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Abstract. The Frenkel-Kontorova model describes how an infinite chain of atoms
minimizes the total energy of the system when the energy takes into account the
interaction of nearest neighbors as well as the interaction with an exterior envi-
ronment. An almost-periodic environment leads to consider a family of interac-
tion energies which is stationary with respect to a minimal topological dynamical
system. We focus, in this context, on the existence of calibrated configurations (a
notion stronger than the standard minimizing condition). In any dimension and
for any continuous superlinear interaction energies, we exhibit a set, called pro-
jected Mather set, formed of environments that admit calibrated configurations.
In the one-dimensional setting, we then give sufficient conditions on the family of
interaction energies that guarantee the existence of calibrated configurations for
every environment. The main mathematical tools for this study are developed in
the frameworks of discrete weak KAM theory, Aubry-Mather theory and spaces
of Delone sets.

Mathematical subject classification: 37B50, 37J50, 37N20, 49120, 49125, 52C23

1. Introduction

The original Frenkel-Kontorova model [II] describes a one-dimensional chain of clas-
sical coupled particles which are subjected to an environment via an interaction
energy E : R x R? — R. Given a finite configuration (2, Zmi1,-..,2,) of points
in R%, define

n—1
BTy, Tty - -5 T) = Z E(xg, Try1)-
k=m

A minimizing configuration (xy)rez for the interaction energy E is an infinite chain
of points in R? arranged so that the energy of each finite segment (T, Tt 1, - -, Tn)
cannot be lowered by changing the configuration inside the segment while fixing the
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two boundary points, i.e.: for all m < n, for all Ym, Ymi1,---,Yn € R? satisfying
Ym = Ty and y, = x,, one has

E(xmamerlw-wxn) SE(ym7ym+17-”7yn)' (1)

In the periodic setting, that is, if the interaction energy is C°, coercive and
translation periodic,

li inf F = d 2
e B Pl) = 00 )
VteZd Vo,yeRY, FE(x+ty+t)=FE(z,y), (3)

it is easy to show (see [2] for d = 1 and [13] for any dimension) that minimizing
configurations do exist. The proof in Aubry and Le Dearon [2] makes heavy use of
the fact that d = 1 and the assumption that F is C? and twist in the following strong
sense

0’E
< — . 4
oxy = a<0 (4)

We will relax slightly the twist condition allowing us anharmonic interactions.

For environments which are aperiodic, namely when the energy F is not trans-
lation periodic, few results are known (see, for instance, [8, 12 26]). For d = 1,
Gambaudo, Guiraud and Petite [12] showed that minimizing configurations do exist
for a family of aperiodic C? twist energies. They also proved that every minimizing
configuration has a rotation number and any nonnegative real number is the rotation
number of a minimizing configuration.

A notion stronger than the usual minimizing condition is provided by the con-
cept of calibration. A calibrated configuration (at the level ¢ € R) is a sequence
(Zn)nez such that, for every m < n,

E(xm,...,xn) — (n—m)c < inf inf [E(yo,...,yg)—ﬁc}. (5)
£>1 Yo=Tm,---,Ye=Tn
Notice that the number of sites on the right hand side is arbitrary.

This paper mainly concerns the existence of calibrated configuration in the ape-
riodic context. A calibrated configuration is obviously minimizing, but the converse
is false in general.

In the periodic setting and for d > 1, an argument using the notion of weak
KAM solutions as in [I4] [T0, [13] shows that there exist calibrated configurations
at a level £ depending only on the energy E. Conversely, if d = 1 and E is twist
translation periodic, every minimizing configuration is calibrated for some modified
energy E\(z,y) = E(z,y) — Ay — ), A € R, at a level E).

Even if d = 1, in the aperiodic context it is not known in general whether
calibrated configurations exist. In order to give conditions to ensure the existence of
calibrated configurations, we will consider in this paper an interaction energy which
is almost periodic in a sense that will include the periodic case. This will lead to look
at a family of interaction energies parameterized by a minimal topological dynamical
system (a weak form of homogeneity). Such an approach is similar to studies for the
Hamilton-Jacobi equation (see, for instance, [5l [6l [7, [I5] [I6] [20]), where a stationary
ergodic setting has been taken into account.

