y) − u−(x). By the corollary above, we see that
the points (x, vx) ∈ M̃0 and (y, vy) ∈ M̃0 above x and y can,
for each ǫ > 0, be connected by an ǫ-chain of points, for φt, in
Ĩ(u−,u+). It follows that the set M̃0 is contained in a single chain

recurrent component of the union Ñ0 =
⋃

Ĩ(u−,u+). To finish

showing that Ñ0 is chain transitive, it is enough to notice that if
(x, v) ∈ I(u−,u+), then the α-limit and ω-limit sets, for φt, of (x, v)

both contain points of M̃0.



Chapter 6

A Closer Look at the

Lax-Oleinik semi-group

6.1 Semi-convex Functions

6.1.1 The Case of Open subsets of R
n

Proposition 6.1.1. Let U be an open convex subset of R
n, and let

u : U → R be a function. The following conditions are equivalent:

(i) There exists a C2 function ϕ : U → R with bounded second
derivative and such that u+ ϕ is convex.

(ii) There exists a C∞ function ϕ : U → R with bounded second
derivative and such that u+ ϕ is convex.

(iii) There exists a finite constant K and for each x ∈ U there
exists a linear form θx : R

n → R such that

∀y ∈ U, u(y) − u(x) ≥ θx(y − x) −K‖y − x‖2.

Proof. Obviously (ii) implies (i). To prove that (i) implies (iii),
we denote by 2K an upper bound on U of the norm of the second
derivative of ϕ, using Taylor’s formula, we see that

∀x, y ∈ U,ϕ(y) − ϕ(x) ≤ dxϕ(y − x) +K‖y − x‖2.

We now use theorem 1.2.9 to obtain a supporting linear form θ1
at x for the convex function u+ ϕ. This gives

u(y) − u(x) ≥ θ1(y − x) − ϕ(y) + ϕ(x).

201
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Combining the two inequalities, we get

u(y) − u(x) ≥ θ1(y − x) − dxϕ(y − x) −K‖y − x‖2,

but the map v 7→ θ1(v) − dxϕ(v) is linear.
It remains to prove that (iii) implies (ii). We consider ϕ(y) =

K‖y‖2, where K is the constant given by (iii). A simple compu-
tation gives

ϕ(y) − ϕ(x) = K‖y − x‖2 + 2K〈y − x, x〉.

Adding the inequality given by (iii) and the equality above, we
obtain

(u+ ϕ)(y) − (u+ ϕ)(y) ≥ θx(y − x) + 2K〈y − x, x〉.

This shows that u+ϕ admits the linear map v 7→ θx(v)+2K〈v, x〉
as a supporting linear form at x. It follows from proposition 1.2.8
that u+ ϕ is convex.

Definition 6.1.2 (Semi-convex). A function u : U → R, defined
on the open convex subset U of R

n, is said to be semi-convex if it
satisfies one of (and hence all) the three equivalent conditions of
proposition 6.1.1.

We will say that u is K-semi-convex if it satisfies condition (iii)
of 6.1.1 with K as a constant.

A function u is said to be semi-concave (resp. K-semi-concave)
is −u semi-convex (resp. K-semi-convex).

We will say that a function u : V → R, defined on an open
subset of R

n is locally semi-convex (resp. semi-concave) if for each
point x ∈ V there exists an open convex neighborhood Ux of x in V
such that the restriction u|Ux is semi-convex (resp. semi-concave).

Here are some properties of locally semi-convex or semi-concave
functions:

Proposition 6.1.3. (1) A locally semi-convex (resp. semi-concave)
function is locally Lipschitz.

(2) If u is locally semi-convex (resp. semi-concave) then u is
differentiable almost everywhere.

(3) If u : V → R is locally semi-convex (resp. semi-concave)
and f : W → V is a C2 map then u ◦ f : W → R is also is locally
semi-convex (resp. semi-concave).
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Proof. It suffices to prove these properties for a semi-convex func-
tion u : U → R defined on the open convex subset U of R

n. But
u is the sum of a C2 function and a convex function. A C2 func-
tion is obviously locally Lipschitz and differentiable everywhere.
Moreover, a convex function on an open subset of R

n is locally
Lipschitz by corollary 1.1.9 and differentiable almost everywhere
by corollary 1.1.11 (or by Rademacher’s theorem 1.1.10). This
proves (1) and (2).

It suffices to prove (3) for u : V → R convex. We fix some z ∈
W , and we pick r > 0 such that the closed ball B̄(f(z), 2r) ⊂ V .
We first show that there is a constantK1 such that each supporting
linear form p of u at y ∈ B̄(f(z), r) satisfies ‖p‖ ≤ K1. In fact,
for v such that ‖v‖ ≤ r, the point y+ v is in V since it belongs to
B̄(f(z), 2r), hence we can write

u(y + v) − u(y) ≥ p(v).

We set M = max{|u(x)| | x ∈ B̄(f(z), 2r). The constant M is
finite because B̄(f(z), 2r) is compact and u is continuous by (1).
from the inequality above we obtain

∀v ∈ B̄(0, r), p(v) ≤ 2M.

It is not difficult to conclude that ‖p‖ ≤ K1. We now pick an open
convex set O which contains x, such that its closure Ō is compact
and contained in W and f(O) ⊂ B(f(z), r). Since f is C2 and O
is convex with compact closure, by Taylor’s formula, we can find
a constant K2 such that

∀z1, z2 ∈ O, |f(z2)− f(z1)−Df(z1)[z2 − z1]| ≤ K2‖z2 − z1‖
2. (*)

If z1, z2 are both in O, then f(z2), f(z1) are both in B(f(z), r). If
we call p1 a supporting linear form of u at f(z1), we have

‖p2‖ ≤ K1 and u ◦ f(z2) − u ◦ f(z1) ≥ p1(f(z2) − f(z1)).

Combining with (∗), we obtain

∀z1, z2 ∈ O,u◦f(z2)−u◦f(z1) ≥ p1◦Df(z1)[z2−z1]−K1K2‖z2−z1‖
2.

Thus u ◦ f is semi-convex on O.
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Part (3) of the last proposition 6.1.3 implies that the notion
of locally semi-convex (or semi-concave) is well-defined on a dif-
ferentiable manifold (of class at least C2).

Definition 6.1.4 (Semi-convex). A function u : M → R defined
on the C2 differentiable manifold M is locally semi-convex (resp.
semi-concave), if for each x ∈ M there is a C2 coordinate chart
ϕ : U → R

n, with x ∈ U , such that u ◦ ϕ−1 : ϕ(U) → R is
semi-convex (resp. semi-concave).

In that case for each C2 coordinate chart θ : V → R
n, the map

u ◦ θ−1 : θ(U) → R is semi-convex (resp. semi-concave).

Theorem 6.1.5. A function u : M → R, defined on the C2 dif-
ferentiable manifold M , is both locally semi-convex and locally
semi-concave if and only if it is C1,1.

Proof. Suppose that u is C1,1. Since the result is by nature local,
we can suppose that M is in fact the open ball subset B̊(0, r) of R

n

and that the derivative du : B̊(0, r) → R
n∗, x 7→ dxu is Lipschitz

with Lipschitz constant ≤ K. If x, y ∈ B̊(0, r), we can write

u(y) − u(x) =

∫ 1

0
dty+(1−t)xu(y − x) dt.

Moreover, we have

‖dty+(1−t)xu− dxu‖ ≤ Kt‖y − x‖.

Combining these two inequalities, we obtain

|u(y) − u(x) − dxu(y − x)| =
∣
∣

∫ 1

0
dty+(1−t)xu(y − x) − dxu(y − x) dt

∣
∣

≤

∫ 1

0
‖dty+(1−t)xu− dxu‖‖y − x‖ dt

≤

∫ 1

0
K‖ty + (1 − t)x− x‖‖y − x‖ dt

=

∫ 1

0
Kt‖y − x‖2 dt

=
K

2
‖y − x‖2.
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This implies that u is both semi-convex and semi-concave on the
convex set B̊(0, r).

Suppose now that u is both locally semi-convex and locally
semi-concave. Again due to the local nature of the result, we can
assume M = B̊(0, r) and that u is both K1-semi-convex and K2-
semi-concave. Given x ∈ B̊(0, r), we can find θ1

x, θ
2
x ∈ R

n∗ such
that

∀y ∈ B̊(0, r), u(y) − u(x) ≥ θ1
x(y − x) −K1‖y − x‖2,

and

∀y ∈ B̊(0, r), u(y) − u(x) ≤ θ2
x(y − x) +K2‖y − x‖2.

For a fixed v ∈ R
n, and for all ǫ small enough, the point x+ ǫv ∈

B̊(0, r), thus combining the two inequalities above we obtain

θ1
x(ǫv) −K1‖ǫv‖

2 ≤ θ2
x(ǫv) +K2‖ǫv‖

2,

for all ǫ small enough. Dividing by ǫ and letting ǫ go to 0, we
obtain

∀v ∈ R
n, θ1

x(v) ≤ θ2
x(v).

Changing v into −v, and using the linearity of θ1
x, θ

2
x ∈ R

n∗, we
see that θ1

x = θ2
x. Thus we have

∀y ∈ B̊(0, r), |u(y) − u(x) − θ1
x(y − x)| ≤ max(K1,K2)‖y − x‖2.

It follows from 4.11.3 that u is C1 on B̊(0, r) with a Lipschitz
derivative.

6.2 The Lax-Oleinik Semi-group and Semi-

convex Functions

In this section we suppose that the compact manifold M is en-
dowed with a C2 Lagrangian L : TM → R which is superlin-
ear and C2 strictly convex in the fibers of the tangent bundle
π : TM → M . We can then define the two Lax-Oleinik semi-
groups T−

t , T
+
t : C0(M,R) → C0(M,R). An immediate conse-

quence of proposition 4.11.1 is the following proposition:
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Proposition 6.2.1. For each u ∈ C0(M,R) and each t > 0, the
function T−

t (u) (resp. T+
t (u)) is locally semi-concave (resp. semi-

convex)

Theorem 6.2.2. Suppose that T−
t (u) (resp. T+

t (u)) is C1, where
u ∈ C0(M,R) and t > 0, then we have u = T+

t T
−
t (u) (resp.

u = T−
t T

+
t (u).

In particular, the function umust be locally semi-convex. More-
over, for each t′ ∈]0, t[ the function T−

t′ (u) (resp. T+
t (u)) is C1,1.

Before embarking in the proof of this theorem, we will need the
following lemma, whose proof results easily from the definitions of
T−

t and T+
t :

Lemma 6.2.3. If u, v ∈ C0(M,R) and t ≥ 0, the following three
conditions are equivalent:

(1) v ≤ T−
t u;

(2) T+
t v ≤ u;

(3) for each C1 curve γ : [0, t] →M , we have

v(γ(t)) − u(γ(0)) ≤ L(γ) =

∫ t

0
L(γ(s), γ̇(s)) ds.

If anyone of these conditions is satisfied and γ : [0, t] → M is
a C1 curve with

v(γ(t)) − u(γ(0)) = L(γ) =

∫ t

0
L(γ(s), γ̇(s)) ds,

then v(γ(t)) = T−
t u(γ(t)) and u(γ(0)) = T+

t v(γ(0)).

Proof of theorem 6.2.2. We set v = T−
t u. For each x ∈ M , we

can find a minimizing C2 extremal curve γx : [0, t] → M with
γx(t) = x and

v(γx(t)) =

∫ t

0
L(γ(s), γ̇(s)) ds + u(γx(0)).

From lemma 6.2.3, we have u(γx(0)) = T+
t v(γ(0)). To show that

u = T+
t v, it then remains to see that the set {γx(0) | x ∈ M}

is the whole of M . Since v is C1, it follows from proposition
4.11.1 that dxv = ∂L/∂v(x, γ̇x(t)) or γ̇x(t) = gradL v(x). Since
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γx is an extremal we conclude that (γx(s), γ̇x(s)) = φs−t(x, γ̇x(t)),
where φt is the Euler-Lagrange flow of L. In particular, the set
{γx(0) | x ∈ M} is nothing but the image of the map f : M →
M,x 7→ πφ−t(x, gradL v(x)). Since v = T−

t u is C1, the map f
is continuous and homotopic to the identity, a homotopy being
given by (x, s) 7→ πφ−s(x, gradL v(x)), with s ∈ [0, t]. Since M
is a compact manifold without boundary, it follows from degree
theory mod 2 that f is surjective. This finishes the proof of
u = T+

t T
−
t (u).

Using t > 0, we obtain the local semi-convexity of u from
proposition 6.2.1.

If t′ ∈]0, t[, we also have v = T−
t u = T−

t−t′T
−
t′ u. Applying the

first part with T−
t′ u instead of u and t − t′ > 0 instead of t, we

see that T−
t′ u is locally semi-convex. It is also locally semi-concave

by 6.2.1, since t′ > 0. It follows from theorem 6.1.5 that T−
t′ u is

C1,1.

6.3 Convergence of the Lax-Oleinik Semi-

group

Up to now in this book, all the statements given above do hold for
periodic time-dependent Lagrangians which satisfy the hypothesis
imposed by Mather in [Mat91, Pages 170–172]. The results in
this section depend heavily on the invariance of the energy by the
Euler-Lagrange flow. Some of these results do not hold for the
time-dependent case, see [FM00].

The main goal of this section is to prove the following theorem:

Theorem 6.3.1 (Convergence of the Lax-Oleinik Semi-group).
Let L : TM → R be a C2 Lagrangian, defined on the the com-
pact manifold M , which is superlinear and C2 strictly convex in
the fibers of the tangent bundle π : TM → M . If T−

t , T
+
t :

C0(M,R) → C0(M,R) are the two Lax-Oleinik semi-groups asso-
ciated with L, then for each u ∈ C0(M,R), the limits, for t→ +∞,
of T−

t u + c[0]t and T+
t u − c[0]t exist. The limit of T−

t u + c[0]t is
in S−, and the limit of T+

t u− c[0]t is in S+.

Particular cases of the above theorem are due to Namah and
Roquejoffre, see [NR97b, NR97a, NR99] and [Roq98a]. The first
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proof of the general case was given in [Fat98b]. There now exists
other proofs of the general case due to Barles-Souganidis and to
Roquejoffre, see [BS00] and [Roq98b].

The main ingredient in the proof is the following lemma:

Lemma 6.3.2. Under the hypothesis of theorem 6.3.1 above, for
each ǫ > 0, there exists a t(ǫ) > 0 such that for each u ∈ C0(M,R)
and each t ≥ t(ǫ), if T−

t u has a derivative at x ∈M , then c[0]−ǫ ≤
H(x, dxT

−
t u) ≤ c[0] + ǫ. Consequently limt→∞ HM (T−

t u) → c[0],
for each u ∈ C0(M,R).

Proof. By Carneiro’s theorem 4.12.5, the set

Wǫ = {(x, v) | c[0] − ǫ ≤ H ◦ L̃(x, v) ≤ c[0] + ǫ}

is a neighborhood of the Mather set M̃0. We can now apply
lemma 5.3.4 with Wǫ as neighborhood of M̃0, to find t(ǫ) > 0 such
that for minimizing extremal curve γ : [0, t] → M with t ≥ t(ǫ),
there exists a t′ ∈ [0, t] with (γ(t′), γ̇(t′)) ∈Wǫ, which means that
H ◦ L̃(γ(t′), γ̇(t′)) is in [c[0]− ǫ, c[0]+ ǫ]. This implies that for such
a minimizing curve, we have

∀s ∈ [0, t], c[0] − ǫ ≤ H ◦ L̃(γ(s), γ̇(s)) ≤ c[0] + ǫ.

In fact, since γ is a minimizing curve, its speed curve s 7→ (γ(s), γ̇(s))
is a piece of an orbit of the Euler-Lagrange flow. Since the en-
ergy H ◦ L̃ is invariant by the Euler-Lagrange flow, it follows that
H ◦ L̃(γ(s), γ̇(s)) does not depend on s ∈ [0, t], but for s = t′, we
know that this quantity is in [c[0] − ǫ, c[0] + ǫ].

If we suppose that T−
t u is differentiable at x ∈M , and we pick

a curve γ : [0, t] →M , with γ(t) = x, such that

T−
t u(x) = u(γ(0)) +

∫ t

0
L(γ(s), γ̇(s)) ds,

then we know that γ is minimizing, and from proposition 4.11.1 we
also know that dxT

−
t u = L(x, γ̇(t)). From what we saw above, we

indeed conclude that when t ≥ t(ǫ) we must have H(x, dxT
−
t u) ∈

[c[0]−ǫ, c[0]+ǫ]. It follows that the Hamiltonian constant HM (T−
t u)

does converge to c[0] when t→ +∞.
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Proof of Theorem 6.3.1. It is convenient to introduce T̃−
t : C0(M,R) →

C0(M,R) defined by T̃−
t u = T−

t u+ c[0]t. It is clear that T̃−
t is it-

self a semi-group of non-expansive maps whose fixed points are
precisely the weak KAM solutions in S−. We fix some u0

− ∈ S−.

