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Abstract

Given a compact metric space X and a continuous map f from X
to itself, we construct a barrier function for chain-recurrence. We use
it to endow the space of chain-transitive components with a non-trivial
ultrametric distance and to construct Lyapunov functions for f . Most
of these constructions are then generalized on an arbitrary separable
metric space to a continuous compactum-valued map.

1 Introduction

The purpose of this paper is to shed a different light on chain-recurrence for
dynamical systems on arbitrary separable metric space. The initial work of
Conley [Con78] describes the structure of chain-recurrent points in terms of
attractors of f and their basins of attraction. It is in line with the theory of
dynamical systems done in the last fifty years, see for example [Shu87]. The
work of Conley is surveyed by Hurley [Hur92, Hur98] where it is extended
to the settings of arbitrary separable metric space. Moreover, in this work
Hurley constructs a type of Lyapunov function which gives a good insight
in the structure of chain-recurrent points. Here is a statement.

Theorem 1.1. Let X be a separable metric space and f be a continuous
map from X to itself. Then there exists a continuous function φ : X −→ R
such that

i) The function φ is nonincreasing along orbits of f and is decreasing
along orbits of non chain-recurrent points.

ii) The function φ takes on distinct values on distinct chain-transitive com-
ponents and sends the set of chain-recurrent points in a subset of the
Cantor middle-third set.
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The point of view taken in this paper is different and is inspired by the
recent work of Fathi [Fat] in Weak KAM theory. We will associate a cost
to chains in order to construct a barrier function, called a Conley barrier.
Here are its main properties.

Theorem 1.2. Let X be a compact metric space and f be a continuous map
from X to itself. Then there exists a continuous function

S : X ×X −→ R+

such that

i) For every (x, y) ∈ X2, we have S(x, y) = 0 if and only if for every ε > 0
there exists an ε-chain from x to y.

ii) For every (x, y, z) ∈ X3, we have S(x, y) ≤ max(S(x, z), S(z, y)).

The existence of such a barrier allows to describe chain-recurrence only
in terms of continuous functions. Moreover, the ultrametric inequality sat-
isfied by S will induce a non-trivial ultrametric distance on the set of chain-
transitive components. Last, the nonincreasing along orbits of f offers a
fundamental starting point towards the construction of Lyapunov functions
for f . This will lead to a similar result as Hurley’s one, at least in the case
of a separable locally compact metric space.

For the sake of clarity, the first part of this paper is devoted to the
compact case. Nevertheless, the compactness assumption is not essential to
obtain a Conley barrier. This is the object of the second section. Moreover,
we will deal with compactum-valued maps since this does not raise any new
difficulty. Finally we highlight the link between chain-recurrence for the
identity map on X and topological properties of X.

2 The compact case

2.1 Definitions and background

Throughout this section (X, d) will denote a compact metric space and f a
continuous map from X to itself.

Definition 2.1. Let (x, y) ∈ X2 and ε > 0. An ε-chain for f from x to y is
a finite sequence (x0 = x, ..., xn = y), n ≥ 1, of X such that

∀i ∈ {0, .., n− 1}, d(f(xi), xi+1) < ε.

A point x in X is called chain-recurrent if for every ε > 0 there exists an
ε-chain from x to x. We denote by R(f) the set of chain-recurrent points
of f . We define an equivalence relation v on the set R(f) by x v y if and
only if for every ε > 0 there are ε-chains from x to y and from y to x. The
equivalence classes are called the chain-transitive components of f and the
associated quotient space is denoted by R(f)/ v.
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It would be straightforward to verify that these notions are topological
and do not depend on the metric d on X. In fact, it will be made clear in
section 3. We now describe the main object of this paper.

Definition 2.2. Let X be a compact metric space and f be a continuous
map from X to itself. A Conley barrier for f is a continuous function

S : X ×X −→ R+

with the properties that

i) For every (x, y) ∈ X2, we have S(x, y) = 0 if and only for every ε > 0
there exists an ε-chain from x to y.

ii) For every (x, y, z) ∈ X3, we have S(x, y) ≤ max(S(x, z), S(z, y)).

With respect to property i) any Conley barrier is in fact a barrier for
chain-recurrence. The following simple remark will be used many time.

Remark 2.3. For every x ∈ X and ε > 0, the chain (x, f(x)) is always an
ε-chain from x to f(x). Thus we have S(x, f(x)) = 0 everywhere on X.

As stated in the following theorem, we can always find a Conley barrier
for dynamical systems on compact metric space.

Theorem 2.4. Let X be a compact metric space and f be a continuous map
from X to itself. Then there exists a Conley barrier for f .

Proof. The proof of this theorem will be done in section 2.4.

Corollary 2.5. The set R(f) is a closed subset of X.

Proof. It follows from property i) that R(f) = {x ∈ X, S(x, x) = 0}. Since
S is continuous, this set is a closed subset of X.

Proposition 2.6. The subset R(f) and the chain-transitive components are
invariant under f .

Proof. First, we will show that

∀x ∈ R(f), S(f(x), x) = 0.

Let x ∈ R(f). If f(x) = x, there is nothing to prove. Therefore, we can
assume that d(f(x), x) > 0. Let ε > 0 and consider η > 0 such that η <
min(d(f(x), x), ε2). Since x is chain-recurrent, there exists a η-chain (x0 =
x, ..., xm = x) from x to x. The condition η < d(f(x), x) forces m ≥ 2. By
continuity of f , reducing even more η if necessary, we can also assume that
f(B(f(x), η)) ⊂ B(f2(x), ε2). The chain (f(x), x2, ..., xm = x) is then an
ε-chain from f(x) to x. Since ε is arbitrary, it follows that S(f(x), x) = 0.
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Now if x ∈ R(f) then S(f(x), f(x)) ≤ max(S(f(x), x), S(x, f(x))) =
0 by remark 2.3. Thus S(f(x), f(x)) = 0 and f(x) ∈ R(f). Moreover,
since S(x, f(x)) = S(f(x), x) = 0 the points x and f(x) are in the same
chain-transitive component. Thus the subset R(f) and the chain-transitive
components are invariant under f .

Before making S explicit, we are going to develop two consequences:
an ultrametric distance on the set of chain-transitive components, and the
existence of Lyapunov functions for f .

2.2 An ultrametric distance on the space of chain-transitive
components

Pseudo-distance In this section, we recall some general facts about
pseudo-distances. They will be used to endow the space of chain-transitive
components with an ultrametric distance.

Definition 2.7. A pseudo-distance on a space E is a function

d : E × E −→ R+

such that

i) For every x ∈ E, we have d(x, x) = 0.

ii) For every x, y, z ∈ E, we have d(x, y) ≤ d(x, z) + d(z, y).

iii) For every x, y ∈ E, we have d(x, y) = d(y, x).

Let d be a pseudo-distance on E. We define an equivalence relation R
on E by

xRy ⇐⇒ d(x, y) = 0.

We denote by E/R the set of associated equivalence classes. The following
lemma is well-known so we omit its proof.

Lemma 2.8. The pseudo-distance d induces a distance d on the quotient
space E/R. Moreover, if the space E is endowed with a topology making d
continuous, then the quotient topology is finer than the topology defined by
the metric d.