We will assume there exists a family of interaction energies {F,}, depending
on an environment w. Let Q denote the collection of all possible environments. We
assume that every chain of atoms (zj +t)rez, translated in the direction ¢ € R? and
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interacting with the environment w, has the same local energy that (zy)rez interact-
ing with the shifted environment 73(w) for some bijective transformation 7;: Q — Q.
More precisely, each environment w defines an interaction E,,(z,y) which is assumed
to be topologically stationary in the following sense

VweQ, VteRY, Va,y e R, Ey(x+ty+t)=E, ) (zy). (6)

In order to ensure the topological stationarity, the interaction energy will be
supposed to have a Lagrangian form. Formally, we will use the following definition.

Definition 1. Let ) be a compact metric space.

1. A minimal R%-action is a couple (Q, {7 }1cpa), where {Ti}icra is a family of
homeomorphisms ¢ : 0 — Q satisfying
~ Ty 0T = Tert for all s,t € R (the group property),
- 1¢(w) s jointly continuous with respect to (t,w),
~Vw e Q, {1(w)}iera is dense in Q (the minimality property).
2. A family of interaction energies {E,}weq is said to derive from a Lagrangian
if there exists a continuous function L : Q x RY — R such that

VweQ, Va,y eRY  E,(z,y) = L(1.(w),y — ). (7)

3. An almost periodic interaction model is the set of data (2, {7¢}icpra, L), where
(2, {7t }sera) is a minimal R%-action and L is a continuous function on £ x R

Notice that the expression “almost periodic” shall not be understood in the
sense of H. Bohr. The almost periodicity according to Bohr is canonically relied
to the uniform convergence. See [3] for a discussion on the different concepts of
almost periodicity in conformity with the uniform topology or with the compact
open topology.

Because of the particular form of E,(x,y), these energies are translation
bounded and translation uniformly continuous in the sense that, for all R > 0,
SUP|y—g <k Pw(®,y) < +00 and E,(z,y) is uniformly continuous in [ly — z|| < R.
We make precise the notions of coerciveness and superlinearity for the Lagrangian
form.

Definition 2. Let (2, {7t };cra, L) be an almost periodic interaction model.

1. L is said to be coercive if lim inf inf L(w,t)= +oo.
R—+oo weQ |t|>R
L(w,t)

2. L is said to be superlinear if lim inf inf ———= =400
R—+o0 weQ [t|>R  ||t|

Let us illustrate our abstract notions by three typical examples.

Example 3. The one-dimensional periodic Frenkel-Kontorova model [I1]. The inter-
action energies are given by E,(x,y) = W(y —x) + V,,(z), with w € R/Z, written in
Lagrangian form as

Lw,t) =W({t)+V(w) = %\t A+ (1 — cos27w), (8)

K
(2m)?
where A\, K are constants. Here Q@ = R/Z and 71 : R/Z — R/Z is given by 7t(w) =
w—+t. We observe that {1}+ is minimal.
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Example 4. The one-dimensional almost crystalline model based on [12]. For a €
(0,1) \ Q, consider the aperiodic subset of R defined by

wla) = {k€Z: [ka| — (k- 1)a] =1},

where | -] denotes the integer part. Represented as an ordered subset w(a) = {wp nez
possesses the property that the distance between two consecutive points is either Léj
or Léj +1. We choose two smooth functions Uy, Uy : R — R with supports respectively
in (0,[%]) and (0, L] +1). We then construct a potential V o) : R — R and an

interaction energy in the following way

Vw, <z <wni1, Vo (x) =0 _12) (= wn),

Wnt1—Wn
1
VJU,:UGR Ew(oz)(xay) = §|x_y_)‘|2+vw(a)(x)'