If u ∈ C0(M,R), since T̃−
t is non-expansive, and u0

− ∈ S− is a fixed

point of T̃−
t , we obtain

‖T̃tu− u0
−‖0 = ‖T̃tu− T̃tu

0
−‖0 ≤ ‖u− u0

−‖.

It follows that
‖T̃tu‖ ≤ ‖u− u0

−‖ + ‖u0
−‖.

The family of functions T̃tu = T−
t u + ct, with t ≥ 1, is equi-

Lipschitzian by lemma ??, hence there exists a sequence tn ր +∞
such that T̃tnu→ u∞ uniformly. Using the Lemma above 6.3.2 and
Theorem 4.2.5, we see that u∞ ≺ L+ c[0], and hence u∞ ≤ T̃tu∞,
for each t ≥ 0. Since T̃t is order preserving, we conclude that

∀t′ ≥ t ≥ 0, u∞ ≤ T̃tu∞ ≤ T̃t′u∞.

To show that u∞ is a fixed point for T̃t, it then remains to find a
sequence sn ր +∞ such that T̃snu∞ → u∞.

Extracting if necessary, we can assume that tn+1 − tn ր +∞.
We will show that the choice sn = tn+1 − tn does work. We have
T̃sn ◦ T̃tnu = T̃tn+1u therefore

‖T̃snu∞ − u∞‖0 ≤ ‖T̃snu∞ − T̃sn ◦ T̃tnu‖0 + ‖T̃tn+1u− u∞‖0

≤ ‖u∞ − T̃tnu‖0 + ‖T̃ utn+1 − u∞‖0,

where we used the inequality ‖T̃snu∞ − T̃sn ◦ T̃tnu‖0 ≤ ‖u∞ −
T̃tnu‖0, which is valid since the maps T̃t are non-expansive. Since
‖u∞ − T̃tnu‖0 → 0, this indeed shows that T̃tu∞ = u∞.

We still have to see that T̃tu→ u∞, when t → +∞. If t ≥ tn,
we can write

‖T̃tu− u∞‖0 = ‖T̃t−tn ◦ T̃tnu− T̃t−tnu∞‖0 ≤ ‖T̃tnu− u∞‖0.

This finishes the proof, since T̃tnu→ u∞.

A corollary is that the lim inf in the definition of the Peierls
barrier is indeed a limit.
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Corollary 6.3.3. For each x, y ∈M , we have h(x, y) = limt→+∞ ht(x, y)+
c[0]t. Moreover, the convergence is uniform on M ×M .

Proof. If we fix y inM , we can define continuous functions hy
tM →

R by hy
t (x) = ht(x, y). It is not difficult to check that T−

t′ h
y
t =

hy
t′+t. It follows from theorem 6.3.1 that the limit of ht+1(x, y) +

c[0]t = T−
t h

y
1(x) + c[0]t exists, it must of course coincide with

lim inft→+∞ ht+1(x, y)+ c[0]t. By the definition of the Peierls bar-
rier, this last quantity is h(x, y) − c[0].

The fact that the limit is uniform on M follows from the fact
that the ht, t ≥ 1 are equi-Lipschitzian by part (6) of lemma 5.3.2.

6.4 Invariant Lagrangian Graphs

Theorem 6.4.1. Suppose that N ⊂ T ∗M is a compact Lagran-
gian submanifold of T ∗M which is everywhere transverse to the
fibers of the canonical projection π∗ : T ∗M → M . If the image
φ∗t (N) is still transversal to the fibers of the canonical projection
π∗ : T ∗M →M , then the same is true for φ∗s(N), for any s ∈ [0, t].
Moreover, if there exists tn → ∞ such that φ∗tn(N) is still transver-
sal to the fibers of the canonical projection π∗ : T ∗M → M , for
each n, then N is in fact invariant by the whole flow φ∗t , t ∈ R.

Proof. We first treat the case where N is the graph Graph(du) of
the derivative of a C1 function u : M → R. Using proposition
4.11.1, we see that the derivative of the Lipschitz function T−

t u
wherever it exists is contained in φ∗t (N). Since this last set is
a (continuous) graph over the base, the derivative of T−

t u can
be extended by continuity, hence T−

t u is also C1 and φ∗t (N) =
Graph(dT−

t u). By theorem 6.2.2, it follows that T−
s u is C1 and

φ∗t s(N) = Graph(dT−
s u), for each s ∈ [0, t]. If moreover, there

exists a sequence tn → ∞ with φ∗tn(Graph(du)) transversal to the
fibers of π∗ : T ∗M → M , then T−

tnu is everywhere smooth. By
lemma 6.3.2, if ǫ > 0 is given, then the graph Graph(dT−

tnu) is
contained in H−1([c[0] − ǫ, c[0] + ǫ]), for n large enough. Since H
is invariant by the flow φ∗t and Graph(dT−

tnu) = φ∗tn(Graph(du)),
it follows that Graph(du) is contained in H−1([c[0] − ǫ, c[0] + ǫ]),
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for all ǫ > 0. Hence H is constant on Graph(du), with value c[0].
By lemma 2.5.10, the graph of du is invariant under φ∗t .

To treat the general case, we observe that π∗|N : N → M is
a covering since N is compact and transversal to the fibers of the
submersion π. We will now assume that π∗|N is a diffeomorphism.
Since N is Lagrangian, it is the graph of a closed form ω̃ on M .
We choose some C∞ form ω which is cohomologous to ω̃. If we
introduce the Lagrangian Lω : TM → R, (x, v) 7→ L(x, v)−ωx(v),
its Hamiltonian Hω is (x, p) 7→ H(x, p + ωx). This means that
Hω = H ◦ ω̄, where ω̄ : T ∗M → T ∗M, (x, p) 7→ (x, p+ωx). Since ω
is closed, the diffeomorphism ω̄ preserves the canonical symplec-
tic form on T ∗M , hence ω̄ conjugates φω∗

t , the Hamiltonian flow
associated to Hω and with φ∗t , the Hamiltonian flow associated
to H. Moreover ω̄ sends fibers of π∗ onto fibers of π∗. It follows
that φω∗

tn (ω̄−1(N)) is transversal to the fibers of πn. Since N is the
graph of ω̃, its inverse ω̄−1(N), is the graph of ω̃−ω, which is exact
by the choice of ω. Hence we can apply what we already proved
to conclude that ω̄−1(N) is invariant under φω∗

t , from which we
obtain that N is invariant under φ∗t .

It remain to consider the case where the covering map π∗|N :
N → M is not necessarily injective. To simplify notations, we
set p = π∗|N . If we consider the tangent map Tp : TN →
TM, (x, v) 7→ (p(x), Txp(v), we obtain a covering, which reduces
to p on the 0-section identified to N . Since Txp is an isomorphism,
for each x ∈ N , we can also define (Tp)∗ : T ∗N → T ∗M, (x, p) 7→
(p(x), p ◦Txp

−1. We define the Lagrangian L̃ = L ◦Tp : TN → R.
It is easy to see that L̃ is as differentiable as L, is superlinear
in each fiber of TN , and for each (x, v) ∈ TN ∂2L̃/∂v2(x, v) is
positive definite. Moreover, the conjugate Hamiltonian of L̃ is
H̃ = H ◦ (Tp)∗. It is not difficult to check that the pullback of
the Liouville form αM on T ∗M by (Tp)∗ is the Liouville form αN

on T ∗N . If we call φ̃∗t , the Hamiltonian flow associated with H̃, it
follows that (Tp)∗ ◦ φ̃∗t = φ∗t . We conclude that Ñ = [(Tp)∗]−1(N)
is a Lagrangian submanifold of T ∗N , which is transversal to the
fibers of the projection π∗N : T ∗N → N , and φ̃tn(Ñ) is transversal
to the fibers of π∗N . Using the identity map of N , we see that we
can find a section σ0 of the covering map π∗N : Ñ → N . If we call
N0 the image of σ0, we see that we can apply the previous case
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to conclude that N0 is invariant by φ̃t. Hence N = (Tp)∗(N0) is
invariant by φt.

Corollary 6.4.2. Suppose that N ⊂ T ∗M is a compact Lagran-
gian submanifold of T ∗M which is everywhere transverse to the
fibers of the canonical projection π∗ : T ∗M → M . If φ∗t0(N) = N
for some t0 6= 0 then N is in fact invariant by the whole flow
φ∗t , t ∈ R.



Chapter 7

Viscosity Solutions

In this chapter, we will study the notion of viscosity solutions
which was introduced by Crandall and Lions, see [CL83]. There
are two excellent books on the subject by Guy Barles [Bar94]
and another one by Martino Bardi and Italo Capuzzo-Dolceta
[BCD97]. A first introduction to viscosity solutions can be found
in Craig Evans book [Eva98]. Our treatment has been extremely
influenced by the content of these three books. Besides introduc-
ing viscosity solutions, the main goal of this chapter is to show
that, at least, for the Hamiltonians introduced in the previous
chapters, the viscosity solutions and the weak KAM solutions are
the same.

7.1 The different forms of Hamilton-Jacobi

Equation

We will suppose that M is a fixed manifold, and that H : T ∗M →
R is a continuous function , which we will call the Hamiltonian.

Definition 7.1.1 (Stationary HJE). The Hamilton-Jacobi asso-
ciated to H is the equation

H(x, dxu) = c,

where c is some constant.
A classical solution of the Hamilton-Jacobi equationH(x, dxu) =

c (HJE in short) on the open subset U of M is a C1 map u : U → R

such that H(x, dxu) = c, for each x ∈ U .

213
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We will deal usually only with the case H(x, dxu) = 0, since we
can reduce the general case to that case if we replace the Hamil-
tonian H by Hc defined by Hc(x, p) = H(x, p) − c.

Definition 7.1.2 (Evolutionary HJE). The evolutionary Hamilton-
Jacobi associated equation to the Hamiltonian H is the equation

∂u

∂t
(t, x) +H

(
x,
∂u

∂x
(t, x)

)
= 0.

A classical solution to this evolutionary Hamilton-Jacobi equa-
tion on the open subset W of R × T ∗M is a C1 map u : W → R

such that ∂u
∂t (t, x) +H

(
x, ∂u

∂x(t, x)
)

= 0, for each (t, x) ∈W .

The evolutionary form can be reduced to the stationary form
by introducing the Hamiltonian H̃ : T ∗(R ×M) defined by

H̃(t, x, s, p) = s+H(x, p),

where (t, x) ∈ R ×M , and (s, p) ∈ T ∗
t,x(R ×M) = R × T ∗

xM .
It is also possible to consider a time dependent Hamiltonian

defined on an open subset of M . Consider for example a Hamil-
tonian H : R × TM∗ → R, the evolutionary form of the HJE for
that Hamiltonian is

∂u

∂t
(t, x) +H

(
t, x,

∂u

∂x
(t, x)

)
= 0.

A classical solution of that equation on the open subset W of
R ×M is, of course, a C1 map u : W → R such that ∂u

∂t (t, x) +

H
(
t, x, ∂u

∂x(t, x)
)

= 0, for each (t, x) ∈ W . This form of the
Hamilton-Jacobi equation can also be reduced to the stationary
form by introducing the Hamiltonian H̃ : T ∗(R×M) → R defined
by

H̃(t, x, s, p) = s+H(t, x, p).

7.2 Viscosity Solutions

We will suppose in this section that M is a manifold and H :
T ∗M →M is a Hamiltonian.

As we said in the introduction of this book, it is usually impos-
sible to find global C1 solutions of the Hamilton-Jacobi equation
H(x, dxu) = c. One has to admit more general functions. A first
attempt is to consider Lipschitz functions.
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Definition 7.2.1 (Very Weak Solution). We will say that u :
M → R is a very weak solution of H(x, dxu) = c, if it is Lipschitz,
and H(x, dxu) = c almost everywhere (this makes sense since the
derivative of u exists almost everywhere by Rademacher’s theo-
rem).

This is too general because it gives too many solutions. A
notion of weak solution is useful if it gives a unique, or at least a
small number of solutions. This is not satisfied by this notion of
very weak solution as can be seen in the following example.

Example 7.2.2. We suppose M = R, so T ∗M = R × R, and we
take H(x, p) = p2−1. Then any continuous piecewise C1 function
u with derivative taking only the values ±1 is a very weak solution
of H(x, dxu) = 0. This is already too huge, but there are even
more very weak solutions. In fact, if A is any measurable subset
of R, then the function

fA(x) =

∫ x

0
2χA(t) − 1 dt,

where χA is the characteristic function of A, is Lipschitz with
derivative ±1 almost everywhere.

Therefore we have to define a more stringent notion of solu-
tions. Crandall and Lions have introduced the notion of viscosity
solutions, see [CL83] and [CEL84].

Definition 7.2.3 (Viscosity solution). A function u : V → R is a
viscosity subsolution of H(x, dxu) = c on the open subset V ⊂M ,
if for every C1 function φ : V → R and every point x0 ∈ V such
that u− φ has a maximum at x0, we have H(x0, dx0φ) ≤ c.

A function u : V → R is a viscosity supersolution ofH(x, dxu) =
c on the open subset V ⊂ M , if for every C1 function ψ : V → R

and every point y0 ∈ V such that u− ψ has a minimum at y0, we
have H(y0, dy0ψ) ≥ c.

A function u : V → R is a viscosity solution of H(x, dxu) = c
on the open subset V ⊂ M , if it is both a subsolution and a
supersolution.

This definition is reminiscent of the definition of distributions:
since we cannot restrict to differentiable functions, we use test
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functions (namely φ or ψ) which are smooth and on which we can
test the condition. We first see that this is indeed a generalization
of classical solutions.

Theorem 7.2.4. A C1 function u : V → R is a viscosity solution
of H(x, dxu) = c on V if and only if it is a classical solution.

In fact, the C1 function u is a viscosity subsolution (resp. su-
persolution) of H(x, dxu) = c on V if and only H(x, dxu) ≤ c
(resp. H(x, dxu) ≥ c), for each x ∈ V .

Proof. We will prove the statement about the subsolution case.
Suppose that the C1 function u is a viscosity subsolution. Since u
is C1, we can use it as a test function. But u − u = 0, therefore
every x ∈ V is a maximum, hence H(x, dxu) ≤ c for each x ∈ V .

Conversely, suppose H(x, dxu) ≤ c for each x ∈ V . If φ :
V → R is C1 and u− φ has a maximum at x0, then the differen-
tiable function u− φ must have derivative 0 at the maximum x0.
Therefore dx0φ = dx0u, and H(x, dx0φ) = H(x, dx0u) ≤ c.

To get a feeling for these viscosity notions, it is better to re-
state slightly the definitions. We first remark that the condition
imposed on the test functions (φ or ψ) in the definition above is
on the derivative, therefore, to check the condition, we can change
our test function by a constant. Suppose now that φ (resp. ψ)
is C1 and u − φ (resp. u − ψ) has a maximum (resp. minimum)
at x0 (resp. y0), this means that u(x0) − φ(x0) ≥ u(x) − φ(x)
(resp. u(y0)−ψ(y0) ≤ u(x)− φ(x)). As we said, since we can add
to φ (resp. ψ) the constant u(x0) − φ(x0) (resp. u(y0) − ψ(y0)),
these conditions can be replaced by φ ≥ u (resp. ψ ≤ u) and
u(x0) = φ(x0) (resp. u(y0) = ψ(y0)). Therefore we obtain an
equivalent definition for subsolution and supersolution.

Definition 7.2.5 (Viscosity Solution). A function u : V → R is
a subsolution of H(x, dxu) = c on the open subset V ⊂ M , if for
every C1 function φ : V → R, with φ ≥ u everywhere, at every
point x0 ∈ V where u(x0) = φ(x0) we have H(x0, dx0φ) ≤ c, see
figure 7.1.

A function u : V → R is a supersolution of H(x, dxu) = c on
the open subset V ⊂M , if for every C1 function ψ : V → R, with
u ≥ ψ everywhere, at every point y0 ∈ V where u(y0) = ψ(y0) we
have H(y0, dy0ψ) ≥ c, see figure 7.2.
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Graph(u)

(x0, u(x0))

Graph(φ)

Figure 7.1: Subsolution: φ ≥ u, u(x0) = φ(x0) ⇒ H(x0, dx0φ) ≤ c

To see what the viscosity conditions mean we test them on the
example 7.2.2 given above.

Example 7.2.6. We suppose M = R, so T ∗M = R × R, and
we take H(x, p) = p2 − 1. Any Lipschitz function u : R → R

with Lipschitz constant ≤ 1 is in fact a viscosity subsolution of
H(x, dxu) = 0. To check this consider φ a C1 function and x0 ∈ R

such that φ(x0) = u(x0) and φ(x) ≥ u(x), for x ∈ R. We can write

φ(x) − φ(x0) ≥ u(x) − u(x0) ≥ −|x− x0|.