Remark 2.9. In the lemma above, if the pseudo-distance d satisfies the
stronger ultrametric inequality

d(x, y) ≤ max(d(x, z), d(z, y))

then the distance d inherits of the same property and thus defines an ultra-
metric distance on the quotient space E/R.
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Ultrametric distance induced by a Conley barrier on the set of
chain-transitive components The existence of a Conley barrier leads
to the existence of a non-trivial ultrametric distance on the set of chain-
transitive components. To see this, let us remark that the equivalence rela-
tion v defined on the set of chain-transitive components can be formulated
in the following way

x v y ⇐⇒ max(S(x, y), S(y, x)) = 0.

The quantity
∆(x, y) := max(S(x, y), S(y, x))

is a symmetric expression in x and y and inherits of the ultrametric inequal-
ity satisfied by S. Thus, on the subset R(f) = {x ∈ X, ∆(x, x) = 0} the
function ∆ is satisfying all axioms of an ultrametric pseudo-distance. As
described in the previous section, it naturally induces an ultrametric dis-
tance ∆ on the quotient space R(f)/ v, i.e. on the space of chain-transitive
components.

Corollary 2.10. Let X be a compact metric space and f be a continuous
map from X to itself. Then the set of chain-transitive components with the
quotient topology is a compact ultrametric space. We can take as a metric
any ultrametric distance induced by a Conley barrier for f . In particular,
this set is totally disconnected and Hausdorff.

Proof. The set of chain-recurrent points is closed in X and hence compact.
Since the canonical projection

R(f)
p−→ (R(f)/ v, quotient topology)

is continuous, the space (R(f)/ v, quotient topology) is also compact.
Let ∆ introduced above be an ultrametric distance induced by a Conley

barrier on the set of chain-transitive components of f . Since ∆ is contin-
uous, it follows from lemma 2.8 that the quotient topology is finer than
the ultrametric topology induced by ∆. Thus, in the following diagram the
identity map

(R(f)/ v, quotient topology) Id−→
(
R(f)/ v, ∆

)
is a continuous bijection. Since the metric space

(
R(f)/ v,∆

)
is Hausdorff,

the same goes for (R(f)/ v, quotient topology). This set is thus a compact
Hausdorff space. The identity map is then an homeomorphism and both
topologies are the same. Since for an ultrametric distance every open ball
is also closed, the set of chain-transitive components is totally disconnected.
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2.3 Lyapunov functions

Definitions. We can use a Conley barrier to construct different types
of Lyapunov functions for f . The following definition is used by Hur-
ley, see [Hur92, Hur98]. For general recalls about Hausdorff dimension,
see [HW41]

Definition 2.11. A strict Lyapunov function for f is a continuous function
ϕ : X −→ R such that

i) For every x ∈ X, we have ϕ(f(x)) ≤ ϕ(x).

ii) For every x ∈ X \ R(f), we have ϕ(f(x)) < ϕ(x).

A strict Lyapunov function is said to be complete if it satisfies the fol-
lowing additional property

i’) The function ϕ is constant on each chain-transitive component, takes
on distinct values on distinct chain-transitive components and sends
the subset R(f) into a subset of R whose Hausdorff dimension is zero.

Our construction of Lyapunov functions will use a particular kind of
functions, called sub-solutions for S. Here is the definition.

Definition 2.12. Let S be a Conley barrier for f . A sub-solution for S is
a continuous function

u : X −→ R
such that

∀(x, y) ∈ X2, u(y)− u(x) ≤ S(x, y).

A sub-solution is said to be strict if the inequality is strict as soon as x is
not chain-recurrent for f .

Lemma 2.13. Any sub-solution for S is nonincreasing along orbits of f
and any strict sub-solution is decreasing along orbits of non chain-recurrent
points. Thus any strict sub-solution for S is a strict Lyapunov function for
f .

Proof. The proof follows from definitions and remark 2.3.

The following lemma gives a fundamental example of sub-solutions.

Lemma 2.14. For every z in X, the function

Sz : X −→ R
x 7−→ S(z, x)

is a sub-solution for S.

Proof. Since a Conley barrier satisfies an ultrametric inequality, it also sat-
isfies the triangle inequality. Thus for every x, y in X we have

S(z, y) ≤ S(z, x) + S(x, y)

which yields the wanted inequality.
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Strict Lyapunov functions. We now construct a strict Lyapunov func-
tion for f . We will see later how sub-solutions of the type Sx can in fact be
used to construct a complete Lyapunov function for f .

Theorem 2.15. Let X be a compact metric space and f be a continuous
map from X to itself. There exists a sequence (xi)i∈N of points of X and a
sequence (ηi)i∈N of positive reals such that the series

ϕ =
∑
i∈N

ηiSxi

is a strict sub-solution for S, and thus a strict Lyapunov function for f .

Proof. Since the metric space X is compact, it is separable. Let (xi)i∈N be
a dense sequence in X and (ηi)i∈N be a sequence of positive reals such that∑

i∈N ηi = 1 . The continuous function S is bounded on the compact set
X ×X. Thus, the condition

∑
i∈N ηi = 1 insures that the series

∑
i∈N ηiSxi

converges uniformly on X. Hence, it defines a continuous function ϕ on X.
Moreover, the function ϕ is a sub-solution since a convex combination of
sub-solutions is still a sub-solution. Now suppose that x ∈ X is not chain-
recurrent. Then we have S(x, x) > 0 and thus S(x, y)−S(x, x) < S(x, y). By
density of the (xi)i∈N and continuity of S, we can find an integer j ∈ N such
that S(xj , y)−S(xj , x) < S(x, y). Since the functions Sxi are sub-solutions,
we always have

∀i ∈ N, S(xi, y)− S(xi, x) ≤ S(x, y)

it follows that

ϕ(y)− ϕ(x) =
∑
i∈N

ηi(S(xi, y)− S(xi, x))

<
∑
i∈N

ηiS(x, y) = S(x, y)

Thus the function ϕ is a strict sub-solution for S and hence, a strict Lya-
punov function for f .

Complete Lyapunov function The construction of a complete Lya-
punov function for f relies on the underlying ultrametric structure of the
set of chain-transitive components. It strongly limits values taken by the
sub-solutions Sx, x ∈ X and will lead to functions with images of finite
cardinality. The following lemma and corollary are thus fundamental.

Lemma 2.16. For every x ∈ X, the function Sx is constant in the neigh-
borhood of each point of the set R(f) \ {S(x, ·) = 0}.
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Proof. Let x ∈ X and y ∈ R(f) be such that S(x, y) > 0. Consider the
open subset Ux,y of X

Ux,y = {S(y, ·)− S(x, y) < 0} ∩ {S(·, y)− S(x, ·) < 0}.

Since y ∈ R(f) we have S(y, y) = 0 and thus y ∈ Ux,y. If z ∈ Ux,y we have

S(x, z) ≤ max(S(x, y), S(y, z)) = S(x, y),

S(x, y) ≤ max(S(x, z), S(z, y)) = S(x, z).

Thus S(x, z) = S(x, y) and Sx is constant on Ux,y.

Corollary 2.17. For every x ∈ X, the set {S(x, y), y ∈ R(f)} is countable.
Moreover, the only possible accumulation point is zero. In particular, any
function of the form θ ◦Sx, where θ : R→ R is constant in a neighbourhood
of zero, takes on a finite number of values on R(f).

