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Globally minimizing parabolic motions in the
Newtonian N-body Problem

E. MADERNA, A. VENTURELLI

Abstract

We consider theN-body problem inRd with the newtonian potential 1/r. We
prove that for every initial configurationxi and for every minimizing normalized
central configurationx0, there exists a collision-free parabolic solution starting
from xi and asymptotic tox0. This solution is a minimizer in every time interval.
The proof exploits the variational structure of the problem, and it consists in find-
ing a convergent subsequence in a family of minimizing trajectories. The hardest
part is to show that this solution is parabolic and asymptotic to x0.

1. Introduction

In this paper we considerN positive masses in an euclidean spaceRd, submit-
ted to a gravitational interaction. We find some interestingsolutions with a given
asymptotic behaviour. The equation of motion of theN-body problem is written

r̈rr i = − ∑
j=1,...,N, j 6=i

mj(rrr i − rrr j)

|rrr i − rrr j |3
. (1)

wheremi is the mass andrrr i ∈ Rd the position of thei-th body. Since these equa-
tions are invariant by translation, we can assume that the center of mass is at the
origin.
These equations are Euler-Lagrange equations of the Lagrangian action functional
(we will define it precisely in the next section), therefore solutions of (1) are critical
points of the action in a set of paths with fixed ends. The simplest kind of critical
points are minima, so it is natural to search for minimizers of the lagrangian ac-
tion joining two given configurations in a fixed time. The potential of the N-body
problem being singular at collision configurations, a main difficult involved in this
approach is to show that minimizers are collision-free. Thefollowing theorem,
essentially due to C. Marchal, is a major advanced in this subject.
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Theorem 1 Given two N-body configurations xi = (rrr1, ..., rrrN) ∈ (Rd)N, xf =
(sss1, ...,sssN) ∈ (Rd)N and a time T> 0, an action minimizing path joining xi to
xf in time T is collision-free for t∈ (0,T).

See [14] and [8] for a claim and a proof of this theorem ford = 2 andd = 3. See
[11] for a proof in any dimension. This theorem, together with the lower semicon-
tinuity of the action (see Section 2), implies in particularthat there always exists
a collision-free minimizing solution joining two given collision-free N-body con-
figuration in a given time.
There is an extensive recent literature on the search of action minimizing peri-
odic and quasiperiodic solutions in theN-body problem (see for instance [2,3,5,
6,8–11,14,17,18]). A natural extension of Marchal’s theorem is to search solu-
tions defined on an infinite interval[0,+∞), starting from a given configuration at
t = 0 and having a given asymptotic behaviour fort → +∞. The classification of
all possible asymptotic behaviour of solutions in the N-body problem has been in-
vestigated since the beginning of the last century. The mainresults in this direction
are due to J. Chazy. In [4] it is shown that there are only sevenpossible final evo-
lutions in the three-body problem. Among these seven possibilities there are the
so-calledparabolic motions. A solutiont 7→ (rrr1, ..., rrrN)(t) of the N-body problem
is said to be parabolic if the velocity of every body tends to zero ast → +∞. We
introduce the functions

I(x) =
N

∑
i=1

mi |rrr i |2, U(x) = ∑
1≤i< j≤N

mimj

|rrr i − rrr j |
, x = (rrr1, ..., rrrN), (2)

respectively equal to the moment of inertia with respect to the center of mass and
to the Newtonian potential.

Notation Given a configuration x, we denote byx̃ = I(x)−1/2x the associated
normalized configuration.

It is well known (see for instance [12] and [7]) that ift 7→ x(t) is a parabolic
solution, the normalized trajectory ˜x(t) is asymptotic to the set ofcentral config-
urations(i.e. critical points ofŨ = I1/2U). Given a central configurationx0 with
I(x0) = 1, we say that a parabolic solutiont 7→ x(t) is asymptotic tox0 if x̃(t)→ x0

ast → +∞. A central configurationx0 is said to be minimizing if it is an absolute
minimum ofŨ . We can now state the main result of this paper.

Main Theorem Given any initial configuration xi and any minimizing normal-
ized central configuration x0, there exists a parabolic solutionγ : [0,+∞)→ (Rd)N

starting from xi at t = 0 and asymptotic to x0 for t → +∞. This solution is a mini-
mizer of the lagrangian action with fixed ends in every compact interval contained
in [0,+∞) and it is collision-free for t> 0.

We do not require any hypothesis of nondegeneracy of the central configuration
x0.
The parabolic solutionγ is constructed as limit of a sequenceγn : [0,tn] → (Rd)N

of minimizers connectingxi with a configuration homothetic tox0 in time tn, and
tn → +∞. In Section 3 we construct the sequenceγn and we prove that it is uni-
formly convergent on every compact subset ofR. In Sections 4 and 5 we show that
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γ is parabolic and asymptotic tox0. The proof of this last property is achieved by
comparing the action of the N-body problem with the action ofa Kepler problem,
and using Lambert’s Theorem to estimates the action. In the Appendix we state
and prove some technical estimates concerning the Kepler problem on the line that
we need to constructγ and to prove its parabolicity. The authors believe that these
minimizing parabolic solutions are in fact calibrated curves of some weak KAM
solutions of the N-body problems, whose existence has been proved in [13] by one
of the authors. Our Main Theorem has a natural interpretation in terms of McGe-
hee vector field and collision manifold. Indeed, in [7,15,16] it is shown that ifx0

is a central configuration withI(x0) = 1, the state(x0,v0x0) with v0 = (2U(x0)
1/2

is a critical point of the McGehee vector field in the collision manifold, and its
stable set corresponds to parabolic solutions asymptotic to x0 as t → +∞. Thus,
we can formulate the Main Theorem by saying that the stable set of (x0,v0x0) (for
the McGehee vector field) projects on the whole configurationspace, providedx0

is a minimizing central configuration.
We think that variational methods could be used to study someimportant features
on the global dynamics of N-body problem. In particular, it should be interesting
to study hyperbolic solutions using variational methods. We recall that a solution
γ : [0,+∞) → (Rd)N is said to be hyperbolic if there exists a (collision-free) con-
figurationx0 such that

γ(t) = x0t +o(t), t → +∞ (3)

A hyperbolic solution has necessarily positive energy, andreplacingx0 by a nor-
malized configuration, (3) is equivalent toγ(t) =

√
2hx0t + o(t) ast → +∞ (see

[4]), whereh is the energy of the solution. In this case we will say thatγ(t) is
hyperbolic fort → +∞ and asymptotic tox0. Since there is no constraint to the
limit configurationx0 of a hyperbolic solution (see again [4]), it is natural to ask
the following two questions. The second one has been asked byR. Montgomery.

Question 1.Given an initial configurationxi and a normalized non-collision con-
figurationx0, does there exist a hyperbolic motion starting fromxi at t = 0 and
asymptotic tox0 for t → +∞ ?

Question 2.For which couple of normalized non-collision configurations x0 and
x′0 does there exist a solution that is hyperbolic both fort → +∞ and fort →−∞
and is asymptotic tox0 for t → +∞ and tox′0 for t →−∞ ?

We hope that it will be possible to answer these questions using variational meth-
ods similar to those developed in this paper.

2. Variational setting

Since equations (1) are invariant by translation, we fix the origin of our inertial
frame at the center of mass of the system. We define theconfiguration spaceof the
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system as

X =

{
x = (rrr1, ..., rrrN) ∈ (Rd)N,

N

∑
i=1

mirrr i = 0

}
,

and we endowX with themass scalar product:

x ·y =
N
∑

i=1
mi < rrr i ,sssi >

x = (rrr1, ..., rrrN) ∈ X , y = (sss1, ...,sssN) ∈ X ,

where< , > is the usual euclidean product inRd. We denote by‖ ‖ the eu-
clidean norm onX associated to the mass scalar product. A configurationx =
(rrr1, ..., rrrN) ∈ X is said to be acollision configurationif rrr i = rrr j for somei 6= j.

We denote byColl the set of collision configurations and bŷX = X \Coll the set
of collisions-free configurations. Equations (1) can be written in a more compact
form as a second order differential equation on̂X

ẍ = ∇U(x), (4)

whereU is the newtonian potential already defined in (2), the gradient is calculated
with respect to the mass scalar product. SincêX is an open subset ofX , the
tangent space of̂X is identified withX̂ ×X . The following functions defined
onX̂ ×X

K = y ·y, L =
K
2

+U, H =
K
2
−U,

are respectively equal to twice the kinetic energy, to the lagrangian and to the
energy first integral.
Given an absolutely continuous pathγ : [a,b]→X , we define itsLagrange action
by :

AL(γ) =

∫ b

a
L(γ(t), γ̇(t))dt,

whereL is naturally extended to a function defined overX ×X by L(x,y) = +∞
if x ∈ Coll. It is well known that collision-free extremals ofAL are solutions of
equations (4).

