ARMA manuscript No.
(will be inserted by the editor)

Globally minimizing parabolic motions in the
Newtonian N-body Problem

E. MADERNA, A. VENTURELLI

Abstract

We consider thé\-body problem inRY with the newtonian potential/t. We
prove that for every initial configuratioxy and for every minimizing normalized
central configuratiorxg, there exists a collision-free parabolic solution staytin
from x; and asymptotic tog. This solution is a minimizer in every time interval.
The proof exploits the variational structure of the probjemd it consists in find-
ing a convergent subsequence in a family of minimizing tfjges. The hardest
part is to show that this solution is parabolic and asymptiotig.

1. Introduction

In this paper we considé{ positive masses in an euclidean sp&€esubmit-
ted to a gravitational interaction. We find some interestolyitions with a given
asymptotic behaviour. The equation of motion of Midody problem is written

, m;(ri —rj
f=- Ty, @
=15 i Il

wherem is the mass ant € RY the position of thé-th body. Since these equa-
tions are invariant by translation, we can assume that theecef mass is at the
origin.

These equations are Euler-Lagrange equations of the Lgigiaaction functional
(we will define it precisely in the next section), therefooégions of (1) are critical
points of the action in a set of paths with fixed ends. The sasttind of critical
points are minima, so it is natural to search for minimizerthe lagrangian ac-
tion joining two given configurations in a fixed time. The patial of the N-body
problem being singular at collision configurations, a maffiallt involved in this
approach is to show that minimizers are collision-free. Télowing theorem,
essentially due to C. Marchal, is a major advanced in thigestib
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Theorem 1 Given two N-body configurations % (r1,...,ry) € (RDN, x; =
(s1,...,sv) € (RY)N and a time T> 0, an action minimizing path joining;xo
Xt intime T is collision-free for € (0, T).

See [14] and [8] for a claim and a proof of this theoremdot 2 andd = 3. See
[11] for a proof in any dimension. This theorem, togethehviite lower semicon-
tinuity of the action (see Section 2), implies in particulaat there always exists
a collision-free minimizing solution joining two given dision-free N-body con-
figuration in a given time.

There is an extensive recent literature on the search obractiinimizing peri-
odic and quasiperiodic solutions in thebody problem (see for instance [2,3,5,
6,8-11,14,17,18]). A natural extension of Marchal’s tleoris to search solu-
tions defined on an infinite intervff), +-), starting from a given configuration at
t = 0 and having a given asymptotic behaviourffer +. The classification of
all possible asymptotic behaviour of solutions in the N¥pptbblem has been in-
vestigated since the beginning of the last century. The meainlts in this direction
are due to J. Chazy. In [4] it is shown that there are only s@eesible final evo-
lutions in the three-body problem. Among these seven pilisigib there are the
so-calledparabolic motionsA solutiont — (ry,...,rn)(t) of the N-body problem
is said to be parabolic if the velocity of every body tendséoozast — +o0. We
introduce the functions

N
1(x) :i;m|ri|27 U(x) :lg;

respectively equal to the moment of inertia with respech&denter of mass and
to the Newtonian potential.

mym
SN|I‘i—l‘j|7

x:(rl,...,rN), (2)

Notation Given a configuration x, we denote Biy= I(x)~/?x the associated
normalized configuration.

It is well known (see for instance [12] and [7]) thattif— x(t) is a parabolic
solution, the normalized trajectoryt] is asymptotic to the set afentral config-
urations(i.e. critical points ofJ = 11/2U). Given a central configuratioxy with

[ (x0) =1, we say that a parabolic solutibr- x(t) is asymptotic tog if X(t) — %o
ast — +o0. A central configuratiomg is said to be minimizing if it is an absolute
minimum ofU. We can now state the main result of this paper.

Main Theorem Given any initial configuration;xand any minimizing normal-
ized central configurationgsthere exists a parabolic solutigrn [0, +00) — (RN
starting from x att = 0 and asymptotic togfor t — +o0. This solution is a mini-
mizer of the lagrangian action with fixed ends in every conderval contained
in [0,+) and it is collision-free for t> 0.

We do not require any hypothesis of nhondegeneracy of thealeunfiguration
X0-

The parabolic solutioly is constructed as limit of a sequenge [0,tn] — (R9)N

of minimizers connecting; with a configuration homothetic t&, in timet,, and

th — 4. In Section 3 we construct the sequeng@and we prove that it is uni-
formly convergent on every compact subseRofn Sections 4 and 5 we show that
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y is parabolic and asymptotic t@. The proof of this last property is achieved by
comparing the action of the N-body problem with the actioa éfepler problem,
and using Lambert’s Theorem to estimates the action. In fhgeAdix we state
and prove some technical estimates concerning the Kepdbtgmm on the line that
we need to construgtand to prove its parabolicity. The authors believe thatéhes
minimizing parabolic solutions are in fact calibrated @swf some weak KAM
solutions of the N-body problems, whose existence has besegin [13] by one
of the authors. Our Main Theorem has a natural interpretatigerms of McGe-
hee vector field and collision manifold. Indeed, in [7,15,it& shown that ifxg

is a central configuration with(xp) = 1, the statéxg, VoXo) with vo = (2U (xo)/2

is a critical point of the McGehee vector field in the collisimanifold, and its
stable set corresponds to parabolic solutions asympimtig Bist — +c. Thus,
we can formulate the Main Theorem by saying that the stablefgeg, voxo) (for
the McGehee vector field) projects on the whole configuratjmerce, providesy

is a minimizing central configuration.

We think that variational methods could be used to study sompertant features
on the global dynamics of N-body problem. In particularibsld be interesting
to study hyperbolic solutions using variational methods. Mctall that a solution
y: [0,4) — (RY)N is said to be hyperbolic if there exists a (collision-freehe
figurationxg such that

y(t) = xot +0(t), t — o0 3)

A hyperbolic solution has necessarily positive energy, eplacingxy by a nor-
malized configuration, (3) is equivalent ygt) = v/2hxot + o(t) ast — +o (see
[4]), whereh is the energy of the solution. In this case we will say th@) is
hyperbolic fort — + and asymptotic teg. Since there is no constraint to the
limit configurationxy of a hyperbolic solution (see again [4]), it is natural to ask
the following two questions. The second one has been ask&d kpntgomery.

Question 1.Given an initial configuratios; and a normalized non-collision con-
figurationxg, does there exist a hyperbolic motion starting fregmatt = 0 and
asymptotic togg fort — +oo0 ?

Question 2.For which couple of normalized non-collision configurasog and
X does there exist a solution that is hyperbolic bothtfes + and fort — —oo
and is asymptotic ta for t — +co and tox;, fort — —oco ?