For x > x0, this gives

φ(x) − φ(x0)

x− x0
≥ −1,

hence passing to the limit φ′(x0) ≥ −1. On the other hand, if
(x− x0) < 0 we obtain

φ(x) − φ(x0)

x− x0
≤ 1,

hence φ′(x0) ≤ 1.This yields |φ′(x0)| ≤ 1, and therefore

H(x0, φ
′(x0)) = |φ′(x0)|

2 − 1 ≤ 0.
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(x0, u(x0))
Graph(u)

Graph(ψ)

Figure 7.2: Supersolution: ψ ≤ u, u(x0)=ψ(x0)⇒H(x0, dx0ψ)≥c

So in fact, any very weak subsolution (i.e. a Lipschitz function u
such that H(x, dx, u) ≤ 0 almost everywhere) is a viscosity subso-
lution. This is due to the fact that, in this example, the Hamilto-
nian is convex in p, see 8.3.4 below.

Of course, the two smooth functions x 7→ x, and x 7→ −x are
the only two classical solutions in that example. It is easy to check
that the absolute value function x 7→ |x|, which is a subsolution
and even a solution on R \ {0} (where it is smooth and a classical
solution), is not a viscosity solution on the whole of R. In fact
the constant function equal to 0 is less than the absolute value
everywhere with equality at 0, but we have H(0, 0) = −1 < 0, and
this violates the supersolution condition.

The function x 7→ −|x| is a viscosity solution. It is smooth
and a classical solution on R \{0}. It is a subsolution everywhere.
Moreover, any function φ with φ(0) = 0 and φ(x) ≤ −|x| every-
where cannot be differentiable at 0. This is obvious on a picture
of the graphs, see figure 7.3. Formally it results from the fact that
both φ(x) − x and φ(x) + x have a maximum at 0.

We now establish part of the relationship between viscosity
solutions and weak KAM solutions.

Proposition 7.2.7. Let L : TM → R be a Tonelli Lagrangian on
the compact manifold M . If the function u : V → R, defined on
the open subset V ⊂M , is dominated by L+c, then u is a viscosity
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Figure 7.3: Graphs of ψ(x) ≤ −|x| with ψ(0) = 0.
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subsolution of H(x, dxu) = c on V , where H is the Hamiltonian
associated to L, i.e. H(x, p) = supv∈TxM 〈p, v〉 − L(x, v).

Moreover, any weak KAM solution u− ∈ S− is a viscosity
solution of H(x, dxu) = c[0].

Proof. To prove the first part, let φ : V → R be C1, and such
that u ≤ φ with equality at x0. This implies φ(x0) − φ(x) ≤
u(x0)−u(x). Fix v ∈ Tx0M and choose γ :]− δ, δ[→ M , a C1 path
with γ(0) = x0, and γ̇(0) = v. For t ∈] − δ, 0[, we obtain

φ(γ(0)) − φ(γ(t)) ≤ u(γ(0)) − u(γ(t))

≤

∫ 0

t
L(γ(s), γ̇(s)) ds − ct.

Dividing by −t > 0 yields

φ(γ(t)) − φ(γ(0))

t
≤

1

−t

∫ 0

t
L(γ(s), γ̇(s)) ds + c.

If we let t→ 0, we obtain dx0φ(v) ≤ L(x0, v) + c, hence

H(x0, dx0φ) = sup
v∈Tx0M

dx0φ(v) − L(x0, v) ≤ c.

This shows that u is a viscosity subsolution.
To prove that u− ∈ S− is a viscosity solution, it remains to

show that it is a supersolution of H(x, dxu−) = c[0]. Suppose that
ψ : M → R is C1, and that u− ≥ ψ everywhere with u−(x0) =
ψ(x0). We have ψ(x0) − ψ(x) ≥ u−(x0) − u−(x), for each x ∈M .
We pick a C1 path γ :] − ∞, 0] → M , with γ(0) = x0, and such
that

∀t ≤ 0, u−(γ(0)) − u−(γ(t)) =

∫ 0

t
L(γ(s), γ̇(s)) ds − c[0]t.

Therefore

ψ(γ(0)) − ψ(γ(t)) ≥

∫ 0

t
L(γ(s), γ̇(s)) ds − c[0]t.

If, for t < 0, we divide both sides by −t > 0, we obtain

ψ(γ(t)) − ψ(γ(0))

t
≥

1

−t

∫ 0

t
L(γ(s), γ̇(s)) ds + c[0].

If we let t tend to 0, this yields dx0ψ(γ̇(0)) ≥ L(x0, γ̇(0)) + c[0];
hence H(x0, dx0ψ) ≥ dx0ψ(γ̇(0)) − L(x0, γ̇(0)) ≥ c[0].
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The following theorem will be needed to prove the converse of
proposition 7.2.7.

Theorem 7.2.8. Suppose L : TM → R is a Tonelli Lagran-
gian on the compact manifold M . Let T−

t be the associated Lax-
Oleinik semi-group. If u ∈ C0(M,R), then the continuous function
U : [0,+∞[×M → R defined by U(t, x) = T−

t u(x) is a viscosity
solution of

∂U

∂t
(t, x) +H(x,

∂U

∂x
(t, x)) = 0

on the open set ]0,+∞[×M , where H : T ∗M → R is the Hamil-
tonian associated to L, i.e. H(x, p) = supv∈TxM p(v) − L(x, v).

Proof. Suppose that γ : [a, b] → M . Since T−
b u = T−

b−a[T
−
a (u)],

using the definition of T−
b−a, we get

T−
b u(γ(a)) = T−

b−a[T
−
a (u)](γ(a)

≤ T−
a u(γ(a)) +

∫ b

a
L(γ(s), γ̇(s)) ds,

therefore

U(b, γ(b)) − U(a, γ(a)) ≤

∫ b

a
L(γ(s), γ̇(s)) ds, (∗)

We now show that U is a viscosity subsolution. Suppose φ ≥
U , with φ of class C1 and (t0, x0) = U(t0, x0), where t0 > 0.
Fix v ∈ Tx0M , and pick a C1 curve γ : [0, t0] → M such that
(γ(t0), γ̇(t0)) = (x, v).

If 0 ≤ t ≤ t0, we have by (∗) and therefore

U(t0, γ(t0)) − U(t, γ(t)) ≤

∫ t0

t
L(γ(s), γ̇(s)) ds. (∗∗)

Since φ ≥ U , with equality at (t0, x0), noticing that γ(t0) = x0,
we obtain from (∗∗)

∀t ∈]0, t0[, φ(t0, γ(t0)) − φ(t, γ(t)) ≤

∫ t0

t
L(γ(s), γ̇(s)) ds.

Dividing by t0 − t > 0, and letting t→ t0, we get

∀v ∈ Tx0M,
∂φ

∂t
(t0, x0) +

∂φ

∂x
(t0, x0)(v) ≤ L(x0, v).
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By Fenchel’s formula 1.3.1

H(x0,
∂φ

∂x
(t0, x0)) = sup

v∈Tx0M

∂φ

∂x
(t0, x0)(v) − L(x0, v),

therefore
∂φ

∂t
(t0, x0) +H(x0,

∂φ

∂x
(t0, x0)) ≤ 0.

To prove that U is a supersolution, we consider ψ ≤ U , with ψ of
class C1. Suppose U(t0, x0) = ψ(t0, x0), with t0 > 0.

We pick γ : [0, t0] →M such that γ(t0) = x0 and

U(t0, x0) = T−
t0 u(x0) = u(γ(0)) +

∫ t0

0
L(γ(s), γ̇(s)) ds.

Since U(0, γ(0)) = u(γ(0)), this can be rewritten as

U(t0, x0) − U(0, γ(0)) =

∫ t0

0
L(γ(s), γ̇(s)) ds. (∗ ∗ ∗)

Applying (*) above twice, we obtain

U(t0, x0) − U(t, γ(t)) ≤

∫ t0

0
L(γ(s), γ̇(s)) ds

U(t, γ(t)) − U(0, γ(0)) ≤

∫ t0

0
L(γ(s), γ̇(s)) ds.

Adding this two inequalities we get in fact by (**) an equality,
hence we must have

∀t ∈ [0, t0], U(t0, γ(t0)) − U(t, γ(t)) =

∫ t0

t
L(γ(s), γ̇(s)) ds.

Since ψ ≤ U , with equality at (t0, x0), we obtain

ψ(t0, γ(t0)) − ψ(t, γ(t)) ≥

∫ t0

t
L(γ(s), γ̇(s)) ds.

Dividing by t0 − t > 0, and letting t→ t0, we get

∂ψ

∂t
(t0, x0) +

∂ψ

∂x
(t0, x0)(γ̇(t0)) ≥ L(x0, γ̇(t0)).
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By Fenchel’s formula 1.3.1

H(x0,
∂ψ

∂x
(t0, x0)) ≥

∂ψ

∂x
(t0, x0)(γ̇(t0)) − L(x0, γ̇(t0)),

Therefore
∂ψ

∂t
(t0, x0) +H(x0,

∂ψ

∂x
(t0, x0)) ≥ 0.

7.3 Lower and upper differentials

We need to introduce the notion of lower and upper differentials.

Definition 7.3.1. If u : M → R is a map defined on the manifold
M , we say that the linear form p ∈ T ∗

x0
M is a lower (resp. upper)

differential of u at x0 ∈M , if we can find a neighborhood V of x0

and a function φ : V → R, differentiable at x0, with φ(x0) = u(x0)
and dx0φ = p, and such that φ(x) ≤ u(x) (resp. φ(x) ≥ u(x)), for
every x ∈ V .

We denote by D−u(x0) (resp. D+u(x0)) the set of lower (resp.
upper) differentials of u at x0.

Exercise 7.3.2. Consider the function u : R → R, x 7→ |x|,
for each x ∈ R, find D−u(x), and D+u(x). Same question with
u(x) = −|x|.

Definition 7.3.1 is not the one usually given for M an open
set of an Euclidean space, see [Bar94], [BCD97] or [Cla90]. It is
nevertheless equivalent to the usual definition as we now show.

Proposition 7.3.3. Let u : U → R be a function defined on the
open subset U of R

n, then the linear form p is in D−u(x0) if and
only if

lim inf
x→x0

u(x) − u(x0) − p(x− x0)

‖x− x0‖
≥ 0.

In the same way p ∈ D+u(x0) if and only if

lim sup
x→x0

u(x) − u(x0) − p(x− x0)

‖x− x0‖
≤ 0.
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Proof. Suppose p ∈ D−u(x0), we can find a neighborhood V of x0

and a function φ : V → R, differentiable at x0, with φ(x0) = u(x0)
and dx0φ = p, and such that φ(x) ≤ u(x), for every x ∈ V .
Therefore, for x ∈ V , we can write

φ(x) − φ(x0) − p(x− x0)

‖x− x0‖
≤
u(x) − u(x0) − p(x− x0)

‖x− x0‖
.

Since p = dx0φ the left hand side tends to 0, therefore

lim inf
x→x0

u(x) − u(x0) − p(x− x0)

‖x− x0‖
≥ 0.

Suppose conversely, that p ∈ R
n∗ satisfies

lim inf
x→x0

(u(x) − u(x0) − p(x− x0))

‖x− x0‖
≥ 0.

We pick r > 0 such that the ball B̊(x0, r) ⊂ U , and for h ∈ R
n

such that 0 < ‖h‖ < r, we set

ǫ(h) = min(0,
u(x0 + h) − u(x0) − p(h)

‖h‖
).

It is easy to see that limh→0 ǫ(h) = 0. We can therefore set ǫ(0) =
0. The function φ : B̊(x0, r) → R, defined by φ(x) = u(x0)+p(x−
x0) + ‖x − x0‖ǫ(x − x0), is differentiable at x0, with derivative
p, it is equal to u at x0 and satisfies φ(x) ≤ u(x), for every x ∈
B̊(x0, r).

Proposition 7.3.4. Let u : M → R be a function defined on the
manifold M .

(i) For each x in M , we have D+u(x) = −D−(−u)(x) = {−p |
p ∈ D−(−u)(x)} and D−u(x) = −D+(−u)(x).

(ii) For each x in M , both sets D+u(x),D−u(x) are closed con-
vex subsets of T ∗

xM .

(iii) If u is differentiable at x, then D+u(x) = D−u(x) = {dxu}.

(iv) If both sets D+u(x),D−u(x) are non-empty then u is differ-
entiable at x.
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(v) if v : M → R is a function with v ≤ u and v(x) = u(x), then
D−v(x) ⊂ D−u(x) and D+v(x) ⊃ D+u(x).

(vi) If U is an open convex subset of an Euclidean space and
u : U → R is convex then D−u(x) is the set of supporting
linear forms of u at x ∈ U . In particular D+u(x) 6= ∅ if and
only if u is differentiable at x.

(vii) Suppose M has a distance d obtained from the Riemannian
metric g. If u : M → R is Lipschitz for d with Lipschitz
constant Lip(u), then for any p ∈ D±u(x) we have ‖p‖x ≤
Lip(u).

In particular, if M is compact then the sets D±u = {(x, p) |
p ∈ D±u(x), x ∈M} are compact.

Proof. Part (i) and and the convexity claim in part (ii) are obvious
from the definition 7.3.1.

To prove the fact thatD+u(x0) is closed for a given for x0 ∈M ,
we can assume that M is an open subset of R

k. We will apply
proposition 7.3.3. If pn ∈ D+u(x0) converges to p ∈ R

k∗, we can
write

u(x) − u(x0) − p(x− x0)

‖x− x0‖
≤
u(x) − u(x0) − pn(x− x0)

‖x− x0‖
+‖pn−p‖.

Fixing n, and letting x→ x0, we obtain

lim sup
x→x0

u(x) − u(x0) − p(x− x0)

‖x− x0‖
≤ ‖pn − p‖.

If we let n→ ∞, we see that p ∈ D+u(x0).
We now prove (iii) and (iv) together. If u is differentiable at

x0 ∈ M then obviously dx0u ∈ D+u(x0) ∩ D−u(x0). Suppose
now that both D+u(x0) and D−u(x0) are both not empty, pick
p+ ∈ D+u(x0) and p− ∈ D−u(x0). For h small, we have

p−(h) + ‖h‖ǫ−(h) ≤ u(x0 + h) − u(x0) ≤ p+(h) + ‖h‖ǫ+(h), (*)

where both ǫ−(h) and ǫ+(h) tend to 0, a h → 0. If v ∈ R
n, for

t > 0 small enough, we can replace h by tv in the inequalities (*)
above. Forgetting the middle term and dividing by t, we obtain

p−(v) + ‖v‖ǫ−(tv) ≤ p+(v) + ‖v‖ǫ+(tv),
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letting t tend to 0, we see that p−(v)+ ≤ p+(v), for every v ∈ R
n.

Replacing v by −v gives the reverse inequality p+(v)+ ≤ p−(v),
therefore p− = p+. This implies that both D+u(x0) and D−u(x0)
are reduced to the same singleton {p}. The inequality (*) above
now gives

p(h) + ‖h‖ǫ−(h) ≤ u(x0 + h) − u(x0) ≤ p(h) + ‖h‖ǫ+(h),

this clearly implies that p is the derivative of u at x0.

Part (v) follows routinely from the definition.

To prove (vi), we remark that by convexity u(x0 + th) ≤ (1 −
t)u(x0) + tu(x0 + h), therefore

u(x0 + h) − u(x0) ≥
u(x0 + th) − u(x0)

t
.

If p is a linear form we obtain

u(x0 + h) − u(x0) − p(h)

‖h‖
≥
u(x0 + th) − u(x0) − p(h)

‖th‖
.

If p ∈ D−u(x0), then the lim inf as t→ 0 of the right hand side is
≥ 0, therefore u(x0 +h)−u(x0)− p(h) ≥ 0, which shows that p is
a supporting linear form. Conversely, a supporting linear form is
clearly a lower differential.

It remains to prove (vii). Suppose, for example that φ : V → R

is defined on some neighborhood V of a given x0 ∈ M , that it is
differentiable at x0, and that φ ≥ u on V , with equality at x0.
If v ∈ Tx0M is given, we pick a C1 path γ : [0, δ] → V , with
δ > 0, γ(0) = x0, and γ̇(0) = v.We have

∀t ∈ [0, δ], |u(γ(t)) − u(x0)| ≤ Lip(u)d(γ(t), x0)

Lip(u)

∫ t

0
‖γ̇(s)‖ ds.

Therefore u(γ(t)) − u(x0) ≥ −Lip(u)
∫ t
0‖γ̇(s)‖ ds. Since φ ≥ u on

V , with equality at x0, it follows that

φ(γ(t)) − φ(x0) ≥ −Lip(u)

∫ t

0
‖γ̇(s)‖ ds.
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Dividing by t > 0, and letting t → 0, we get

dx0φ(v) ≥ −Lip(u)‖v‖.

Since v ∈ Tx0M is arbitrary, we can change v into −v in the
inequality above to conclude that we also have

dx0φ(v) ≤ Lip(u)‖v‖.