Definition 2 We say that an absolutely continuous pathγ : [a,b] → X is a mini-
mizer if AL(σ)≥AL(γ) for every absolutely continuous pathσ : [a,b]→X having
the same extremities. If I⊂R is any interval, we say thatγ : I →X is a minimizer
if for every compact interval[a,b] contained in I, the pathγ

∣∣
[a,b] is a minimizer.

Given a positive real numberT and two configurationsxi andxf , let Σ(xi ,xf ;T)
be the set of absolutely continuous paths defined in the interval [0,T] and joining
xi to xf in timeT. The following proposition is well known.

Proposition 3 For every xi ,xf ∈ X and for every T> 0 there exists a minimizer
γ : [0,T] → X joining xi to xf .
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In [19] and [11] one can find a proof of this proposition when the functionalAL

is defined overH1 paths (i.e. absolutely continuous paths with derivative inL2.)
joining xi to xf . An absolutely continuous path having a finite action is necessarily
in H1, therefore minimizers amongH1 paths are also minimizers among absolutely
continuous paths.

The proposition above do not ensure thatγ is collision-free, but by the already
cited Marchal’s theorem, ifd ≥ 2, minimizers are collision-free fort ∈ (0,T).

3. Construction of the solution

In this section we construct the solutionγ : [0,+∞) → X of the main theorem
as limit of minimizers. We will show in Sections 4 and 5 thatγ is parabolic and
asymptotic tox0.
Before stating the main result of this section, we recall a classical result concerning
parabolic solutions (see [7] or [12]) for a proof).

Proposition 4 If γ : [0,+∞) → X is a parabolic solution of the N-body problem,
the energy ofγ is necessarily zero, moreover we have

I(t) = α2t
4
3 +o(t

4
3 ), ∇Ũ (γ̃(t)) → 0, Ũ (γ̃(t)) →U0

as t→ +∞, where

α = (9U0/2)1/3 (5)

In particular, theω-limit of γ̃(t) is contained in the set of normalized central con-
figuration.

Since there are always infinitely many normalized central configurations for a
given critical level ofŨ , (the orthogonal group acts on̂X leaving invariantŨ),
we cannot saya priori that theω-limit of γ̃(t) is a given configuration. Ifγ(t) is
a parabolic solution asymptotic to normalized central configurationx0 (i.e. γ̃(t)
converges tox0), by Proposition 4 we have the asymptotic estimates

γ(t) = αx0t
2
3 +o(t

2
3 ), as t → +∞ (6)

The following Lemma is a converse of Proposition 4.

Lemma 5 Let x0 be a normalized central configuration, U0 = Ũ(x0) and α the
constant defined in (5). A solutionγ : [0,+∞) →X satisfying the asymptotic esti-
mates (6) is parabolic and asymptotic to x0.

Proof. We just need to prove thatγ is parabolic. Replacing (6) in the equation of
motion we findγ̈(t) = O(t−

4
3 ), ast → +∞. Therefore, the velocitẏγ(t) has a limit

for t → +∞ that we denotėγ∞. Moreover we have

γ̇(t) = γ̇∞ +O(t−
1
3 ), t → +∞.
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Integrating this expression we find

γ(t) = γ̇∞t +O(t
2
3 ), t → +∞,

thusγ̇∞ = 0 andγ(t) is parabolic.

By the way, ifx0 is a normalized central configuration, the path

γ0 : [0,+∞) → X , γ0(t) = αx0t
2
3 , (7)

is a solution of theN-body problem.γ0 is calledhomothetic-parabolic solution
asymptotic tox0.
We state now the main result of this section. We recall thatxi is the initial configu-
ration of the Main Theorem,x0 is a normalized minimizing central configuration,
U0 andα are as before,γ0(t) is given by (7).

Theorem 6 There exists a minimizing solutionγ : [0,+∞) → X starting from
xi , a sequence of positive numbers tn → +∞ and a sequence of minimizersγn ∈
Σ(xi ,γ0(tn); tn) such thatγn converges uniformly toγ on every compact interval
contained in[0,+∞). Moreoverγ(t) is collision-free for t> 0.

We prove this Theorem in several steps. At Proposition 9 we show that ifT andt/T
are sufficiently great, for every minimizerγ ∈ Σ(xi ,γ0(t); t) the actionAL(γ

∣∣
[0,T] )

has a uniform bound (independent oft). Successively, using Ascoli’s theorem and
a diagonal trick, we find the sequence(γn)

+∞
n=1. We start with some preliminary

definitions and remarks. Given two configurationsx andx′ and a timeT, we de-
note byA (x,x′;T) the action of a minimizing path joiningx to x′ in time T (the
same function is denotedφ(x,x′,T) in [13]). In a similar way, given two positive
real numbersa andb and a timeT, we denote byS(a,b;T) the action (for the

one dimensional keplerian problem with lagrangianṙ2

2 + U0
r ) of a minimizing path

joining a to b in time T.
By the homogeneity ofU , if ϖ : [0,T] → X is a solution of (4) andλ > 0, the
path

ϖλ : [0,λT] → X , ϖλ (t) = λ
2
3 ϖ(t/λ )

is still a solution of (4). Moreover, ifϖ is a minimizer,ϖλ is still a minimizer. A
similar property holds for solutions and minimizers of a onedimensional Kepler
problem. Therefore we have

A (λ
2
3 x,λ

2
3 x′;λT) = λ

1
3 A (x,x′;T), S(λ

2
3 a,λ

2
3 b;λT) = λ

1
3 S(a,b;T).

Lemma 7 We have

A (x,x′;T) ≥ S(‖x‖,‖x′‖;T)

with equality if and only if x and x′ are on the half-line starting from zero generated
by x̂, wherex̂ is a normalized minimizing configuration (i.e.‖x̂‖ = 1 andŨ(x̂) =
U0).
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Proof. Let ϖ : [0,T] → X be a minimizer joiningx to x′ in time T and letr(s) =
‖ϖ(s)‖. By Sundman inequality we have

‖ϖ̇(s)‖2 ≥ ṙ2(s),

with equality if and only ifϖ̇(s) is parallel toϖ(s). SinceU0 is the minimum ofŨ
we have also

U(ϖ(s)) ≥ U0

r(s)
,

with equality if and only ifŨ(ϖ(s)) = U0. Therefore

A (x,x′;T) =

∫ T

0

(‖ϖ̇(s)‖2

2
+U(ϖ(s))

)
ds

≥
∫ T

0

(
ṙ2(s)

2
+

U0

r(s)

)
ds

≥ S(‖x‖,‖x′‖;T)

with equality if and only ifϖ(s) = µ(s)x̂, where ˆx is a minimizing normalized
configuration ands 7→ µ(s) ∈ R+ is a minimizer (for the one-dimensional Kepler
problem) joining‖x‖ to ‖x′‖ in timeT. This proves the Lemma.

In order to simplify the exposition we introduce the following notation. Ifx,x′ ∈X

are two configurations and 0≤ τ < T < t we term

M (x,x′;τ,T,t) = A (0,x;T + τ)+A (x,x′; t −T)−A (0,x′; t − τ). (8)

In a similar way, ifr, r′ ∈ [0,+∞) and 0≤ τ < T < t we term

N (r, r ′;τ,T,t) = S(0, r;T + τ)+S(r, r ′; t −T)−S(0, r ′; t − τ). (9)

Lemma 8 Let0< τ < T < t be real numbers. Ifξ ∈Σ(0,xi ;τ) andγ ∈Σ(xi ,γ0(t); t)
are two minimizers we have

M (γ(T),γ0(t);τ,T,t) ≤ 2AL(ξ ) and N (‖γ(T)‖,αt
2
3 ;τ,T,t) ≤ 2AL(ξ ).