We hope that it will be possible to answer these questiomguairiational meth-
ods similar to those developed in this paper.
2. Variational setting

Since equations (1) are invariant by translation, we fix thgil of our inertial
frame at the center of mass of the system. We definednéguration spacef the
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system as

X = {x_ (F1,....,rn) € (RHN, imri = O},

and we endow?” with the mass scalar product

Il
Mz

Sm<ris>
1

1
=(ry,...,IN)E€Z, y=(s1,..,.5\) € Z,

Xy
X

where < , > is the usual euclidean product i&?. We denote by|| || the eu-
clidean norm on%" associated to the mass scalar product. A configuratien
(r1,...,rn) € 2 is said to be aollision configurationf r; = r; for somei # j.
We denote byColl the set of collision configurations and tﬁj\z 2\ Coll the set
of collisions-free configurations. Equations (1) can bettem in a more compact
form as a second order differential equationﬁ”ﬁ

% = 0U (%), (4)

wherel is the newtonian potential already defined in (2), the graidgecalculated
with respect to the mass scalar product. Sit®eis an open subset of, the
tangent space of?” is identified with 2™ x 2. The following functions defined

onZ x &
K K
K=y- L=-+U, H=--U
Y-Ys 5 +U, > )
are respectively equal to twice the kinetic energy, to thggdagian and to the
energy first integral.
Given an absolutely continuous path[a,b] — £, we define itd.agrange action

by :
b
AY) = [ LD, ),

whereL is naturally extended to a function defined ow&rx 2" by L(X,y) = +
if x € Coll. It is well known that collision-free extremals &f_ are solutions of
equations (4).

Definition 2 We say that an absolutely continuous pgtha, b] — £ is a mini-
mizer if A (o) > A_(y) for every absolutely continuous padh [a,b] — 2" having
the same extremities. Ifd R is any interval, we say that: | — 2" is a minimizer
if for every compact intervdh, b] contained in I, the patly\ lab] IS @minimizer.

Given a positive real numbdr and two configurations; andxs, let Z(xi,xs;T)
be the set of absolutely continuous paths defined in thevialté®, T] and joining
X to xs in time T. The following proposition is well known.

Proposition 3 For every x,xs € 2" and for every T> 0 there exists a minimizer
y:[0,T] — £ joining X to X;.
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In [19] and [11] one can find a proof of this proposition whee thnctionalA_

is defined oveH?! paths (i.e. absolutely continuous paths with derivativean
joining x; to X¢. An absolutely continuous path having a finite action is seasly

in H1, therefore minimizers amortg® paths are also minimizers among absolutely
continuous paths.

The proposition above do not ensure tlyas collision-free, but by the already
cited Marchal’s theorem, il > 2, minimizers are collision-free fdre (0, T).

3. Construction of the solution

In this section we construct the solutign [0, +0) — 2" of the main theorem
as limit of minimizers. We will show in Sections 4 and 5 thaits parabolic and
asymptotic tox.

Before stating the main result of this section, we recalbasical result concerning
parabolic solutions (see [7] or [12]) for a proof).

Proposition 4 If y: [0,+») — 2" is a parabolic solution of the N-body problem,
the energy of/ is necessarily zero, moreover we have

I(t) = a5 +0(t3), 00(t)—0, U (¥(t) — U
as t— +oo, where
a = (9Up/2)"/° (5)

In particular, thec-limit of y(t) is contained in the set of normalized central con-
figuration.

Since there are always infinitely many normalized centralfigurations for a

given critical level ofUJ, (the orthogonal group acts off\leaving invariantJ),
we cannot say priori that theco-limit of (t) is a given configuration. If/(t) is
a parabolic solution asymptotic to normalized central @unftionxg (i.e. ¥(t)
converges txg), by Proposition 4 we have the asymptotic estimates

V(t) = axot? +o(t?), as t— 4o (6)

The following Lemma is a converse of Proposition 4.

Lemma5 Let % be a normalized central configurationgU-= U(xo) and a the
constant defined in (5). A solutign [0,+») — 2" satisfying the asymptotic esti-
mates (6) is parabolic and asymptotic t@ x

Proof. We just need to prove thatis parabolic. Replacing (6) in the equation of
motion we findy(t) = ﬁ(tfé), ast — +oo. Therefore, the velocity(t) has a limit
fort — +oo that we denotes. Moreover we have

W) =+ O(3),  t— e
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Integrating this expression we find

V() = Yot + O(13),  t— oo,

thusy., = 0 andy(t) is parabolic.
By the way, ifXg is a normalized central configuration, the path

2

o:[0,40) — 27, w(t)=axt3, (7

is a solution of theN-body problem.y, is called homothetic-parabolic solution
asymptotic tok.

We state now the main result of this section. We recallxhetthe initial configu-
ration of the Main Theorenxg is a normalized minimizing central configuration,
Up anda are as beforgp(t) is given by (7).

Theorem 6 There exists a minimizing solutign: [0,4+0) — 2" starting from
Xi, a sequence of positive numbeis+ +c and a sequence of minimizeys €

Z (i, yo(tn);tn) such thaty, converges uniformly tg on every compact interval
contained inf0,+). Moreovery(t) is collision-free for t> 0.

We prove this Theorem in several steps. At Proposition 9 wevghat if T andt /T
are sufficiently great, for every minimizgre >(x;, yo(t);t) the actionAL(V\ 0T))
has a uniform bound (independenttpfSuccessively, using Ascoli’s theorem and
a diagonal trick, we find the sequentg),/*;. We start with some preliminary
definitions and remarks. Given two configurationandx’ and a timeT, we de-
note by.« (x,X;T) the action of a minimizing path joiningto X' in time T (the
same function is denotep(x, X', T) in [13]). In a similar way, given two positive
real numbersa andb and a timeT, we denote by§(a,b; T) the action (for the

one dimensional keplerian problem with Iagrangiéufk %) of a minimizing path
joiningatobintimeT.
By the homogeneity of), if @w: [0,T] — 2" is a solution of (4) ana& > 0, the
path

@ [0AT] = 2, @) =A3w(t/))

is still a solution of (4). Moreover, ito is a minimizer,@” is still a minimizer. A
similar property holds for solutions and minimizers of a alimensional Kepler
problem. Therefore we have

AMNIXAAT) = A3/ (6 X;T),  SA3aA3bAT)=A3Sab;T).
Lemma 7 We have
< (x,X;T) = S(IX[, [IX];T)

with equality if and only if x and’»are on the half-line starting from zero generated
by X, whereX is a normalized minimizing configuration (iJ&X|| = 1 andU (X) =
Uo).
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Proof. Letw : [0,T] — £ be a minimizer joining«to X in time T and letr (s) =
|@(s)||. By Sundman inequality we have

lw(s)]1? = F3(s),
with equality if and only ifc(s) is parallel tow(s). Sincelg is the minimum ofJ
we have also

Uo
U(@(s) > ok

with equality if and only ifJ (@(s)) = Up. Therefore

o (xX;T) = /OT (M +U(w(s))) ds

> S(IIX[, X1 T)

with equality if and only if@(s) = u(s)X, wherex'is a minimizing normalized
configuration and— p(s) € R, is a minimizer (for the one-dimensional Kepler
problem) joining||x|| to ||¥/|| in time T. This proves the Lemma.

