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Nowadays, it is well-know that transportation distances between probability measures
can be successfully used to study evolutionary equations. More precisely, one of the
most surprisingly achievement of [8, 10, 11] has been that many evolution equations of
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Abstract

In this paper we introduce a new transportation distance between non-negative
measures inside a domaih This distance enjoys many nice properties, for in-
stance it makes the space of non-negative measures isageodesic space,
without any convexity assumption @a Moreover, we will show that the gradient
flow of the entropy functionafg[p log(p) — p] dxw.r.t. this distance coincides with
the heat equation, subject to the Dirichlet boundary condition equal to 1.

Résune

Dans ce papier, nous introduisons une nouvelle distance sur I'espace des mesures
positive dans un domairge. Cette distance satisfait plusieurs pr@jirs ineressantes :
par exemple, elle fait de I'espace des mesures positiveS2langspacegpeEsique,
sans aucune hypatke de convexétsur le domaine. De plus, on montre que le flot
gradient de la fonctionnelle d’entrop@[plog(p) — p] dx par rapport cette dis-
tance donne liea I'équation de la chaleur, avec condition de Diricldgalea 1
sur le bord.

Introduction

the form

can be seen as gradient flows of some entropy functionals on the space of probability

d%p(t) = div(Vo(®) - pOVV - p(O)(YW = p(1)))

measures with respect to the Wasserstein distance

Wo(u,v) = inf{ \/IIX— yRdy(xy) : mpy = p, ngy = V}-

*Centre de Matématiques Laurent Schwartz, UMR 7640, Ecole Polytechnique -

France.e-mail: figalli@math.polytechnique.fr

fUniversity of Bordeaux. Partially financed by KAM Faible, ANR-07-BLAN-036Imail: nico-

lagigli@googlemail.com

91128 Palaiseau,



Besides the fact that this interpretation allows to prove entropy estimates and functional
inequalities (see [12, 13] for more details on this area, which is still very active and in
continuous evolution), this point of view provides a powerful variational method to
prove esistence of solutions to the above equations: given a time st€p construct

an approximate solution by iteratively minimizing

PR W+[[p|0g(p)+pV+%p(W*p)]dX

We refer to [2] for a general description of this approach.

Let us observe that the choice of the distance on the space of probability measures
plays a key role, and by changing it one can construct solutions to more general classes
of evolution equations, see for instance [1, 5, 7]. However, all the distances considered
up to now need the two measures to have the same mass (which up to a scaling can
always be assumed equal to 1). In particular, since the mass remains constant along
the evolution, if one restricts to measures concentrated on a bounded domain, then the
approach described above will always produce solutions to parabolic equations with
Neumann boundary conditions.

Motivated by the intent to find an analogous approach to construct solutions of
evolution equations subject to Dirichlet boundary condition, in this paper we introduce
a new transportation distan@éh, between measures. As we will see, the main features
of the distanc&Vh, are:

e It metrizes the weak convergence of positive measie§Q) in Q, see Propo-
sition 2.2. (This is similarly to what happens for the common Wasserstein dis-
tances, but without any mass constraint.)

e The resulting metric spaceM. (Q), Wh,) is always geodesic, see Proposition
2.8. This is a particularly interesting property compared to what happens in
the classical Wasserstein space: indeed the sp&¢g), W-) is geodesic if and
only if Q is convex. In our case, the convexity of the open set is not required.
(Actually, not even connectedness is needed!)

e The natural approach via minimizing movements to the study of the gradient
flow of the entropy leads to weak solution of the heat equation with Dirichlet
boundary condition, see Theorem 3.5. Interesting enough, with this approach
the regularity of the boundary ¢f does not play any role.

As a drawback, the entropy functional do not have the same nice properties it has in
the classical Wasserstein space. In particular:

e Itis notgeodesically convex. Still, it has some sort of convexity properties along
geodesics, see Remark 3.4.

e Due to the lack of geodesic convexity, we were not able to prove any kind of
contractivity result for the flow.

e Actually, we are not even able to prove uniqueness of the limit of the mini-
mizing movements scheme. (Of course one knows by standard PDE techniques
that weak solutions of the heat equation with Dirichlet boundary conditions are
unique, therefore a posteriori it is clear that the limit has to be unique - what we
are saying here is that we do not know whether such uniqueness may be deduced
a priori via techniques similar, e.g., to those appeared in [2].)



The distanca@Vhy, is defined in the following way (theb' stands to recall that we
have some room to play with th®undary ofQ2). LetQ c RY be a bounded open set,
and letM, (Q) denote the space of non-negative finite measureQ.oWe define the
distanceV b, on M, (Q2) as a result of the following problem:

Problem 1.1 (A variant of the transportation problem) Letu,v € M. (Q). The set
of admissible coupling&pm(y, v) is defined as the set of positive measyres Q x Q
satisfying

Ty =M TR, =V (1)

For any non-negative measupeon Q x Q, we define itsostC(y) as

Cy) = j: _Ix=yPdy(xy).

QxQ

The distancé&Vhy(u, v) is then defined as:
Whs(u,v) :=  inf  C(y).
Buv) = inf C0)

The diference betweeWh, andW; relies on the fact that an admissible coupling is a
measure on thelosureof Q x Q , rather than just o® x Q, and that the marginals are
required to coincide with the given measures only ingdeThis means that we can
usedQ as an infinite reserve: we can ‘take’ as mass as we wish from the boundary, or
‘give’ it back some of the mass, provided we pay the transportation cost. This is why
this distance is well defined for measures which do not have the same mass.

Mass taken from

the bound
Mass sent to © ?un v

the boundary

Mass exchanged
internally

Figure 1: Example of admissible transport plan

Although this approach could be applied for more general costs thaixjust?
and for a wider class of entropy functionals, we preferred to provide a complete result
only in the particular case of the heat equation, in order to avoid technicalities and gen-
eralizations which would just obscure the main ideas. We refer to Section 4 for some
possible generalizations, a comparison between our and the cldssaaproach, and
some open problems.