Proof. In order to prove the first inequality, letη ∈ Σ(0,γ(T);T + τ) and ζ ∈
Σ(0,γ0(t); t − τ) be two minimizers. The pathζ is nothing but a repametrization
of γ0

∣∣
[0,t] . Sinceη andγ are minimizers, we have the triangular inequalities

AL(η) ≤ AL(ξ )+AL(γ
∣∣
[0,T] )

AL(γ) ≤ AL(ξ )+AL(ζ ),

therefore

AL(η)+AL(γ
∣∣
[T,t] ) ≤ AL(ξ )+AL(γ) ≤ 2AL(ξ )+AL(ζ ).

This gives the first inequality.
The second inequality is a direct consequence of the first oneand of Lemma 7.
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xi

ξ η

ζ0   γ 0(t )

γ(Τ) γ

Fig. 1. The pathsγ , η, ζ andξ in the configuration space.

Proposition 9 There exist three constants K> 0, T > 0 ands> 1 such that for
every T≥ T, for every t≥ sT and for every minimizerγ ∈ Σ(xi ,γ0(t); t) we have

‖γ(T)‖ ≤ KT
2
3 .

Proof. Suppose, for the sake of a contradiction, that there exist three sequences of
positive real numbers(Kn)

+∞
n=0, (Tn)

+∞
n=0 and(tn)

+∞
n=0 satisfying

Kn → +∞, Tn → +∞,
tn
Tn

→ +∞,

and a sequence of minimizersγn ∈ Σ(xi ,γ0(tn); tn) such that for everyn∈ N :

‖γn(Tn)‖ ≥ KnT
2
3

n .

Let τ > 0 andξ : [0,τ]→ X be a minimizer connecting 0 toxi in timeτ. Without
loss of generality we can assume 0< τ < Tn < tn. By homothety invariance and
by the second inequality of Lemma 8 we have

T
1
3

n N

(
‖γn(Tn)‖

T
2
3

n

,α
(

tn
Tn

) 2
3

;
τ
Tn

,1,
tn
Tn

)
≤ 2AL(ξ ). (10)

Since‖γn(Tn)‖

T
2
3

n

→ +∞ and tn
Tn

→ +∞, by Proposition 21 of the Appendix we have

N

(
‖γn(Tn)‖

T
2
3

n

,α
(

tn
Tn

) 2
3

;
τ
Tn

,1,
tn
Tn

)
→ +∞

asn→ +∞. This contradicts inequality (10).

We need now an estimates of the minimal actionA (x,x′;T) when‖x‖ and‖x′‖
are less then a given size.

Proposition 10 There exist two positive constants C1 and C2 such that if R> 0
and T > 0, if x ∈ X and x′ ∈ X are two configurations satisfying‖x‖ ≤ R and
‖x′‖ ≤ R, we can find an absolutely continuous pathγxx′ : [0,T] → X joining x to
x′ in time T such that the following inequality holds

AL(γxx′) ≤C1
R2

T
+C2

T
R

. (11)
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In particular we have

A (x,x′;T) ≤C1
R2

T
+C2

T
R

. (12)

Proof. An alternative proof of this Proposition can be found in [13].
Let x′0 ∈ X̂ be any normalized collision-free configuration. We construct an abso-
lutely continuous pathγx : [0,T/2]→ X joining x to Rx′0 and verifying

AL(γx) ≤ A1
R2

T
+A2

T
R

(13)

whereA1 andA2 are two positive constants independent onR, T andx. An anal-
ogous pathγx′ : [0,T/2] → X joining Rx′0 to x′ can be constructed in exactly the
same way. Pastingγx andγx′ together and choosingC1 = 2A1 andC2 = 2A2 we get
a pathγxx′ verifying (11). Inequality (12) is an obvious consequence of (11).
Let x′0 = (ccc1, ...,cccN). We termccci j = cccj −ccci andci j = |ccci j | for 1≤ i < j ≤ N. In a
similar way, givenx = (rrr1, ..., rrrN) ∈ X with ‖x‖ ≤ R, we termrrr i j = rrr j − rrr i and
r i j = |rrr i j |. Let λi j be the coefficients

λi j =
r i j

Rci j + r i j
∈ [0,1),

and leth be the cardinality of the set{λi j}1≤i< j≤N. The inequality 1≤ h≤ N(N−
1)/2 holds. Let us denote

0≤ µ1 < ... < µh < 1

the elements of the set{λi j}1≤i< j≤N ordered increasingly. We defineµ0 = 0 and
µh+1 = 1. For everyi = 0, ...,h we term

τi =
T(µi+1− µi)

3
2

2
h
∑

k=0
(µk+1− µk)

3
2

.

We observe thatτ0 ≥ 0 andτi > 0 if i ≥ 1, moreover
h
∑

i=0
τi = T/2. Defining

σ0 = 0, σi = τ0 + ...+ τi−1, i = 1, ...,h+1.

we haveσh+1 = T/2. Letλ : [0,T/2]→ [0,1] be the path defined by

λ (t) =






µ1

(
1−
(

τ0−t
τ0

) 2
3
)

, if t ∈ [0,σ1]

µi +
(

t−σi
τi/2

) 2
3 µi+1−µi

2 , if t ∈ [σi ,σi +
τi
2 ], i = 1, ...,h−1

µi+1−
(

σi+1−t
τi/2

) 2
3 µi+1−µi

2 , if t ∈ [σi +
τi
2 ,σi+1], i = 1, ...,h−1

µh +(1− µh)
(

t−σh
T/2−σh

) 2
3
, if t ∈ [σh,T/2].
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The definition ofλ (t) in the interval[σ0,σ1] has some meaning only ifσ0 < σ1

(i.e. if τ0 > 0). The path

γx(t) = (1−λ (t))x+ λ (t)Rx′0, t ∈ [0,T/2]

connectsx to Rx′0 in the timeT/2. If 1 ≤ i ≤ h− 1, the action of the restriction
γx
∣∣
[σi ,σi+τi/2] is given by

AL(γx

∣∣∣[σi ,σi+
τi
2 ]

) =
‖Rx′0−x‖2

2

∫ σi+
τi
2

σi

λ̇ (t)2dt

+ ∑
1≤ j<k≤N

mjmk

∫ σi+
τi
2

σi

dt
|(1−λ (t))rrr jk + λ (t)Rcccjk|

.

As t ∈ [σi ,σi + τi/2] the pathλ (t) increases fromµi to (µi + µi+1)/2, hence the
coefficientλ jk that is closest toλ (t) is exactlyµi . Using the triangular inequality
we find

|(1−λ (t))rrr jk + λ (t)Rcccjk| ≥ |r jk −λ (t)(r jk +Rcjk)|

= (r jk +Rcjk)|λ jk −λ (t)|

≥ Rcjk|λ jk −λ (t)|

≥ Rcjk(λ (t)− µi),

for t ∈ [σi ,σi + τi/2] and for every 1≤ j < k ≤ N. Therefore, since‖x‖ ≤ R and
‖x′0‖ = 1

AL(γx

∣∣∣[σi ,σi+
τi
2 ]

) ≤ 2R2
(

µi+1−µi
2

)2(
2
τi

) 4
3
∫ σi+

τi
2

σi

4
9
(t −σi)

− 2
3 dt

+ ∑
1≤ j<k≤N

mj mk
Rcjk

∫ σi+
τi
2

σi

dt
λ (t)− µi

= 4R2

3
(µi+1−µi)

2

τi
+

U(x′0)
R

2
µi+1−µi

( τi
2

) 2
3

∫ σi+
τi
2

σi

dt

(t −σi)
2
3

= 4R2

3
(µi+1−µi)

2

τi
+

3U(x′0)
R

τi
µi+1−µi

.

In a similar way we find

AL(γx

∣∣∣[σi+
τi
2 ,σi+1]

) ≤ 4R2

3
(µi+1−µi)

2

τi
+

3U(x′0)
R

τi
µi+1−µi

, i = 1, ...,h−1

AL(γx
∣∣
[σ0,σ1] ) ≤ 8R2

3
µ2

1
τ0

+
3U(x′0)

R
τ0
µ1

,

AL(γx

∣∣∣[σh,σh+1] ) ≤
8R2

3
(1−µh)

2

τh
+

3U(x′0)
R

τh
1−µh

.
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That gives

AL(γx
∣∣
[σi ,σi+1] ) ≤

8R2

3
(µi+1− µi)

2

τi
+

6U(x′0)
R

τi

µi+1− µi
, i = 0, ...,h,

and by definition ofτi

AL(γx) ≤ 16R2

3T

(
h
∑

i=0
(µi+1− µi)

3
2

)(
h
∑

i=0
(µi+1− µi)

1
2

)

+
3U(x′0)T

R

h
∑

i=0
(µi+1−µi)

1
2

h
∑

i=0
(µi+1−µi)

3
2

.