In order to simplify the exposition we introduce the followginotation. I, X' € 2
are two configurationsand9 1 < T <t we term

MK T,T ) =0T+ T)+ A (XXt —T)—Z0,X;t—1).  (8)
In a similar way, ifr,r7 € [0,+) and 0< 7 < T <t we term
AT, T ) =90, T+1)+S(rr’;t—T)—S0,r';t — 7). 9)

Lemma 8 Let0< T < T <tbereal numbers. ¥ € Z(0,x;T) andy € Z(x, yo(t);t)
are two minimizers we have

A VT 60):;T,T,0) <2AE) and A ([Y(T)], at3;7,T,t) < 2A (&).

Proof. In order to prove the first inequality, lef € Z(0,y(T);T+ 1) and( €
Z(0,y(t);t — 1) be two minimizers. The path is nothing but a repametrization
of y0|[0,t] . Sincen andy are minimizers, we have the triangular inequalities

AL(N) <AL(E)+AL(Y|pT
AL(y) <AL(E ) AL(Q),
therefore

AL +ALY|rg) SALE)+ALY) <2AL(E) +AL(D).

This gives the first inequality.
The second inequality is a direct consequence of the firsaodeof Lemma 7.
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£ y(T) y

0 . Yo(1)

Fig. 1. The pathsg, n, { andé in the configuration space.

Proposition 9 There exist three constants X0, T > 0 ands > 1 such that for
every T>T, for every t> ST and for every minimizére (x;, yo(t);t) we have

— 2
V(T)I <KT3.

Proof. Suppose, for the sake of a contradiction, that there exisetiequences of
positive real number&n)/ %%, (Tn) 1%, and(tn); %, satisfying

Kn — +oo, Th — +oo, _tl_—n — 00,
n

and a sequence of minimizeys € Z(Xi, yo(tn);tn) such that for everm e N :

2
[Va(Ta) | > KnTr®.

Lett > 0and¢ : [0,7] — 2 be a minimizer connecting 0 t in time 1. Without
loss of generality we can assume<0r < T, < t,. By homothety invariance and
by the second inequality of Lemma 8 we have

2
P (Il ()2 T, t

Sincew — 00 andtT—f; — o0, by Proposition 21 of the Appendix we have

Tng
_ 2
y <||vnqn>|7a (t_n>3;;’1,t_n> e
T3 Tn T Th
asn — +oo0. This contradicts inequality (10).

We need now an estimates of the minimal actigfiix,x’; T) when||x|| and ||X]|
are less then a given size.

Proposition 10 There exist two positive constants @nd G such that if R> 0
and T>0, if xe 2 and X € 2 are two configurations satisfyingx|| < R and
[IX|| < R, we can find an absolutely continuous pggh: [0,T] — £~ joining x to
X' in time T such that the following inequality holds

R2 T
AL(Yax) Scl? +CZ§- (11)
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In particular we have
R T

Proof. An alternative proof of this Proposition can be found in [13]
Letxy € 2" be any normalized collision-free configuration. We constan abso-
lutely continuous patl : [0,T /2] — 2" joining x to RX, and verifying

R? T

< — —
AL(Vx)_AlT +A2R

whereA; andA; are two positive constants independent®i andx. An anal-
ogous pathy : [0,T/2] — 2" joining Rx, to X' can be constructed in exactly the
same way. Pasting andy, together and choosing; = 2A; andC, = 2A; we get

a pathyy verifying (11). Inequality (12) is an obvious consequentéla).

Letxy = (C1,...,Cn). We termeij = ¢j — ¢ andcij = [¢j|for1<i< j<N.Ina
similar way, giverx = (r4,...,rn) € 2 with ||| <R, we termr;; =r; —r; and
rij = |rij|. Let Ajj be the coefficients

(13)

Fij

=1 <o),
RGj + rij 0.2)

)\ij
and leth be the cardinality of the s€f;j } 1<i<j<n. The inequality << h < N(N —
1)/2 holds. Let us denote

O<mh<..<up<l

the elements of the s¢fjj }1<i<j<n ordered increasingly. We defing = 0 and
Uni1 = 1. Foreveni =0,...,hwe term

T (Hiv1— 4)?

Ti =
3
2

h
25 (Mks1— M)
k=0

h
We observe thaty > 0 andt; > 0 if i > 1, moreovery 1, = T /2. Defining
i=0

0o =0, g =To+..+T_1, i=1..h+1
we haveoy.; =T /2. LetA :[0,T/2] — [0,1] be the path defined by

2
H1 (1—(T0r—ot)3), if te]|0,0)

2
wr (5) BB i tefonai+3], i=1..,h-1

2
b (%50)7 Bt i te o+ §.0ia] i = 10h -1

2

Hn+ (1= pn) (Tt/Ef'},-h)g if telon,T/2).
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The definition ofA (t) in the interval[gp, 01] has some meaning only & < o1
(i.e.if To > 0). The path

W(t) = (1—A(1)x+A(t)RX, te[0,T/2

connectsk to Rx, in the timeT /2. If 1 <i < h— 1, the action of the restriction
% (010142 IS given by

_IRGE [ o
AL(W‘[@}@JrLZi]) - 2 L A(t) dt
oi+3 dt

+ m; :
1o Zen ™ Jo T At AR

Ast € [6i, 0 + 1;/2] the pathA (t) increases fromy; to (i + Li1)/2, hence the
coefficientA i that is closest td (t) is exactlyp;. Using the triangular inequality
we find

[(A=AM)rjk+AOREK| > |rjk—At)(rjk + Rek)|
= (rjk+ Rej)|Aj — A (t)]
> Rej[Aj — A ()]
= Rej(A (L) — i),
Hfo/r”t € (0,01 + Ti/2] and for every I< j < k < N. Therefore, sincgx|| < Rand
Xl =1

w22\ 3 (93 4 »
ALK i, 3)) < 2R (B5) " (2) / §(t—o) 3t

1<j<k<N g A (t) — i
— AR (Ha—w)® | U0p) 2 (5)% /Uﬁ’é dt
3 T R Hiy1—pi \2 o (t— O'i)%
_ AR (Hina—m)? + U0 1
3 T R Mita—H°
In a similar way we find
s 11)2
4_? (Ul+1TI i) 4 3U'(QX£)) NHILMv | — 1’ ,h— 1