2 General properties of the distanceN b,

The aim of this section is to describe the main properties of the distaftge
Lety be a non-negative of2 x Q. We will write y8 for the restriction ofy to the

rectangleA x B c Q x Q. Observe that there is a natural splittingyaihto 4 parts:
Y=Ya+7a *+Yoa * Vo
We now remark that, i € Aom(y, v), then

vy —7oa € Aom(u,v) and C(y —¥a) < C().

Hence, when looking for optimal plans, it is not restrictive to assume that

Yon =0. (2)
This gives the bound

7(Qx Q) = y(QxQ\ IQ x Q)

<Y(Q X Q)+ y(Qx Q) = u(Q) + v(<Q). @)

from which it follows the compactness of the set of admissible plans satisfying (2) w.r.t.
the topology of weak convergence of measures [2]. Thus optimal plans always exist.
We will denote the set of optimal plans ®er(u, v), and we will always assume that
an optimal plan satisfies (2).

To show thatwWh, satisfies the triangle inequality, we first prove a variant of the
classical gluing lemma (see [2, Lemma 5.3.2]):

Lemma 2.1 (A variant of the gluing lemma) Fix 1, i, uz € M. (Q), and lety*? €
Abm(uz, 2), y*2 € Apm(uz, pus) such that(y12)%2 = (y%)%2 = 0. Then there exist

12 e M(Q x Q x Q) such that

7T12'}’123 _ 712 + 0_12’

7B = B o2
whereo!? and 0?3 are both concentrated on the diagonaldsd x 6, i.e. on the set
of pairs of point§(x, X) : X € 9Q}.

Let us point out that, in contrast with the classical result, in our case the second
marginal ofy!? on Q does not necessarily coincides with the first marginatsf and
so the two measures cannot be ‘glued’ together in a trivial way.

Proof. In order to clarify the structure of the proof, it is convenient to geeuw, us3
as measures oM, (Q1), M, (Q2), M, (Qz) respectively, wher&;, Q,, Q3 are three
distinct copies of. In this way we have/'? € (Q; x Q,), ¥% € (Q, x Qq), and
Y128 € M(Q1 x O, x Q3). However, since in facf; = Q, = Q3, sometimes we
will identify Q, with Q, Qy, or Q3. Furthermore, we will use? to denote both the
canonical projection from; x Q, ontoQ,, and the one fron®, x Q3 ontoQ».

Let us define

2:= (2, 1) (7)) € M(0Q2 x 9) = M(9Q4 x 9Q),
3= (@ m((r195) € M@ x 992) = M@z X 9),
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and set
$12:= y12 4 012 € M(0Q1 % 0Qy),
722 = yB 4+ 0 e M(0Q, x 0Q3).
Observe that
(ﬂif'lz)m = (ﬂi)’lz)m + (7Tﬁ(712)|Q = po, 4)
and similarly(n§5/23)| o, = M2. Moreover, since by assumptiop'¢)72 = 0,
12)?29) 2 23

(n§y12)| o = ni((‘y = o,

and similarly(n§723)| s = 2012, Therefore we obtain

2512 2 12 2 12 _ 2 23 (2 23 223
(TG s = (Y )y + 7502 = Moo ™ + (i )y = (1577) ®)

Thanks to (4) and (5) we finally obtairfy? = 72y%3, and so the conclusion follows
from the classical gluing lemma, see for instance [2, Lemma 5.3.2]. O

Proposition 2.2 The functionWh, is a distance omM, (Q2) which metrizes the weak
convergence, i.e., the topology given by duality W@te).

Proof. The facts thaWWhy(u, v) = 0 if and only ifu = v and the symmetry are obvious.
For the triangle inequality we need to use the version of gluing lemma we just proved.
Fix 1, 12, u3 € M, (Q) and lety'?, 22 be two optimal plans from; to u, and fromu,

to g respectively. Use lemma 2.1 to find a 3-phet?® such thatr;?y*?% = y12 + o2
andr;%y'?% = 2% + 023, with o2 anda*2 concentrated on the diagonalsast x 9Q.

Then we havéry'?d), = (mpy*? + 0*?), = p1. Similarly, we have(rly'?d)|, = ps,
thereforer’2y1?3 € Apm(us, u3) and it holds

Whp (g, u3) < \/flxl — Xal2dhy123
< \/f|x1 - Xo|2dy123 + \/f|x2— Xa|2dy123
_ \/ f X1 — Xo2d(y12 + 012) + \/ f X2 — Xal2d(y23 + 029)
= \/f|xl_ Xol?dyt2 + \/flxz— Xgl?dy?3

= sz(lll, qu) + sz(ﬂZa /‘13)’

where in the fourth step we used the fact thdf and o2 are concentrated on a di-
agonal. Finally, the fact that/b, metrizes the weak topology can be proved as in [2,
Proposition 7.1.5] - we omit the details. O

Remark 2.3 Note carefully that we are speaking of weak convergence in duality with
functions with compact support @, and not, e.g., with continuous and bounded func-
tions inQ. Indeed, the mass can ‘disappear’ inside the boundary, so that in general we
only have

lim inf n(€Q) > p(€2),

for any sequencgun}nen € M, (Q) such thaWhby(un, 1) — 0.



Proposition 2.4 (Cyclical monotonicity) Letu,v € M, (). Then there exists a cycli-
cally monotone sdt c Q x Q such that any optimal plan is concentratedlan

Proof. Recall that we always assume that condition (2) holds for optimal plans. From
the uniform bound (3), and the fact that the set of optimal plans is a closed under weak
convergence (which can been easily proven by adapting the proof of [13, Theorem
5.20]), we deduce tha@rt(u, v) is compact w.r.t. the weak convergence of measures.
Let (¥))i=0 € Opt(u, v) be a countable dense subset, and define

Y= Z %Yi-

i~0

Then it is easy to check by the convexity of the constraints (1), and the linearity of the
cost, thaty € Opr(u, v). Furthermore, since its support (i.e. the smallest closed set on
which it is concentrated) contains the supports of alhtie and since they are dense
insideOrt(u, v), the support of contains that of any optimal plan.