(14)

By definition ofµi we have

µi+1− µi ≥ 0,
h

∑
i=0

(µi+1− µi) = 1.

Let us introduce now the functions

f1 : R
h+1
+ → R, f1(z) =

h
∑

i=0
z

3
2
i ,

f2 : R
h+1
+ → R, f2(z) =

h
∑

i=0
z

1
2
i ,

g : R
h+1
+ → R, g(z) =

h
∑

i=0
zi ,

and study minima and maxima off1 and f2 with the constraintg(z) = 1. We show
by induction onh that

min
g(z)=1

f1(z) =
1

(h+1)
1
2

, max
g(z)=1

f1(z) = 1. (15)

If h = 0, conditiong(z) = 1 impliesz0 = 1, thus

min
g(z)=1

f1(z) = 1, max
g(z)=1

f1(z) = 1

Assuming now the statement is true up to orderh−1, let us prove it is true at order
h. By Lagrange multiplier theorem, the unique interior critical point of f1 under
the conditiong(z) = 1 is given by the equations

∂ f1
∂zi

(z) = λ
∂g
∂zi

(z), i = 0, ...,h, λ ∈ R, g(z) = 1,

this gives

zi =
1

h+1
, i = 0, ...,h, f1(z) =

1

(h+1)
1
2

.
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The boundary of the simplexg(z) = 1 is the set ofz= (z0, ...,zh) such that
h
∑

i=0
zi = 1

andzi = 0 for at least one indicesi. By inductive hypothesis, the minimum off1(z)
on the boundary ofg(z) = 1 is 1/h1/2 and the maximum is 1. Comparing with the
value of f1 on the unique interior critical point off1 we find (15). In a similar way
one prove

min
g(z)=1

f2(z) = 1, max
g(z)=1

f2(z) = (h+1)
1
2 . (16)

Replacing these estimates in (14) we find

AL(γx) ≤
16R2

3T
(h+1)

1
2 +

3U(x′0)T
R

(h+1),

sinceh≤ N(N−1)
2 , inequality (13) is proved.

We give now the proof of Theorem 6.
Proof of Theorem 6. By Propositions 9 and 10, there exist three constantsa > 0,
T > 0 ands> 1 such that for everyT ≥T, for everyt ≥ sT and for every minimizer
γ ∈ Σ(xi ,γ0(t); t) we have

AL(γ
∣∣
[0,T] ) ≤ aT

1
3 (17)

Let us prove the equicontinuity of the family
{

γ
∣∣
[0,T]

}
, (18)

whereγ is any minimizer joiningxi to γ0(t) in time t andt ≥ sT. By (17) we have
∫ T

0
‖γ̇(s)‖2ds≤ 2aT

1
3 ,

hence, by Cauchy-Schwarz inequality, for every 0≤ s< s′ ≤ T we have

|γ(s′)− γ(s)| ≤
∫ s′

s
‖γ̇(u)‖du≤

√
s−s′

(∫ s′

s
‖γ̇(u)‖2du

) 1
2

≤ (2aT
1
3 )

1
2
√

s−s′.

This gives the equicontinuity of the family (18). By the way,sinceγ(0) = xi , the
family is also equibounded. By Ascoli theorem we can find a divergent sequence
(tn)

+∞
n=1 satisfyingtn ≥ sT and a sequence of minimizersγn ∈ Σ(xi ,γ0(tn); tn) such

that the restriction(γn
∣∣
[0,T] )

+∞
n=1 converges uniformly. Applying this argument on

an increasing and divergent sequence(Tk)
+∞
k=1, by a diagonal trick we can find an

increasing and divergent sequence of times(tn)
+∞
n=1, a sequence of minimizersγn ∈

Σ(xi ,γ0(tn); tn) and a pathγ : [0,+∞)→X such that(γn)
+∞
n=1 converges uniformly

to γ on every compact interval. Moreover, by lower semi-continuity of the action
we have

AL(γ
∣∣
[0,T] ) ≤ lim inf

n→+∞
AL(γn

∣∣
[0,T] ) ≤ aT

1
3 (19)

for everyT > 0, proving in particular thatAL(γ
∣∣
[0,T] ) is finite. Therefore,γ(T)

is a non-collision configuration for almost allT > 0. We prove now thatγ is a
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ξ

xi

0

ε

nγ
γγn

γ(Τ)

(Τ)

σ

γ0 γ0(tn)

Fig. 2. σε ,n is obtained by pastingσ (reparametrized) with the straight line joiningγ(T) to
γn(T)

minimizing path. Since we want to show thatγ
∣∣
[0,T] is a minimizer for everyT >

0, it is sufficient to prove thatγ
∣∣
[0,T] is a minimizer forT arbitrary great. We

can assume, without loss of generality, thatγ(T) is a non-collision configuration.
Assuming, for the sake of a contradiction, thatγ

∣∣
[0,T] is not a minimizer, there

would exists an absolutely continuous pathσ : [0,T]→ X joining xi to γ(T) such
that

AL(σ) < AL(γ
∣∣
[0,T] ). (20)

Moreover, there existsM > 0 andε > 0 such that

∀x∈ B(γ(T),ε) ⇒U(x) ≤ M,

whereB(γ(T),ε) is the closed ball centered inγ(T) with radiusε. Since the se-
quenceγn

∣∣
[0,T] converges uniformly toγ

∣∣
[0,T] , given 0< ε < ε there exists a pos-

itive integerNT,ε such that for everyn ≥ NT,ε we haveγn(T) ∈ B(γ(T),ε). Let
σε,n : [0,T] → X be the path defined by

σε,n(t) =






σ( T
T−ε t) if t ∈ [0,T − ε]

T−t
ε γ(T)+ t−T+ε

ε γn(T) if t ∈ [T − ε,T],

where n ≥ NT,ε . By constructionσε,n joins xi to γn(T) in time T (see Figure
2). Moreover, ift ∈ [T − ε,T ], the configurationσε,n(t) is contained in the ball
B(γ(T),ε). Computing the action ofσε,n we get

AL(σε,n) ≤ 1
2

(
T

T−ε
)2
∫ T−ε

0

∥∥∥∥σ̇
(

Tt
T − ε

)∥∥∥∥
2

dt+
∫ T−ε

0
U

(
σ
(

Tt
T − ε

))
dt

+
(
M + 1

2

)
ε

= T
T−ε

∫ T

0

1
2
‖σ̇(t)‖2dt+

T − ε
T

∫ T

0
U(σ(t))dt+

(
M +

1
2

)
ε

= AL(σ)+O(ε).

Inequalities (19) and (20) imply

AL(σε,n) < AL(γn
∣∣
[0,T] )
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if ε is sufficiently small andn sufficiently great. This contradicts the minimizing
property ofγn and proves thatγ is a minimizer. By Marchal theorem,γ is collision-
free (and in particular it is a real solution of the N-body problem) for t > 0. This
complete the proof of Theorem 6.

4. Parabolicity of the solution

To complete the proof of the main theorem we still have to showthat the limit
solutionγ(t) is parabolic and asymptotic tox0. By Lemma 5 we just need to verify
the asymptotic estimates (6). We introduce now the following

Notation Given the functions f(r,x1, ...,xn) and g(r,x1, ...,xn) 6= 0, we write

f (r,x1, ...,xn) = or(g(r,x1, ...,xn)) as r→ r0 if the quotient f (r,x1,...,xn)
g(r,x1,...,xn)

is infinitesi-

mal as r→ r0, uniformly on(x1, ...,xn). In a similar way, we write f(r,x1, ...,xn) =

Or(g(r,x1, ...,xn)) if the quotient f (r,x1,...,xn)
g(r,x1,...,xn)

is locally bounded for r close to r0,

uniformly on the variables(x1, ...,xn).

Let us give now a refinement of Lemma 8.

Lemma 11 Letτ > 0 andξ ∈ Σ(0,xi ;τ) be a minimizer. There exist two constants
T > τ ands> 1 such that for every T≥T, for every t≥ sT and for every minimizer
γ ∈ Σ(xi ,γ0(t); t) we have

M (γ(T),γ0(t);0,T,t) ≤ 2AL(ξ )+OT(T− 2
3 )

N (‖γ(T)‖,αt
2
3 ;0,T,t) ≤ 2AL(ξ )+OT(T− 2

3 ).

as T→ +∞.