It then follows that ‖dx0φ‖ ≤ Lip(u).

Lemma 7.3.5. If u : M → R is continuous and p ∈ D+u(x0)
(resp. p ∈ D−u(x0)), there exists a C1 function φ : M → R,
such that φ(x0) = u(x0), dx0phi = p, and φ(x) > u(x) (resp.
φ(x) < u(x)) for x 6= x0.

Moreover, if W is any neighborhood of x0 and C > 0, we can
choose φ such that φ(x) ≥ u(x) + C, for x /∈ W (resp. φ(x) ≤
u(x) − C).

Proof. Assume first M = R
k. To simplify notations, we can as-

sume x0 = 0. Moreover, subtracting from u the affine function
x 7→ u(0) + p(x). We can assume u(0) = 0 and p = 0. The fact
that 0 ∈ D+u(0) gives

lim sup
x→0

u(x)

‖x‖
≤ 0.

If we take the non-negative part u+(x) = max(u(x), 0) of u, this
gives

lim
x→0

u+(x)

‖x‖
= 0. (♠)

If we set

cn = sup{u+(x) | 2−(n+1) ≤ ‖x‖ ≤ 2−n}

then cn is finite and ≥ 0, because u+ ≥ 0 is continuous. Moreover
using that 2nu+(x) ≤ u+(x)/‖x‖, for ‖x‖ ≤ 2−n, and the limit in
(♠) above, we obtain

lim
n→∞

[ sup
m≥n

2mcm] = 0. (♥)
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We now consider θ : R
k → R a C∞ bump function with θ = 1 on

the set {x ∈ R
k | 1/2 ≤ ‖x‖ ≤ 1}, and whose support is contained

in {x ∈ R
k | 1/4 ≤ ‖x‖ ≤ 2}. We define the function ψ : R

k → R

by

ψ(x) =
∑

n∈Z

(cn + 2−2n)θ(2nx).

This function is well defined at 0 because every term is then 0. For
x 6= 0, we have θ(2nx) 6= 0 only if 1/4 < ‖2nx‖ < 2. Taking the
logarithm in base 2, this can happen only if −2 − log2‖x‖ < n <
1 − log2‖x‖, therefore this can happen for at most 3 consecutive
integers n, hence the sum is also well defined for x 6= 0. Moreover,
if x 6= 0, the set Vx = {y 6= 0 | −1 − log2‖x‖ < − log2‖y‖ <
1 − log2‖x‖} is a neighborhood of x and

∀y ∈ Vy, ψ(y) =
∑

−3−log2‖x‖<n<2−log2‖x‖

(cn + 2−2n)θ(2ny). (*)

This sum is finite with at most 5 terms, therefore θ is C∞ on
R

k \ {0}.
We now check that ψ is continuous at 0. Using equation (*),

and the limit (♥) we see that

0 ≤ ψ(x) ≤
∑

−3−log2‖x‖<n<2−log2‖x‖

(cn + 2−2n)

≤ 5 sup
n>−3−log2‖x‖

(cn + 2−2n) → 0 as x→ 0.

To show that ψ is C1 on the whole of R
k with derivative 0 at 0,

it suffices to show that dxψ tends to 0 as ‖x‖ → 0. Differentiating
equation (*) we see that

dxψ =
∑

−3−log2 ‖x‖<n<2−log2‖x‖

(cn + 2−2n)2nd2nxθ.

Since θ has compact support K = supx∈Rn‖dxθ‖ is finite. The
equality above and the limit in (♥) give

‖dxψ‖ ≤ 5K sup{2ncn + 2−n | n ≥ −2 − log2‖x‖},

but the right hand side goes to 0 when ‖x‖ → 0.



229

We now show ψ(x) > u(x), for x 6= 0. There is an integer n0

such that ‖x‖ ∈ [2−n0+1, 2−n0 ], hence θ(2n0x) = 1 and ψ(x) ≥
θ(2n0x)(cn0 + 2−2n0) ≥ cn0 + 2−2n0 , since cn0 = sup{u+(y) | ‖y‖ ∈
[2(−n0+1), 2−n0 ]}, we obtain cn0 ≥ u+(x) and therefore ψ(x) >
u+(x) ≥ u(x).

It remains to show that we can get rid of the assumption
M = R

k, and to show how to obtain the desired inequality on the
complement of W . We pick a small open neighborhood U ⊂ W
of x0 which is diffeomorphic to an Euclidean space. By what we
have done, we can find a C1 function ψ : U → R with ψ(x0) =
u(x0), dx0ψ = p, and ψ(x) > u(x), for x ∈ U \ {x0}. We then
take a C∞ bump function ϕ : M → [0, 1] which is equal to 1
on a neighborhood of x0 and has compact support contained in
U ⊂ W . We can find a C∞ function ψ̃ : M → R such that
ψ̃ ≥ u + C. It is easy to check that the function φ : M → R

defined by φ(x) = (1 − ϕ(x))ψ̃(x) + ϕ(x)ψ(x) has the required
property.

The following simple lemma is very useful.

Lemma 7.3.6. Suppose ψ : M → R is Cr, with r ≥ 0. If x0 ∈
M,C ≥ 0, and W is a neighborhood of x0, there exist two Cr

functions ψ+, ψ− : M → R, such that ψ+(x0) = ψ−(x0) = ψ(x0),
and ψ+(x) > ψ(x) > ψ−(x), for x 6= x0. Moreover ψ+(x) −
C > ψ(x) > ψ−(x) + C, for x /∈ W . If r ≥ 1, then necessarily
dx0ψ+ = dx0ψ− = dx0ψ̃

Proof. The last fact is clear since ψ+ − ψ (resp. ψ− − ψ) achieves
a minimum (resp. maximum) at x0.

Using the same arguments as in the end of the proof in the
previous lemma to obtain the general case, it suffices to assume
C = 0 and M = R

n. In that case, we can take ψ±(x) = ψ(x) ±
‖x− x0‖

2.

Proposition 7.3.7. Suppose M is a compact manifold. Let L :
TM → R be a C2 Tonelli Lagrangian. Consider the associ-
ated Lax-Oleinik semi-groups T−

t , T
+
t . Suppose that t > 0, and

that γ : [0, t] → M is a C1 curve with γ(t) = x (resp. γ(0) =
x), and such that T−

t u(x) = u(γ(0)) +
∫ t
0 L(γ(s), γ̇(s)) ds (resp.

T+
t u(x) = u(γ(t)) −

∫ t
0 L(γ(s), γ̇(s)) ds), then ∂L/∂v(γ(t), γ̇(t)) ∈
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D+[T−
t u](x), and ∂L/∂v(γ(0), γ̇(0)) ∈ D−u(γ(0)) (resp. ∂L/∂v(γ(0), γ̇(0)) ∈

D−[T−
t u](x) and ∂L/∂v(γ(t), γ̇(t)) ∈ D+[u](γ(t))).

Proof. A Faire!!!!!

7.4 Criteria for viscosity solutions

We fix in this section a continuous function H : T ∗M → R.

Theorem 7.4.1. Let u : M → R be a continuous function.

(i) u is a viscosity subsolution of H(x, dxu) = 0 if and only if
for each x ∈M and each p ∈ D+u(x) we have H(x, p) ≤ 0.

(ii) u is a viscosity supersolution of H(x, dxu) = 0 if and only if
for each x ∈M and each p ∈ D−u(x) we have H(x, p) ≥ 0.

Proof. Suppose that u is a viscosity subsolution. If p ∈ D+u(x),
since u is continuous, it follows from 7.3.5 that there exists a C1

function φ : M → R, with φ ≥ u on M , u(x0) = φ(0) and dxφ = p.
By the viscosity subsolution condition H(x, p) = H(x, dxφ) ≤ 0, .

Suppose conversely that for each x ∈M and each p ∈ D+u(x0)
we have H(x, p) ≤ 0. If φ : M → R is C1 with u ≤ φ, then at each
point x where u(x) = φ(x), we have dxφ ∈ D+u(x) and therefore
H(x, dxφ) ≤ 0.

Since D±u(x) depends only on the values of u in a neighbor-
hood of x, the following corollary is now obvious. It shows the
local nature of the viscosity conditions.

Corollary 7.4.2. Let u : M → R be a continuous function.

If u is a viscosity subsolution (resp. supersolution, solution) of
H(x, dxu) = 0 on M , then any restriction u|U to an open sub-
set U ⊂ M is itself a viscosity subsolution (resp. supersolution,
solution) of H(x, dxu) = 0 on U .

Conversely, if there exists an open cover (Ui)i∈I of M such that
every restriction u|Ui

is a viscosity subsolution (resp. supersolu-
tion, solution) of H(x, dxu) = 0 on Ui, then u itself is a viscosity
subsolution (resp. supersolution, solution) of H(x, dxu) = 0 on M .

Here is another straightforward consequence of theorem 7.4.1.
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Corollary 7.4.3. Let u : M → R be a locally Lipschitz func-
tion. If u is a viscosity subsolution (resp. supersolution solu-
tion) of H(x, dxu) = 0, then H(x, dxu) ≤ 0 (resp. H(x, dxu) ≥
0,H(x, dxu) = 0) for almost every x ∈M .

In particular, a locally Lipschitz viscosity solution is always a
very weak solution.

We end this section with one more characterization of viscosity
solutions.

Proposition 7.4.4 (Criterion for viscosity solution). Suppose
that u : M → R is continuous. To check that u is a viscosity
subsolution (resp. supersolution) of H(x, dxu) = 0, it suffices to
show that for each C∞ function φ : M → R such that u − φ has
a unique strict global maximum (resp. minimum), attained at x0,
we have H(x0, dx0φ) ≤ 0 (resp. H(x0, dx0φ) ≥ 0).

Proof. We treat the subsolution case. We first show that if φ :
M → R is a C∞ function such that u−φ achieves a (not necessarily
strict) maximum at x0, then we have H(x0, dx0φ) ≤ 0. In fact
applying 7.3.6, we can find a C∞ function φ+ : M → R such that
φ+(x0) = φ(x0), dx0φ+ = dx0φ, φ+(x) > φ(x), for x 6= x0. The
function u − φ+ has a unique strict global maximum achieved at
x0, therefore H(x0, dx0φ+) ≤ 0. Since dx0φ+ = dx0φ, this finishes
our claim.

Suppose now that ψ : M → R is C1 and that u−ψ has a global
maximum at x0, we must show that H(x0, dx0ψ) ≤ 0. We fix a
relatively compact open neighborhoodW of x0, by 7.3.6, applied to
the continuous function ψ, there exists a C1 function ψ+ : M → R

such that ψ+(x0) = ψ(x0), dx0ψ+ = dx0ψ,ψ+(x) > ψ(x), for x 6=
x0, and even ψ+(x) > ψ(x) + 3, for x /∈ W . It is easy to see that
u−ψ+ has a strict global maximum at x0, and that u(x)−ψ+(x) <
u(x0) − ψ+(x0) − 3, for x /∈ W . By smooth approximations, we
can find a sequence of C∞ functions φn : M → R such that φn

converges to ψ+ in the C1 topology uniformly on compact subsets,
and supx∈M |φn(x)−ψ+(x)| < 1. This last condition together with
u(x)−ψ+(x) < u(x0)−ψ+(x0)−3, for x /∈W , gives u(x)−φn(x) <
u(x0)−φn(x0)− 1, for x /∈W . This implies that the maximum of
u−φn on the compact set W̄ is a global maximum of u−φn. Choose
yn ∈ W̄ where u−φn attains its global maximum. Since φn is C∞,
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from the beginning of the proof we must have H(yn, dynφn) ≤ 0.
Extracting a subsequence, if necessary, we can assume that yn

converges to y∞ ∈ W̄ . Since φn converges to ψ+ uniformly on the
compact set W̄ , necessarily u−ψ+ achieves its maximum on W̄ at
y∞. This implies that y∞ = x0, because the strict global maximum
of u − ψ̃ is precisely attained at x0 ∈ W . The convergence of φn

to ψ+ is in the C1 topology, therefore (yn, dynφn) → (x0, dx0ψ+),
and hence H(yn, dynφn) → H(x0, dx0ψ+), by continuity of H. But
H(yn, dynφn) ≤ 0 and dx0ψ = dx0ψ+, hence H(x0, dx0ψ) ≤ 0.

7.5 Coercive Hamiltonians

Definition 7.5.1 (Coercive). A continuous function H : T ∗M →
R is said to be coercive above every compact subset, if for each
compact subset K ⊂ M and each c ∈ R the set {(x, p) ∈ T ∗M |
x ∈ K,H(x, p) ≤ c} is compact.

Choosing any Riemannian metric on M , it is not difficult to
see that H is coercive, if and only if for each compact subset
K ⊂M , we have lim‖p‖→∞H(x, p) = +∞ the limit being uniform
in x ∈ K.

Theorem 7.5.2. Suppose that H : T ∗M → R is coercive above
every compact subset, and c ∈ R then a viscosity subsolution
of H(x, dxu) = c is necessarily locally Lipschitz, and therefore
satisfies H(x, dxu) ≤ c almost everywhere.

Proof. Since this is a local result we can assume M = Rk, and
prove only that u is Lipschitz on a neighborhood of the origin 0.
We will consider the usual distance d given by d(x, y) = ‖y − x‖,
where we have chosen the usual Euclidean norm on R

k. We set

ℓ0 = sup{‖p‖ | p ∈ R
k∗,∃x ∈ R

k, ‖x‖ ≤ 3,H(x, p) ≤ c}.

Suppose u : R
k → R is a subsolution of H(x, dxu) = c. Choose

ℓ ≥ ℓ0 + 1 such that

2ℓ > sup{|u(y) − u(x)| | x, y ∈ R
k, ‖x‖ ≤ 3, ‖y‖ ≤ 3}.

Fix x, with ‖x‖ ≤ 1, and define φ : R
k → R by φ(y) = ℓ‖y−x‖.

Pick y0 ∈ B̄(x, 2) where the function y 7→ u(y) − φ(y) attains its
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maximum for y ∈ B̄(x, 2). We first observe that y0 is not on the
boundary of B̄(x, 2). In fact, if ‖y−x‖ = 2, we have u(y)−φ(y) =
u(y)−2ℓ < u(x) = u(x)−φ(x). In particular y0 is a local maximum
of u− φ. If y0 is not equal to x, then dy0φ exists, with dy0φ(v) =
ℓ〈y0 − x, v〉/‖y0 − x‖, and we obtain ‖dy0φ‖ = ℓ. On the other
hand, since u(y) ≥ u(y0) − φ(y0) + φ(y), for y in a neighborhood
of y0, we get dy0φ ∈ D+u(y0), and therefore have H(y0, dy0φ) ≤ c.
By the choice of ℓ0, this gives ‖dy0φ‖ ≤ ℓ0 < ℓ0 + 1 ≤ ℓ. This
contradiction shows that y0 = x, hence u(y) − ℓ‖y − x‖ ≤ u(x),
for every x of norm ≤ 1, and every y ∈ B̄(x, 2). This implies that
u has Lipschitz constant ≤ ℓ on the unit ball of R

k.

7.6 Viscosity and weak KAM

In this section we finish showing that weak KAM solutions and
viscosity solutions are the same.

Theorem 7.6.1. Let L : TM → R be a Tonelli Lagrangian on
the compact manifold M . Denote by H : T ∗M → R its associated
Hamiltonian. A continuous function u : U → R is a viscosity
subsolution of H(x, dxu) = c on the open subset U if and only if
u ≺ L+ c.

Proof. By proposition 7.2.7, it remains to prove that a viscosity
subsolution of H(x, dxu) = c is dominated by L + c on U . Since
H is superlinear, we can apply theorem 7.5.2 to conclude that
u is locally Lipschitz, and hence, by corollary 7.4.3, we obtain
H(x, dxu) ≤ c almost everywhere on U . From lemma 4.2.3, we
infer u ≺ L+ c on U .

Theorem 7.6.2. Let L : TM → R be a Tonelli Lagrangian on
the compact manifold M . Denote by H : T ∗M → R its associated
Hamiltonian. A continuous function u : M → R is a viscosity
solution of H(x, dxu) = c if and only if it is Lipschitz and satisfies
u = T−

t u+ct, for each t ≥ 0. (In particular, we must have c=c[0].)

Proof. If u satisfies u = T−
t u+ ct, for each t ≥ 0, then necessarily

c = c[0], and therefore, by proposition 7.2.7, the function u is a
viscosity solution of H(x, dxu) = c = c[0].
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Suppose now that u is a viscosity solution. From proposition
7.6.1, we know that u ≺ L+ c, and that u is Lipschitz. We then
define ũ(t, x) = T−

t u(x). We must show that ũ(t, x) = u(x) − ct.
Since we know that ũ is locally Lipschitz on ]0,+∞[×M , it suf-
fices to show that ∂tũ(t, x) = −c at each (t, x) where ũ admits
a derivative. In fact, since ũ is locally Lipschitz, it is differen-
tiable almost everywhere, therefore for almost every x the deriva-
tive d(t,x)ũ exists for almost every t. If we fix such an x, it follows
that ∂tũ(t, x) = −c, for almost every t. But, since the t 7→ ũ(t, x)
is locally Lipschitz, it is the integral of its derivative, therefore
ũ(t, x) − ũ(0, x) = −ct. This is valid for almost every x ∈M , and
by continuity for every x ∈M .