A‘-(W‘[m+%,m+ﬂ) <

AL (¥ |jop,01)) 3T R m
2 (1—un)2 | 3U(X,)
AL(K [Uh,0h+1]) < %( rﬁm + RX6 1};41
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That gives

%(um—ui)aw%) T i=0,..h,

o <
AL(%(‘[O—I)O—H»J.] ) — T R Mi+1— Hi ’

and by definition oft;

A(k) < BF (E(Nwl—ﬂi)%) (i_go(llm—ui)%)

o

(14)

o

=
Dl
=

+ 3
Y (Hiy1—Hi)2

h 1
Y (Hit1—Hi)2
h

0

By definition of y; we have

h
Hit1— Hi >0, (Hit1— i) =1.
1+ I i; 1+ |

Let us introduce now the functions

-NM w

fr:RT S R,

_.,
=
=
N
I

fo: RT - R

3

g:RM SR,

Q

=

N
|

—
N
—
N
I
IMsIM=IM=
N N
- Nl

and study minima and maxima 6f and f, with the constraing(z) = 1. We show
by induction orh that

min fi(z) = 1 T max f1(z) = 1. (15)
9(2=1 (h+1)2 9(z)=1

If h= 0, conditiong(z) = 1 implieszy = 1, thus

min f1(2) =1, max f1(z) =1
Jmin, 1(2) max 1(2)

Assuming now the statement is true up to orderl, let us prove it is true at order
h. By Lagrange multiplier theorem, the unique interior @@ point of f; under
the conditiong(z) = 1 is given by the equations

0fy . ag - .
0_25(2)_/\02; (2, 1=0,..,h, A eR, (2 =1,
this gives
z;:i i=0,..,h, fi(z2) = !
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The boundary of the simpley(z) = 1 is the set o = (2, . ,zh)suchthatzz. 1

andz = 0 for at least one indicdsBy inductive hypothesis, the m|n|mum of(2)
on the boundary ofi(z) = 1 is 1/h%/2 and the maximum is 1. Comparing with the
value off; on the unique interior critical point ofy we find (15). In a similar way
one prove
min () =1,  max fo(2) = (h+1)2. (16)
9(9=1 9(2=1
Replacing these estimates in (14) we find

16R? 1 3U(xp)
Awa)s?(hH)z 22— (h+1)
sinceh < ( mequallty (13) is proved.

We give now the proof of Theorem 6.

Proof of Theorem 6 By Propositions 9 and 10, there exist three constant<,
T > 0ands> 1 suchthat forevery >T, for everyt > ST and for every minimizer
Y € (X, w(t);t) we have

— 1
AL(Y|jom)) <aT3 (17)
Let us prove the equicontinuity of the family
{Vlor (18)

wherey is any minimizer joiningy to yo(t) in timet andt > ST. By (17) we have

T . 1
|| 1) Pds< 2aT3,
0

hence, by Cauchy-Schwarz inequality, for everg 8 < § < T we have

o 3
) ¥l < [ I7du< V53 (/ i)
< (2aT3)3/5—¥.

This gives the equicontinuity of the family (18). By the wajncey(0) = x;, the
family is also equibounded. By Ascoli theorem we can find &ujent sequence
(tn) , satisfyingt, > ST and a sequence of minimizegs€ 2 (X, yo(tn);th) such
that the restrictior{yn | 0.T] )iy converges uniformly. Applying this argument on
an increasing and divergent sequelﬁ'ﬁ@k_l, by a diagonal trick we can find an
increasing and divergent sequence of tirtte, ~, a sequence of minimizeys €

(%, Yo(tn);tn) and a patty : [0,+) — 2" such tha{y,),.~ converges uniformly
to y on every compact interval. Moreover, by lower sem| continof the action
we have

Wik

AL(y]jom)) < liminf A (v o) <aT (19)

for every T > 0, proving in particular thaAL(yhovT]) is finite. Thereforey(T)
is a non-collision configuration for almost all > 0. We prove now thay is a
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Yo )

Fig. 2. og nis obtained by pasting (reparametrized) with the straight line joinigT) to
Ya(T)

minimizing path. Since we want to show tMEo,T] is a minimizer for everyl’ >
0, it is sufficient to prove thayhoﬂ is a minimizer forT arbitrary great. We
can assume, without loss of generality, thé ) is a non-collision configuration.
Assuming, for the sake of a contradiction, theﬁoﬂ is not a minimizer, there
would exists an absolutely continuous path[0, T| — 2" joining x; to y(T) such
that

AL(0) <AL(Y|0oT])- (20)
Moreover, there existsl > 0 andg > 0 such that
vx e B(y(T),€) = U(x) <M,
whereB(y(T),€) is the closed ball centered i{T) with radius€. Since the se-

guencen ’[O,T] converges uniformly t(y\ 0,7]» given 0< & < € there exists a pos-

itive integerNr ¢ such that for everyn > Nr ¢ we havey,(T) € B(y(T),€). Let
Oen: [0,T] — £ be the path defined by

{o(%t) if te[0,T—¢g
Oen(t) =

M)+ 5 n(M) i te[T—£T),

&

wheren > Nr . By constructionog n joins x; to y(T) in time T (see Figure
2). Moreover, ift € [T — ¢, T], the configuratiorog n(t) is contained in the ball
B(y(T), ). Computing the action of , we get

o(%) 2dt+/(;T8U (o (%)) dt

T—¢
Aoen) <3 (+5)° |

=A(0)+O(¢).
Inequalities (19) and (20) imply

AL(Ten) <AL(Wh|o1])
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if € is sufficiently small anah sufficiently great. This contradicts the minimizing
property ofy, and proves thagis a minimizer. By Marchal theoreny,is collision-
free (and in particular it is a real solution of the N-body Iplem) fort > 0. This
complete the proof of Theorem 6.

4. Parabolicity of the solution

To complete the proof of the main theorem we still have to stioat the limit
solutiony(t) is parabolic and asymptotic 1@. By Lemma 5 we just need to verify
the asymptotic estimates (6). We introduce now the follgwin

Notation Given the functions (f,Xs,...,Xn) and dr,xs,...,X,) # 0, we write
f(r,xg,...,%) = 0r(g(r,Xa,...,Xn)) @s r — ro if the quotientm is infinitesi-
mal as r— ro, uniformly on(xg, ..., Xn). In a similar way, we write fr,xs,...,xn) =
O (g(r,xq, ..., Xn)) if the quotient% is locally bounded for r close topr
uniformly on the variablegxy, ..., Xn).