Proof. The second inequality is a direct consequence of the first oneand of Lemma
7. Let us prove the first inequality. We considerτ as a fixed constant, whileT andt
are variables. LetT > 0, s> 1 andK > 0 be like in Proposition 9. Without loss of
generality we can assumeT > τ. LetT ≥ T andt ≥ sT. LetηT+τ ∈ Σ(0,γ(T);T +
τ) be a minimizer. The path

ηT : [0,T] → X , ηT(s) = ηT+τ

(
T + τ

T
s

)
.

is a reparametrization ofηT+τ and it joins 0 toγ(T) in time T, thus

A (0,γ(T);T) ≤ AL(ηT).

A computation of the action ofηT gives

AL(ηT) = (1+O(1/T))AL(ηT+τ), T → +∞. (21)

SinceηT+τ is a minimizer joining 0 toγ(T) in time T + τ, by Propositions 9 and
10 we obtain

AL(ηT+τ) ≤C1
K2T

4
3

T + τ
+C2

T + τ
KT

2
3

= O(T
1
3 ). (22)
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Combining inequalities (21) and (22), by definition ofηT+τ andηT we get

A (0,γ(T);T)−A (0,γ(T);T + τ) ≤ O(T− 2
3 ). T → +∞ (23)

In a similar way, let us consider a minimizerηT ∈ Σ(0,γ(T);T) The path

ηT+τ : [0,T + τ] → X , ηT+τ(s) = ηT

((
T

T + τ

)
s

)
.

is a reparametrization ofηT , and it joins 0 toγ(T) in time T + τ, hence

A (0,γ(T);T + τ) ≤ AL(ηT+τ).

Arguing as before we get the estimates

A (0,γ(T);T + τ)−A (0,γ(T);T) ≤ O(T− 2
3 ), T → +∞. (24)

Combining inequalities (23) with (24) we obtain

A (0,γ(T);T + τ) = A (0,γ(T);T)+OT(T− 2
3 ), T → +∞, (25)

uniformly on t ≥ sT andγ ∈ Σ(0,γ0(t); t). With the same argument we find the
following estimates

A (0,γ0(t); t − τ)−A (0,γ0(t); t) = Ot(t
− 2

3 ), t → +∞. (26)

Replacing (25) and (26) into the first inequality of Lemma 8, since we assume
t ≥ sT ands> 1, we obtain the first inequality of this Lemma. This ends the proof.

To simplify the notations we introduce now the functions

F : X × (1,+∞)→ R+

F (x,s) = M (x,γ0(s);0,1,s) = A (0,x;1)+A (x,γ0(s);s−1)−A (0,γ0(s);s),

and

G : R+× (1,+∞) → R+

G (r,s) = N (r,αs
2
3 ;0,1,s) = S(0, r;1)+S(r,αs

2
3 ;s−1)−S(0,αs

2
3 ;s).

Lemma 12 Given s> 1 and x∈ X we have

F (x,s) ≥ 0

with equality if and only if x= αx0.
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Proof. By Lemma 7 we have

F (x,s) ≥ G (‖x‖,s),

with equality if and only ifx= ‖x‖x0. Sinceu 7→ αu
2
3 is the unique solution of the

one-dimensional Kepler problem joining 0 toαs
2
3 in time s (see Lemma 16 in the

Appendix), it is also a minimizer, therefore

G (r,s) ≥ 0,

with equality if and only ifr = α. This proves the Lemma.
By homothety invariance, the conclusion of Lemmas 11 and 12 can be written in
the more compact form

0≤ T1/3F

(
γ(T)

T2/3 , t
T

)
≤ 2AL(ξ )+OT(T−2/3)

0≤ T1/3G

(
‖γ(T)‖
T2/3 , t

T

)
≤ 2AL(ξ )+OT(T−2/3).

(27)

asT → +∞, uniformly ont ≥ sT andγ ∈ Σ(0,γ0(t); t) minimizer.
The following Theorem is a main tool in the proof of the Main Theorem. It shows
that if F (x,s) is sufficiently small ands is sufficiently great, the configurationx is
close toαx0.

Theorem 13 There existε > 0 and a functionδ : (0,ε ] → R+ satisfyingδ (ε) =
o(1) as ε → 0+, such that for everyε ∈ (0,ε], there existssε > 1, such that for
every s≥ sε , the set of configurations x∈ X satisfying the inequality

F (x,s) ≤ ε (28)

is contained in the ballB(αx0,δ (ε)).

Before giving the proof of Theorem 13, we show that this theorem achieve the
proof of the Main Theorem.
Proof of the Main Theorem. Let γ : [0,+∞) → X be the limit solution con-
structed in Theorem 6 and letγn ∈ Σ(xi ,γ0(tn); tn) be the sequence of minimizers
uniformly convergent toγ on every compact interval. Letε be as in Theorem 13,
let T and s be as in Lemma 11 and 0< ε < ε . An immediate consequence of
inequalities (27) is the existence ofTε ≥ T such that ifT ≥ Tε andtn ≥ sT we
have

F

(
γn(T)

T
2
3

,
tn
T

)
≤ ε

and by Theorem 13 ∥∥∥∥
γn(T)

T2/3
−αx0

∥∥∥∥≤ δ (ε),

for tn sufficiently great. The sequenceγn
∣∣
[0,T] converges uniformly toγ

∣∣
[0,T] as

n→ +∞, hence ∥∥∥∥
γ(T)

T2/3
−αx0

∥∥∥∥≤ δ (ε),
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for everyT ≥ Tε . Sinceδ (ε) → 0 asε → 0, we have proved that

γ(T)

T2/3
→ αx0, as T → +∞,

that is to say,γ is parabolic and asymptotic tox0. This achieves the proof of the
Main Theorem.
The next section is devoted to prove Theorem 13.

5. Proof of Theorem 13

In order to achieve the proof of Theorem 13 we compare theN-body problem with
a Kepler problem on the configuration space with a lagrangiangiven by

L0(x, ẋ) =
‖ẋ‖2

2
+

U0

‖x‖ , (x, ẋ) ∈ X ×X .

Let AL0(ϖ) denote the action (for the lagrangianL0) of an absolutely continuous
path ϖ andA0(x1,x2;s) the infimum ofAL0(ϖ) over all absolutely continuous
pathsϖ joining x1 to x2 in times. We have the inequality

A (x1,x2;s) ≥ A0(x1,x2;s) ≥ S(‖x1‖,‖x2‖;s),

with A (x1,x2;s) = A0(x1,x2;s) if and only if there exists a minimizing path (for
the lagrangianL) ϖ : [0,s] → X joining x1 with x2 such thatŨ(ϖ(u)) = U0 for
everyu∈ [0,s], andA0(x1,x2;s) = S(‖x1‖,‖x2‖;s) if and only if x1 andx2 are on
a same half-line starting from the origin. The function

F0 : X × (1,+∞)→ R+,

F0(x,s) = A0(0,x;1)+A0(x,γ0(s);s−1)−A0(0,γ0(s);s),

verifies the inequality

F (x,s) ≥ F0(x,s) ≥ G (‖x‖,s) ≥ 0. (29)

Roughly speaking, to achieve the proof of Theorem 13, we replaceF (x,s) with
F0(x,s) and we show that ifε is small andsgreat, the inequalityF0(x,s) ≤ ε can
be satisfied only ifx is in a small ball centered inαx0.
This goal will be achieved in two steps. In Proposition 14 we prove that if s is
sufficiently great, the set ofr ∈ R+ verifying G (r,s) ≤ ε is contained in a small
interval centered inα. Hence, by inequality (29), the set of configurationx verify-
ing F (x,s) ≤ ε is contained in a thin hollow sphere with inner and outer radious
close toα. In Proposition 15 we show that the set of configurationsx verifying
F0(x,s) ≤ ε is a small neighborhood ofαx0.
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Proposition 14 There existε1 > 0 and a functionδ1 : (0,ε1] → R+ satisfying
δ1(ε) = o(1) asε → 0+, such that for everyε ∈ (0,ε1] there existss1

ε > 1, such
that for every s≥ s1

ε , the set of r∈ R+ satisfying the inequality

G (r,s) ≤ ε

is contained in the interval[α − δ1(ε),α + δ1(ε)] .