It remains to show that at a point (t, x) where ũ is differen-
tiable, we have ∂tũ(t, x) = −c. From proposition 7.2.8, we know
that ũ is a viscosity solution of ∂tũ + H(x, ∂xũ) = 0. Hence we
have to show that H(x, ∂xũ(t, x)) = c. In fact, we already have
that H(x, ∂xũ(t, x)) ≤ c, because ũ(t, ·) = T−

t u is dominated by
L+ c, like u. It remains to prove that H(x, ∂xũ(t, x)) ≥ c. To do
this, we identify the derivative of ∂xũ(t, x). We choose γ : [0, t] →
M with γ(t) = x and T−

t u(x) = u(γ(0)) +
∫ t
0 L(γ(s), γ̇(s)) ds.

The curve γ is a minimizer of the action. In particular, the
curve s 7→ (γ(s), γ̇(s)) is a solution of the Euler-Lagrange equa-
tion, it follows that the energy H(γ(s), ∂L

∂v (γ(s)), γ̇(s))) is con-
stant on [0, t]. By proposition 7.3.7, we have ∂L/∂v(γ(t)), γ̇(t)) ∈
D+(T+

t u)(x), therefore ∂xũ(t, x) = ∂L
∂v (γ(t)), γ̇(t)). Using the fact

that H(γ(s), ∂L
∂v (γ(s)), γ̇(s))) is constant, we are reduced to see

that H(γ(0), ∂L
∂v (γ(0)), γ̇(0))) ≥ c. But the same proposition 7.3.7

yields also ∂L/∂v(γ(0), γ̇(0)) ∈ D−u(γ(0)). We can therefore
conclude using theorem 7.4.1, since u is a viscosity solution of
H(x, dxu) = c.



Chapter 8

More on Viscosity

Solutions

We further develop the theory of viscosity solutions. Although
many things are standard, whatever is not comes from joint work
with Antonio Siconolfi, see [FS04] and [FS05].

8.1 Stability

Theorem 8.1.1 (Stability). Suppose that the sequence of contin-
uous functions Hn : T ∗M → R converges uniformly on compact
subsets to H : T ∗M → R. Suppose also that un : M → R is a se-
quence of continuous functions converging uniformly on compact
subsets to u : M → R. If, for each n, the function un is a viscos-
ity subsolution (resp. supersolution, solution) of Hn(x, dxun) = 0,
then u is a viscosity subsolution (resp. supersolution, solution) of
H(x, dxu) = 0.

Proof. We show the subsolution case. We use the criterion 7.4.4.
Suppose that φ : M → R is a C∞ function such that u − φ has
a unique strict global maximum, achieved at x0, we have to show
H(x0, dx0φ) ≤ 0. We pick a relatively compact open neighbor-
hood W of x0. For each n, choose yn ∈ W̄ where un−φ attains its
maximum on the compact subset W̄ . Extracting a subsequence,
if necessary, we can assume that yn converges to y∞ ∈ W̄ . Since
un converges to u uniformly on the compact set W̄ , necessarily

235
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u− φ achieves its maximum on W̄ at y∞. But u− φ has a strict
global maximum at x0 ∈ W therefore y∞ = x0. By continuity
of the derivative of φ, we obtain (yn, dynφ) → (x0, dx0φ). Since
W is an open neighborhood of x0, dropping the first terms if nec-
essary, we can assume yn ∈ W , this implies that yn is a local
maximum of un − φ, therefore dynφ ∈ D+un(y). Since un is a vis-
cosity subsolution of Hn(x, dxun) = 0, we get Hn(yn, dynφ) ≤ 0.
The uniform convergence of Hn on compact subsets now implies
H(x0, dx0φ) = limn→∞Hn(yn, dynφ) ≤ 0.

8.2 Construction of viscosity solutions

Proposition 8.2.1. Let H : T ∗M → R be a continuous func-
tion. Suppose (ui)i∈I is a family of continuous functions ui :
M → R such that each ui is a subsolution (resp. supersolution) of
H(x, dxu) = 0. If supi∈I ui (resp. infi∈u ui) is finite and continu-
ous everywhere, then it is also a subsolution (resp. supersolution)
of H(x, dxu) = 0 .

Proof. Set u = supi∈I ui. Suppose φ : M → R is C1, with φ(x0) =
u(x0) and φ(x) > u(x), for every x ∈M \ {x0}. We have to show
H(x0, dx0φ) ≤ 0. Fix some distance d on M . By continuity of the
derivative of φ, it suffices to show that for each ǫ > 0 small enough
there exists x ∈ B̊(x0, ǫ), with H(x, dxφ) ≤ 0.

For ǫ > 0 small enough, the closed ball B̄(x0, ǫ) is compact.
Fix such an ǫ > 0. There is a δ > 0 such that φ(y) − δ ≥ u(y) =
supi∈I ui(y), for each y ∈ ∂B(x0, ǫ).

Since φ(x0) = u(x0), we can find iǫ ∈ I such that φ(x0) − δ <
uiǫ(x0). It follows that the maximum of the continuous function
uiǫ−φ on the compact set B̄(x0, ǫ) is not attained on the boundary,
therefore uiǫ−φ has a local maximum at some xǫ ∈ B̊(x0, ǫ). Since
the function uiǫ is a viscosity subsolution of H(x, dxu) = 0, we
have H(xǫ, dxǫφ) ≤ 0.

Theorem 8.2.2 (Perron Method). Suppose the Hamiltonian H :
TM → R is coercive above every compact subset. If M is con-
nected and there exists a viscosity subsolution u : M → R of
H(x, dxu) = 0, then for every x0 ∈ M , the function Sx0 : M → R

defined by Sx0(x) = supv v(x), where the supremum is taken over
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all viscosity subsolutions v satisfying v(x0) = 0, has indeed finite
values and is a viscosity subsolution of H(x, dxu) = 0 on M .

Moreover, it is a viscosity solution of H(x, dxu) = 0 on M \
{x0}.

Proof. Call SSx0 the family of viscosity subsolutions v : M → R

of H(x, dxv) = 0 satisfying v(x0) = 0.

Since H is coercive above every compact subset of M , by
theorem 7.5.2, we know that each element of this family is lo-
cally Lipschitz. Moreover, since for each compact set K, the set
{(x, p) | x ∈ K,H(x, p) ≤ 0} is compact, it follows that the fam-
ily of restrictions v|K , v ∈ SSx0 is equi-Lipschitzian. We now
show, that Sx0 is finite everywhere. Since M is connected, given
x ∈ M , there exists a compact connected set Kx,x0 containing
both x and x0. By the equicontinuity of the family of restric-
tions {v|Kx,x0

| v ∈ SSx0}, we can find δ > 0, such that for each
y, z ∈ Kx,x0 with d(y, z) ≤ δ, we have |v(y) − v(z)| ≤ 1, for each
v ∈ SSx0.

By the setKx,x0 is connected , we can find a sequence x0, x1, · · · , xn =
x in Kx,x0 with d(xi, xi+1) ≤ δ. It follows that |v(x)| = |v(x) −
v(x0)| ≤

∑n−1
i=0 |v(xi+1)− v(xi)| ≤ n, for each v ∈ SSx0 . Therefore

supv∈SSx0
v(x) is finite everywhere. Moreover, as a finite-valued

supremum of a family of locally equicontinuous functions, it is
continuous.

By the previous proposition 8.2.1, the function Sx0 is a vis-
cosity subsolution on M itself. It remains to show that it is a
viscosity solution of H(x, dxu) on M \ {x0}.

Suppose ψ : M → R is C1 with ψ(x1) = Sx0(x1), where
x1 6= x0, and ψ(x) < Sx0(x) for every x 6= x1. We want to show
that necessarily H(x1, dx1ψ) ≥ 0. If this were false, by continu-
ity of the derivative of ψ, endowing M with a distance defining
its topology, we could find ǫ > 0 such that H(y, dyψ) < 0, for
each y ∈ B̄(x1, ǫ). Taking ǫ > 0 small enough, we assume that
B̄(x1, ǫ) is compact and x0 /∈ B̄(x1, ǫ). Since ψ < Sx0 on the
boundary ∂B(x1, ǫ) of B̄(x1, ǫ), we can pick δ > 0, such that
ψ(y) + δ ≤ Sx0(y), for every y ∈ ∂B(x1, ǫ). We define S̃x0 on
B̄(x1, ǫ) by S̃x0(x) = max(ψ(x) + δ/2, Sx0(x)). The function S̃x0

is a viscosity subsolution of H(x, d, u) on B̊(x1, ǫ) as the maxi-
mum of the two viscosity subsolutions ψ+δ/2 and Sx0. Moreover,
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this function S̃x0 coincides with Sx0 outside K = {x ∈ B̊(x1, ǫ) |
ψ(x)+δ/2 ≥ Sx0(x))} which is a compact subset of B̊(x1, ǫ), there-
fore we can extend it to M itself by S̃x0 = Sx0 on M \K. It is a
viscosity subsolution of H(x, dxu) on M itself, since its restrictions
to both open subsets M \K and B̊(x1, ǫ) are viscosity subsolutions
and M = B̊(x1, ǫ) ∪ (M \K).

But S̃x0(x0) = Sx0(x0) = 0 because x0 /∈ B̄(x1, ǫ). Moreover
S̃x0(x1) = max(ψ(x1)+δ/2, Sx0(x1)) = max(Sx0(x1)+δ/2, Sx0(x1)) =
Sx0(x1)+δ/2 > Sx0(x1). This contradicts the definition of Sx0 .

The next argument is inspired by the construction of Buse-
mann functions in Riemannain Geometry, see [BGS85].

Corollary 8.2.3. Suppose that H : T ∗M → R is a continuous
Hamiltonian coercive above every compact subset of the connected
non-compact manifold M . If there exists a viscosity subsolution
of H(x, dxu) = 0 on M , then there exists a viscosity solution on
M .

Proof. Fix x̂ ∈M , and pick a sequence xn → ∞ (this means such
that each compact subset of M contains only a finite number of
points in the sequence).

By arguments analogous to the ones used in the previous proof,
the sequence Sxn is locally equicontinuous and moreover, for each
x ∈ M , the sequence Sxn(x) − Sxn(x̂) is bounded. Therefore, by
Ascoli’s theorem, extracting a subsequence if necessary, we can
assume that Sxn − Sxn(x̂) converges uniformly to a continuous
function u : M → R. It now suffices to show that the restriction
of u to an arbitrary open relatively compact subset V of M is a
viscosity solution of H(x, dxu) = 0 on V . Since {n | xn ∈ V̄ } is
finite, for n large enough, the restriction of Sxn − Sxn(x̂) to V is
a viscosity solution; therefore by the stability theorem 8.1.1, the
restriction of the limit u to V is also a viscosity solution.

The situation is different for compact manifolds as can be seen
from the following theorem:

Theorem 8.2.4. Suppose H : T ∗M → R is a coercive Hamil-
tonian on the compact manifold M . If there exists a viscosity
subsolution of H(x, dxu) = c1 and a viscosity supersolution of
H(x, dxu) = c2, then necessarily c2 ≤ c1.
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In particular, there exists a most one c for which the Hamilton-
Jacobi equation H(x, dxu) = c has a global viscosity solution u :
M → R. This only possible value is the smallest c for which
H(x, dxu) = c admits a global viscosity subsolution u : M → R.

In order to prove this theorem, we will need a lemma (the last
part of the lemma will be used later).

Lemma 8.2.5. Suppose M compact, and u : M → R is a Lips-
chitz viscosity subsolution (resp. supersolution) of H(x, dxu) = c.
For every ǫ > 0, there exists a locally semi-convex (resp. semi-
concave) function uǫ : M → R such that ‖uǫ − u‖∞ < ǫ, and uǫ is
a viscosity subsolution (resp. supersolution) of H(x, dxu) = c + ǫ
(resp. H(x, dxu) = c− ǫ).

Moreover, if K ⊂ U are respectively a compact and an open
subsets of M such that the restriction u|U is a viscosity subsolu-
tion (resp. supersolution) of H(x, dxu) = c′ on U , for some c′ < c
(resp. c′ > c), we can also impose that restriction uǫ|U is a viscos-
ity subsolution (resp. supersolution) of H(x, dxu) = c′ + ǫ (resp.
H(x, dxu) = c′ − ǫ) on a neighborhood of K.

Proof. Suppose ǫ > 0 is given. Fix a C∞ Riemannian metric
g on M . We call T−

t and T+
t the two Lax-Oleinik semi-groups

associated to the Lagrangian L(x, v) = 1
2gx(v, v) = 1

2‖v‖
2
x. If

ǫ > 0 and u : M → R is a Lipschitz viscosity subsolution of
H(x, dxu) = c, we consider the locally semi-convex function T+

t u.
By the analogous of part (7) of corollary ??, the map t 7→ T+

t u
is continuous as a map with values in C0(M,R) endowed with the
sup norm, therefore ‖T+

t u−u‖∞ < ǫ, for each t > 0 small enough.
Assume that t > 0. Since T+

t u is locally semi-convex, at each point
x, the set D−T+

t u(x) is not empty, therefore the points x where
D+T+

t u(x) 6= ∅ are the points where to T+
t u is differentiable.

Hence to check that it is a subsolution of H(x, du) = c + ǫ, it
suffices to show that if dxT

+
t u exists then H(x, dxT

+
t u) ≤ c+ ǫ.

Suppose that dxT
+
t u exists. Choose a geodesic γ : [0, t] → M

with γ(0) = x, and T+
t u(x) =

∫ t
0

1
2‖γ̇(t)‖2

γ(t)dt − u(γ(t)). We

have dxT
+
t u(x) = γ̇(0)♯, where for v ∈ TyM , the linear form

v♯ ∈ T ∗
yM is given by v♯(w) = gy(v,w), for every w ∈ TyM .

Moreover, we also have γ̇(t)♯ ∈ D+u(γ(t)). Therefore dxT
+
t u ∈

ϕg∗
−t(Graph(D+u)), where ϕg∗

t : T ∗M → T ∗M is the Hamiltonian
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form of the geodesic flow ϕg
t : TM → TM of g, and Graph(D+u) =

{(x, p) | x ∈M,p ∈ D+u(x)}.
Since u is a subsolution of H(x, dxu) = c, we have H(x, p) ≤

c, for each p ∈ D+u(x). The compactness of P = {p | p ∈
T ∗

xM, ‖p‖x ≤ Lip(u)}, which contains Graph(D+u), and the con-
tinuity of both the flow ϕg∗

t and the Hamiltonian H imply that
there exists t0 > 0 such that ϕg∗

−tD
+u ⊂ H−1(] − ∞, c + ǫ]), for

every t ∈ [0, t0].

To prove the last part, we choose an open subset V with K ⊂
V ⊂ V̄ ⊂ U . We observe that Graph(D+u) is contained in the
compact set P̃ = {(x, p) ∈ P | x /∈ U,H(x, p) ≤ c} ∪ {(x, p) ∈ P |
x ∈ Ū ,H(x, p) ≤ c′}. Again by compactness, we can find a t′0 such
that the intersection of ϕg∗

−tD
+u with T ∗V = {(x, p) | x ∈ V } is

contained in H−1(] −∞, c′ + ǫ]), for every t ∈ [0, t′0].

Proof of theorem 8.2.4. Suppose c1 < c2, and choose ǫ > 0, with
c1 + ǫ < c2, by the previous lemma 8.2.5, we can find a locally
semi-convex function u1 : M → R which is a viscosity subsolution
of H(x, dxu) = c1 + ǫ.

We now show that for every x ∈M , there exists p ∈ D−u1(x)
with H(x, p) ≤ c1 + ǫ. Since a locally semi-convex function is
Lipschitz, by Rademacher’s theorem, if x ∈ M , we can find a se-
quence of points xn ∈M converging to x such that the derivative
dxnu1 exists. We have H(xn, dxnu1) ≤ c1 + ǫ. Since u1 is Lip-
schitz, the points (xn, dxnu1) are contained in a compact subset
of T ∗M . Extracting a sequence if necessary, we can assume that
(xn, dxnu1) → (x, p), of course H(x, p) ≤ c1 + ǫ, and p ∈ D−u1(x),
because u1 is locally semi-convex.

We fix u2 : M → R a viscosity supersolution of H(x, dxu) = c2.
Call x0 a point where the continuous function u2−u1 on the com-
pact manifold M achieves its minimum. We have u2 ≥ u2(x0) −
u1(x0) + u1 with equality at x0, therefore D−u1(x0) ⊂ D−u2(x0),
this is impossible since D−u2(x0) ⊂ H−1([c2,+∞[),D−u1(x0) ∩
H−1(] −∞, c1 + ǫ]) 6= φ and c1 + ǫ < c2.