Proof. Let (xi)i∈N be a dense sequence in X. Let x ∈ X. At each point of
R(f), the function Sx is either 0 or constant in a neighborhood of that point.
Thus, the set {S(x, y), y ∈ R(f)} is included in the set {S(x, xj), j ∈ N}∪
{0} and hence is countable.

Now let α be an accumulation point of the set {S(x, y), y ∈ R(f)}.
There exists a sequence (yn)n∈N inR(f) such that the sequence (S(x, yn))n∈N
admits α as a limit with S(x, yn) 6= α, for every n ∈ N. By compactness
of X, we can suppose that yn admits a limit y ∈ X. Since the set R(f) is
closed, we have y ∈ R(f) and the continuity of S implies that α = S(x, y).
If α is non zero then Sx would be constant in the neighborhood of y. This
would contradicts the fact that for every n ∈ N, S(x, yn) 6= α. Thus α is
zero.

We can now prove the existence of a complete Lyapunov function for f .

Theorem 2.18. Let X be a compact metric space and f be a continuous
map from X to itself. Then there exists a sequence (xn)n∈N in X, a sequence
(εn)n∈N of positive reals and a sequence (θn)n∈N of real-valued functions such
that the series

ϕ =
∑
n∈N

εnθn ◦ Sxn

defines a complete Lyapunov function for f .

Proof. Let (xn)n∈N be a dense sequence in X. Repeating each xn infinitely
many times, we can suppose without lost of generality that for every k ∈ N
the sequence (xn)n≥k is still dense in X. Now for every n ∈ N we set

θn(t) := max(t− 1
n+ 1

, 0).

8



Each function θn is zero in the neighbourhood of zero. It thus follows from
corollary 2.17 that for every n ∈ N the function

θn ◦ Sxn : X −→ R

takes on a finite number of values on R(f). It easily follows from the ultra-
metric inequality satisfied by S and the definition of the relation v on the
space of chain-recurrent points

x v y ⇐⇒ max(S(x, y), S(y, x)) = 0

that the functions Sx for x in X are constant on each chain-transitive com-
ponents. Thus each function θn ◦ Sxn : X −→ R, n ∈ N, induces a func-
tion θn ◦ Sxn on the set of chain-transitive components with an image of
finite cardinality. We will now apply lemma 5.1 of the Appendix to the
space A = R(f)/ v together with the family

(
θn ◦ Sxn

)
n∈N. We just

have to prove that this family separates chain-transitive components. If
x and y are in distinct chain-transitive components, we have for example
S(x, y) > 0. Since S(x, x) = 0, the continuity of S and the density of the
(xn)n≥k for every k ∈ N, implies that we can find an integer n ∈ N such that
0 ≤ S(xn, x) < S(xn, y) − 1

n+1 . Hence we have θn ◦ Sxn(x) < θn ◦ Sxn(y).
We conclude similarly if S(y, x) > 0.

Thus, lemma 5.1 furnishes a sequence (εn)n∈N of positive reals such
that the series

∑
n∈N εnθn ◦ Sxn converges on R(f)/ v, separates points

of R(f)/ v and has an image in R whose Hausdorff dimension is zero. Each
continuous functions θn ◦ Sxn is bounded on the compact set X. Since the
positive reals (εn)n∈N can be chosen arbitrarily small, we can also suppose
that the non-negative series

ϕ =
∑
n∈N

εnθn ◦ Sxn

converges uniformly on X. The fact that the series
∑

n∈N εnθn ◦ Sxn sepa-
rates points of R(f)/ v and has an image in R whose Hausdorff dimension
vanishes precisely means that the function ϕ takes on distinct values on dis-
tinct chain-transitive components and sends R(f) in a subset of R whose
Hausdorff dimension is zero.

To complete the proof, we just have to show that ϕ is nonincreasing along
orbits of f and decreasing along orbits of non chain-recurrent points. The
first part is true since for every x ∈ X the sub-solution Sx is nonincreasing
along orbits of f and each θn is monotonic. Now if x ∈ X \ R(f), we have
S(x, x) > 0. Since S(x, f(x)) = 0 and (xn)n≥k is dense for every k ∈ N, we
can find n ∈ N such that

0 ≤ S(xn, f(x)) < S(xn, x)− 1
n+ 1

.

Thus we have θn ◦ Sxn(f(x)) < θn ◦ Sxn(x) so that ϕ(f(x)) < ϕ(x).
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2.4 Conley barrier

We now come to the construction of a Conley barrier. As a cost for chain,
we will consider the maximum of the size of the different jumps. This leads
to the following.

Definition 2.19. For every (x, y) ∈ X2, we set

S(x, y) := inf
{

max
i∈{0,..,n−1}

d(f(xi), xi+1) | n ≥ 1, x0 = x, ..., xn = y

}
.

We now prove that the function S is a Conley barrier for f .

Lemma 2.20. The function S satisfies the barrier property: for every (x, y)
in X2 we have S(x, y) = 0 if and only if for every ε > 0 there exists an
ε-chain from x to y.

Proof. The property becomes clear with the following equivalent definition
of S

S(x, y) = inf{ε > 0 | there exists an ε-chain from x to y}.

Lemma 2.21. The function S satisfies the ultrametric inequality

∀(x, y, z) ∈ X3, S(x, y) ≤ max(S(x, z), S(z, y)).

Proof. Let x, y, z ∈ X and (x0 = x, ..., xn = z), (z0 = z, ..., zm = y) be two
chains from x to z and from z to y. The concatenated chain provides a chain
(y0 = x, ..., ym+n+1 = y) from x to y and thus

S(x, y) ≤ max
j∈{0,..,m+n}

d(f(yj), yj+1)

≤ max
(

max
i∈{0,..,n−1}

d(f(xi), xi+1), max
j∈{0,..,m−1}

d(f(zj), zj+1)
)
.

The result follows by taking the infimum on chains from x to z and then on
chains from z to y.

Lemma 2.22. The function S is continuous.

Proof. Let x, x′, y, y′ ∈ X. If (x0 = x, ..., xn = y) is a chain from x to y, the
chain (x̃0, ..., x̃n) obtained by replacing xn = y by y′ is a chain from x to y′

such that

max
i∈{0,..,n−1}

d(f(x̃i), x̃i+1) ≤ max
i∈{0,..,n−1}

d(f(xi), xi+1)

+ |d(f(xn−1), y)− d(f(xn−1), y′)|
≤ max

i∈{0,..,n−1}
d(f(xi), xi+1) + d(y, y′).
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Hence we get

S(x, y′) ≤ max
i∈{0,..,n−1}

d(f(x̃i), x̃i+1) ≤ max
i∈{0,..,n−1}

d(f(xi), xi+1) + d(y, y′).

Taking the infimum on chains (x0, ..., xn) from x to y we get

S(x, y′) ≤ S(x, y) + d(y, y′).

Similarly, replacing x0 = x by x′ we have

S(x′, y) ≤ S(x, y) + d(f(x), f(x′)).

Exchanging role played by x, x′ and y, y′, we thus get

|S(x, y′)− S(x, y)| ≤ d(y, y′),
|S(x′, y)− S(x, y)| ≤ d(f(x), f(x′)).