We now observe that, singeis optimal for the Problem 1.1, it is also optimal for
the classical optimal transport problem with cst yi? for the measureg}y andnZy.
(This follows from the fact that any measuyewith the same marginals asbelongs
to Abm(y, v).) Hence the conclusion follows by the general theory of optimal transport
(see for instance [2, Chapter 6]). O

Remark 2.5 The idea on which is based the proof of the above proposition is well-
known for the classical transport problem. Recently, the first author used the same tool
to prove a similar result for the optimal partial transport problem (see [6]). The result
proven here is not covered by previous theorems on the topic, as the marginals of the
admissible plans are neither fixed, nor dominated.

The fact that the same idea works in so marfjedéent situations, shows the power
of the idea itself: observe also that here the fact that the cost function is the squared
distance does not play any role. Therefore a similar statement holds for much more
general cost functions (we will not stress this point any further).

Remark 2.6 The cyclically monotone subset 6f x Q can always be chosen so that

it contains the diagonal afQ x Q. Indeed, just add to any optimal plan a measure
of a given amount of mass, say 1, concentrated on the diagon&l gfoQ: this does

not dfect neither the cost nor the compactness of the set of optimal plans. Thus the
conclusion follows as above.

From now onP : Q — 9Q will be a measurable map such that
[x = P(X)| = d(x, 0L) VXxeQ.

It is well-known that such a map is uniquely defined 6ha.e. x € Q. (Indeed,P(x)
is uniquely defined whenever the Lipschitz functid@, 0Q) is differentiable, and is
given byP(x) = x — Vd(x,dQ)?/2.) Here we are just defining it on the whalevia a
measurable selection argument (we omit the details).

We will use the notation Id € — Q to denote the identity map dd.

Proposition 2.7 (Behavior of optimal plans) Letu, v € M. (Q2), and fixy € Opt(u, v).
Then:

(i) Fory%*-a.e.(xy), we havey — X| = d(x,4Q). Similarly fory%,.



(i) Ifpu < L9, thenyg is unique, and it is given bftd, T)su, whereT : Q — Qs
the gradient of a convex function. (Howeveras a whole may be not uniquely
defined as there may be multiple ways of bringing the mass from the boundary to
v if no hypothesis om are made).

(iii) 1f u,v < L9, theny is unique.
Proof. We start with (). Let
A={(xy) €Qx0Q : [x-yl>d(x Q) = [x— P},

and assume by contradiction th@f)(A) > 0. Then, we define
¥ = (Id, P)umiy 3,

and set
¥ =6+ Vo

Sincemyyy’ = myyy’ We haveryy = ny. Moreovernzy|, = nzy), by construction,

Q
so thaty € Apm(uo, p1). Since

f X~ yP(x.y) < f X - yPy(x.y).
Qx0Q Qx0Q

ﬁ C x—yPdp(xy) = f, C x—yPdy(x ).
QxQ\Qx0Q QxQ\QxIQ

we haveC(y) < C(y), which gives the desired contradiction. A symmetric argument
holds foryS,.

The validity of (i) is a direct consequence of Proposition 2.4: the support of the
plany is contained in a cyclically monotone set which depends onjy andy. Hence,
by Rockefeller's theorem is contained in the sfaiential of a convex function. Thus,
as in the classical optimal transport problem with quadratic cost [3, 4, 12}-%oe.
x there is a uniqueg/ such that %,y) belongs to the support gf. This proves the
unigueness oi/g and the fact that it is induced by a map, which is the gradient of a
convex function.

Finally, (iii) follows from (ii). O

We define theHit time function Ht : Q x Q — [0, 1] as
Ht(x,y) :=inf{te[0,1] : (1-tx+ty ¢ Q},

where Ht(xy) = 1if (1 - t)x + ty € Q for anyt € [0, 1]. The function Ht is lower
semicontinuous, and hence measurable.

Proposition 2.8 (Geodesics)The spacé M. (Q2), Wh) is a geodesic space. A curve
[0,1] > t — w is @ minimizing geodesic with constant speed if and only if there exists
v € Opr(uo, 11) such that

w=(L-trt +tr?)y,  Vte(0,1). (6)

Also, given a geodesig), for anyt € (0,1) and s € [0, 1] there is a unique optimal
plany; from y; to us, which is given by

¥ = (A -t +tn®, (1 - 9t + S7r2)#y,



This mass
disappears
_. tothe boundary
-~ att=1

This mass appears from
the boundary at t=0

Figure 2: Geodesic interpolation is always possible in the spatqQ), Wk,). In-
deed, the mass can ‘appear’ onlytat 0, can ‘vanish’ only at = 1, and fort € (0, 1)
it moves along straight segments insi@e In particular, in the open interval (D), a
geodesic w.rtWh is also a geodesic w.rV..

wherey € Opr(uo, 1) is the plan which induces the geodesic via Equati®n Fur-
thermore, the plany? is the unique optimal transport plan fromto us for the classical
transport problem.

In particular, the spacéM. (Q2), W) is non-branching, and the massafinside
Q is constant fott € (0, 1).

Observe that Equation (6) doast hold fort = 0,1, as the marginals of generally
charge als@Q. We further remark that such a statement would be false for the classical
Wasserstein distand#,. Indeed, ify is an optimal plan foM, then the curvey
defined by (6) willnotin general belong t€, unless is convex.

Proof. The only new part with respect to the classical case is thatjsfan optimal
plan fromyg to u1, then the measureg defined by (6) belong t® (and not just to its
convex hull). Once this result is proved, the rest of the proof becomes exactly the same
as in the standard case of the Wasserstein distance, see [2, Paragraph 7.2]. Hence, we
are going to prove only this new part.

The fact that the measurgs defined by (6) belong té is equivalent to say that
Ht = 1 y-a.e. We argue by contradiction: assume that there ekist) x Q such that
v(E) > 0 and Ht(xy) < 1 for any ,y) € E. Roughly speaking, if this was the case,
for any (x,y) € E, rather than moving the mass fraxito y, we could move the mass
from x to P(X) and take the mass frof(y) to y, reducing the transportation cost.

More rigorously, defineg := n;(y|E), vy = n§(7|E), and set

oo = (Id, P)gvo,
o1 .= (P, |d)#V1,

f/ = ‘}/|Ec + 0o+ 071.