Let us give now a refinement of Lemma 8.

Lemma 11 Lett > 0and& € (0,x; T) be a minimizer. There exist two constants
T > rands> 1such thatfor every T T, for every t> ST and for every minimizer
Y€ Z(%, y(t);t) we have

M V(T), po(t);0,T,t) < 2AL (&) + Or(T~5)
N ([V(T)|l, at3;0,T,t) < 2AL(&) + &7 (T 5).
asT— +oo.

Proof. The second inequality is a direct consequence of the firsand®f Lemma
7. Let us prove the first inequality. We consideas a fixed constant, while andt
are variables. LeT > 0,5> 1 andK > 0 be like in Proposition 9. Without loss of
generality we can assunie> 7. LetT > T andt >ST. Letnt,.; € Z(0,y(T); T+

T) be a minimizer. The path

Tr0T] =2, TS =nre ($s) |
is a reparametrization afr_ ¢ and it joins O toy(T) in time T, thus
A (0,y(T);T) <AL(M7).
A computation of the action df; gives
AL(r)=A+01/T)A(NT41), T — +eo. (21)

Sincenr ¢ is a minimizer joining 0 tgy(T) in time T + 1, by Propositions 9 and
10 we obtain .
K2T3 T+T 1

+Co—— =0(T3). 22

AL(NT41) <C1
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Combining inequalities (21) and (22), by definitionrpf,; andn; we get
AOYT)T) A OQYTT+D) <O(T 5. Toto (23

In a similar way, let us consider a minimizgf € Z(0,y(T); T) The path

Tro 0T+~ 2, T =m( (715 )s):
is a reparametrization afr, and it joins 0 toy(T) in time T + 7, hence
A OYT)T+T) <ALMT40)-
Arguing as before we get the estimates
SOYT)T+1)~dOWTET)SOT3), Tt  (24)
Combining inequalities (23) with (24) we obtain
SOYT)T+1) =S/ OYT)T)+0r(T3), To+o,  (25)

uniformly ont > ST andy € (0, y(t);t). With the same argument we find the
following estimates

A (0,)6(t)it—T) — (0, )6(t)it) = Gi(t 3), t— +oo. (26)

Replacing (25) and (26) into the first inequality of Lemma iBce we assume
t > ST ands > 1, we obtain the first inequality of this Lemma. This ends thaof

To simplify the notations we introduce now the functions
F . X x(1,40) >Ry
F(%,8) =AM (%, ¥0(3);0,1,5) = &/ (0,%1) + & (X, Yo(s);s— 1) — & (0, yo(8); 9),

and

%:RJr X (1,+°°) —>R+
4(r,s) =JV(r,as%;0,1,s) = S(O,r;1)+S(r7as§;s— 1) —S(O,asg;s).

Lemma 12 Given s> 1 and x&€ 2" we have
F(x,8) >0

with equality if and only if x= axg.
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Proof. By Lemma 7 we have
Z(x.8) =4 (|x],9),

with equality if and only ifx = ||x||%o. Sinceu — aus is the unique solution of the

one-dimensional Kepler problem joining 03 in time s (see Lemma 16 in the
Appendix), it is also a minimizer, therefore

9(r,9 >0,

with equality if and only ifr = a. This proves the Lemma.

By homothety invariance, the conclusion of Lemmas 11 andal®be written in
the more compact form

0< T3z (UI) L

) < 2A8) + or (T2

—|I

(27)

—|I

0<TV3y (IEH L) < 2A (&) + o (T-29).

asT — +oo, uniformly ont > ST andy € 3 (0, yo(t);t) minimizer.

The following Theorem is a main tool in the proof of the Mainebinem. It shows
that if #(x, s) is sufficiently small and is sufficiently great, the configuratioris
close toaxg.

Theorem 13 There exis€ > 0 and a functiond : (0,€] — R satisfyingd(e) =
o(1) ase — 07, such that for everg € (0,€], there exists; > 1, such that for
every s> %, the set of configurations« 2~ satisfying the inequality

F(x5) <€ (28)
is contained in the baB(axg, d(¢)).

Before giving the proof of Theorem 13, we show that this tleeorachieve the
proof of the Main Theorem.

Proof of the Main Theorem. Let y : [0,+) — 2" be the limit solution con-
structed in Theorem 6 and lgt € X(x;, yo(tn);tn) be the sequence of minimizers
uniformly convergent tg/ on every compact interval. L&be as in Theorem 13,
let T ands be as in Lemma 11 and @ € < €. An immediate consequence of
inequalities (27) is the existence ©f > T such that ifT > T, andt, > ST we

have Mt
W n

1)<

y( TS ’T)_g

W(T)
T2/3

and by Theorem 13

for t, sufficiently great. The sequeno;ﬁ][oﬂ converges uniformly tO/][o,ﬂ as
n— +oco0, hence

—aon <d(e

|75 -] <2
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for everyT > T,. Sinced(e) — 0 ase — 0, we have proved that

y(T)

m — A Xp, as T — +°07
that is to sayy is parabolic and asymptotic tq. This achieves the proof of the
Main Theorem.

The next section is devoted to prove Theorem 13.

5. Proof of Theorem 13

In order to achieve the proof of Theorem 13 we comparé\tmdy problem with
a Kepler problem on the configuration space with a lagrangieen by

X2 u _
Lo(x,x):% ”—XOH (XX) €2 x 2.

Let A.,(w) denote the action (for the lagrangiag) of an absolutely continuous
path w and .« (X1, X2;S) the infimum of A_ (@) over all absolutely continuous
pathst joining X1 to x, in time's. We have the inequality

o (X1,%2;8) > o(X1,%2;) > §(||xal], X2

'S),

with o7 (x1,%2;S) = @(x1,X2;S) if and only if there exists a minimizing path (for
the lagrangian.) @ : [0,5 — 2 joining x; with x, such thatJ (@(u)) = Uy for
everyu € [0,s], and.af(X1,%2;S) = (||x1]|, [|[%2ll; s) if and only if x; andx, are on
a same half-line starting from the origin. The function

Fo: X x(1,+0) =Ry,
Fo(x,5) = (0, 1) + (X, yo(S);5— 1) — (0, y(S); S),

verifies the inequality
F(x,8) > Fo(x.5) = 4 (||x]|,s) > 0. (29)

Roughly speaking, to achieve the proof of Theorem 13, wearsp# (x,s) with
Fo(x,s) and we show that if is small ands great, the inequalityp(x,s) < € can
be satisfied only ik is in a small ball centered iax.