Proof. By Proposition 21 of the Appendix there existsr > 0 ands> 0 such that
for everyr ≥ r and for everys≥ swe haveG (r,s) > 1. Without loss of generality
we will assumeα < r < s1/3. By Proposition 20 of the Appendix we have

G (r,s) = S(0, r;1)−β0r
1
2 +g(r,s),

whereg(r,s) = os(1) ass→+∞, uniformly on 0≤ r ≤ s
1
3 , and whereβ0 = (8U0)

1
2 .

Let us introduce now the function

G(r) = S(0, r;1)−β0r
1
2 .

By Lemma 16 the solution joining 0 withr in time 1 is monotonic forr ≥ β ,

whereβ = 2
(

U0
π2

)1/3
. We remark thatβ < α. The energyh(0, r;1) of this solution

is negative if and only if 0≤ r < α, moreoverh(0,β ;1) = −U0/β . Let us term
h = h(0, r;1). The actionS(0, r;1) is given by

S(0, r;1) =






∫ −U0
h

0

√

2

(
h+

U0

u

)
du+

∫ −U0
h

r

√

2

(
h+

U0

u

)
du−h if r < β

∫ r

0

√

2

(
h+

U0

u

)
du−h if r ≥ β ,

hence by Lemma 18, the functionsr 7→ S(0, r;1) andr 7→ G(r) are of classC 1 on
(0,+∞), moreover we have

G′(r) =






−
√

2
(

h(0, r;1)+ U0
r

)
−
√

2U0
r if 0 < r < β

√
2
(

h(0, r;1)+ U0
r

)
−
√

2U0
r if r ≥ β ,

proving thatG(r) is in fact of classC 2 on (0,β )∪ (β ,+∞). Since the function
r 7→ h(0, r;1) is increasing andh(0,α;1) = 0, the functionG(r) is decreasing for
r ∈ (0,α) and it is increasing forr ∈ (α,+∞). The absolute minimum ofG(r) is
achieved atr = α, and we have

G(α) =
∫ α

0

√
2U0

u
du−

√
8U0α = 0.
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By Lemma 18, a direct computation of the second derivative ofG at α gives

G′′(α) =
5U

1
2

0

2
1
2 α

3
2

,

hence, sinceG(α) = G′(α) = 0, there existsδ > 0 andC1 > 0 such that

∀r ∈ [α − δ ,α + δ ], G(r) ≥C1(r −α)2.

Without loss of generality we shall assumeα − δ > β andα + δ < r. Let ε1 =

min{C1δ 2

2 ,1} and let us define the function

δ1 : (0,ε1] → R+, δ1(ε) =

√
2ε
C1

.

SinceG(r) is decreasing forr ≤ α and increasing forr ≥ α, for everyε ∈ (0,ε1]
we have

∀r ∈ (0,α − δ1(ε))∪ (α + δ1(ε),+∞), G(r) > C1δ1(ε)2 = 2ε. (30)

We come back now to the functionG (r,s) = G(r)+g(r,s). Sinceg(r,s) is infinites-

imal for s→ +∞ and 0≤ r ≤ s
1
3 , for everyε ∈ (0,ε1] there existss1

ε > ssuch that

for everys≥ s1
ε and for everyr verifying 0≤ r ≤ s

1
3 we have|g(r,s)| ≤ ε. If s≥ s1

ε
andr ≥ r we have

G (r,s) > 1≥ ε1 ≥ ε.

If s≥ s1
ε andr ∈ (0, r), by (30), for everyr ∈ (0,α − δ1(ε))∪ (α + δ1(ε), r) we

have
G (r,s) = G(r)+g(r,s) > 2ε − ε = ε.

This ends the proof of the Proposition.
We introduce the following notation : given two configurations x1 and x2, the
angle betweenx1 and x2 is denoted by the symbol∠(x1,x2). We always have
0≤ ∠(x1,x2) ≤ π .

Proposition 15 If ε1 andδ1 : (0,ε1] → R+ are like in Proposition 14, there exist
ε ∈ (0,ε1] and C2 > 0 such that given the function

δ2 : (0,ε] → R+, δ2(ε) = (C2ε)
1
2 , (31)

for everyε ∈ (0,ε], there existss2
ε > 1 such that for every s≥ s2

ε and for every
configuration x∈ X satisfying

|‖x‖−α| ≤ δ1(ε), ∠(x,x0) > δ2(ε) (32)

we have
F0(x,s) > ε.
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Proof. The basic tool of this proof is Lambert’s Theorem. Our reference is [1].
LetC2 > 0 andε ∈ (0,ε1]. Let δ2 : (0,ε ] → R+ be the function defined in (31). In
the following we will ask more precise conditions onC2 andε. Let 0< ε ≤ ε , let x
be a configuration verifying (32) ands> 1. The minimizer (forL0) σ : [0,s−1]→
X joining x to γ0(s) in time s− 1 is a collision-free Keplerian arc, hence it is
contained in the plane generated by 0,x andγ0(s). Introducing a system of polar

coordinates in this plane, we can identifyx with reıθ andγ0(s) with αs
2
3 ∈ R ⊂ C

where
|r −α| ≤ δ1(ε), δ2(ε) < |θ | ≤ π .

Moreover, the pathσ can be written in polar coordinates by

σ(u) = ρ(u)eıφ(u), u∈ [0,s−1],

where
ρ(0) = r φ(0) = θ

ρ(s−1) = αs
2
3 φ(s−1) ∈ 2πZ.

Sinceσ is collision-free,ρ(u) > 0 for all u ∈ [0,s−1]. By definition ofF0 and
using the properties ofA0 we have

F0(reıθ ,s) = A0(0, reıθ ;1)+A0(reıθ ,γ0(s);s−1)−A0(0,γ0(s);s)

= S(0, r;1)+A0(reıθ ,γ0(s);s−1)−S(0,αs
2
3 ;s).

We prove now thatσ is adirect path, that is to say, the total variation of the polar
angleφ is less than or equal toπ . Assume, for the sake of contradiction, that
|φ(s−1)− φ(0)| > π . Eventually changing the orientation of the plane, we can
assume without loss of generalityφ(s−1)−φ(0) > π , hence there exists a unique
integerk≥ 1 and a unique real numberα ∈ (−π ,π ] such that

φ(s−1)−φ(0) = 2kπ + α.

The pathρeıφ defined by

ρ(u) = ρ(u), φ(u) = φ(0)+
α

2kπ + α
(φ(u)−φ(0)),

has the same ends as the original one, moreover

AL0(ρeıφ )−AL0(ρeıφ ) =
1
2

[(
α

2kπ + α

)2

−1

]∫ s−1

0
(ρ2φ̇2)(u)du< 0,

and we get a contradiction. Lambert’s Theorem state that ifx1 and x2 are two
configurations andτ > 0, the actionA0(x1,x2;τ) of the direct Keplerian arc joining
x1 to x2 in time τ is a function of three parameters only : the timeτ, the distance
‖x1 − x2‖ between the two ends and the sum of the distances between the ends
and the origin (i.e.‖x1‖+‖x2‖). Comparing nowσ with a direct collinear arc, by
Lambert’s Theorem we find

A0(re
ıθ ,γ0(s);s−1) = S(d1(r,θ ,s),d2(r,θ ,s);s−1),
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where

d1(r,θ ,s) = r+αs
2
3 −|reıθ−αs

2
3 |

2 ,

d2(r,θ ,s) = r+αs
2
3 +|reıθ−αs

2
3 |

2 .

Moreover
|reıθ −αs

2
3 | = αs

2
3 − r cosθ + l(r,θ ,s),

where
l(r,θ ,s) = Os(s

−2/3), s→ +∞

uniformly onδ2(ε) < |θ | ≤ π and|r −α| ≤ δ1(ε). Therefore we get

d1(r,θ ,s) = r
( 1+cosθ

2

)
− l(r,θ ,s)

2

d2(r,θ ,s) = αs
2
3 + r

(
1−cosθ

2

)
+ l(r,θ ,s)

2 .

SinceS(0,αs
2
3 ;s)= α0s

1
3 , applying Proposition 20 of the Appendix toS(d1(r,θ ,s),d2(r,θ ,s);s−

1) we find

F0(re
ıθ ,s) = G(r)+ β0r

1
2

[
1−
(

1+cosθ
2

− l(r,θ ,s)
2r

) 1
2
]

+g(r,θ ,s),

whereg(r,θ ,s) is infinitesimal ass→ +∞, uniformly onr andθ . In Proposition
14 we showed thatG(r) ≥ 0 for all r > 0. Let s2

ε > 0 such that for everys≥ s2
ε ,

for everyθ satisfying|θ | ∈ (δ2(ε),π ] and for everyr ∈ [α − δ1(ε),α + δ1(ε)] we
have

|g(r,θ ,s)| ≤ ε,

∣∣∣∣
l(r,θ ,s)

2r

∣∣∣∣≤ ε.