It follows that

|S(x, y)− S(x′, y′)| ≤ |S(x, y)− S(x′, y)|+ |S(x′, y) + S(x′, y′)|
≤ d(f(x), f(x′)) + d(y, y′)

and the continuity of S now follows from the continuity of f .

Remark 2.23. This last proof shows that every function Sx = S(x, ·) is 1-
Lipschitzian. It follows that our Lyapunov functions are also Lipschitzian.

3 General construction

We would like to remove the compactness assumption made on X and to
cover the case of compactum-valued maps, i.e. maps with values in the
set Γ(X) of nonempty compact subsets of X. In fact, as we will see, the
existence of a Conley barrier only requires the separability of the ambient
metric space.

3.1 Hausdorff metric and compactum-valued map

We briefly recall the definition of the Hausdorff topology on Γ(X). For more
details, see [Nad92].

Definition 3.1. Let (X, d) be a metric space. If K and K ′ are two compact
subsets of X, we define

Dd(K,K ′) = inf{ε > 0 | K ′ ⊂ V d
ε (K) and K ⊂ V d

ε (K ′)}

where V d
ε (K) = {x ∈ X, d(x,K) < ε}.
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Proposition 3.2. The function Dd is a distance on the set Γ(X) of compact
subsets of X. The topology it defines does not depend on the metric d used.
It is called the Hausdorff topology on Γ(X).

Proof. The fact that the function Dd is a distance is clear. It does not
depends on the metric used since the convergence of a sequence Kn to K
can be expressed in a purely topological way. Indeed, the compactness of K
implies that Dd(Kn,K)→ 0 as n→ +∞ if and only if

i) For every neighborhood V of K there exists N ∈ N such that for all
n ≥ N we have Kn ⊂ V .

ii) For every x in K there is a sequence (xn)n∈N with xn ∈ Kn such that
xn → x as n→ +∞.

Definition 3.3. A compactum-valued map is a map from X to Γ(X). It is
said to be continuous if it is continuous for the Hausdorff topology on Γ(X).

3.2 Chain-recurrence on arbitrary separable metric space

In the settings of a noncompact metric space, the notion of chain-recurrence
is usually defined using the set P of continuous functions from X to R∗+
instead of constants ε > 0. We thus keep topological invariance, see [Hur92].
The notion of U -chain now introduced gives a powerful way to avoid using
this set P and emphasizes the fact that the notion of chain-recurrence is a
purely topological one.

Definition 3.4. Let U be an open covering of X. For A ⊂ X we set

St(A,U) =
⋃

U ∈ U
A ∩ U 6= ∅

U.

An open covering V of X is called an open refinement of U and is denoted
by V ∝ U if for every V ∈ V there exists U ∈ U such that V ⊂ U . An open
barycentric refinement of U is an open refinement V of U such that

{St ({x},V) , x ∈ X} ∝ U .

Proposition 3.5. In a metric space X, any open covering of X admits an
open barycentric refinement.

Proof. See for example [Dug78, Chapter VIII, theorem 3.5].

Remark 3.6. The notion of barycentric refinement will be used to generalize
arguments involving triangular inequalities.
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Definition 3.7. Let (X, d) be a metric space and f : X −→ Γ(X) be a
compactum-valued map. Given an open covering U of X and (x, y) in X2,
a U -chain from x to y for f is a sequence (x0 = x, ..., xn = y), n ≥ 1, of X
such that

∀i ∈ {0, .., n− 1}, xi+1 ∈ St(f(xi),U).

We define similarly the set R(f) of chain-recurrent points, i.e. of points of
X such that for every open covering U of X there exists a U -chain from x
back to x. The chain-transitive components are similarly defined using the
equivalence relation v on R(f) given by x v y if and only if for every open
covering U of X there exists U-chains from x to y and from y to x. Two
points x and y in X will be said to be f -separated by U if there exists no
U -chain for f from x to y.

Remark 3.8. Any continuous map f : X −→ X can be seen as a continuous
compactum-valued map since singletons are compact. Then, the previous
definition just reduces to a sequence (x0 = x, ..., xn = y), n ≥ 1, of X such
that

∀i ∈ {0, .., n− 1}, ∃U ∈ U ,
{
f(xi) ∈ U,
xi+1 ∈ U.

3.3 Chain-recurrence adapted distance

From now on, f will denote a continuous compactum-valued map on a sep-
arable metric space (X, d). Our purpose is to construct a distance δ on
X which allows to define chain-recurrence in the same way as in the com-
pact case. We will follow a scheme given essentially in the work of Hurley,
see [Hur92, Hur98].

Definition 3.9. A metric δ on X is said to be chain-recurrence adapted for
f if it defines the topology of X and if for every x and y in X the following
assertions are equivalent:

i) For every open covering U of X, there exists a U -chain from x to y.

ii) For every number ε > 0, there exists an ε-chain for δ from x to y.

Remark 3.10. In the compactum-valued case, an ε-chain for δ is defined
similarly with δ(f(xi), xi+1) the distance from the point xi+1 to the compact
subset f(xi).

A central point in the construction of a chain-recurrence adapted dis-
tance is to show that the elements of the set

E =
{

(x, y) ∈ X ×X | there exists an open covering U of X
which f -separates x and y

}
can be obtained from a countable family of open coverings of X.
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Lemma 3.11. If the metric space (X, d) is separable then there exists a
countable family (Ul)l∈N of open coverings of X such that for every (x, y) ∈ E
there exists an open covering Uk in (Ul)l∈N that f -separates x from y.

Remark 3.12. Such a family will be called a f -separating family.

Proof. Let (x, y) ∈ E and Ux,y be an open covering of X which f -separates
x from y. We will show that there are open neighborhoods Wx,y of x and
W ′x,y of y and an open covering Vx,y of X which f -separates every point of
Wx,y from every point of W ′x,y.

Let Ṽx,y be an open barycentric refinement of the open covering Ux,y.
The compact subset f(x) is included into the open subset St(f(x), Ṽx,y).
Thus by continuity of f , we can find a neighborhood Wx,y of x such that

∀x′ ∈Wx,y, f(x′) ⊂ St(f(x), Ṽx,y).

We first show that the open covering Ṽx,y f -separates every point of Wx,y

from y. Let us suppose that for some x′ ∈ Wx,y there exists a Ṽx,y-chain
(x0 = x′, x1, ..., xn = y) from x′ to y. Since x1 ∈ St(f(x′), Ṽx,y) we can find
V1 ∈ Ṽx,y such that {

V1 ∩ f(x′) 6= ∅,
x1 ∈ V1.

Since V1 ∩ f(x′) 6= ∅ and f(x′) ⊂ St(f(x), Ṽx,y), we can find V2 ∈ Ṽx,y such
that {

V2 ∩ f(x) 6= ∅,
V1 ∩ V2 6= ∅.

Now, since V1, V2 ∈ Ṽx,y, V1 ∩ V2 6= ∅ and Ṽx,y is an open barycentric
refinement of Ux,y, we can find U ∈ Ux,y such that V1 ∪ V2 ⊂ U . But
then we have x1 ∈ U and U ∩ f(x) 6= ∅, i.e. x1 ∈ St(f(x),Ux,y). Since
the open covering Ṽx,y is a fortiori an open refinement of Ux,y, the chain
(x0 = x, x1, ..., xn = y) is thus a Ux,y-chain from x to y, which is absurd.
Thus the open covering Ṽx,y f -separates every point of Wx,y from y.