H 1 _ 1 _ 1~ _ -1 imi 2~ _ 2
Sincer,o = vo andm,o(Q) = 0, we havevr#y|Q =TV o Slmllarly7r#y|Q =5V |o»



so thaty € Apm(ug, 11). Observe that, since @ Ht(x, y))x + Ht(x, y)y € dQ, we have
IX = P(X)I < [x = (1= Ht(x, y))x + Ht(x, y)yl = Ht(X, y)Ix - yI,
ly =PI < ly — (1 - Ht(x, y))x + Ht(X, y)yl = (1 — Ht(x, y))Ix — Yl

and therefore

C#) = fE x-yPdy + fE Ix= P + ly = P dy
< [ xeyPdy [ ey (Hic )+ (- i y)?) dy

< [ x=yley+ [ x-yRdy =C)

E¢ E

which contradicts the optimality gf. Thus Ht(xy) = 1 fory-a.e. &,y), which implies
that the measurgsg are concentrated i}, as desired. O

Let u,v € M,(Q) and assume that(Q) = v(2) > 0. Then any plary which is
optimal for the classical transportation cost is admissible for the new one. Therefore
we have the inequality:

Who(,v) < Wo(,v), Vv € Mo(Q) s.t.u(Q) = »(Q) > 0. @)

Figure 3: For measures with the same amount of mass, the distdhces smaller
than the classical,: as the picture shows, it may be much better to exchange the mass
with the boundary rather than internally.

Proposition 2.9 (An estimate on the directional derivative)Let u,v € M, (Q) and
w: Q — RY a bounded vector field with compact support. Alsoylet Orr(u, v), and
definey; := (Id + tw)zu. Then

lim suth%(ﬂt’ V) - WG )

t—-0 t

<-2 f(w(x),y— Xydy (X, y).

Proof. Observe that since is compactly supported i€, for t > 0 suficiently small
ue € M (Q), so that the statement makes sense. Now it is simple to check that the plan
7; defined by
7 = ((Id + tw) o nl,nz)#y,
belongs toAbm(ut, v). Hence

W) < f X~ yPely,(x.y) = f X+ tw(x) — yPdly(x.y)
= WE(u,) - 2t f WO,y - 0dy(xY) + £ f WPy (X, ).
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and the conclusion follows. O

3 The heat equation with Dirichlet boundary condition
as a ‘gradient flow’

This section contains an application of our new transportation distance: we are going
to show that the gradient flow of the entropy functio!ﬁ;ﬂp log(o) — p] dx coincides

with the heat equation, with Dirichlet boundary condition equal to 1. To prove such a
result, we will first study some of the properties of the entropy, showing in particular a
lower bound on its slope, see Proposition 3.2. Then, following the strategy introduced
in [8], we will apply the minimizing movement scheme to prove our result. Finally
we will show that the discrete solutions constructed by minimizing movements enjoy
a comparison principle: ifof ke and Py ke are two discrete solution for a time step
7> 0, andpj < pf, thenpy < py for allk € N. Lettingr — 0, this monotonicity result
allows to recover the classical maximum principle for the heat equation.

To be clear: we will not state any result concerning existence of the gradient flow
of the entropy (we will not identify the slope of the entropy, nor the infinitesimal de-
scription of the distanc&V/l,). What we will do is a work ‘by hands’: we will show
that we have compactness in the minimizing movements scheme and prove that any
limit is a weak solution of the heat equation with Dirichlet boundary conditions.

3.1 The entropy
The entropy functiondEt : M, (Q) — R U {+co} is defined as

" [ oo it =prt,
E(w) =

+00 otherwise
wheree : [0, +c0) — [0, +0) is given by
&2 :=zlog® - z+ 1.
From now on, since we will often deal with absolutely continuous measures, and by

abuse of notation we will sometimes yséo denote the measupeCd|Q. In particular,
we will write Apm(p, ') in place ofAbm(p L), p’ LY.

Proposition 3.1 (Semicontinuity and compactness of sublevelghe functionalE :
M (Q) - RU {+c0} takes value iff0, +oo], it is lower semicontinuous with respect to
Wh, and its sublevels are compact.

Proof. If u = p£9 , thanks to Jensen inequality we have

lo’

D)o )< [

This inequality bounds the mass@fn terms of the entropy, which gives the relative
compactness of the sublevelstaf The bounds(u) > 0 is immediate as > 0. Finally,
the lower semicontinuity follows from the convexity and superlinearitg ahd from
the equivalence between weak convergence and convergencéity.t. O

10



We recall that thelopeof the functionak defined on the metric spacaA. (), Why)

is defined as: (E) — E0)*
T - \4
IVE|() := llTj,Up—WQ(u, P

Proposition 3.2 (Bound of the slope in terms of Fisher’s information) The slope of
E is bounded from below by the square root of the Fisher informatianM, (Q) —
[0, +c0]:

4f|v Vo dx i i = pLd), and yp € HY(Q),
Flu) = ¢

+00 otherwise.

Proof. Takeu € M. (Q), definem := u(Q), and letM,(2) be the set of non-negative
measures o2 with massm. On M (Q2), we can consider the Wasserstein distance
W,. Consider the functiondt : (Mn(2), W,) — R U {+co}. It is well-known that
IVE|(1) = +/F(u) for all u € M;, see [2, Chapter 10]. Then, it is easily checked by a
scaling argument that the formula remains true for arbitragy 0. Hence, taking into
account inequality (7), we obtain

. (E@) -E@)* _ (B —EC)" _
|VE|(y)z/JL%;ljgﬂ Wt ) Z,JL%)S;B,J Wa(i, v) NEM)

as desired. O

Proposition 3.3 (A directional derivative of E) Letu = pL£% € M, (Q) be such that
E(u) < +co0, and letw : Q — RY be aC> vector field with compact support. Define
e = (Id + tw)gu. Then

t—0

lim w - prdivwdx

Proof. Sincew is compactly supportedy € M, (Q) for suficiently smallt, and the
proof is exactly the same as the one in the Wasserstein case. O

Remark 3.4 [A source of dificulties] It is important to underline that the entropy

is not geodesically convex on the spacel((Q2), Wk). Indeed, since for instance the
mass can disappear at the boundarytferl, it is possible that an high concentration
of mass neabQ gives limy1 E(ut) = +oo, while E(u1) < +o0. (Observe that, once
the mass has reachég, it does not contribute any more to the energy!) Still, since
for t, s € (0, 1) the optimal transport plan f&/h, coincides with the optimal transport
plan forW, (Proposition 2.8)f — E(w) is convex in the open interval (D) (see [2,
Chapter 9]).