This goal will be achieved in two steps. In Proposition 14 wevp that ifs is
sufficiently great, the set af € R verifying ¢(r,s) < € is contained in a small
interval centered imr. Hence, by inequality (29), the set of configuratioverify-
ing .7 (x,s) < € is contained in a thin hollow sphere with inner and outeroadi
close toa. In Proposition 15 we show that the set of configuratinnerifying
Fo(x,8) < € is a small neighborhood afxg.



18 E. Maderna, A. Venturelli

Proposition 14 There existe; > 0 and a functiond; : (0,€1] — R satisfying
d1(g) = o(1) ase — 0*, such that for everg € (0,%] there exists} > 1, such
that for every s> 8}, the set of re R, satisfying the inequality

g(r,s) <&

is contained in the intervdlr — 3 (&), a + d1(¢)] .

Proof. By Proposition 21 of the Appendix there exists- 0 ands > 0 such that
for everyr > and for everys > Swe have¥(r,s) > 1. Without loss of generality
we will assumen < < 5%/3. By Proposition 20 of the Appendix we have

% (r,9) = S(0,r;1) — or 2 +g(r,9),

whereg(r,s) = 0s(1) ass— +oo, uniformly on 0<r < s3,and whergdy = (8Uo)% .
Let us introduce now the function

G(r) = S(0,r;1) — Bor 2.

By Lemma 16 the solution joining 0 with in time 1 is monotonic for > (3,

1/3
wheref3 =2 (%) / . We remark tha8 < a. The energy(0,r; 1) of this solution

is negative if and only if < r < a, moreoverh(0,3;1) = —Up/f3. Let us term
h=h(0,r;1). The actionS(0,r; 1) is given by

- U -3 U

/T1/2(h+vo)du+/ T,/z(h+7">du_hif r<B
S(0,r;1) = 0 '

r

/,/2<h+$)du—h if r>g,

0 u

hence by Lemma 18, the functions+ S(0,r; 1) andr — G(r) are of clas¥™ on
(0,40c0), moreover we have

—\/2(h(o,r;1)+$)—\/¥7°if 0<r<p
\/2(h(o,r;1)+$)—\/2770 it r>p,

proving thatG(r) is in fact of class&? on (0, ) U (B,-+). Since the function
r — h(0,r;1) is increasing anti(0, a; 1) = 0, the functionG(r) is decreasing for
r € (0,a) and it is increasing for € (a,+). The absolute minimum d&(r) is
achieved at = a, and we have

a
G(a) :/0 %du—\/Suoa —0.

G(r)=
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By Lemma 18, a direct computation of the second derivativ@ af a gives

1
5U¢

G(a):2

)

NI
NIl

a

hence, sinc&(a) = G'(a) = 0, there exist® > 0 andC; > 0 such that
vrela—d,a+8], G(r)>Cy(r—a)

Without loss of generality we shall assuroe- 6 > 8 anda +0 < T. Letg; =
=2
min{%, 1} and let us define the function

51 : (ngl] - R+7 51(8) = \/éjj

SinceG(r) is decreasing for < a and increasing for > a, for everye € (0,%;]
we have

Vr e (0,0 —81(e))U(a+8i(g),+»),  G(r)>Cidi(e)®>=2e.  (30)

We come back now to the functiofir,s) = G(r) +g(r,s). Sinceg(r, s) is infinites-
imal for s — -+ and 0< r < s3, for everye € (0,%;] there exist®; > Ssuch that
for everys > st and for every verifying 0<r < 3 we havelg(r,s)| < e.If s>3t
andr > T we have
g(rs)>1>€ >¢.

If s> st andr € (0,1), by (30), for everyr € (0,a — &1(€)) U (a + & (€),T) we
have

4(r,s) =G(r)+9(r,s) >2e—e=¢.

This ends the proof of the Proposition.

We introduce the following notation : given two configuraitiax; and xp, the
angle betweerx; andx, is denoted by the symbaf(x,x;). We always have
0< Z(x1,%) <.

Proposition 15 If €y andd; : (0,€1] — R are like in Proposition 14, there exist
€ € (0,g1] and G > O such that given the function

5: (0,8 =Ry,  &(¢) = (Cre)Z, (31)

for everye € (0,€], there exists? > 1 such that for every & 2 and for every
configuration xe 2" satisfying

Xl —al<a(e),  Z(x%0)> S(e) (32)

we have
Fo(x,8) > €.
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Proof. The basic tool of this proof is Lambert's Theorem. Our refexis [1].
LetC, > 0 andg € (0,€1]. Let & : (0,€] — R, be the function defined in (31). In
the following we will ask more precise conditions@pande. Let0< € <€, letx
be a configuration verifying (32) argt> 1. The minimizer (folLo) o : [0,s— 1] —

Z joining x to y»(s) in time s— 1 is a collision-free Keplerian arc, hence it is
contained in the plane generated by@ndyy(s). Introducing a system of polar
coordinates in this plane, we can identifyvith re'® andyy(s) with asi eRcCC
where

r—al<d(e), &le)<|ol<m

Moreover, the patlw can be written in polar coordinates by

o(u)=pue?v, uelo,s—1],
where

pO)=r 0)=6

p(s—1)=as3 ¢@(s—1) e 2nZ.
Sinceo is collision-free,p(u) > 0 for all u € [0,s— 1]. By definition of %, and
using the properties afg we have

Fo(re'®,s) = o(0,1e'%; 1) + a#(re'®, 1o (s); 5— 1) — (0, yo(S); 9)
= S(0,r;1) + H(re'®, yo(s);s— 1) — S(0,ass; s).

We prove now that is adirect paththat is to say, the total variation of the polar
angle g is less than or equal tar. Assume, for the sake of contradiction, that
|p(s— 1) — @(0)| > m. Eventually changing the orientation of the plane, we can

assume without loss of generalipys— 1) — ¢(0) > 11, hence there exists a unique
integerk > 1 and a unique real numbare (-1, 1] such that

¢(s—1) — ¢(0) = 2kmr+a.
The pattpe'? defined by
_ n o
B 2kmm+a

(@(u) — (0)),

has the same ends as the original one, moreover

_ 2 S )
ALO@e"P)—ALo(pe'q’):%l(sz’w) —1] [ wdu<o

and we get a contradiction. Lambert’s Theorem state that lind x, are two
configurations and > 0, the actiony(Xy, X2; T) of the direct Keplerian arc joining
X1 to Xz in time 7 is a function of three parameters only : the timehe distance
|[x1 — x2|| between the two ends and the sum of the distances betweendse e
and the origin (i.e|[x1]| + ||X2]|). Comparing nowo with a direct collinear arc, by
Lambert’s Theorem we find

o(re'® yo(s);s— 1) = S(dy(r, 8,5),dy(r, 8,5);5— 1),
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where
rrass —\re"’faS% \
di(r,8,8) = ——F5—,
r1as3 ¢jre® as3)|
do(r,0,8) = ——F5——.
Moreover > 2
|re|9 —as3 | = qas3 —rcos@ + I (I’, 675)7
where