Now let Vx,y be an open barycentric refinement of Ṽx,y. Let W ′x,y be any
open set of Vx,y containing y. Since Vx,y is an open barycentric refinement
of Ṽx,y and y ∈W ′x,y ∈ Vx,y, a similar proof shows that if (x0, x1, ..., xn) is a
Vx,y-chain starting in Wx,y and ending in W ′x,y then the chain (x0, ..., xn−1, y)
is a Ṽx,y-chain starting in Wx,y and ending at y. Since the open covering Ṽx,y
f -separates every point of Wx,y from y, we conclude that the open covering
Vx,y f -separates every point of Wx,y from every point of W ′x,y.

In particular, we have shown that the subset E of X ×X is open. The
space X being metric and separable, the same goes for E which thus sat-
isfies the Lindelöf property. We can thus extract from the open covering{
Wx,y ×W ′x,y, (x, y) ∈ E

}
of E a countable sub-covering

(
Wxi,yi ×W ′xi,yi

)
i∈N.
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The family of associated open coverings (Vxi,yi)i∈N provides the wanted
countable family.

We will apply the following well-known lemma to the family (Ul)l∈N of
open coverings furnished by the previous lemma to obtain the desired chain-
recurrence adapted distance.

Lemma 3.13. Given a countable family (Ul)l∈N of open coverings of X,
there exists a metric δ on X that defines the topology of X and such that

∀l ∈ N,
{
Bδ

(
x,

1
2l

)
, x ∈ X

}
∝ Ul.

Proof. Let l ∈ N. Since any metric space is paracompact, we can find a
partition of unity

(
ϕlU
)
U∈Ul

subordinate to Ul such that the supports of the
ϕlU form a neighborhood finite closed covering of X, see [Dug78, Chapter
VIII]. For any open set U in Ul we set

ψlU (x) :=
ϕlU (x)

sup
U ′∈Ul

ϕlU ′(x)
.

The function ψlU is well defined since the supports of the
(
ϕlU
)
U∈Ul

form a
locally finite family and is continuous since the ϕlU are. Moreover, we have
0 ≤ ψlU ≤ 1 and thus the series

∑
l∈N

1
2l maxU∈Ul

∣∣ψlU (x)− ψlU (y)
∣∣ converges

uniformly and defines a continuous function on X ×X.
We then define

δ(x, y) := d(x, y) +
∑
l∈N

1
2l

max
U∈Ul

∣∣∣ψlU (x)− ψlU (y)
∣∣∣ .

The function δ is a distance. Let us show that it induces the topology of X.
Since d ≤ δ, if xn −→ x for δ then xn −→ x for d. Conversely, if xn −→ x
for d then by continuity of the function

(x, y) 7−→
∑
l∈N

1
2l

max
U∈Ul

∣∣∣ψlU (x)− ψlU (y)
∣∣∣

we have xn −→ x for δ.
We now show the refinement property. Let l ∈ N and x ∈ X. Since the

supports of the
(
ϕlU
)
U∈Ul

form a locally finite family there exists Ux ∈ Ul
such that ϕlUx

(x) = sup
U ′∈Ul

ϕlU (x). We then have ψlUx
(x) = 1. But then, for

y ∈ Bδ(x, 1
2l ) we have

1
2l

∣∣∣1− ψlUx
(y)
∣∣∣ ≤ 1

2l
max
U∈Ul

∣∣∣ψlU (x)− ψlU (y)
∣∣∣ ≤ δ(x, y) <

1
2l
.
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Thus, we have
∣∣1− ψlUx

(y)
∣∣ < 1 and necessarily ψlUx

(y) > 0, hence y ∈ Ux.
Thus Bδ(x, 1

2l ) ⊂ Ux ∈ Ul and the lemma is proved.

We can now prove the following theorem.

Theorem 3.14. Let X be a separable metric space and f : X −→ Γ(X)
be a continuous map. Then there exists a chain-recurrence adapted distance
for f on X.

Proof. We apply the previous lemma to the f -separating family (Ul)l∈N of
lemma 3.11 to obtain a distance δ on X that defines the topology of X. Let
us prove that this distance is chain-recurrence adapted. For x, y in X we
have to prove that the following assertions are equivalent

i) For every open covering U of X, there exists a U -chain from x to y.

ii) For every number ε > 0, there exists an ε-chain for δ from x to y.

Let us suppose i). The open coverings
{
Bδ(x′, ε2), x′ ∈ X

}
, ε > 0, provides

by triangle inequality ε-chains for δ from x to y. Since ε is arbitrary, it
shows ii). Conversely, let us suppose ii). For every l ∈ N we have{

Bδ(x′,
1
2l

), x′ ∈ X
}
∝ Ul.

Thus, every 1
2l -chain for δ from x to y is in fact a U l -chain from x to y.

Since the family (U l)l∈N is a f -separating one, it shows i).

3.4 Conley barrier

In the setting of a noncompact metric space, we define what a Conley barrier
is using the notion of U-chains.

Definition 3.15. Let X be a metric space and f : X −→ Γ(X) be a
continuous map. A Conley barrier for f is a continuous function

S : X ×X −→ R+

with the properties that

i) For every (x, y) ∈ X2, S(x, y) = 0 if and only if for every open covering
U of X there exists a U-chain for f from x to y.

ii) For every (x, y, z) ∈ X3, we have S(x, y) ≤ max(S(x, z), S(z, y)).

As in the compact case, we will show the following theorem.

Theorem 3.16. If X is a separable metric space and f : X −→ Γ(X) is a
continuous map then there exists a Conley barrier for f .
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Proof. According to theorem 3.14, there exists a chain-recurrence adapted
distance δ on X for f . Since chain properties are fully described using the
metric δ, it is enough to construct a continuous function S such that

1) For every (x, y) ∈ X2, we have S(x, y) = 0 if and only if for every ε > 0
there exists an ε-chain for δ from x to y.

2) For every (x, y, z) ∈ X3, we have S(x, y) ≤ max(S(x, z), S(z, y)).

The only difference with the compact case is that f is now a compactum-
valued map. For every (x, y) ∈ X2, we thus define similarly S as

S(x, y) := inf
{

max
i∈{0,..n−1}

δ(f(xi), xi+1) | n ≥ 1, x0 = x, ..., xn = y

}
.

The distance from f(xi) to xi+1 being understood as the distance of the
point xi+1 to the compact set f(xi). A similar proof than in the compact
case then shows that∣∣S(x, y)− S(x′, y′)

∣∣ ≤ δ(y, y′) +Dδ(f(x), f(x′)).

Thus the function S inherits of the continuity of f . The proofs of properties
1) and 2) can now be readily adapted.

3.5 Ultrametric distance induced on the space of chain-transitive
components

The fact that a Conley barrier induces an ultrametric distance on the set
of chain-transitive components does not use compactness of X. Thus, the
constructions of section 2.2 can be readily adapted. In particular, any Con-
ley barrier furnishes an ultrametric distance on the set of chain-transitive
components of f and the induced ultrametric topology is coarser than the
quotient topology. Thus, we have the following.