More generally, one may similarly define a potential V,,(x) and an interaction energy
E,(z,y) for any subset w € R having the property that the distance between two
consecutive points belongs to {| L], 1] +1}. Let V' be the set of all such subsets w.
Then, for any z,t € R, V,(x +t) = Vy—¢(z), where w —t :={p—t :p € w}. Let
Q C Q be the hull of the w(«) as explained in section . Then Q is compact, the
group of translations Ty(w) = w — t acts minimally, and E,(x,y) derives from the

Lagrangian

Liw,t) = %u AP VL) )

We will extend in section [4] the construction given in example [4] to any qua-
sicrystal w of R. The associated almost periodic interaction model will be of almost
crystalline type as we will describe below. Our third example illustrates an almost
periodic interaction model on R which is not almost crystalline.

Example 5. The one-dimensional almost periodic Frenkel-Kontorova model. The un-
derlying minimal flow is given by the irrational flow 14(w) = w + t(1,v/2) acting on
Q =R2/Z2. The family of interaction energies E,, derives from the Lagrangian

Ky

(27)?

1
L(w,t) :== 5|t N2+ (1 — cos 2mwy ) + 1 —cos2mws),  (10)

Ky (
(2m)?
where w = (w1, ws) € R?/Z2.

We will consider calibrated configurations at a specific level.

Definition 6. We call ground energy of a family of interactions {E, },cq of La-
grangian form L : Q x R* — R the quantity

. . . 1
E:= lim inf inf —E,(x0,...,xpn).
n—+00 weN xzg,....x,€RY N

It is easy to check that the above limit is actually a supremum by superadditivity
and is finite if L is assumed to be coercive. Besides, we clearly have a priori bounds

inf inf E,(x,y) <E < inf inf E,(x, ). 11
Jnf, nf Polry) s E< inf inf Eo(z,z) (11)

In the same way, we may define the ground energy E,, in the environment w as

1
E,:= lim inf —E,(x0,...,Zn). (12)

n—+00 zg,...,.xp, ERL T
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The ground energy E,, measures the lowest mean energy per site among all infinite
configurations in the environment w. We will see (proposmon 3)) that the minimality
of the group action {7;}; implies that £ = E,, for all w € Q.

In this context, let us precise the definition of calibrated configuration. For
an environment w, we say that a configuration (zy)rez is calibrated for E,, (at the
level E) if, for all m < n,

E (Tpm,...,2n) — (n—m)E = inf ~inf [Ew(yo,...,yg)—ﬁE] . (13)
0>1 Yo=Tm,e- Yo =Tn

We show two results that give sufficient conditions for the existence of cali-
brated configurations. The first one applies to almost periodic interaction models in
any dimension. We describe a set, called projected Mather set, consisting of environ-
ments that allow the existence of calibrated configurations. The second result is more
restrictive and holds only for one-dimensional almost crystalline interaction model.
We then show that a calibrated configuration exists for every environment.

The following definition is basic in our analysis. The vocabulary is borrowed
from the weak KAM theory (see [9] [10]).

Definition 7. Let (Q, {7 };era, L) be an almost periodic interaction model.

1. A measure 1 on Q x R? is said to be holonomic if it is a probability and

VfechQ /f pi(dw, dt) /fn (i(dw, dt).

Let My,; denote the set of holonomic measures. -
2. An measure p is said to be minimizing if it is holonomic and E = [Ldpu.
3. We call Mather set of L the subset of Q x R¢ defined by

Mather(L) := Uyem,,., (£)Supp(i),
where My, (L) denotes the set of minimizing measures.

The projected Mather set is the projection pr(Mather(L)) of the Mather set into Q
by the canonical projection pr: Q x R* — Q.

It can be shown that the Mather set is a nonempty compact set for any super-
linear Lagrangian (proposition [13|and lemma .

Our first result applies to an almost periodic interaction model in every dimen-
sion and extends the classical periodic Aubry-Mather theory.