3.2 Minimizing movements for the entropy

In this paragraph we apply the minimizing movements to construct a weak solution to
the heat equation with Dirichlet boundary condition.

We briefly review the minimizing movement scheme, referring to [2] for a detailed
description and general results. Fx € M, (Q) such thatE(pg) < +co (given the

11



E(uy)
"E(u)

E(uo) -

0 1

Figure 4: For typical, 11, @ geodesic connecting them takes mass from the boundary
att = 0 and leaves mass at= 1. In this case the graph of— E(u) looks like

in the picture: in the interval (@) the function is convex and converges+#o as

t — 0,1. The value oE(uo) andE(u;) has basically no connection with the values in
intermediate times.

lack of convexity ofE, we need to assume that the entropy at the initial point is finite,
thus in particular the measure is absolutely continuous), and fix a time stdp Set
pg = po, and define recursively’ ., as the unique minimizer of

WE(u, o,
4 - E(u)+ b%(ﬂ on)
2t
(see Proposition 3.6 below). Then, we definediserete solutiont — p*(t) € M, (Q)
by:
o () :=pp, fort e [nt, (n + L)7).

We recall that the spadd/-(Q) is defined as the closure 6°(Q) w.r.t. theW"1-
norm. (Observe that this definition requires no smoothness assumptié®ds oihen
we say thaf € WH1(Q) has trace 1if-1 ¢ Wé’l(Q). (More in general, given a smooth
functiong : Q — R, one may say that € W-(Q) has tracep if f — ¢ € W'(Q).)

Our main theorem is the following:

Theorem 3.5 With the above notation, for any sequenge| O there exists a sub-
sequence, not relabelled, such that, for any 0, p™(t) converges to some limit
measurep(t) in (M, (Q),Why)) ask — o. The mapt — (p(t) — 1) belongs to

L2 ([0, +0), W3 (€2)), andt  p(t) is a weak solution of the heat equation

{ 200)
p(0)

We recall that a weakly continuous curve of meagsure u; € M, (Q) is said to be
a weak solution of (9) if

fﬂgadys(x)—js;god,ut(x):[ (LA(pd,ur(X)) dr, V0<t<s YypeC(Q),

12

Ap(t), (9)
Po-



In order to prove this theorem, we need the following lemma, which describes the
behavior of a single step of the minimizing movements scheme.

Proposition 3.6 (A step of the minimizing movement)Letu € M. (Q) andt > 0.
Then there exists a unique minimpme M. () of
W 9
o E(0) + % (10)
T

Such a minimum satisfies:
() pr = pe LY, Withp, — 1 € WyH(Q).

(ii) The restriction ta x Q of any optimal transport plan from. to u is induced by
a mapT, which satisfies

T(X) — X
T
Proof. The existence of a minimum follows by a standard compactness-semicontinuity
argument, while the uniqueness is a direct consequence of the conve)lity%()fp)
w.r.t. usual linear interpolation of measures and the strict convexi(-pf
It is well known that at minimum of (10) the slope is finite (see [2, Lemma 3.1.3]).

Hence yp: € HY(Q) by Proposition 3.2. Hence, thanks tdlder inequality,o, €
WA(Q). Moreover, thanks to (21) below, we have

0:(X) = -Vp(x), Li-aex (11)

e—d(X,ﬁQ)z/(Z‘r) < PT(X) < ed(X,(')Q)Z/(Z‘r) VXe Q,

which easily implies that, has trace 1 0AQ. This showsi().

To prove (i), we start by observing that Proposition 2.7 and the absolute continuity
of u, guarantees the existence ©f Now, choose &* vector fieldw with compact
support inQ, and defing! := (Id + tw)sp,. Using the minimality of, we get

) e+ WER W)

Dividing by t, and lettingt | 0, thanks to Propositions 3.3 and 2.9 we get

fpdivwdx— f(w, T;'dm dx> 0.
Q T

Exchangingwv with —w and exploiting the arbitrariness of the thesis follows. 0O

To prove theorem 3.5 we will use the following a priori bound for the discrete
solution, see [2, Lemma 3.2.2 and Equation (3.2.3)]:

1T WG] o7,
2 4 T

m-1
+ ;Z IVER(o7) < E(of) —E(})  ¥Yn<meN. (12)
i=n i=n
Proof of Theorem3.5. - Compactness argumentlLet {ry ke b€ @ sequence converg-
ing to 0. First of all we observe that, thanks to (8) and the inequBlipy«(t)) < E(oo),
the mass of the measurg¥(t) is uniformly bounded for alk € N, t > 0. Then a

standard diagonal argument shows that there exists a subsequence, not relabelled, such

13



thatp™(t) converges to some(t) in (M (Q2), Wky) for anyt € Q,. Now, thanks to the
uniform bound on the discrete speed

1 WP
2 4 T

1=n

< Eom) — E(on) < E(oo),

(which is a direct consequence of (12)), we easily get

Why(o™(t), p™(9)) < V2E(po) [t — S+ 7] YO0<s<t, (13)

which implies the convergence pf«(t) for everyt > 0.