Theorem 3.17. Let X be a separable metric space and f : X −→ Γ(X)
be a continuous map. Then the set of chain-transitive components of f is
Hausdorff and totally disconnected.

Nevertheless, contrary to the compact case, the ultrametric topology
induced by a Conley barrier may differ from the quotient topology. A coun-
terexample is given in section 4.2.

3.6 Lyapunov functions

Definitions. In the case of a compactum-valued map, the definitions of
Lyapunov functions need to be slightly modified.
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Definition 3.18. Given a metric space X and a continuous map f : X −→
Γ(X), a strict Lyapunov function for f is a continuous function ϕ : X −→ R
such that

i) For every x in X and every y in f(x), we have ϕ(y) ≤ ϕ(x).

ii) For every x in X \ R(f) and every y in f(x), we have ϕ(y) < ϕ(x).

A strict Lyapunov function is said to be complete if it satisfies the fol-
lowing additional property

i’) The function ϕ is constant on each chain-transitive component, takes
on distinct values on distinct chain-transitive components and sends
the subset R(f) into a subset of R whose Hausdorff dimension is zero.

The notion of sub-solution for a Conley barrier S is similarly defined.
Moreover, proofs of lemma 2.13 and 2.14 are unchanged.

Strict Lyapunov function. Our construction of a strict Lyapunov func-
tion for f is still based on sub-solutions of the type Sx for x ∈ X. The
existence of a uniform bound for S is there replaced by the following lemma.

Lemma 3.19. There is a countable open covering (Un)n∈N of X such that
for every x ∈ X and for every n ∈ N, the function Sx is bounded on Un.

Proof. Let x ∈ X. By continuity of Sx, there is an open neighborhood Ux
of x such that S(x, ·) is bounded on Ux. For x′ ∈ X we have

∀y ∈ Ux, S(x′, y) ≤ max(S(x′, x), S(x, y)).

Thus the function S(x′, ·) is also bounded on Ux. Since the metric space
X is separable, it is Lindelöf . Hence, a countable sub-covering of the open
covering {Ux, x ∈ X} of X provides the wanted covering.

Corollary 3.20. For every sequence (xi)i∈N of X, there exists a sequence
(ηi)i∈N of positive reals such that the non-negative series

∑
i∈N ηiSxi con-

verges uniformly in the neighborhood of each points of X.

Proof. Let (Un)n∈N be an open covering of X furnished by the previous
lemma. Each function Sxi , i ∈ N, is bounded on U0. Thus, there is a
sequence (ρ0

i )i∈N of positive reals such that the series
∑

i∈N ρ
0
iSxi converges

uniformly on U0. Similarly, there is a sequence (ρ1
i )i∈N of positive reals such

that the series
∑

i∈N ρ
1
iSxi converges uniformly on U1. Moreover, reducing

the ρ1
i if necessary, we can also suppose that ρ1

i < ρ0
i .

We thus construct using induction sequences (ρki )i∈N, for k in N, such
that 0 < ρk+1

i < ρki and the series
∑

i∈N ρ
k
i Sxi converges uniformly on Uk.

These both conditions then imply that the series
∑

i∈N ηiSxi , with ηi = ρii,
converges uniformly on each Uk, k ∈ N. The result follows since (Un)n∈N is
an open covering of X.
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Remark 3.21. If we define instead ηi by min(ρii,
1

2i+1 ), we can also assume
that the series

∑
i≥1 ηi converges and belongs to ]0, 1[. Thus, changing η0 in

1−
∑

i≥1 ηi, we can suppose without lost of generality that
∑

i∈N ηi = 1.

We can now prove the following theorem.

Theorem 3.22. Let X be a separable metric space and f : X −→ Γ(X) be
a continuous map. Then there is a sequence (xn)n∈N of points of X and a
sequence (ηn)n∈N of positive reals such that the series

ϕ =
∑
n∈N

ηnSxn

is a strict sub-solution for S and thus a strict Lyapunov function for f .

Proof. As in the compact case, let us choose a dense sequence (xi)i∈N of
X. Let (ηi)i∈N be the associated sequence given by corollary 3.20. Thanks
to remark 3.21, we can suppose that

∑
i∈N ηi = 1. The same proof as in

the compact case then shows that the function ϕ =
∑

i∈N ηiSxi is a strict
sub-solution for S and thus a strict Lyapunov function for f .

Complete Lyapunov function. If we had an hypothesis of local com-
pactness, the same tools as in section 2.3 can be used to construct a complete
Lyapunov function. In particular, the proof of the following lemma did not
use any compactness and is still valid.

Lemma 3.23. Let X be a separable metric space. For every x ∈ X, the
function Sx is constant in the neighborhood of each point of the set R(f) \
{S(x, ·) = 0}.

Corollary 3.24. Let X be a separable metric space. For every compact
subset K of X and for every x in X, the set {S(x, y), y ∈ R(f) ∩K} is
countable and the only possible accumulation point is zero. In particular, any
function of the form θ ◦Sx, where θ : R→ R is constant in a neighbourhood
of zero, takes on a finite number of values on R(f) ∩K.

Proof. The proof is the same as proof of corollary 2.17 once the set R(f)
has been replaced by R(f) ∩K.

Theorem 3.25. Let X be a locally compact and separable metric space and
f : X −→ Γ(X) be a continuous map. Then there is a sequence (xn)n∈N in
X, a sequence (εn)n∈N of positive reals and a sequence (θn)n∈N of real-valued
functions such that the series

ϕ =
∑
n∈N

εnθn ◦ Sxn

defines a complete Lyapunov function for f .
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Proof. We will denote by p the canonical projection fromR(f) ontoR(f)/ v.
Let (xn)n∈N be a dense sequence in X. Without lost of generality, we can
suppose that for every k ∈ N the sequence (xn)n≥k is still dense in X. Since
X is locally compact, metric and separable, there exist a family (Kn)n∈N of
compact subsets of X such that X = ∪n∈NKn and for every n ∈ N, we have
Kn ⊂ K̊n+1. For every n ∈ N, we set

θn(t) := max(t− 1
n+ 1

, 0).

Each function θk ◦ Sxk
, k ∈ N, is bounded on the compact set Kn, n ∈ N.

Using a diagonal process, we can find a sequence (ηn)n∈N of positive reals
such that the series

∑
k∈N ηkθk ◦ Sxk

converges uniformly on each Kn and
thus defines a continuous function on X.

Thanks to corollary 3.24, for every (k, n) ∈ N2, the function θk◦Sxk
takes

on a finite number of values on R(f) ∩ Kn. As in the compact case, each
function θk ◦Sxk

is constant on the chain-transitive components and induces
a function θk ◦ Sxk

on the quotient space R(f)/ v. Moreover, this function
takes a finite number of values on each compact set p(Kn∩R(f)), n ∈ N. We
will now use lemma 5.1 with the set A = R(f)/ v, the family (θn ◦ Sxn)n∈N
and An = p(Kn ∩ R(f)). As in the compact case, we easily verify that for
every k ∈ N the family (θn ◦ Sxn)n≥k separates points of R(f)/ v. Thus
lemma 5.1 furnishes a sequence (εn)n∈N of positive reals such that the series∑

n∈N εnθn ◦ Sxn converges on R(f)/ v, separates points of R(f)/ v and
has an image of zero Hausdorff dimension in R. Since the positive reals
(εn)n∈N can be chosen arbitrarily small, we can also assume that for every
n ∈ N we have εn < ηn. Hence, the function

ϕ =
∑
n∈N

εnθn ◦ Sxn

converges uniformly on each Kn, n ∈ N, and thus defines a continuous func-
tion on X. It is constant on each chain-transitive component, takes on
distinct values on distinct chain-transitive components and sends R(f) in a
subset of R whose Hausdorff dimension is zero. The rest of the proof is now
similar to the compact case.