Exercise 8.2.6. Prove a non-compact version of lemma 8.2.5:

Suppose H : T ∗M → R is a continuous Hamiltonian on the
(not necessarily compact) manifold M . If u : M → R is a locally
Lipschitz viscosity subsolution (resp. supersolution) of H(x, dxu) =
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c, show that for every ǫ > 0, and every relatively compact open
subset U , there exists a locally semi-convex (resp. semi-concave)
function uǫ : U → R such that ‖uǫ − u|U‖∞ < ǫ, and uǫ is a vis-
cosity subsolution (resp. supersolution) of H(x, dxu) = c+ ǫ (resp.
H(x, dxu) = c− ǫ) on U .

Definition 8.2.7 (strict subsolution). We say that a viscosity
subsolution u : M → R of H(x, dxu) = c is strict at x0 ∈ M if
there exists an open neighborhood Vx0 of x0, and cx0 < c such
that u|Vx0 is a viscosity subsolution of H(x, dxu) = cx0 on Vx0 .

Here is a way to construct viscosity subsolutions which are
strict at some point.

Proposition 8.2.8. Suppose that u : M → R is a viscosity sub-
solution of H(y, dyu) = c on M , that is also a viscosity solution
on M \ {x}. If u is not a viscosity solution of H(y, dyu) = c on M
itself then there exists a viscosity subsolution of H(y, dyu) = c on
M which is strict at x.

Proof. If u is not a viscosity solution, since it is a subsolution on
M , it is the supersolution condition that is violated. Moreover,
since u is a supersolution on M \ {x}, the only possibility is that
there exists ψ : M → R of class C1 such that ψ(x) = u(x), ψ(y) <
u(y), for y 6= x, and H(x, dxψ) < c. By continuity of the derivative
of ψ, we can find a compact ball B̄(x, r), with r > 0, and a cx < c
such that H(y, dyψ) < cx, for every y ∈ B̄(0, r). In particular, the
C1 function ψ is a subsolution of H(z, dzv) = cx on B̊(x, r), and
therefore also of H(z, dzv) = c on the same set since cx < c.

We choose δ > 0 such that for every y ∈ ∂B(x, r) we have
u(y) > ψ(y) + δ. This is possible since ∂B(x, r) is a compact
subset of M \ {x} where we have the strict inequality ψ < u.

If we define ũ : M → R by ũ(y) = u(y) if y /∈ B̄(x, r) and
ũ(y) = max(u(y), ψ(y) + δ), we obtain the desired viscosity sub-
solution of H(y, dyu) ≤ c which is strict at x. In fact, by the
choice of δ > 0, the subset K = {y ∈ B̄(x, r) | ψ(y) + δ ≤ u(y)}
is compact and contained in the open ball B̊(x, r). Therefore M
is covered by the two open subsets M \ K and B̊(x, r). On the
first open subset ũ is equal to u, it is therefore a subsolution of
H(y, dyu) = c on that subset. On the second open subset B̊(x, r),
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the function ũ is the maximum of u and ψ + δ which are both
subsolutions of H(y, dyu) = c on B̊(x, r), by proposition 8.2.1, it
is therefore a subsolution of H(y, dyu) = c on that second open
subset. Since u(x) = ψ(x); we have ũ(x) = ψ(x) + δ > u(x),
therefore by continuity ũ = ψ+ δ on a neighborhood N ⊂ B̊(x, r)
of x. On that neighborhood H(y, dyψ) < cx, hence ũ is strict at
x.

8.3 Quasi-convexity and viscosity subsolu-

tions

In this section we will be mainly interested in Hamiltonians H :
T ∗M → R quasi-convex in the fibers, i.e. for each x ∈ M , the
function p 7→ H(x, p) is quasi-convex on the vector space T ∗

xM ,
see definition 1.5.1

Our first goal in this section is to prove the following theorem:

Theorem 8.3.1. Suppose H : T ∗M → R is quasi-convex in the
fibers. If u : M → R is locally Lipschitz and H(x, dxu) ≤ c almost
everywhere, for some fixed c ∈ R, then u is a viscosity subsolution
of H(x, dxu) = c.

Before giving the proof of the theorem we need some prelimi-
nary material.

Let us first recall from definition 4.2.4 that the Hamiltonian
constant HU (u) of a locally Lipschitz function u : U → R, where
U is an open subset of M is the essential supremum on U of
H(x, dxu).

We will use some classical facts about convolution. Let (ρδ)δ>0

be a family of functions ρδ : R
k → [0,∞[ of class C∞, with ρδ(x) =

0, if ‖x‖ ≥ δ, and
∫

Rk ρδ(x) dx = 1. Suppose that V,U are open
subsets of R

k, with V̄ compact and contained in U . Call 2δ0 the
Euclidean distance of the compact set V̄ to the boundary of U ,
we have δ0 > 0, therefore the closed δ0-neighborhood

N̄δ0(V̄ ) = {y ∈ R
k | ∃x ∈ V̄ , ‖y − x‖ ≤ δ0}

of V̄ is compact and contained in U .
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If u : U → R is a continuous function, then for δ < δ0, the
convolution

uδ(x) = ρδ ∗ u(x) =

∫

Rk

ρδ(y)u(x − y) dy.

makes sense and is of class C∞ on a neighborhood of V̄ . Moreover,
the family uδ converges uniformly on V̄ to u, as t→ 0.

Lemma 8.3.2. Under the hypothesis above, suppose that u :
U → R is a locally Lipschitz function. Given any Hamiltonian
H : T ∗U → R quasi-convex in the fibers and any ǫ > 0, for
every δ > 0 small enough, we have supx∈V |uδ(x) − u(x)| ≤ ǫ and
HV (uδ) ≤ HU (u) + ǫ.

Proof. Because u is locally Lipschitz the derivative dzu exists for
almost every z ∈ U . We first show that, for δ < δ0, we must have

∀x ∈ V, dxuδ =

∫

Rk

ρδ(y)dx−yu dy. (*)

In fact, since uδ is C∞, it suffices to check that

lim
t→0

uδ(x+ th) − uδ(x)

t
=

∫

Rk

ρδ(y)dx−yu(h) dy, (**)

for x ∈ V, δ < δ0, and h ∈ R
k. Writing

uδ(x+ th) − uδ(x)

t
=

∫

Rk

ρδ(y)
u(x+ th− y) − u(x− y)

t
dy,

We see that we can obtain (**) from Lebesgue’s dominated con-
vergence theorem, since ρδ has a compact support contained in
{y ∈ R

k | ‖y‖ < δ}, and for y ∈ R
k, t ∈ R such that ‖y‖ <

δ, ‖th‖ < δ0 − δ, the two points x + th − y, x − y are contained
in the compact set N̄δ0(V̄ ) on which u is Lipschitz. Equation (*)
yields

H(x, dxuδ) = H(x,

∫

Rk

ρδ(y)dx−yu dy). (***)

Since N̄δ0(V̄ ) is compact and contained in U , and u is locally
Lipschitz, we can find K < ∞ such that ‖dzu‖ ≤ K, for each
z ∈ N̄δ0(V̄ ) for which dzu exists. Since H is continuous, by a
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compactness argument, we can find δǫ ∈]0, δ0[, such that for z, z′ ∈
N̄δ0(V̄ ), with ‖z − z′‖ ≤ δǫ, and ‖p‖ ≤ K, we have |H(z′, p) −
H(z, p)| ≤ ǫ. If δ ≤ δǫ, since ρδ(y) = 0, if ‖y‖ ≥ δ, we deduce that
for all x in V and almost every y with ‖y‖ ≤ δ, we have

H(x, dx−yu) ≤ H(x− y, dx−yu) + ǫ ≤ HU(u) + ǫ.

Since H is quasi-convex in the fibers, and ρδ dy is a probability
measure whose support is contained in {y | ‖y‖ ≥ δ}, we can now
apply proposition 1.5.6 to obtain

∀δ ≤ δǫ,H(x,

∫

Rk

ρδ(y)dx−yu dy)HU (u) + ǫ.

It from inequality (***) above that H(x, dxuδ) ≤ HU (u) + ǫ, for
δ ≤ δǫ and x ∈ V . This gives HV (uδ) ≤ HU (u)+ ǫ, for δ ≤ δǫ. The
inequality supx∈V |uδ(x) − u(x)| < ǫ also holds for every δ small
enough, since uδ converges uniformly on V̄ to u, as t→ 0.

Proof of theorem 8.3.1. We have to prove that for each x0 ∈ M ,
there exists an open neighborhood V of x0 such that u|V is a
viscosity subsolution of H(x, dxu) on V . In fact, if we take V
any open neighborhood such that V̄ is contained in a domain of a
coordinate chart, we can apply lemma 8.3.2 to obtain a sequence
un : V → R, n ≥ 1, of C∞ functions such that un converges
uniformly to u|V on V and H(x, dxun) ≤ c + 1/n. If we define
Hn(x, p) = H(x, p)− c− 1/n, we see that un is a smooth classical,
and hence viscosity, subsolution ofHn(x, dxw) = 0 on V . SinceHn

converges uniformly to H − c, the stability theorem 8.1.1 implies
that u|V is a viscosity subsolution of H(x, dxu) − c = 0 on V .

Corollary 8.3.3. Suppose that the Hamiltonian H : T ∗M → R is
continuous and quasi-convex in the fibers. For every c ∈ R, the set
of Lipschitz functions u : M → R which are viscosity subsolutions
of H(x, dxu) = c is convex.

Proof. If u1, . . . , un are such viscosity subsolutions. By 7.4.3, we
know that at every x where dxuj exists we must have H(x, dxuj) ≤
c. If we call A the set of points x where dxuj exists for each j =
1, . . . , n, then A has full Lebesgue measure in M . If a1, . . . , an ≥ 0,
and a1 + · · ·+ an = 1, then u = a1u1 + · · ·+ anun is differentiable
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at each point of x ∈ A with dxu = a1dxu1 + · · · + andxun. There-
fore by the quasi-convexity of H(x, p) in the variable p, for every
x ∈ A, we obtain H(x, dxu) = H(x, a1dxu1 + · · · + andxun) ≤
maxn

i=1H(x, dxui) ≤ c. Since A is of full measure, by theo-
rem 8.3.1, we conclude that u is also a viscosity subsolution of
H(x, dxu) = c.

The next corollary shows that the viscosity subsolutions are
the same as the very weak subsolutions, at least in the geometric
cases we have in mind. This corollary is clearly a consequence of
theorems 7.5.2 and 8.3.1.

Corollary 8.3.4. Suppose that the Hamiltonian H : T ∗M → R is
continuous, coercive, and quasi-convex in the fibers. A continuous
function u : M → R is a viscosity subsolution of H(x, dxu) = c, for
some c ∈ R if and only if u is locally Lipschitz and H(x, dxu) ≤ c,
for almost every x ∈M .

We now give a global version of lemma 8.3.2.

Theorem 8.3.5. Suppose that H : T ∗M → R is a Hamiltonian,
which is quasi-convex in the fibers. Let u : M → R be a locally
Lipschitz viscosity subsolution of H(x, dxu) = c on M . For every
couple of continuous functions δ, ǫ : M →]0,+∞[, we can find
a C∞ function v : M → R such that |u(x) − v(x)| ≤ δ(x) and
H(x, dxv) ≤ c+ ǫ(x), for each x ∈M .

Proof. We endow M with an auxiliary Riemannian metric. We
pick up a locally finite countable open cover (Vi)i∈N of M such
that each closure V̄i is compact and contained in the domain Ui of
a chart which has a compact closure Ūi in M . The local finiteness
of the cover (Vi)i∈N and the compactness of V̄i imply that the set
J(i) = {j ∈ N | Vi ∩ Vj 6= ∅} is finite. Therefore, denoting by #A
for the number of elements in a set A, we obtain

j(i) =#J(i) = #{j ∈ N | Vi ∩ Vj 6= ∅} < +∞,

j̃(i) = max
ℓ∈J(i)

j(ℓ) < +∞.

We define Ri = supx∈Ūi
‖dxu‖x< +∞, where the sup is in fact

taken over the subset of full measure of x ∈ Ui where the locally
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Lipschitz function u has a derivative. It is finite because Ūi is
compact. Since J(i) is finite, the following quantity R̃i is also
finite

R̃i = max
ℓ∈J(i)

Rℓ < +∞.

We now choose (θi)i∈N a C∞ partition of unity subordinated to
the open cover (Vi)i∈N. We also define

Ki = sup
x∈M

‖dxθi‖x< +∞,

which is finite since θi is C∞ with support in Vi which is relatively
compact.

Again by compactness, continuity, and finiteness routine argu-
ments the following numbers are > 0

δi = inf
x∈V̄i

δ(x) > 0, δ̃i = min
ℓ∈J(i)

δℓ > 0

ǫi = inf
x∈V̄i

ǫ(x) > 0, ǫ̃i = min
ℓ∈J(i)

ǫℓ > 0.

Since V̄i is compact, the subset {(x, p) ∈ T ∗M | x ∈ V̄i, ‖p‖x ≤
R̃i + 1} is also compact, therefore by continuity of H, we can find
ηi > 0 such that

∀x ∈ V̄i,∀p, p
′ ∈ T ∗

xM,‖p‖x ≤ R̃i + 1, ‖p′‖x ≤ ηi,H(x, p) ≤ c+
ǫi
2

⇒ H(x, p+ p′) ≤ c+ ǫi.

We can now choose η̃i > 0 such that j̃(i)Kiη̃i < minℓ∈J(i) ηℓ.
Noting that H(x, p) and ‖p‖x are both quasi-convex in p, and
that V̄i is compact and contained in the domain Ui of a chart, by
lemma 8.3.2, for each i ∈ N, we can find a C∞ function ui : Vi → R

such that

∀x ∈ Vi, |u(x) − ui(x)| ≤ min(δ̃i, η̃i),

H(x, dxui) ≤ sup
z∈Vi

H(z, dzu) +
ǫ̃i
2
≤ c+

ǫ̃i
2

‖dxui‖x ≤ sup
z∈Vi

‖dzu‖z + 1 = Ri + 1,

where the sup in the last two lines is taken over the set of points
z ∈ Vi where dzu exists.
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We now define v =
∑

i∈N
θiui, it is obvious that v is C∞. We

fix x ∈ M , and choose i0 ∈ N such that x ∈ Vi0 . If θi(x) 6= 0
then necessarily Vi ∩ Vi0 6= ∅ and therefore i ∈ J(i0). Hence
∑

i∈J(i0)
θi(x) = 1, and v(x) =

∑

i∈J(i0) θi(x)ui(x).We can now
write

|u(x) − v(x)| ≤
∑

i∈J(i0)

θi(x)|u(x) − ui(x)| ≤
∑

i∈J(i0)

θi(x)δ̃i

≤
∑

i∈J(i0)

θi(x)δi0 = δi0 ≤ δ(x).

We now estimateH(x, dxu). First we observe that
∑

i∈J(i0) θi(y) =
1, and v(x) =

∑

i∈J(i0) θi(y)ui(y), for every y ∈ Vi0 . Since Vi0 is a
neighborhood of x, we can differentiate to obtain

∑

i∈J(i0) dxθi =
0, and

dxv =
∑

i∈J(i0)

θi(x)dxui

︸ ︷︷ ︸

p(x)

+
∑

i∈J(i0)

ui(x)dxθi

︸ ︷︷ ︸

p′(x)

.

Using the quasi-convexity of H in p, we get

H(x, p(x)) ≤ max
i∈J(i0)

H(x, dxui) ≤ max
i∈J(i0)

c+
ǫ̃i
2
≤ c+

ǫi0
2
, (*)

where for the last inequality we have used that i ∈ J(i0) means
Vi ∩Vi0 6= ∅, and therefore i0 ∈ J(i), which implies ǫ̃i ≤ ǫi0, by the
definition of ǫ̃i.

In the same way, we have

‖p(x)‖x ≤ max
i∈J(i0)

)‖dxui‖x ≤ max
i∈J(i0)

Ri + 1 ≤ R̃i0 + 1. (**)

We now estimate ‖p′(x)‖x. Using
∑

i∈J(i0) dxθi = 0, we get

p′(x) =
∑

i∈J(i0)

ui(x)dxθi =
∑

i∈J(i0)

(ui(x) − u(x))dxθi.

Therefore

‖p′(x)‖x = ‖
∑

i∈J(i0)

(ui(x) − u(x))dxθi‖x =
∑

i∈J(i0)

|ui(x) − u(x)|‖dxθi‖x

≤
∑

i∈J(i0)

η̃iKi. (***)
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From the definition of η̃i, we get Kiη̃i ≤
ηi0

j(i0)
, for all i ∈ J(i0).