Theorem 8. Let (Q, {7 }iera, L) be an almost periodic interaction model. Assume L is
superlinear. Then, for all w € pr(Mather(L)), there exists a calibrated configuration
(zk)kez for E,, at the level E such that xo = 0 and supycy ||Tr41 — 2kl < +00.

Let us recall that, by the stationarity hypothesis @, a configuration (zg)kez
is calibrated for E,, if, and only if, for all + € RY, the configuration (z — t)gez is
calibrated for £, (.. So, by theorem each environment in the {7 };cgpa-orbit of the
projected Mather set admits a calibrated configuration.

However, it may happen that the orbit of the projected Mather set is a small set.
Indeed, in the one-dimensional almost periodic Frenkel-Kontorova model described in
example [5, for A = 0, it is easy to check that £ = 0, the Mather set is reduced to the
point (Opz,0g), and a2 = 0, k € Z, defines a calibrated configuration. We conjecture
that there does not exist a calibrated configuration for w & {(t,tv2) : t € R}. A
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similar case occurs when there is no exact corrector for the homogenization problem
in Hamilton-Jacobi equations in the stationary ergodic setting [20} 5].

Our second result applies to a specialized one-dimensional almost periodic in-
teraction model called almost crystalline.

Definition 9. Let (Q, {7 }:ter) be a minimal R-action.

1. An open set U C Q is said to be a flow box of size R > 0 if there exists a
compact subset = C 2, called transverse section, such that:
(a) the induced topology on E admits a basis of closed and open subsets, called
clopen subsets,
(b) the map (w,t) € B X E+— 7(t,w) = 1t(w) € Q is a homeomorphism onto
U, where B = B(0, R) denotes the open ball of radius R and center 0.
2. Two flow boxes U; = 7(Br, XZ;) and U; = 7(Br,; XxZ;) are said to be admissible
if, whenever U; NU; # 0, there exists a; j € R such that

7'(;)1 oT(t,w) = (t — aij,Ta, ; (W), V(t,w)e€ T(;)l(Ui nU;),

where T(;)l :U; — Br X = denotes the inverse map.

3. A flow box decomposition {U;};cr is a cover of Q by admissible flow boxes.

4. A flow box 7(Bg x E) is said to be compatible with respect to a flow box decom-
position {U; }iecr, where U; = 7(Bpg, X E;), if for every |t| < R, there existi € I,
[t;| < R; and a clopen subset Z; of E; such that T(E) = 7, (ét)

Of course, the circle has a flow box decomposition. Less trivially, a typical ex-
ample is a suspension of a minimal homeomorphism on a Cantor set with a locally
constant ceiling function. But in general, a minimal R-action does not possess a trans-
verse section. We will describe in section [4 how such a decomposition is obtained for
the hull of a quasicrystal (example [4]is a prototype of a quasicrystal). Yet, our notion
is more general than this one because it also includes, for instance, nonexpansive R
actions. The next definition is central in our second main result.

Definition 10. Let (2, {7 }ier, L) be an almost periodic interaction model admitting
a flow box decomposition {U;}icr. L is said to be locally transversally constant with
respect to {U, }icr if, for every compatible flow box 7(Bgr x Z),

Vw,w' €E, Y|z|,|ly| < R, Eu(z,y) = E,(x,y).

We will show in section [ that the Lagrangians in examples [3] and [ are locally
transversally constant.

The standard one-dimensional Aubry-Mather theory assumes that the inter-
action energy E(z,y) is strongly twist as in (4). An energy of the form E(z,y) =
1t — A|* + V() is not strongly twist. We extend slightly this definition: E(z,y) is
said to be weakly twist if E is a C? function and satisfies
0’E 0’E
920y (z,) <0 and 920y

Definition 11. Let (Q, {7¢}ier, L) be a one-dimensional almost periodic interaction
model. The interaction model (Q, {7 }ier, L) is said to be almost crystalline if

Vz,y€R, (Ly) <0 ae. (14)

1. {71}ier is uniquely ergodic (with unique invariant probability measure \),
2. L is superlinear and weakly twist (for every w € Q, E,, is weakly twist),
3. L is locally transversally constant with respect to a flow box decomposition.
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Our second result states that calibrated configurations exist for every environ-
ment of an almost crystalline interaction model.