I(r,8,s) = Os(s %%, s— +oo

uniformly ond,(€) < |6| < mand|r — a| < & (€). Therefore we get

du(r,6,s) = r (Ltgesd) _ Lo

dy(r,8,s) = as% +r (%) + I(r,ze, )

SinceS(0, ass; s) = aos% , applying Proposition 20 of the Appendix$0di (r, 8,s),dx(r, 8,5);5—
1) we find

1
1 s8  I(r,0 2
0 - (r7 ’S)) +g(r7eas)a

Fo(re'®,s) = G(r) + Bor 2 [1— ( 5 o

whereg(r, 8,s) is infinitesimal ass — +o, uniformly onr and . In Proposition
14 we showed thaB(r) > 0 for all r > 0. Lets > 0 such that for everg > <2,
for every6 satisfying| 8| € (& (), 1] and for everyr € [a — d1(€), o + d1(€)] we
have
16,9)|
2r
Since the functiox — cosx is decreasing if0, 17|, chosingC, > 4 and using the
classical expansions of cesnd(1+ x)% we find

06,9 <, ‘

1
Fo(re'®,s) > Bo(a — &(¢))’ [1— (Lot +£)2} €
1
e[t (- 52)" (554 uc0) -]
wherep () = 0(1) as€ — 0. Chosing O< € < ;1 such that

_ 1 a
VfE(O,S], |u(€)|<§a and |51(£)|<§7
and chosin@, in such a way

16v2
C2>5+—\/1_

Bot?

we find

Fo(re'® s) > ¢,
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for everyr € [a — &1(€), a + 91(€)], for everyO such that8| € (&(¢), ] and for
everys > 2. This proves the Proposition.

The proof of Theorem 13 is essentially the juxtapositiorheftivo previous Propo-
sitions.

Proof of Theorem 13

We use the same notations of the previous two Propositionen@ < (0, €], let
S = max{st,2}. By Proposition 14 and 15 and by inequality (29)s it S andx
is a configuration verifying# (x,s) < € we have

[[X[|—al<&(e) and Z(x,Xo) < &(€). (33)
Let & be the function

5:(08 =Ry, (€)= [2a(a+Bi(e)) (1 cosd(e)) + d(e)?] 2,

an easy computation show thate) — 0 ase — 0 and the set of configurations
verifying (33) is contained in the bal (axg, d(€)). The Theorem is proved.

Appendix : Some estimates for the one-dimensional Kepler Riblem

The Kepler problem on the half-lirie, is defined by the equation

. Uo

r=- r_27 (34)
whereUg > 0 is the gravitational constant. The Lagrangian functiothefproblem
and the energy are written

A parabolic solution of the Kepler problem is nothing but dution with zero
energy. There is a unique increasing parabolic solutiomgiyr (s) = as?® where

a = (9Up/2)Y/3. Given 0< a < b, the energy of a solution connectirgto b

is necessarily greater or equal tdJo/b. Moreover, if 0< a < b, for h > 0 or

h = —Up/b there is a unique segment of solution of enengpining a to b, this
solution increases frorato b. If —Up/b < h < 0 there are exactly two segments
of solutions of energ joining a to b, a monotonic one, that increases frarto

b, and a non-monotonic one, that increases feota —Up/h and decreases from
—Up/hto b. LetS(a,b) be the time employed by the solution of energyy/b to
connectato b. We have the following lemma, whose proof is left to the reade

Lemma 16 Given0 < a<b, and s> 0, there exists a unique segment of solution
joining a to b in time s, moreover, the solution is monotoharid only if0 < s <
5(a,b).

Definition 17 Given0 < a < b and s> 0, we denote by ta, b; s) the energy of the
unique segment of solution joining a to b in time s, and we tieby a, b;s) the
Lagrangian action of this solution.
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Since the solution joining to b in time sis unique S(a, b; s) is also the minimum
of the action of absolutely continuous paths joinaip b in time s.
We shall study the behaviour of the functior> h(0,r; s) for fixed s > 0.

Lemma 18 Given s> 0, the function r— h(0,r;s) is €’ in (0, +o0) with a strictly
positive derivative. Moreover

oh 2
_— 3 =
o (0,as3;s)

The proof is left to the reader. We shall also need the follgativo Propositions

5Up
a2st

Proposition 19 Let€ > 0. We have
2

S(O,r;1+¢e):m

+0r(r2) (35)

as r— +oo, uniformly fore € [0,€].

Proof. The parabolic solution — aus has zero energy, henb€0, o (1+ e)%; 1+
€) = 0. Since we are interested at what happens when+o, we assume >

a(1+§)%. By Lemma 18 the energh(0,r;1+ €) is positive and the solution
joining O tor in time 1+ € is monotonic. The functioh = h(0,r; 1+ ¢) verifies

the identity r . y A
u r
bre= [l == e () 9
2(h+ U—Lf)

whereE : R, — R is defined by

E "2 R
(X)—/O ms Xe Ry,

and it verifies the estimates

(37)
E(x) =x+0(x), as X— +oo.
Let us prove now that
h(O,r;14+¢€) — +oo, as r— +ow (38)

uniformly on¢ € [0,€]. Assuming, for the sake of contradiction, that (38) is false
there would exist two sequenge— +o andey € [0, €] such thah(0,rp; 1+ &) is
bounded. To simplify notations let us denbte= h(0,rn; 1+ &,). By identities (36)
and (37), the sequentgr, is bounded too. This implies tha — 0 asn — +oo.
SinceE(x) is continuous and strictly increasing, identity (36) gives, — 0 as

n — —+o0. Applying again (36) and the first of (37) we obtain

3 3
. T Uo n 2 UO 2 hnrn _
nlirﬂw1+gn_nlmm\/§<Uo> (hnrn) E( Uo ) -
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that gives a contradiction and proves (38). Writing now (86)

r Uo hr)
l4e=—(—|E(— ),
7 (e (G

using the second of (37) we obtain the following estimates

1 r 2
h=h(O,ri1+6)=3 (m) +0r(r?) (39)

asr — +oo, uniformly one € [0,€]. Let us consider now the actid{0,r; 1+ €).
Lett — u(t) be the solution joining O with in time 14 €. We have

S(O,r;1+£):/ol+g(u )dt—/ \/7

1+ du- (40)
hu
= (v (%) -%E (&)
whereF : R, — R is defined by
X [s+1
= —d
I
The functionF verifies the asymptotic estimates
F (x) = x+ 0(x), X — 00, (41)
Replacing (39) in (40) we find (35).
Proposition 20 Let A> 0 and B> 0 be two constants. If we set
Qo = (8Up)2 and fo= (8Uo)2
then we have
S a(s? +&);s+ 1) = aos® — for? +0s(1) (42)

as s— 4, uniformly on re [0,s%/3], |&| <A and|n| <B.