- Any limit point is a weak solution of the heat equation.Let rx | 0 be a sequence
such thafp™(t) converges to somg(t) in (M, (Q), Why) for anyt > 0. We want to
prove that — p(t) is a weak solution of the heat equation. For any0,n e N, let T}
be the map which induceg )2, whereyf, € Opr(of, ,, pf) (Proposition 2.7(ii)). Fix
¢ € CZ(Q) and observe that

1
f¢p;+1dx—f(ga0TrT,)p;+1dX=f(f (V(po((l—ﬂ)T;+/l|d),|d—Trf>d/l)p;+1dX
Q Q a\Jo
=- f(V(,o, T5 — ld)pr,, dx+ R(r, n)
Q
= Tf(Vgo, Vpr.1) dx+ R(z, n)
Q

= —Tf Appr . dx+ R(T,n),
Q
(14)
where at the third step we used (11), and the reminder Réttm) is bounded by

R < (LpY) [ IT7 = 10pf,, dx = Lp(TOWB G pf). (15)
Now, since the support af is included i and((T7)«0%,,) |, = 72 ((75)3), we have
[ ermax= [ @oTopradx= [ pt) oD
Q Q QxQ
By Proposition 2.7 we have — y| = d(y, Q) for (y;)gg-a.e. &, y), which implies
WG > [ ey dome)
Qxsuppf)

- f d(y, Q)2 A% (x.Y) > ¢, f D% (X Y).
Qxsuppf) Qxsuppl)

wherec, := Minyesypp) d(y, 9Q)? > 0. Hence

T ™ AT ” ”00 T T
f¢pndX—f(sooTn)pn+1d>4£ "Z W (07,1, 07)-
Q Q ©

Combining the above estimate with (14) and (15), we obtain

Lt,opgﬂdx—\fg;gppgdx =—TLA¢p;+1dX+ ﬁ(T,ﬂ), (16)

14



where

R < (LipCwe) + 120 | Wik a7)
(3

Now, choose O< t < s, lett = 7, and add up Equation (16) from = [t/7y] to
m = [s/7¢] — 1 to get

[s/md-1

L‘pp‘rk(s)dx_js;‘pprk(t)dx:ITk[S/Tk] (LA(pka(r)dx) dxdr+ Z ﬁ(Tk,[r/Tk])

w[t/7i] n=[t/7y]

We want to take the limit in the above equationras| 0. TheWh,-convergence of
p™(r) to p(r), combined with Proposition 2.2, gives that the left hand side converges to

i, e0(s) dx— [ @p(t) dx. For the same reasof, Ap p™(r) dx — [, App(r) dxfor any
r > 0. Thus, since the mass of the measuyreg) is uniformly bounded, we get

f IAg o™ ()] dX < 1Agll f p™(r) dx < Co
Q Q

for some positive constafily, so that by the dominated convergence theorem we get

7k[8/7k] s
f (ngopfk(r)dx)dHf (ngap(r)dx) dr,
Ti[t/7x] Q t Q

asty | 0. Finally, thanks to (12) and (17), the reminder term is bounded by

[s/rd-1 ol | L
>, Rl < (L) + ) S wigr o,
n=[t/] %/ n=[t/n

< 21y (Lip(VgD) + ”‘p“m) E(oo).
C‘P

and thus it goes to 0 ag | 0. In conclusion, we proved that

Lgop(S)dX—Lgop(t)dijt‘ (LA&pp(r)dx) dr, YO<t<s YyeCl(Q).

Thanks to Equation (13) it is immediate to check that the CUHep(t)Lde e M, (Q)
is continuous w.rtWh,, and therefore weakly continuous. Finally, sin€€0) = po
for anyr > 0, p(0) = po and the initial condition is satisfied.

- The curvet = (p(t) - 1) belongs toL2 ([0, +c0), W2'(€)). From inequality (12),
Proposition 3.2, and the fact that the mass of the meagtfgss uniformly bounded,

we know that
f (f|V VPTk(t)|2dX) dt < %f IVE[(o™ (1)) dt < Co E(po).
0 Q 0

which means that the functios— +/o™(t) are equibounded ih2 ([0, +0), H}(%)),

loc

which implies that +— +/p(t) belongs taL.2 ([0, +c0), HY(Q)), so that by Hbldert

loc

p(t) € L2 ([0, +0), W-(Q)). Moreover, thanks to Fatou lemma,
f liminf (f|V\/ka(t)|2dx) dt < +oo,
O —+00 Q
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which gives
liminf fiV\/ka(t)izdx< +oo  foraet>0,
—+o0 o

so that by Holder inequality
Iiminff|Vka(t)|dx< +oo  forae.t>0,
k—+oo Jo

Now, for anyt such that the above liminf s finite, consider a subsequkn(@epending
ont) such that

supf|Vkan(t)|dx< +00.
neN JQ

Then, recalling thav™(t) — p(t) in (M, (Q), Wk), sincep™ (t) is uniformly bounded
in W-1(Q) and belong tan,(<2) by Proposition 3.6(i) we easily get thatt(t) — p(t)
weakly inW(Q), andp(t) — 1 € W,(Q) as desired. o

3.3 A comparison principle

In this section we prove the following monotonicity result for the minimizing move-
ment scheme oE w.rt. Wh: if we have two measuregs, i satisfyingu > i, then

Ur = fi for everyr > 0, whereu,, fi, are the unigue minimizers of (10) farandg
respectively. It is interesting to underline that:

e Once monotonicity for the single time step is proven, a maximum principle for
weak solutions of heat equation can be proved as a direct consequence, see
Corollary 3.9.

e Although our strategy is not new (for instance, it has been used in the context of
the classical transportation problem in [9, 1] to prove a maximum principle), the
fact of having no mass constraints makes it mdfieient, and the properties of
minimizers that we are able to deduce are in some sense stronger.

e The argument that we are going to use holds in much more general situations,
see Remark 3.10. (This in not the case when one deals with the classical trans-
portation problem, where the fact that the cost function satisfiex) < c(x, y)
for all x,y € Q plays an important role, see [1, 7].)

The proof of the monotonicity relies on a set of inequalities valid for each mini-
mizer of (10). In the next proposition we are going to assumqihadeb e M. (Q)
is an absolutely continuous measure and thatO is a fixed time step. Also, we will
denote byu, = ,oTLd|Q the unique minimizer of (10) (which is absolutely continu-
ous by Proposition 3.6), by the unique optimal plan fop(p.), by T the map which

inducesyq, and byS the map which inducejzs‘gl2 seen fronp, (see Proposition 2.7).
Proposition 3.7 With the notation above, the following inequalities hold:

e Letyy, ¥, € Q be Lebesgue points for, and assume that is also a Lebesgue
point forS. Then

Y2 — S(y1)|2- (18)