Hence ‖p′(x)‖x ≤
∑

i∈J(i0)
ηi0

j(i0) = ηi0 . The definition of ηi0 , to-

gether with the inequalities (*), (**) and (***), above implies
H(x, dxv) = H(x, p(x) + p′(x)) ≤ c+ ǫi0 ≤ c+ ǫ(x).

Theorem 8.3.6. Suppose H : T ∗M → R is a Hamiltonian quasi-
convex in the fibers. Let u : M → R be a locally Lipschitz
viscosity subsolution of H(x, dxu) = c which is strict at every
point of an open subset U ⊂ M . For every continuous function
ǫ : U →]0,+∞[, we can find a viscosity subsolution uǫ : M → R of
H(x, dxu) = c such that u = uǫ on M \U, |u(x)−uǫ(x)| ≤ ǫ(x), for
every x ∈M , and the restriction uǫ|U is a C∞ with H(x, dxu) < c
for each x ∈ U .

Proof. We define ǫ̃ : M → R by ǫ̃(x) = min(ǫ(x), d(x,M \ U)2),
for x ∈ U , and ǫ̃(x) = 0, for x /∈ U . It is clear that ǫ̃ is continuous
on M and ǫ̃ > 0 on U .

For each x ∈ U , we can find cx < c, and Vx ⊂ V an open
neighborhood of x such that H(y, dyu) ≤ cx, for almost every
y ∈ Vx. The family (Vx)x∈U is an open cover of U , therefore we
can find a locally finite partition of unity (ϕx)x∈U on U submitted
to the open cover (Vx)x∈U . We define δ : U →]0,+∞[ by δ(g) =
∑

x∈U ϕx(y)(c − cx), for y ∈ U . It is not difficult to check that
H(y, dyu) ≤ c− δ(y) for almost every y ∈ U .

We can apply theorem 8.3.5 to the Hamiltonian H̃ : T ∗U →
R defined by H̃(y, p) = H(y, p) + δ(y) and u|U which satisfies
H̃(y, dyu) ≤ c for almost every y ∈ U , we can therefore find
a C∞ function uǫ : U → R, with |uǫ(y) − u(y)| ≤ ǫ̃(y), and
H̃(y, dyuǫ) ≤ c + δ(y)/2, for each y ∈ U . Therefore, we obtain
|uǫ(y) − u(y)| ≤ ǫ(y), and H(y, dyuǫ) ≤ c − δ(y)/2 < c, for each
y ∈ U . Moreover, since ǫ̃(y) ≤ d(y,M \U)2, it is clear that we can
extend continuously uǫ by u on M \ U . This extension satisfies
|uǫ(x) − u(x)| ≤ d(x,M \ U)2, for every x ∈ M . We must verify
that uǫ is a viscosity subsolution of H(x, dxuǫ) = c. This is clear
on U , since uǫ is C∞ on U , and H(y, dyuǫ) < c, for y ∈ U . It
remains to check that if φ : M → R is such that φ ≥ uǫ with
equality at x0 /∈ U then H(x0, dx0φ) ≤ c. For this, we note that
uǫ(x0) = u(x0), and u(x) − uǫ(x) ≤ d(x,M \ U)2 ≤ d(x, x0)

2.
Hence u(x) ≤ φ(x) + d(x, x0)

2, with equality at x0. The function
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x → φ(x) + d(x, x0)
2 has a derivative at x0 equal to dx0φ, there-

fore H(x0, dx0φ) ≤ c, since u is a viscosity solution of H(x, dxu) ≤
c.

8.4 The viscosity semi-distance

We will suppose that H : T ∗M → R is a continuous Hamiltonian
coercive above every compact subset of the connected manifold
M .

We define c[0] as the infimum of all c ∈ R, such thatH(x, dxu) =
c admits a global subsolution u : M → R. This definition is
coherent with the one we gave in earlier chapters for particular
Hamiltonians.

As before we denote by SSc the set of viscosity subsolutions
of H(x, dxu) = c, and by SSc

x̂ ⊂ SSc the subset of subsolutions
vanishing at a given x̂ ∈M . Of course, since we can always add a
constant to a viscosity subsolution and still obtain a subsolution,
we have SSc

x̂ 6= ∅ if and only if SSc 6= ∅, and in that case SSc =
R + SSc

x̂.

Proposition 8.4.1. Under the above hypothesis, the constant c[0]
is finite and there exists a global u : M → R viscosity subsolution
of H(x, dxu) = c[0].

Proof. Fix a point x̂ ∈ M . Subtracting u(x̂) if necessary, we
will assume that all the viscosity subsolutions of H(x, du) = c we
consider vanish at x̂. Since H is coercive above every compact
subset of M , for each c the family of functions in SSc

x̂ is locally
equi-Lipschitzian, therefore

∀x ∈M, sup
v∈SSc

x̂

|v(x)| < +∞,

since M is connected, and every v ∈ SSc
x̂ vanish at x̂. We pick a

sequence cn ց c[0], and a sequence un ∈ SScn

x̂ . Since, by Ascoli’s
theorem, the family SSc

x̂ is relatively compact in the topology
of uniform convergence on each compact subset, extracting a se-
quence if necessary, we can assume that un converges uniformly to
u on each compact subset of M . By the stability theorem 8.1.1,
the function u is a viscosity subsolution ofH(x, dxu) = cn, for each
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n, it is therefore locally Lipschitz. Pick a point where dx0u exists,
we have H(x0, dx0u) ≤ cn, for each n, therefore c[0] ≥ H(x0, dx0u)
has to be finite. Again by the stability theorem 8.1.1, the function
u is a viscosity subsolution of H(x, dxu) = c[0].

For c ≥ c[0], we define

Sc(x, y) = sup
u∈SSc

u(y) − u(x) = sup
u∈SSc

x

u(y).

It follows from the 8.2.2, that for each x ∈M the function Sc(x, .)
is a viscosity subsolution of H(y, dyu) = c on M itself, and a
viscosity solution on M \ {x}.

Theorem 8.4.2. For each c ≥ c[0], the function Sc is a semi-
distance, i.e. it satisfies

(i) for each x ∈M,Sc(x, x) = 0,

(ii) for each x, y, z ∈M , Sc(x, z) ≤ Sc(x, y) + Sc(y, z)

Moreover, for c > c[0], the symmetric semi-distance, Ŝc(x, y) =
Sc(x, y)+Sc(y, x) is a distance which is locally Lipschitz-equivalent
to any distance coming from a Riemannian metric.

Proof. The fact that Sc is a semi-distance follows easily from the
definition

Sc(x, y) = sup
u∈SSc

u(y) − u(x).

Fix a Riemannian metric on the connected manifold M whose
associated norm is denoted by ‖·‖, and associated distance is d.
Given a compact subset K ⊂ M , the constant sup{‖p‖ | x ∈
K, p ∈ TxM,H(x, p) ≤ c}, is finite since H is coercive above com-
pact subsets of M . It follows from this that for each compact
subset K ⊂M , there exists a constant LK <∞ such that.

∀x, y ∈ K,Sc(x, y) ≤ LKd(x, y).

It remains to show a reverse inequality for c > c[0]. Fix such a c,
and a compact set K ⊂ M . Choose δ > 0, such that N̄δ(K) =
{x ∈ M | d(x,K) ≤ δ} is also compact. By the compactness of
the set

{(x, p) | x ∈ N̄δ(K),H(x, p) ≤ c[0]},
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and the continuity of H, we can find ǫ > 0 such that

∀x ∈ N̄δ(K),∀p, p′ ∈ TxM,H(x, p) ≤ c[0] and ‖p′‖ ≤ ǫ

⇒ H(x, p+ p′) ≤ c.
(*)

We can find δ1 > 0, such that the radius of injectivity of the
exponential map, associated to the Riemannian metric, is at least
δ1 at every point x in the compact subset N̄δ(K). In particular, the
distance function x 7→ d(x, x0) is C∞ on B̊(x0, δ1)\{x0}, for every
x0 ∈ N̄δ(K). The derivative of x 7→ d(x, x0) at each point where
it exists has norm 1, since this map has (local) Lipschitz constant
equal to 1. We can assume δ1 < δ. We now pick φ : R → R a
C∞ function, with support in ]1/2, 2[, and such that φ(1) = 1. If
x0 ∈ K and 0 < d(y, x0) ≤ δ1/2, the function

φy(x) = φ(
d(x, x0)

d(y, x0)
)

is C∞. In fact, if d(x, x0) ≥ δ1, then φy is zero in a neighborhood of
x, since d(x, x0)/d(y, x0) ≥ δ1/(δ1/2) = 2; if 0 < d(x, x0) < δ1 < δ,
then it is C∞ on a neighborhood of x; finally φy(x) = 0 for x such
that d(x, x0) ≤ d(y, x0)/2. In particular, we obtained that dxφy =
0, unless 0 < d(x, x0) < δ, but at each such x, the derivative of
z 7→ d(z, x0) exists and has norm 1. It is then not difficult to see
that supx∈M‖dxφy‖ ≤ A/d(y, x0), where A = supt∈R|φ

′(t)|.

Therefore if we set λ = ǫd(y, x0)/A, we see that ‖λdxφy‖ ≤ ǫ,
for x ∈ M . Since φ is 0 outside the ball B(x0, δ1) ⊂ Nδ1(K), it
follows from the property (*) characterizing ǫ that we have

∀(x, p) ∈ T ∗M,H(x, p) ≤ c[0] ⇒ H(x, p+ λdxφy) ≤ c.

Since Sc[0](x0, ·) is a viscosity subsolution of H(x, dxu) = c[0],
and φy is C∞, we conclude that the function u(.) = Sc[0](x0, .) +
λφy(.) is a viscosity subsolution of H(x, dxu) = c. But the value
of u at x0 is 0, and its value at y is Sc[0](x0, y) + λφy(y) =
Sc[0](x0, y) + ǫd(y, x0)/A, since φy(y) = φ(1) = 1. Therefore
Sc(x0, y) ≥ Sc[0](x0, y) + ǫd(y, x0)/A. Hence we obtained

∀x, y ∈ K,d(x, y) ≤ δ1/2 ⇒ Sc(x, y) ≥ Sc[0](x, y) + ǫA−1d(x, y).
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Adding up and using Sc[0](x, y) + Sc[0](y, x) ≥ Sc[0](x, x) = 0, we
get

∀x, y ∈ K,d(x, y) ≤ δ1/2 ⇒ Sc(x, y) + Sc(y, x) ≥
2ǫ

A
d(x, y).

8.5 The projected Aubry set

Theorem 8.5.1. Assume that H : T ∗M → R is a Hamiltonian
coercive above every compact subset of the connected manifold M .
For each c ≥ c[0], and each x ∈ M , the following two conditions
are equivalent:

(i) The function Sc(x, ·) is a viscosity solution of H(z, dzu) = c.

(ii) There is no viscosity subsolution of H(z, dzu) = c which is
strict at x.

Proof. The implication (ii)⇒(i) follows from proposition 8.2.8.
To prove (i)⇒(ii), fix x ∈M such that Sx is a viscosity solution

on the whole of M , and suppose that u : M → R is a viscosity
subsolution of H(y, dyu) = c which is strict at x. Therefore we
can find an open neighborhood Vx of x, and a cx < c such that
u|Vx

is a viscosity subsolution of H(y, dyu) = cx on Vx. We can
assume without loss of generality that Vx is an open subset of R

n

and u(x) = 0. We have

u(y) ≤ S(x, y)

and u(x) = S(x, x) = 0. On Vx ⊂ R
n, we can define u1(y) =

u(y) − 1
2‖x− y‖2. Define ǫ(δ) > 0 by

ǫ(δ) = max
‖x−y‖≤δ

{H(y, p + p′) − cx | H(y, p) ≤ cx‖p
′‖ ≤ δ}.

Since H is continuous and coercive above compact subsets we have
ǫ(δ) → 0, when δ → 0. Since the derivative at y0 of y → 1

2‖y−x‖
2

is 〈y0 − x, ·〉, we see that u1|B̊(x,δ) is a viscosity sub solution of

H(y, dyu1) = cx + ǫ(δ). We fix δ > 0 such that cx + 2ǫ(δ) <
c. By 8.2.5, we can find a real-valued function u2 defined on a
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neighborhood of B̄(x, δ/2) and semi-convex such that u2 is as close
as we want to u1 on B̄(xδ/2), and u2 is a viscosity subsolution of
H(x, dxu2) = cx +2ǫ(δ). In a neighborhood of B̄(0, δ/2). We have
u1(x) = S(x, x) = 0 and u1(y) ≤ u(y)− 1

2‖x−y‖
2 ≤ u(y) ≤ S(x, y)

hence S(x, y) − u1(y) ≥
1
2δ on the boundary ∂B(x, δ/2). We can

therefore choose u2 close enough to u1 so that S(x, ·)−u2(·) attains
its minimum on B̄(x, δ/2) at a point y0 ∈ B̊(x, δ/2). Therefore
S(x, y) ≥ S(x, y0) − u2(y0) + u2(y) in a neighborhood of y0, and
therefore D−u2(y0) ⊂ D−Sx(y0). Since u2 is semi-convex and is a
viscosity subsolution of H(y, dyu2) = cx+2ǫ(δ) on a neighborhood
of B̄(x, δ/2), by an argument analogous to the proof of theorem
8.2.4, we can find p0 ∈ D−u2(x0) with H(y0, p0) ≤ cx + 2ǫ(δ).
Since D−u2(x0) ⊂ D−Sx(y0), and Sx is a viscosity solution of
H(y, dySx) = c on M , we must have H(y0, p0) ≥ c. This is a
contradiction since c > cx + 2ǫ(δ).

Definition 8.5.2 (Projected Aubry set). If H : T ∗M → R is a
continuous Hamiltonian, coercive above every compact subset of
the connected manifold M . We define the projected Aubry set as
the set of x ∈M such that that Sc[0](x, ·) is a viscosity solution of
H(z, dzu) = c[0].

Proposition 8.5.3. Assume that H : T ∗M → R s a continuous
Hamiltonian, convex is the fibers, and coercive above every com-
pact subset of the connected manifold M . There exists a viscosity
subsolution v : M → R of H(x, dxv) = c[0], which is strict at every
x ∈M \ A.

Proof. We fix some base point x̂ ∈M . For each x /∈ A, we can find
ux : M → R, an open subset Vx containing x, and cx < c[0], such
that ux is a viscosity subsolution of H(y, dyux) = c[0] on M , and
ux|Vx is a viscosity subsolution of H(y, dyux) ≤ cx, on Vx. Sub-
tracting ux(x̂) if necessary, we will assume that ux(x̂) = 0. Since
U = M \ A is covered by the family of open sets Vx, x /∈ A, we
can extract a countable subfamily (Vxi

)i∈N covering U . Since H is
coercive above every compact set the sequence (uxi

)i∈N is locally
equi-Lipschitzian. Therefore, since M is connected, and all the uxi

vanish at x̂, the sequence (uxi
)i∈N is uniformly bounded on every

compact subset of M . It follows that the sum V =
∑

i∈N

1
2i+1uxi

is uniformly convergent on each compact subset. If we set un =
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(1− 2−(n+1))−1
∑

0≤i≤n
1

2i+1uxi
, then un is a viscosity subsolution

of H(x, dxun) = c[0] as a convex combination of viscosity subso-
lutions, see proposition 8.3.3. Since un converges uniformly on
compact subsets to u, the stability theorem 8.1.1 implies that v is
also a viscosity subsolution of H(x, dxv) = c[0].

On the set Vxn0
, we have H(x, dxuxn0

) ≤ cxn0
, for almost every

x ∈ Vxn0
. Therefore, if we fix n ≥ n0, we see that for almost every

x ∈ Vxn0
we have

H(x, dxun) ≤ (1 − 2−(n+1))−1
n∑

i=0

1

2i+1
H(x, dxuxi

)

≤ (1 − 2−(n+1))−1

[
n∑

i=0

1

2i+1
c[0] +

(cxn0
− c[0])

2n0+1

]

.

Therefore un|Vxn0
is a viscosity subsolution of H(x, dxun) ≤ c[0]+

(cxn0
− c[0])/2n0+1.

By the stability theorem, this is also true for v|Vxn0
. Since

cxn0
− c[0] < 0, we conclude that u|Vxn0

is a strict subsolution
of H(x, dxv) = c[0], for each x ∈ Vxn0

, and therefore at each
x ∈ U ⊂ ∪n∈NVxn .

Theorem 8.5.4. Assume that H : T ∗M → R is a Hamiltonian
convex in the fibers and coercive, where M is a compact connected
manifold. Its projected Aubry set A is not empty.

If two viscosity solutions of H(x, dxu) = c[0] coincide on A,
they coincide on M .

Theorem 8.5.5. Suppose u1, u2 : M → R are respectively a
viscosity subsolution and a viscosity supersolution of H(x, dxu) =
c[0]. If u1 ≤ u2 on the projected Aubry set A, then u1 ≤ u2

everywhere on M.