Since the functionx 7→ cosx is decreasing in[0,π ], chosingC2 > 4 and using the

classical expansions of cosx and(1+x)
1
2 we find

F0(reıθ ,s) ≥ β0(α − δ1(ε))
1
2

[
1−
(

1+cosδ2(ε)
2 + ε

) 1
2
]
− ε

= ε
[

β0α
1
2

(
1− δ1(ε)

α

) 1
2
(

C2−4
8 + µ(ε)

)
−1

]
,

whereµ(ε) = o(1) asε → 0. Chosing 0< ε < ε1 such that

∀ε ∈ (0,ε], |µ(ε)| < 1
8
, and |δ1(ε)| < α

2
,

and chosingC2 in such a way

C2 > 5+
16

√
2

β0α
1
2

we find
F0(re

ıθ ,s) > ε,
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for everyr ∈ [α − δ1(ε),α + δ1(ε)], for everyθ such that|θ | ∈ (δ2(ε),π ] and for
everys≥ s2

ε . This proves the Proposition.
The proof of Theorem 13 is essentially the juxtaposition of the two previous Propo-
sitions.
Proof of Theorem 13.
We use the same notations of the previous two Propositions. Given ε ∈ (0,ε], let
sε = max{s1

ε ,s
2
ε}. By Proposition 14 and 15 and by inequality (29), ifs≥ sε andx

is a configuration verifyingF (x,s) ≤ ε we have

|‖x‖−α| ≤ δ1(ε) and ∠(x,x0) ≤ δ2(ε). (33)

Let δ be the function

δ : (0,ε] → R+, δ (ε) =
[
2α (α + δ1(ε)) (1−cosδ2(ε))+ δ1(ε)2] 1

2 ,

an easy computation show thatδ (ε) → 0 asε → 0 and the set of configurations
verifying (33) is contained in the ballB(αx0,δ (ε)). The Theorem is proved.

Appendix : Some estimates for the one-dimensional Kepler Problem

The Kepler problem on the half-lineR+ is defined by the equation

r̈ = −U0

r2 , (34)

whereU0 > 0 is the gravitational constant. The Lagrangian function ofthe problem
and the energy are written

l =
ṙ2

2
+

U0

r
, h =

ṙ2

2
− U0

r
.

A parabolic solution of the Kepler problem is nothing but a solution with zero
energy. There is a unique increasing parabolic solution, namelyr(s) = αs2/3 where
α = (9U0/2)1/3. Given 0≤ a ≤ b, the energy of a solution connectinga to b
is necessarily greater or equal to−U0/b. Moreover, if 0≤ a < b, for h ≥ 0 or
h = −U0/b there is a unique segment of solution of energyh joining a to b, this
solution increases froma to b. If −U0/b < h < 0 there are exactly two segments
of solutions of energyh joining a to b, a monotonic one, that increases froma to
b, and a non-monotonic one, that increases froma to −U0/h and decreases from
−U0/h to b. Let s(a,b) be the time employed by the solution of energy−U0/b to
connecta to b. We have the following lemma, whose proof is left to the reader.

Lemma 16 Given0≤ a≤ b, and s> 0, there exists a unique segment of solution
joining a to b in time s, moreover, the solution is monotonic if and only if0 < s≤
s(a,b).

Definition 17 Given0≤ a≤ b and s> 0, we denote by h(a,b;s) the energy of the
unique segment of solution joining a to b in time s, and we denote by S(a,b;s) the
Lagrangian action of this solution.



Globally minimizing parabolic motions in the NewtonianN-body Problem 23

Since the solution joininga to b in times is unique,S(a,b;s) is also the minimum
of the action of absolutely continuous paths joininga to b in time s.
We shall study the behaviour of the functionr 7→ h(0, r;s) for fixed s> 0.

Lemma 18 Given s> 0, the function r7→ h(0, r;s) is C 1 in (0,+∞) with a strictly
positive derivative. Moreover

∂h
∂ r

(0,αs
2
3 ;s) =

5U0

α2s
4
3

.

The proof is left to the reader. We shall also need the following two Propositions

Proposition 19 Let ε > 0. We have

S(0, r;1+ ε) =
r2

2(1+ ε)
+or(r

2) (35)

as r→ +∞, uniformly forε ∈ [0,ε].

Proof. The parabolic solutionu 7→ αu
2
3 has zero energy, henceh(0,α(1+ε)

2
3 ;1+

ε) = 0. Since we are interested at what happens whenr → +∞, we assumer >

α(1+ ε)
2
3 . By Lemma 18 the energyh(0, r;1+ ε) is positive and the solution

joining 0 to r in time 1+ ε is monotonic. The functionh = h(0, r;1+ ε) verifies
the identity

1+ ε =

∫ r

0

du√
2
(

h+ U0
u

) =
U0

2
1
2 h

3
2

E

(
hr
U0

)
, (36)

whereE : R+ → R is defined by

E(x) =

∫ x

0

√
s

1+s
ds, x∈ R+,

and it verifies the estimates

E(x) = 2
3x

3
2 +o(x

3
2 ) as x→ 0+

E(x) = x+o(x), as x→ +∞.

(37)

Let us prove now that

h(0, r;1+ ε)→ +∞, as r → +∞ (38)

uniformly onε ∈ [0,ε]. Assuming, for the sake of contradiction, that (38) is false,
there would exist two sequencern →+∞ andεn ∈ [0,ε] such thath(0, rn;1+εn) is
bounded. To simplify notations let us denotehn = h(0, rn;1+εn). By identities (36)
and (37), the sequencehnrn is bounded too. This implies thathn → 0 asn→ +∞.
SinceE(x) is continuous and strictly increasing, identity (36) giveshnrn → 0 as
n→ +∞. Applying again (36) and the first of (37) we obtain

lim
n→+∞

1+ εn = lim
n→+∞

U0√
2

(
rn

U0

) 3
2
(

U0

hnrn

) 3
2

E

(
hnrn

U0

)
= +∞
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that gives a contradiction and proves (38). Writing now (36)as

1+ ε =
r√
2h

(
U0

hr

)
E

(
hr
U0

)
,

using the second of (37) we obtain the following estimates

h = h(0, r;1+ ε) =
1
2

(
r

1+ ε

)2

+or(r
2) (39)

asr → +∞, uniformly onε ∈ [0,ε]. Let us consider now the actionS(0, r;1+ ε).
Let t 7→ u(t) be the solution joining 0 withr in time 1+ ε. We have

S(0, r;1+ ε) =
∫ 1+ε

0

(
u̇2

2
+

U0

u

)
dt =

∫ r

0

h+ 2U0
u√

2
(

h+ U0
u

)du

=
√

2h
∫ r

0

√
1+

U0

hu
du−

√
h
2

∫ r

0

du√
1+ U0

hu

= U0√
h

(√
2F
(

hr
U0

)
− 1√

2
E
(

hr
U0

))
,

(40)

whereF : R+ → R is defined by

F(x) =

∫ x

0

√
s+1

s
ds, x≥ 0.

The functionF verifies the asymptotic estimates

F(x) = x+o(x), x→ +∞. (41)

Replacing (39) in (40) we find (35).

Proposition 20 Let A> 0 and B> 0 be two constants. If we set

α0 = (8U0α)
1
2 and β0 = (8U0)

1
2

then we have

S(r,α(s
2
3 + ξ );s+ η) = α0s

2
3 −β0r

1
2 +os(1) (42)

as s→ +∞, uniformly on r∈ [0,s1/3], |ξ | ≤ A and|η | ≤ B.

Proof. We first prove that the (unique) solution joiningr to α(s2/3+ξ ) in times+
η is monotonic. In order to simplify the exposition let us termλ (ξ ,s) = α(s2/3 +
ξ ). We shall compares+ η with the time employed by the solution of energy
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− U0
λ (ξ ,s) to connectr to λ (ξ ,s). As usual we denotes(r,λ (ξ ,s)) this time. By

definition ofα we have

s(r,λ (ξ ,s)) =

∫ λ (ξ ,s)

r

du√
2
(
− U0

λ (ξ ,s) + U0
u

)

= λ (ξ ,s)3/2

(2U0)
1/2

∫ 1

r
λ(ξ ,s)

dv√
1
v −1

= 3s
2

(
1+ ξ

s2/3

)3/2(π
2 −H

(
r

λ (ξ ,s)

))
,

where we define

H : R+ → R, H(x) =

∫ x

0

√
v

1−v
dv.