4 The case f = IdX

In the particular case f = IdX , a U -chain from x to y just corresponds to
a sequence (Ui)0≤i≤n of open sets of the open covering U such that

x ∈ U0, y ∈ Un, ∀i ∈ {0, .., n− 1}, Ui ∩ Ui+1 6= ∅.

In particular, a Conley barrier associated to the identity is symmetric.
Chain-recurrence properties are then linked with the topology of X.
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4.1 The quasicomponents

Definition 4.1. Let X be a topological space. Two points x and y of X
are said to be separated in X if the space X can be split into two disjoint
open sets U and V containing respectively x and y.

The relation not being separated defines an equivalence relation on X.
The associated equivalence classes are called the quasicomponents of X.
Two point x and y lie in the same quasicomponent if and only if every open
and closed subset of X containing x or y contains both x and y. Thus, the
quasicomponent of a point x coincides with the intersection of open and
closed subsets of X that contain x. In particular, the connected component
of x is included into the quasicomponent of x.

Remark 4.2. In a compact space, the connected component of a point x
coincides with the quasicomponents of x, see [HW41, Chapter II]. Never-
theless, even if the space is locally compact, quasicomponents may be larger
than connected components. See for example the counterexample of nested
rectangle in [SS95].

The quasicomponents are essentially characterized by a Conley barrier
associated to the identity, as shown in the following result.

Lemma 4.3. Let X be a separable metric space. Then the quasicomponents
of X coincide with the chain-transitive components of IdX .

Proof. We have to show that two points x and y are separated in X if and
only if there exists an open covering U of X that IdX -separates x from y.
Let us suppose that for every open covering U of X, there is a U-chain for
the identity map from x to y. If x and y where separated in X say by U
and V , the open covering {U, V } would leads to a contradiction. Conversely,
let us suppose that there is an open covering U of X such that there is no
U-chain for the identity map from x to y. Let U ∈ U be an open set such
that x ∈ U . We consider the set

O =
⋃
n∈N

Stn(U,U) where Stn(U,U) = St(...St︸ ︷︷ ︸
n times

(U,U)..,U).

The set O is open and we claim that the same is true for X \ O. Indeed,
let z ∈ X \ O. If we denote by V an element of U such that z ∈ V , then
V ⊂ X \ O. Moreover we have y ∈ X \ O since there is no U -chain from x
to y for IdX . The points x and y are thus separated by the open subsets O
and X \O.

We then deduce the following corollary.

Corollary 4.4. Let X be a separable metric space and S be a Conley barrier
for the identity map on X. Then two points x and y of X are in the same
quasicomponent if and only if S(x, y) = 0.
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If the metric spaceX is compact, the quasicomponents and the connected
components of X coincide. We thus obtain the following known result, which
follows from corollary 2.10.

Theorem 4.5. Let X be a compact metric space. Then the set of connected
components of X is an ultrametric space.

If some quasicomponent fail to be compact, the ultrametric topology in-
duced by a Conley barrier may be strictly coarser than the quotient topology.
Such an example is studied in the next section.

4.2 A counterexample

We consider the plane R2 and for k ∈ N we set

D = {(0, y), y ≥ 0},

Ak =
{(

1
n
, k +

1
2

)
, n ≥ 1

}
,

X =

(⋃
k∈N

Ak

)⋃
D.

0 1

1

X
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We endow the space X with the Euclidean topology inherited from R2.
The space X thus obtained is a closed subset of R and hence is locally
compact.

Lemma 4.6. For every countable family (Vi)i∈N of open sets of R2 contain-
ing D, there is an open set V of R2 containing D and such that

∀i ∈ N, X ∩ Vi * X ∩ V.

Proof. We first construct a sequence (Uk)k∈N of open sets of R2 such that

i) For every k ∈ N, {0} × [k, k + 1] ⊂ Uk.

ii) For every k 6= l, Uk ∩Al = ∅.

iii) For every k ∈ N, there is nk ∈ N∗ such that
(

1
nk
, k + 1

2

)
∈ Vk \ Uk.

To insure the first two points, it is enough to choose Uk contained in the
strip {

(x, y) , x ∈ R, k − 1
4
< y < k +

5
4

}
⊃ {0} × [k, k + 1].

For the last point, we notice that the point
(
0, k + 1

2

)
lies in Vk ∩ Āk. Thus

there is an integer nk > 0 such that
(

1
nk
, k + 1

2

)
∈ Vk. We thus set

Uk =
{

(x, y) ∈ R2 | x < 1
nk
, k − 1

4
< y < k +

5
4

}
.

From i), the open set V =
⋃
k∈N Uk contains D. Now let i ∈ N. By con-

struction we have (
1
ni
, i+

1
2

)
/∈ Ui

and from ii) we have

∀l 6= i,

(
1
ni
, i+

1
2

)
/∈ Ul

Thus
(

1
ni
, i+ 1

2

)
/∈ X ∩ V while

(
1
ni
, i+ 1

2

)
∈ X ∩ Vi. We thus have

X ∩ Vi * X ∩ V

as asserted.

Corollary 4.7. The set of quasicomponents of the metric space X defined
above is not metrizable. Hence, the topology induced by a Conley barrier
for IdX on the set of quasicomponents is strictly coarser than the quotient
topology.
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Proof. The quasicomponents of X are the half line D and the singletons(
1
n , k + 1

2

)
n≥1,k>0

. We will show that D does not admit any countable basis
of open neighborhoods in the quotient topology.

Otherwise, let (Õi)i∈N be such a basis. The inverse images by the canon-
ical projection p provide a family (Oi)i∈N of open sets of X that contain D.
Thus there is a family (Vi)i∈N of open set of R2 containing D and such that
Oi = Vi ∩X = p−1(Õi). According to lemma 4.6, there is an open set V of
R2 containing D such that for every i ∈ N, X ∩ Vi * X ∩ V . Since V con-
tains D and since the quasicomponents of X \ D are reduced to singletons,
we have p−1(p(V )) = V ∩X. Thus the set p(V ) is an open set that contains
D. But for every i ∈ N the set p−1(Õi) = Oi = X ∩ Vi is not included in
X ∩V . Thus Õi * p(V ) and this contradicts the fact that (Õi)i∈N is a basis
of open neighborhoods of D in the quotient.

4.3 Totally separated space

We can now also answer the following question: under which conditions are
chain-transitive components of IdX reduced to singletons ?

Definition 4.8. A topological space X is said to be

i) totally disconnected if connected components of X are reduced to sin-
gletons.

ii) totally separated if two distinct points of X can always be separated.

iii) of dimension 0 if every point of X has a basis of open sets with empty
boundary.