<logpr(yy) + 2=

_ 2
loglo(y) + 2220
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Letx € Q be a Lebesgue point for boghand T, and assume thak(x) € Q.
Assume further that € Q is a Lebesgue point fgr,. Then

x= TP x-y?
=T < toglor ) + * 2 (19
T Pag
o Lety; € Q be a Lebesgue point fer.. Then, for anyy, € 0Q, we have
2 _ 2
log (o-(y1)) L 25(y1)| ly2 25()’1)| . (20)
T T
e Lety e Q be a Lebesgue point far.. Then
d? ,0
TOID » Jog o). (1)

Lety € Q be a Lebesgue point for both and S, and assume thad(y) € Q.
Then "
,0Q

log o) + T

Proof. - Heuristic arguments. We start Wlth (18). Consider a poigt € Q, and
observe that the mags(y;) comes fromS(y;). (It does not matter wheth&(y;) € Q
or S(y1) € 9Q) We now make a small perturbation pf in the following way: we
pick a small amount of mass fro8(y;) and, instead than moving it 1a, we move it
to y». In terms of entropy, we are earning lpg(S(y1))) because of the less mass in

S(y1) and paying logéi(y2)) because of the greater amount of masgatn terms of

the transportation cost, we are eamnMgs¥ and paying?=SWC . But sincep; is a

minimizer of (10), what we are earning must be less or equal to what we are paying,
and we get (18).

Inequality (19) is analogous: here we are just considering those poivitich are
sent to the boundary by. In this case, if we decide to send some small magoato
a pointy € Q, we are not earning in terms of entropy but just payingde@)), while
in terms of cost we are earnif§2XL and paying®;~.

To prove inequality (21) we argue as foIIows Consider first a ppiatQ, and
perturbp, by picking some small mass from one of the nearest poigtdn 9Q, and
putting it ontoy. In this way we pay log{.(y)) in terms of entropy, an&z“z’;—m) in terms
of cost, so that by minimality we get

=0. (22)

2
TOI 5 —10g (o). 23

The other part of the inequality comes by taking some small mgsarat putting it on
one of the nearest point oon 0Q.

The proof of (22) is a sort of converse of (23). Indeed, siB(9 € JQ, we know
that the mass of is coming from the boundary. Hence we can perjuriby taking a
bit less of mass from the boundary, so that there is a bit less of mgssrirthis way
we obtain the opposite of (21), and equality holds.

- Rigorous proof. We will prove rigorously only (18), the proof of the other in-
equalities being analogous.
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Fix y1,¥2 € Q, and two real numbernsa, with r > 0 small enough so thd, (y;) U
B/ (y2) € Q, anda € (0,1). Let Tr : RY — RY be the map defined by Hi)X:= y—y1 +V>,
and lety € Orr(p, p,) be the unique optimal plan. Define the plgrt as

ra ._ Br(yl)C Br(yl) _ 1 Br(Yl)
yhiEyg O tayg a a)((ﬂ' ,Tr)#'y§ ),

and set
U= nZyte

Observe thatly"? = iy, '@ € Apm(p, 1y%), anduy® = pr*L9, with

p-(y) if y € Br(y1)® N Br(y2)",
PAY) =4 ap(y) ify e Br(y1).
p-(¥) + (L - a)p(y— Y2+ Y1) if y € Br(y2).

From the minimality ofo, we get

1 r.a 1 r.a
[ eorax+ 500 < [ elpraxs 5cm

Hence

1
[ ety [y See)dy
Br (y1)UB: (v2) T JB (y1)UB: (¥2)

a
< f &(ap.(y) dy + = f y — S)Posy) dy
Br(y1) 2t Jg.y)

¥ &o-(y) + (1 - ap-(y - y1 +y2)) dy
Br(y2)

1
t e [ = SORG0) + (L Bply - ys + v dy
T JBi(y2)
which we write as

[ (et - et + =
By (y1)

2_T - S(y)lzpr(y)) dy
< f (600:) + (L~ @cly ~ y2 + y2)) ~ elpr(3)
B (y2)

l-a
+ =2y = SWIPprly - y2 + Y1)l

Dividing by 1- aand lettinga T 1 we obtain
1
[ (ef(pxy)) LTV S(y)F)pf(y) dy
B (y2) 2t

< [ (eotn+ iy S0P)oty-ya sy oy
Br (y2) T

Now, sincey,, y, are both Lebesgue points of, andy; is also a Lebesgue point &
dividing both sides by %(B;(0)), and letting | 0 we obtain (18). o

Proposition 3.8 (Monotonicity) Letu > i € M. (Q), T > 0, andy., fi, the minima of
the minimizing probleni10). Thenu, > ji..
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Proof. From the uniqueness part of Proposition 3.6, it follows easily that theumap
U, is continuous w.r.t. the weak topology. Therefore, we can assume by approximation
that bothu andv are absolutely continuous, say= p£% andy = 5£9. Also, recall
that by Proposition 3.6(i) both, andv, are absolutely continuous, say = p.£% and
b = p.L9. Lety € Opr(p,p;) andy € Opr(p,p,), and letT, T be the maps which
inducey$ andy% respectively.

Argue by contradiction, and assume that= {p, > p,} c Q satisfieso;(A) > 0.
Two cases arise: eithéaél2 is concentrated ofd x A or it is not, i.e. either the mass of
pr in A comes entirely fron§2 or it is partly taken from the boundary.

Case 1: the mass o, in Acomes entirely fromQ. Let B := T~1(A), and observe
thati(B) = fi.(A). LetC c B be the set of pointg € B such thafl (x) ¢ A. We remark
thatu(C) > 0, as otherwise we would have

pe(A) = p(T(B)) = w(T~H(T(B))) = u(B) = ji(B) = ji(A),
which contradicts the definition &. Define
C = {x eC:T(Xe Q}, C, = {x eC:T(X)e 69}.