Since we assume

0≤ r ≤ s1/3 and |ξ | ≤ A

we have
r

λ (ξ ,s)
→ 0 as s→ +∞.

An easy computation shows that

H(x) =
2
3

x3/2 +O(x5/2), x→ 0,

hence we get the estimates

s(r,λ (ξ ,s)) =
3π
4

s
(

1+Os(s
−1/2)

)
.

Since3π
4 > 1, we haves(r,λ (ξ ,s)) > s+η for ssufficiently great, and by Lemma

16 the solution joiningr to λ (ξ ,s) in times+ η is monotonic.

Let h= h(r,λ (ξ ,s);s+η) be the energy of the solution joiningr to λ (ξ ,s) in time
s+ η . We prove thath = os(1/s) for s→ +∞, uniformly on 0≤ r ≤ s1/3, |ξ | ≤ A
and|η | ≤ B. The energyh satisfies the identity

s+ η =

∫ λ (ξ ,s)

r

du√
2
(

h+ U0
u

)

= λ (ξ ,s)3/2

(2U0)1/2

∫ 1

r
λ(ξ ,s)

dv√
λ (ξ ,s)

U0
h+ 1

v

(43)
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Introducing the functions

x(r,s,ξ ) =
(

r
λ (ξ ,s)

)1/2
, y(s,ξ ) = ξ

s2/3 ,

k(r,s,ξ ,η) = λ (ξ ,s)
U0

h(r,λ (ξ ,s);s+ η), z(s,η) = η
s ,

(44)

and using the definition ofα, the relation (43) becomes

F(x(r,s,ξ ),y(s,ξ ),z(s,η),k(r,s,ξ ,η)) = 0, (45)

whereF(x,y,z,k) is defined by

F(x,y,z,k) =

∫ 1

x2

(
v

1+kv

)1/2

dv− 2
3
(1+z)(1+y)−3/2.

We think now at(x,y,z,k) as independent variables. Using the implicit function
theorem we show that the equation

F(x,y,z,k) = 0 (46)

defines a uniqueC 2 functionk = k(x,y,z) for (x,y,z) close to(0,0,0). We observe
thatF(x,y,z,k) is of classC 2 with respect to the variablesy andz. MoreoverF is
derivable with respect tox and

∂F
∂x

(x,y,z,k) = − 2x|x|
(1+kx2)1/2

,
∂F
∂x

(0,0,0,0) = 0.

∂F
∂x is derivable with respect tox andk, and we have

∂ 2F
∂x2 (x,y,z,k) = − 2|x|(2+kx2)

(1+kx2)
3/2

∂ 2F
∂k∂x(x,y,z,k) =

x3|x|
(1+kx2)

3/2 ,

(47)

showing that∂F
∂x is of classC 1 in a neighborhood of(0,0,0,0). In particular

∂ 2F
∂x2 (0,0,0,0) = 0,

∂ 2F
∂k∂x

(0,0,0,0) = 0.

By the theorem of differentiation under the integral sign,∂F
∂k , ∂ 2F

∂k2 and ∂ 2F
∂x∂k are

well defined, moreover

∂F
∂k (x,y,z,k) = − 1

2

∫ 1

x2

(
v

1+kv

)3/2

dv, ∂F
∂k (0,0,0,0) = − 1

5,

∂ 2F
∂k2 (x,y,z,k) = 3

4

∫ 1

x2

(
v

1+kv

)5/2

dv, ∂ 2F
∂k2 (0,0,0,0) = 3

14,

∂ 2F
∂x∂k(x,y,z,k) = x3|x|

(1+kx2)
3/2 , ∂ 2F

∂x∂k(0,0,0,0) = 0.
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By the way, we have also

∂ 2F
∂k∂y

(x,y,z,k) =
∂ 2F
∂k∂z

(x,y,z,k) = 0.

These computations show thatF is of classC 2 in a neighborhood of(0,0,0,0).
Moreover

F(0,0,0,0) =

∫ 1

0

√
vdv− 2

3
= 0.

By the implicit function theorem, equation (46) defines aC 2 functionk = g(x,y,z)
in a neighborhood of(0,0,0) such thatg(0,0,0) = 0 and

∂g
∂x

(0,0,0) =
∂ 2g
∂x2 (0,0,0) =

∂ 2g
∂x∂y

(0,0,0) =
∂ 2g

∂x∂z
(0,0,0) = 0,

that is to say
g(x,y,z) = O(|y|+ |z|)+o(x2+y2+z2). (48)

Coming back to original variables, identity (48) gives

h(r,λ (ξ ,s);s+ η) = U0
λ (ξ ,s) g

((
r

λ (ξ ,s)

)1/2
, ξ

s2/3 ,
η
s

)

= os(1/s),

(49)

ass→ +∞, uniformly on 0≤ r ≤ s
1
3 , |ξ | ≤ A, and |η | ≤ B. We compute now

the actionS(r,λ (ξ ,s);s+ η). Since the solution joiningr to λ (ξ ,s) in time s+ η
(denoted heret 7→ u(t)) is monotonic, we have

S(r,λ (ξ ,s);s+ η) =

∫ s+η

0

(
u̇2(t)

2
+

U0

u(t)

)
dt

=

∫ λ (ξ ,s)

r

h+ 2U0
u√

2
(

h+ U0
u

)du

=

∫ λ (ξ ,s)

r

√

2

(
h+

U0

u

)
du− (s+ η)h.

Introducing the integration variablev = u
λ (ξ ,s) , by (49) we find

S(r,λ (ξ ,s);s+ η) = (2U0λ (ξ ,s))
1
2 A(x,k)+os(1), (50)

wherex = x(r,s,ξ ) andk = k(r,s,ξ ,η) are the functions defined like in (44) and

A(x,k) =

∫ 1

x2

√
k+

1
v

dv= A0(k)−B(x,k),
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where

A0(k) =

∫ 1

0

√
k+

1
v

dv, B(x,k) =

∫ x2

0

√
k+

1
v

dv.

Once again, we think atx andk as independent variables and we give an asymptotic
expansion ofA(x,k) for x andk close to 0. By the classical theorem of differentia-
tion under the integral sign,A0(k) is derivable in 0 and

A0(k) = 2+
k
3

+o(k).

Moreover we have the following estimates forB(x,k)

B(x,k) =
∫ x2

0

dv√
v

+
∫ x2

0

(√
k+

1
v
−
√

1
v

)
dv

= 2|x|+k
∫ x2

0

√
v√

1+kv+1
dv

= 2|x|+O(k|x|3),
hence

A(x,k) = 2+
k
3
−2|x|+O(k|x|3)+o(k),

asx → 0 andk → 0. Replacing in (50) and using (49) we find the final estimates
(42).
The two previous Propositions imply the following one.

Proposition 21 Givenε > 0, we have

lim
s→ +∞
r → +∞

N (r,αs
2
3 ;ε,1,s) = +∞,

uniformly onε ∈ [0,ε], whereN is the function defined in (9).

Proof. If 0 ≤ ε ≤ ε and 0≤ r ≤ s
1
3 , from Propositions (19) and (20) we have :

N (r,αs
2
3 ;ε,1,s) =

r2

2(1+ ε)
(1+or(1))−β0r

1
2 +os(1),

therefore
lim

r → +∞
0≤ r ≤ s

1
3

N (r,αs
2
3 ;ε,1,s) = +∞, (51)

uniformly onε ∈ [0,ε]. Let us consider now the caser ≥ s
1
3 . Forgetting the term

S(r,αs
2
3 ;s−1) in N (r,αs

2
3 ;ε,1,s) and applying again Propositions (19) and (20)

we find
N (r,αs

2
3 ;ε,1,s) ≥ r2

2(1+ε)
(1+or(1))−α0s

1
3 +os(1)

≥ s
2
3

2(1+ε)(1+os(1))−α0s
1
3 +os(1).



Globally minimizing parabolic motions in the NewtonianN-body Problem 29

This estimates implies the limit

lim
s→ +∞
r ≥ s

1
3

N (r,αs
2
3 ;ε,1,s) = +∞, (52)

uniformly onε ∈ [0,ε].
The two limits (51) and (52) achieve a proof of the Proposition.
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