Proposition 8.5.6. Assume that H : T ∗M → R is a Hamiltonian
convex in the fibers and coercive, where M is a compact connected
manifold. If M is compact and connected, for each viscosity sub-
solution u : M → R of H(x, dxu) = c[0], and each ǫ > 0, we can
find a viscosity subsolution uǫ : M → Rof H(x, dxuǫ) = c[0] such
that ‖u−uǫ‖∞ < ǫ, and uǫ is C∞ on M \A, with H(x, dxuǫ) < c[0],
for each x ∈M \ A.
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Proof. Call v the strict subsolution given by the previous propo-
sition 8.5.3. By a similar argument to the one used in the proof
of that proposition vδ = (1− δ)u+ δv is a viscosity subsolution of
H(x, dxvδ) = c[0] which is strict a each point of M \A, and vδ → u
uniformly as δ → 0. It then suffices to choose δ small enough and
to apply 8.3.6 to vδ to obtain the function uǫ.

Proof of theorem 8.5.5. Assume m = inf(u2 − u1) < 0. Choose
ǫ > 0 such that m + 2ǫ < 0. If we apply proposition 8.5.6, we
obtain ũ1 : M → R, with ‖ũ1 − u1‖∞ < ǫ, and ũ1 of class C∞on
M \A, with H(x, dxũ1) < c[0], for every x /∈ A. We have u2(x)−
ũ1(x) ≥ u2(x)−u1(x)+ ũ1(x)−u1(x) ≥ u2(x)−u(x)−ǫ, therefore
u2(x)− ũ1(x) ≥ −ǫ, for x ∈ A. Moreover, inf(u2 − ũ1) ≤ inf(u2 −
u1)+‖u1− ũ1‖∞ ≤ m+ǫ. Since m+ǫ < −ǫ, on the compact space
M , the infimum of (u2 − ũ1) is attained at a point x0 /∈ A. Since
u2(x) ≥ [u2(x0)− ũ1(x0)]+ ũ1(x), with equality at x0, the function
ũ1 is differentiable on M \ A ∋ x0, and u2 is a supersolution
of H(x, dxu2) = c[0], we must have H(x, dxũ1) ≥ c[0]. This is
impossible by the choice of ũ1.

8.6 The representation formula

We still assume that M is compact, and that H : T ∗M → R is a
coercive Hamiltonian convex in the fibers.

Theorem 8.6.1. Any viscosity solution u : M → R forH(x, dxu) =
c[0] satisfies

∀x ∈M,u(x) = inf
x0∈A

u(x0) + Sc[0](x0, x)

.

This theorem follows easily from the uniqueness theorem 8.5.4
and the following one:

Theorem 8.6.2. For any function v : A → R bounded below, the
function

ṽ(x) = inf
x0∈A

v(x0) + Sc[0](x0, x)

is a viscosity solution of H(x, dxv) = c[0]. Moreover, we have
ṽ|A = v, if and only if

∀x, y ∈ A, v(y) − v(x) ≤ S(x, y).
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We start with a lemma.

Lemma 8.6.3. Suppose H : T ∗M → R is a continuous Hamilto-
nian convex in the fibers, and coercive above each compact subset
of the connected manifold M . Let ui : M → R, i ∈ I be a fam-
ily of viscosity subsolutions of H(x, dxu) = c. If infi∈I ui(x0), is
finite for some x0 ∈ M , then infi∈I ui is finite everywhere. In
that case, the function u = infi∈I ui is a viscosity subsolution of
H(x, dxu) ≤ c.

Proof. We choose an auxiliary Riemannian metric on M , and use
the associated distance.

By the coercivity condition, the family (ui)i∈I is locally equi-
Lipschitzian, therefore for if K compact connected subset of M ,
there exists a constant C(K) such that

∀x, y ∈ K,∀i ∈ I, |ui(x) − ui(y)| ≤ C(K).

If x ∈ M is given, we can find a compact connected subset Kx

containing x0 and x, it follows that

inf
i∈I

ui(x0) ≤ inf
i∈I

ui(x) + C(Kx)

therefore infi∈I ui is finite everywhere. It now suffices to show that
for a given x̃ ∈M , we can find an open neighborhood V of x̃ such
that infi∈I ui|V is a viscosity subsolution of H(x, dxu) = c on V .
We choose an open neighborhood V of x̃ such that its closure V̄ is
compact. Since C0(V̄ ,R) is metric and separable in the topology
of uniform convergence, we can find a countable subset I0 ⊂ I
such that ui|V̄ , i ∈ I0 is dense in {ui|V̄ | i ∈ I}, for the topology of
uniform convergence. Therefore infi∈I ui = infi∈I′ ui = infi∈I0 ui

on V̄ . Since I0 is countable, we have reduced to the case I0 =
{0, · · · , N}, or I0 = N.

Let us start with the first case. Since u0, · · · , uN , and u =
infNi=0 ui are all Lipschitzian on V , we can find E ⊂ V of full
Lebesgue measure such that dxu, dxu0, · · · , dxuN exists, for each
x ∈ E. At each such x ∈ E, we necessarily have dxu ∈ {dxu0, . . . , dxuN}.
In fact, if n is such that u(x) = un(x), since u ≤ un with equality
at x and both derivative at x exists, they must be equal. Since
each ui is a viscosity subsolution of H(x, dxv) = c, we obtain
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H(x, dxu) ≤ c, for every x in the subset E of full measure in V .
The convexity of H in the fibers imply that u is a viscosity sub-
solution of H(x, dxu) = c in V . It remains to consider the case
I0 = N. Define uN (x) = inf0≤i≤N ui(x), by the previous case, uN

is a viscosity subsolution of H(x, dxu
N ) = c on V .

Now uN (x) → infi∈I0 ui(x), for each x ∈ V̄ , the convergence
is in fact, uniform on V̄ since (ui)i∈I0 is equi-Lipschitzian on the
compact set V̄ . It remains to apply the stability theorem 8.1.1.
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Chapter 9

Mañé’s Point of View

Ricardo Mañé’s last paper [Mn97] contained a version of the weak
KAM theorem. The point of view is probably the closest to the
theory of optimal contral. His ideas after his untimely death were
carried out much further by G. Contreras, J. Delgado, R. Iturriaga,
Gabriel and Miguel Paternain [CDI97, CIPP98].

There is an excellent reference on Mañé’s point of view and th
subsequent developments [CI99].

9.1 Mañé’s potential

As in definition 5.3.1, we set

ht(x, y) = inf
γ

∫ t

0
L(γ(s), γ̇(s)) ds

Where the infimum is taken over all continuous piecewise C1 curves
γ : [0, t] →M with γ(0) = x, γ(t) = y.

Definition 9.1.1 (Mañé’s potential). Fix c ∈ R for each x, y,∈
M , we set

mc(x, y) = inf
t>0

ht(x, y) + ct

Here are some properties of mc:

Proposition 9.1.2. For each c ∈ R, the Mañé potential mc has
values in R ∪ {−∞}, and satisfies the following properties:

259
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(i) If x, u ∈ M , and c, c′ ∈ R, with c ≤ c′, we have mc(x, y) ≤
mc′(x, y).

(ii) For all c ∈ R, y, z ∈M , we have

mc(x, z) ≤ mc(x, y) +mc(x, z).

(iii) If A = sup{L(x, v) | (x, v) ∈ TM, ‖v‖x ≤ 1} we have
mc(x, y) ≤ (A+ c)d(x, y).

(iv) For a given c ∈ R either mc is equal identically to −∞ or
mc is finite everywhere.

(v) For every c ∈ R, either mc ≡∞ or mc(x, x) = 0 for every
x ∈M .

(vi) If mc is finite then it is Lipschitz.

(vii) For u : M → R, we have u ≺ L+ c if and only if

∀x, y ∈M,u(y) − u(x) ≤ mc(x, y).

(viii) If mc is finite, then for each x ∈M , the function mc,x : M →
R, y 7→ mc(x, y) (resp. −mx

c : M → R, y 7→ −mc(y, x)) is
dominated by L+ c.

(ix) The Mañé critical value c[0] is equal to the infimum of the
set of c ∈ R such that mc is finite. Moreover, the critical
Mañé potential m0 = mc[0] is finite everywhere.

Proof. Property (i) is obvious. Property 3 (ii) results from

ht(x, z) ≤ ht(x, y) = ht(y, z).

For property (iii), if we use a geodesic γx,y : [0, d(x, y)] → M
from x to y parametrized by arc-length, we see that mc(x, y) ≤
hd(x,y)(x, y) + cd(x, y) ≤ L(γx,y) + cd(x, y) ≤ (A + c)d(x, y). For
property (iv), we remark that mc(x

′, y′) ≤ mc(x
′, x) +mc(x, y) +

mc(y, y
′) ≤ mc(x, y)+(A+c)[d(x′ , x)+d(y′, y)] hence if mc(x, y) =

−∞ for some (x, y) ∈ M × M then mc(x
′, y′) = −∞ for every

(x′, y′) ∈M ×M .



261

For property (v), using constant paths, we first remark that
mc(x, x) ≤ (L(x, 0) + c)t, for every t > 0, therefore mc(x, x) ≤ 0.
Moreover, by (ii)

mc(x, x) ≤ mc(x, x) +mc(x, x) ≤ · · · ≤ nmc(x, x).

Hence mc(x, x) < 0 implies mc(x, x) = −∞.
Property (vi) follows from the proof of (iv), since we obtained

there

mc(x
′, y′) ≤ mc(x, y) + (A+ c)[d(x, x′) + d(y, y′)]

which gives by symmetry

|mc(x
′, y′) −mc(x, y)| ≤ [A+ c][d(x, x′) + d(y, y′)].

Property (vii) is obvious since u ≺ L+ c if and only if

∀t > 0, u(y) − u(x) ≤ ht(x, y) + ct.

For (viii), the inequality obtained in (ii)

mc(x, z) ≤ S̃c(x, y) +mc(y, z)

gives, when mc is finite

mc(x, z) −mc(x, y) ≤ mc(y, z).

But this can be rewritten as

mc,x(z) −mc,x(y) ≤ mc(y, z),

therefore mc,x ≺ L+ c by (vii).
For (ix), if c ≥ c[0], there exists u : M → R with u ≺ L + c

therefore by (vii), we have mc finite.
Conversely if mc is finite mc,x ≺ L+ c therefore c ≥ c[0].

Corollary 9.1.3. For each c ≥ c[0], the Mañé potential mc is
equal to the viscosity semi-distance Sc, and therefore

∀x, y ∈M,mc(x, y) = sup{u(y) − u(x) | u ≺ L+ c}.

Proof. The function mc,x (resp. Sc
x) is a viscosity subsolution of

H(x, du) = c (resp. is dominated by L + c), therefore mc(x, y) =
mc,x(y) − mc,x(x) ≤ Sc(x, y) (resp. Sc(x, y) = Sc

x(y) − Sc
x(x) ≤

mc(x, y)).

Definition 9.1.4 (Mañé’s critical potential). We will call m0 =
mc[0] the Mañé critical potential.
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9.2 Semi-static and static curves

Proposition 9.2.1. Given c ∈ R, a curve γ : [a, b] → M is an
absolute (L+ c)-minimizer if and only if

mc(γ(a), γ(b)) =

∫ b

a
L(γ(s), γ̇(s)) ds + c(b− a).

Proof. Suppose that γ : [a, b] →M is an absolute (L+c)-minimizer,
then for any curve δ : [0, t] → M , with t > 0, δ(0) = γ(a), and
δ(t) = γ(b), we have

∫ t

0
L(δ(s), δ̇(s)) ds + ct ≥

∫ b

a
L(γ(s), γ̇(s))ds + c(b− a)

therefore ht(γ(a), γ(b)) + ct ≥
∫

a L(γ(s), γ̇(s)) ds + c(b− a).

On the other hand reparametrizing γ linearly by [0, b− a], we

see that hb−a(γ(b), γ(a))+ c(b−a) ≤
∫ b
a L(γ(s), γ̇(s)) ds+ c(b−a).

It follows that

mc(γ(b), γ(a)) = hb−a(γ(b), γ(a)) + c(b− a)

=

∫ b

a
L(γ(s), γ̇(s))ds + c(b− a).

Conversely, since mc(γ(a), γ(a)) = 0, the equality

mc(γ(a), γ(b)) =

∫ b

a
L(γ(s), γ̇(s)) + ds + c(b− a),

can be rewritten as

mc,γ(a)(γ(b)) −mc,γ(a)(γ(a)) =

∫ b

a
L(γ(s), γ̇(s))ds + c(b− a).

This means that γ is (mc,γ(a), L, c)-calibrated.

Definition 9.2.2 (Semi-static curve). A curve γ : [a, b] → M is

called semi-static, if a < b andm0(γ(a), γ(b)) =
∫ b
a L(γ(s), γ̇(s))ds+

c[0](b − a). (Recall that m0 = mc[0] is the Mañé potential).

We therefore have the following proposition;
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Proposition 9.2.3. A curve γ : [a, b] → M semi-static if and
only if it is absolutely minimizing, if and only if it is (u,L, c[0])-
calibrated for some u : M → R dominated by L+ c[0].

Mañé has also defined a notion of static curve.

Definition 9.2.4 (Static curve). A curve γ : [a, b] →M is static,
if a < b and

∫ b

a
L(γ(s), γ̇(s)) ds + c[0](b − a) = −m0(γ(b), γ(a)).

Proposition 9.2.5. A curve is static if and only if it is a part of
a projected Aubry curve

Proof. We have

0 =

∫ b

a
L(γ(s), γ̇(s)) ds + c[0](b − a) +m0(γ(b), γ(a)) = 0.

For every ǫ > 0, we can find a curve δǫ : [b, bǫ] → M with δǫ(b) =
γ(b), δǫ(bǫ) = γ(a), and

∫ bǫ

b
L(δǫ(s), δ̇ǫ(s))ds + c[0](bǫ − b) ≤ m0(γ(b), γ(a)) + ǫ.

Therefore, if we consider the concatenated closed curve γ ∗ δǫ,
we find a curve δ̃ǫ that is a loop at γ(a), is parametrized by an
interval of length ℓǫ ≥ b − a > 0 and satisfies L(δ̃ǫ) + c[0]ℓǫ ≤
ǫ. Going n times through the loop δ̃ǫ/n, we find a loop δ̃ǫ at

γ(a), parametrized by an interval of length nℓ̃ǫ/n ≥ n(b− a), with

L(δ̃n,ǫ) + c[0]nℓ̃ǫ/n ≤ ǫ. Since b − a > 0, we have n(b− a) → +∞
as n → +∞. It follows that h(γ(a), γ(a)) ≤ ǫ, for every ǫ > 0,
where h is the Peierls barrier. Therefore γ(a) ∈ A. Since the loop
δ̃ǫ = γ ∗ δ̃ǫ goes through every point of γ([a, b]) a similar argument
shows γ([a, b]) ⊂ A.

It remains to show that γ is (u,L, c[0])-calibrated for every
u : M → R which is dominated by L+ c[0].

In fact, if we add up the two inequalities

u(γ(b)) − u(γ(a)) ≤

∫ b

a
L(γ(s)), γ̇(s) ds+ c[0](b − a)
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u(γ(a)) − u(γ(b)) ≤ m0(γ(b), γ(a)),

we obtain the equality 0 = 0 therefore both inequalities above
must be equalities.
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namiques hamiltoniens (d’après Kolmogorov, Arnol’d,
Moser, Rüssmann, Zehnder, Herman, Pöschel, . . .).
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mann, Paris, 1976. Fonctions d’une variable réelle,
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symplectiques. Inst. Hautes Études Sci. Publ. Math.,
(70):47–101 (1990), 1989.

[Kis92] Christer O. Kiselman. Regularity classes for operations
in convexity theory. Kodai Math. J., 15(3):354–374,
1992.

[Kni86] Gerhard Knieper. Mannigfaltigkeiten ohne konjugierte
Punkte. Universität Bonn Mathematisches Insti-
tut, Bonn, 1986. Dissertation, Rheinische Friedrich-
Wilhelms-Universität, Bonn, 1985.

[Lio82] Pierre-Louis Lions. Generalized solutions of Hamilton-
Jacobi equations. Pitman (Advanced Publishing Pro-
gram), Boston, Mass., 1982.



269

[LPV87] Pierre-Louis Lions, George Papanicolaou, and S.R.S.
Varadhan. Homogenization of Hamilton-Jacobi equa-
tion. unpublished preprint, 1987.

[Mat91] John N. Mather. Action minimizing invariant mea-
sures for positive definite Lagrangian systems. Math.
Z., 207(2):169–207, 1991.

[Mat93] John N. Mather. Variational construction of connecting
orbits. Ann. Inst. Fourier (Grenoble), 43(5):1349–1386,
1993.

[Min61] George J. Minty. On the maximal domain of a “mono-
tone” function. Michigan Math. J., 8:135–137, 1961.

[Min64] George J. Minty. On the monotonicity of the gradient of
a convex function. Pacific J. Math., 14:243–247, 1964.
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18 Colóquio Brasileiro de Matemática.
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