We always have iii) ⇒ ii) ⇒ i) and if X is a locally compact space, these
notions coincide. In the general setting, they may be different, see [HW41,
Chapter II].

Proposition 4.9. Let X be a separable metric space. Then the chain-
transitive components associated to the identity are reduced to singletons if
and only if X is totally separated.

Proof. It is corollary 4.4.

5 Appendix

5.1 Function series and Hausdorff dimension

In this section, we develop some general facts about the Hausdorff dimension
of images of some particular function series. They are used to construct
complete Lyapunov functions for f in section 2.3 and 3.6.

Throughout this section, (fi)i∈N will denote a family of real valued func-
tions on a set A, such that either
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i) For every i ∈ N, the set fi(A) is finite.

ii) The family (fi)i∈N separates points of A, i.e. for each a, b in A with
a 6= b, there exists an fi such that fi(a) 6= fi(b).

or

i) A = ∪n∈NAn.

ii) For every (k, n) ∈ N2, the set fk(An) is finite.

iii) For every n ∈ N, the family (fk)k≥n separates points of A.

Lemma 5.1. In both cases, there exists a sequence (εn)n∈N of arbitrarily
small positive reals such that the series

∑
n∈N εnfn converges on A, separates

points of A and has an image of zero Hausdorff dimension in R.

Proof. We begin with the second case. Considering sets Ãn = ∪k≤nAk
instead of An, we can suppose that

∀n ∈ N, An ⊂ An+1.

Since for every (k, n) ∈ N2 the set fk(An) is finite, we can construct using
induction a sequence (εn)n∈N of positive reals such that

1) ε0 > 0,

2) ∀n ∈ N,
∑

k≥n+1

εk max
An

|fk| <
1
2
ηn,

3) ∀n ∈ N,
∑

k≥n+1

εk max
An

|fk| < e−nνn ,

where

νn = Card

(
n∑
k=0

εkfk(An)

)
and ηn is the minimum of the distance between two distinct points of the
finite set

∑n
k=0 εkfk(An). If this image is reduced to a single point, we just

set ηn = 1. Note that the (εn)n∈N can be chosen arbitrarily small.
Property 3) implies that the series

∑
n∈N εnfn converges uniformly on

each An and thus converges on A. Now, let a, b ∈ A be two distinct points
of A. Since A = ∪n∈NAn and An ⊂ An+1, we can choose n large enough so
that a and b lie in An. If

∑
k≤n εkfk(a) 6=

∑
k≤n εkfk(b) then by property 2)

we have
∑

k∈N εkfk(a) 6=
∑

k∈N εkfk(b). Otherwise, by hypothesis the family
(fk)k≥n+1 separates points of A, thus there is a first n0 ≥ n + 1 such that
fn0(a) 6= fn0(b). Hence we have

∑
k≤n0

εkfk(a) 6=
∑

k≤n0
εkfk(b). Since

a, b ∈ An ⊂ An0 , we can conclude similarly. Thus the series
∑

n∈N εnfn
separates points of A.
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Let us now prove that the set
∑

n∈N εnfn(A) is a subset of R whose
Hausdorff dimension is zero. Since this property is stable under countable
union, it is enough to show that for every n ∈ N the set

∑
k∈N εkfk(An) has

a zero Hausdorff dimension in R. Let n ∈ N. We write∑
k∈N

εkfk(An) =
∑
k≤n

εkfk(An) +
∑

k≥n+1

εkfk(An).

By property 3), the subset
∑

k∈N εkfk(An) can be covered by νn balls of
radius e−nνn . Since for every l ∈ N, An ⊂ An+l, we conclude that the subset∑

k∈N εkfk(An) can be covered by νn+l balls of radius e−(n+l)νn+l . Since

∀ρ > 0, νn+l(e−(n+l)νn+l)ρ → 0, (l→ +∞)

the subset
∑

k∈N εkfk(An) has a zero Hausdorff dimension.
For the first case of the lemma, we take An = A for every n ∈ N and

we construct similarly a sequence (εn)n∈N of positive reals. If a, b are two
distinct points of A then by property 2) there is a first n ∈ N such that∑

k≤n εkfk(a) 6=
∑

k≤n εkfk(b). Then, by construction of the sequence
(εn)n∈N we have

∑
k∈N εkfk(a) 6=

∑
k∈N εkfk(b). The end of the proof is

now similar.

5.2 On the equivalence of chain-recurrence definitions

In this section, we give another definition of chain-recurrence which is used
by Hurley in [Hur92] and we prove that it is equivalent to the U -chain
approach. Throughout this section, (X, d) will denote a separable metric
space and f a continuous map from X to itself. We will denote by P the set
of continuous functions ε : X −→ R∗+. The set P is introduced by Hurley
in [Hur92] in order to keep topological invariance.

Definition 5.2. Let x, y ∈ X and ε ∈ P. An ε-chain for f from x to y is a
finite sequence (x0 = x, ..., xn = y), n ≥ 1, of X such that

∀i ∈ {0, .., n− 1}, d(f(xi), xi+1) < ε(f(xi)).

Remark 5.3. If X is compact, we only need to use constant ε > 0 instead
of elements of P since any continuous function reaches its minimum on X.
Definition 5.2 is thus a generalization of the compact case one.

As shown in the following proposition, this definition leads us to the
same notion of chain-recurrence than definition 5.2.

Proposition 5.4. Let x, y ∈ X. The following assertions are equivalent:

i) For every ε ∈ P, there is an ε-chain from x to y.

ii) For every open covering U of X, there is an U-chain from x to y.
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Proof. Let U be an open covering of X. A metric space is paracompact so
there is a locally finite refinement Ũ of U . For U ∈ Ũ let

εU (x) =
d (x,X\U)

2
and ε(x) = max

U∈eU εU (x)

with the convention that d(x, ∅) = 1. The function ε is well defined and
continuous since the open covering Ũ is locally finite and each εU is con-
tinuous. Moreover, this function is positive everywhere on X since Ũ is an
open covering of X. For an open set U ∈ Ũ that realizes the maximum in
the definition of ε(x), we have Bd(x, ε(x)) ⊂ U . Thus

{Bd(x, ε(x)), x ∈ X)} ∝ Ũ ∝ U

and every ε-chain from x to y provides a U-chain from x to y. It shows
i)⇒ ii).

Conversely, let ε ∈ P. Then for every x ∈ X, there is an open neighbor-
hood Ux of x such that for every x′ ∈ Ux we have ε(x′) > ε(x)

2 . Reducing
Ux, we can also suppose that Ux ⊂ Bd(x, ε(x)). We then consider the
open covering U = {Ux, x ∈ X} of X. Let (x0 = x, x1, ..., xn−1, xn = y)
be a U-chain from x to y. For every i ∈ {0, ..., n − 1} there is zi ∈ X
such that f(xi) and xi+1 lie in Uzi ∈ U . Since Uzi ⊂ Bd(zi, ε(zi)) we have
d(f(xi), xi+1) ≤ d(f(xi), zi) + d(zi, xi+1) ≤ 2ε(zi) < 4ε(f(xi)). The chain
(x, x1, ..., xn−1, y) is thus a 4ε-chain from x to y. It shows ii)⇒ i).
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