SinceC = C; U Cy, eitheru(C,) > 0 or u(Cy) > 0. Suppose we are in the first
case. Then, as botf]C1 andf|Cl map subsets of the support@bf positive Lebesgue
measure into sets of positive Lebesgue measure, we cax fn€; a Lebesgue for
both T andT, such thafT (x) and T (x) are Lebesgue points for both andg;. With
this choice ofx, we apply (18) withy; = T(x) andy, = T(X) to get

Ix — T(x)?
2T

< log (p-(T(x)) +

P
10g o-(T(0) + b= T

Similarly, using (18) fop; with y; = T(x) andy, = T(X) we obtain

(X)I2 x= TP
27

log (5:(T(x))) L BT o (B-(T (X)) +

Adding up the last two inequalities, we get

log (o-(T(¥))) + log (5-(T(x))) < log (o-(T (x))) + log (3-(T (X))
which contradicts definition d€; and the choice o%, as we have:
TMgA = p(TW)25T() = 10g(p-(T(¥) = log (G<(T()).
TeA = p(T())>pA(T(X)) = 10g(6-(T(x)) > 10g(o-(T(x)))-

It remains to exclude the possibilit(C;) > 0. Fix x € C; a Lebesgue point for
bothT andT, such thafl (x) is a Lebesgue point for boiy andg.. We apply (19)
with y = T(X) to obtain

X — T(x)I?
27

< log(pr(F () + X THIF T(X)'z

Now, we use (20) fop; with y; = T(X), S(y1) = x, andy, = T(X), to get

log (5:(T(x))) +

X =T _ Ix= TP
27 - 2r
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SinceT(x) € A, we havep. (T (X)) < 5.(T (x)), which together with the above inequali-
ties implies
IX=TX) X — T X)|?
D= TOI < g o, (T + X1 0O
T(X)I2 x=T(x)P

<1og (5,(F () + P

again a contradiction. B
Case 2: the mass op, in A comes partly from 9Q. Let S be the map which
induces;”/% seen fromp;, and letD c A be the set of pointg such that the mags ()

comes from the boundary, i.& = {y € A : S(y) € 4Q}. Fixy € D a Lebesgue point
for p., pr, andS. Thanks to (21) we have

d? ,aQ
0g (o) + TP 2 o
while applying (22) withp; (recall thatS(y) e 69) we obtain
d? ,6Q
09 + TP~ g
But this is absurd age D c A O

Thanks to Proposition 3.8, we immediately obtain the following:

Corollary 3.9 (Comparison principle) Let ug,vo € M, (Q), assume thaty > fo,

and letry | 0be a sequence of time steps such that the corresponding discrete solutions
u(t), g™ (t) associated teu, fig respectively converge to two solutigasii; of the heat
equation, as described in Theorem 3.5. Then ji for all t € [0, +09).

Remark 3.10 [Different energies and costs] The proof of the above theorem relies
entirely on the set of inequalities proved in Proposition (3.7). Here we want to point
out that a corresponding version of such inequalities is true in more general cases.

Indeed, letc : Q x Q — R U {+oo} be a continuous cost function, and define the
Cost of transportas the infimum of

f, c(xy) dy(x.y).
QxQ

among ally € Abm(ug, ). Lete : [0,+00) — R be a superlinear convex function.
Then, a minimizep, for

o B f e(p(X))dx+ Cost of transportd, o),
Q

always exists, and arguing as in the proof of Proposition 3.7 it is possible to check that
for p;-a.e.y1, ¥2, and anyx such that X, y;) belongs to the support of an optimal plan
from u to pg, we have

T e(Pl(yl)) +c(X,y1) < av e(pl(yz)) + (X, y2),

and similarly for the other inequalities. Then the convexitg ahplies that
dt* 7)< dt* 7)< ac e(Zz) v0<z7 <2,
and the proof of the monotonicity goes on like in the case we analyzed. In particular,

it is interesting to observe that the choit{e, y) = |x — y|? in this setting does not play
any role.
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4 Comments and open problems

e The boundedness assumption @rwas done just to make less technical the
proofs, in order to clarify the new ideas in this approach. All our results can
be generalized to unbounded domains, provided one works on the set of non-
negative measures @asuch that

f d?(x, 0Q)du(X) < +co.

¢ All our results could be extended to more general cost function and more general
entropies. For instance, by considerit{g, y) = [x — y|P with p > 1, ande(2) =
zlog(2) — azwith a € R, one can construct a weak solution of

d
G0 = Apld),
p(0) = po,
(whereApyp denotes thep-Laplacian ofp), subject to the Dirichlet boundary

condition
pM),, = €'  foraet>0

e It is interesting to observe that our approach allows to introduce a drift term in
the difusion: by considering the entrogg[plogp — Vp] dx for some smooth

functionV : Q — R we obtain a weak solution of

{dﬂtp(t) Ap(t) — div(pVV)
P(O) = pPo,

subject to the Dirichlet boundary condition

PO, = € fora.e.t> 0.

e A standard approach for constructing weak solutions to the heat equation with
Dirichlet boundary condition equal to a functigrconsists viewing the equation
as the gradient flow ojfﬂ [Vp|? on the set of functiong € H;(Q) = {p €
HY(Q) : tracep) = ¢}, with respect to thé.2-norm. However, although this
approach allows to treat general boundary conditions, it cannot be used to add
a drift term: givenF = F(x,u,p) : Q@ x R x RY — R, the gradient flow of a
functional of the forme F(x, p, Vp) dxis given by

S 00) = dv(Fox (0. Vp(0) ~ Fulx. (0. Vo 1),

and it is easy to check by a direct computation that there is no choieevbiich
allows to obtaimAp(t) — div(pVV) as the right-hand side.

e Although it is possible to prove unigueness of solution by purely PDE methods,
it is not clear to us if one can use a transportation approach to prove this result.
In particular it is not clear if, as in the classical Wasserstein ¢aseW b (o1, ot)
is decreasing along gradient flows of the entrgfsrz)y) log(o) dx.
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¢ In Proposition 2.9 we only proved an upper bound for the derivativ f. We
conjecture that the following formula should be true: tlet u; an absolutely
continuous curve with values iM,.(Q2), Why). Then:

(a) There exists a velocity field; € L ([0, +o0), L%(Q, 1)) such that

loc
d + div(wit) = 0
dt'ut tHt) =

in [0, +00) X Q. (Observe that, since by definition the continuity equation
can be tested only against smooth functions with support insjdeddxQ,
the mass ofy is not necessarily constant.)

(b) Givenu € M. (Q), for a.e.t > 0 we have

d
d—thﬁ(.ut,u) = —2f W,y — X) dy(x,y),
QxQ

wherey is any optimal plan between and.
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