Proof. We first prove that the (unique) solution joiningo a (s*2+ &) in time s+
n is monotonic. In order to simplify the exposition let us tekrt€ ,s) = a(s%/3+
£). We shall compars+ n with the time employed by the solution of energy
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A(E 5 o connect to A(&,s). As usual we denotg(r,A(&,s)) this time. By
definition ofa we have

"A(€.9)
SrAES) = | du

where we define
X v
H: R, —R, H(x):/ —dv.
0
Since we assume

0<r<s’® and [&|<A

we have
r

A(E,9)

An easy computation shows that

—0 as S— 00,

HO) = 224 0082),  x—0,

hence we get the estimates

(rA(E,S) = %s(1+ Oss *1/2))

Smce > 1, we haves(r,A (¢,s)) > s+ n for ssufficiently great, and by Lemma
16 the solutlon joining to A (€,s) in time s+ n) is monotonic.

Leth=h(r,A(&,s);s+n) be the energy of the solution joinimgo A (£, ) in time
s+ 1. We prove thah = 0s(1/s) for s — +, uniformly on 0< r < s%/3, || <A
and|n| < B. The energy satisfies the identity

MES  du
on= [
' Yo
,/2(h+ u) )
553/2
- (2Up) 1/2/
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Introducing the functions

1/2
X(rasaf):(A(g,s)) ) y(SaE):%v (44)

A A (E,9)s+n),  2Asn) =1,

k(r7 S7 E? n) =
and using the definition af, the relation (43) becomes

F(X(ESE%Y(S,E)az(sa’])vk(rasaf,ﬂ)) =0,

whereF (x,y,z k) is defined by

ooz = [ (=) av- 2 gy ¥
vz = [ (1) @ 5araay 2

We think now at(x,y,z k) as independent variables. Using the implicit function

(45)

theorem we show that the equation
F(x,y,zk) =0 (46)

defines a uniqué functionk = k(x,y, z) for (x,y, 2) close to(0,0,0). We observe
thatF (x,y, z k) is of class#’? with respect to the variablgsandz. MoreoverF is

derivable with respect te and
oF 2xX| oF
il Ky=-—=""1__ —(0,0,0,0) =0.
3% X%z k) @1 k@2 7% (0:0.0.0)

is derivable with respect twandk, and we have

9%F 2 (2+kd)
XY,z K) = — 25
gXZ( Y2 ) (1 kx2)3/2 ( )

x|

d
WBFX (X7 y7 27 k) = (l+kX2)3/2 9
showing that"—F is of class#™ in a neighborhood of0,0,0,0). In particular

9%F 0°F
70000 =0 ~—(0000=0.
By the theorem of differentiation under the integral sigf, st and 2% are

well defined, moreover

/1( v )3/2dv, 2£(0,0,0,0) =

oF
ok (% ¥%,2.K) = 1+ kv
92 ! v ik 3
2 (x y,2K) = /(1+kv) dv  2£(0,0,0,0) = &,
3 2
= XN 9°F(0,0,0,0) = 0.

9%F
IxJk (X7 Y,Z, k) - (1+k>(2)3/2 )
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By the way, we have also
2F 02

These computations show thatis of class%’ in a neighborhood 0f0,0,0,0).
Moreover

1
F(0,0,0,0):/ \/\7dv—§:0.
0

By the implicit function theorem, equation (46) definegafunctionk = g(x,y, 2)
in a neighborhood of0, 0,0) such thag(0,0,0) = 0 and

g 9%g 9%g & _
&(0,0,0) X 5-5(0,0,0) = axay(0,0,0) %07 ——(0,0,0) =0,
that is to say
9(xY,2) = O(ly| +12) + 00 +y* + 2. (48)

Coming back to original variables, identity (48) gives

] U 1/2
h(r,/\(f,s),S—Frl): )\(Eos)g<(ﬁ) 7#7%

= 05(1/9),

(49)

ass— +oo, uniformly on 0<r < s%, €] <A and|n| < B. We compute now
the actionS(r,A (£,s); s+ 7). Since the solution joiningto A (&,s) in times+n
(denoted heré— u(t)) is monotonic, we have

"2
s<r,A<£,s>:s+n>:/f” <“T“>+%>dt

r

Introducing the integration variable= 57— by (49) we find

S(r,A (€,8);5+1) = (2UgA <s,s>>%A<x, k) + 0s(1), (50)

wherex=x(r,s, &) andk = k(r,s, &, n) are the functions defined like in (44) and

A(x,K) = /le\/k+\—1/dv:Ao(k) —B(xk),
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1 1 X2 1
:/ K+ = dy, B(x,k):/ K+ = dv
Jo \ 0 \

Once again, we think atandk as independent variables and we give an asymptotic
expansion ofA(x, k) for x andk close to 0. By the classical theorem of differentia-
tion under the integral sigyy (k) is derivable in 0 and

where

Ao(k) =2+ g +0(K).

Moreover we have the following estimates f&(x, k)

B(x k) — OXZ dv, e (ﬁ—f)

X2
= 2|x k/ ———dv
b+ V1+ kv+1
= 2|x|+ O (K|x®)
hence K
ADGK) =2+ 2= 20X + O (K|x[3) +o(k),

asx — 0 andk — 0. Replacing in (50) and using (49) we find the final estimates
(42).
The two previous Propositions imply the following one.

Proposition 21 Giveng > 0, we have

lim W(r,as%;e,l,s) = +o0,
S— 40
I — +o

uniformly one € [0,€], where.#" is the function defined in (9).

Proof.If0 <e<gand0<r < s%, from Propositions (19) and (20) we have :
2

2(1+¢)

ﬂ(r,as%;s,l,s): (1+0r(1))—[30r%+05(1),

therefore .
lim A (r,as%;e,1,8) = 4, (51)

I — 400
1
0<r<ss

uniformly on € € [0,€]. Let us consider now the case> s3. Forgetting the term
S(r, as ;s—1)in A(r, as ;€,1,s) and applying again Propositions (19) and (20)
we find . .

A (r,as?;e,1)s) > 2(l+£) (140 (1)) — apss +0s(1)

Z 2(l+e) (1+0s(1)) - CIOS%' +0s(1).
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This estimates implies the limit

lim /V(r,as%;e,l,s) = +oo, (52)
S— 400

1
r>s3

uniformly on¢ € [0, €].
The two limits (51) and (52) achieve a proof of the Propoaitio
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