Theorem 12. Let (2, {7 }ter, L) be an almost crystalline interaction model. Then,
for every w € Q, there exists a configuration (xy )kez which is calibrated for E,,,
with bounded jumps and at a bounded distance from the origin uniformly in w, i.e.:
SUp SUP |Tpt1,w — Thw| < +00, sup |zow| < +o0.
weN kEZ weR

Actually, to show this result it is enough, by theorem to prove that the
projected Mather set intersects every {: }:cr-orbit.

The paper is organized as follows. Section [2] is dedicated to the proof of the-
orem [§ whose strategy takes advantage of a fundamental characterization of the
ground energy via a sup-inf formula. We give in the appendix another proof of this
formula. In section |3 we improve classical results about the rearranging of the atoms
of a minimizing configuration for weakly twist Lagrangians. We especially show that
no coincidence may happen. In section [4 by extending example [ we explain how
to construct almost crystalline interaction models using quasicrystals and strongly
equivariant functions. In particular, corollary [31]describes an explicit family of almost
crystalline interaction models. Section [5]is devoted to the proof of theorem

2. Almost periodic interaction models

This section is devoted to the proof of the existence of calibrated configurations for
almost periodic interaction models in any dimension. In the periodic setting, the proof
is done using calibrated sub-actions as in [I3]. We do not know how to extend this
tool in the aperiodic case. We use instead a new tool: the Marié subadditive cocycle.
We start showing different ways of computing the ground energy. The ground energy
computed using the sup-inf formula is fundamental for the construction of the Mané
subadditive cocycle. In the second subsection, we use this cocycle to build a calibrated
configuration when the environment belongs to the projected Mather set. The proof
of theorem [§is given at the end of this section. In all this section, we will consider an
almost periodic interaction model (deﬁnition. Most of the results hold for coercive
Lagragians.

2.1. Ground energy and Mather set

Let w € ) be a fixed environment. The ground energy E,, (equation ) is computed

by taking the limit of the minimum %Ew(xo, ..., Ty) over all finite configurations. We

will identify this number with quantities defined globally on the phase space £ x R¢

so that its computation will be interpreted in the framework of ergodic optimization.
To roughly explain this relation, observe that

1
B, ) = /L(w,t) i (o, dE),

where i, = %ZZ;(% (5(%(@)’%“,%). We then check that, for every f € C°(Q),

[ 16 st = [ () pnaldiondt) = 5 (£ 072, (0) = £ 072y ().

If (ttn,w)n>1 where tight, we could extract a subsequence converging to a probability
measure p for the weak* topology which would be holonomic as in definition [7] But
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the tightness or the fact that |z — 25— is uniformly bounded whenever (z)}_,
minimizes %Ew(mo, ...,Zn) I8 a priori unclear.

We give several equivalent definitions of the ground energy in the next proposi-
tion. Let us recall that Mj,,; denotes the set of holonomic measures. Note that My,

is nonempty as it contains d, o), w € §2.

Proposition 13. Let (2, {7 }icra, L) be an almost periodic interaction model. Assume
L s coercive. Then

1. (the ergodic formula)
E=inf{ [Ldp:p €My}, andMpyin(L)#0,
2. (the sup-inf formula)
E = SUp,eco(q) inf {L(w,t) + u(w) —uom(w) :weQ, t € R,
3. (the ground energy per environment)
VweQ, E=Ilim, e inf, .. cra %Ew(x(h ceey ).

Actually the ground energy per environment comes from the minimality of the
action. Observe the sup-inf and ergodic formulas are dual to each other as in convex
analysis. Although the supremum in the sup-inf formula is achieved for periodic
models, we are unable to prove it for general almost periodic interaction models. We
note temporarily

_ 1 _
E,= lim  inf  ~Eu(z0,...,2n), L::inf{/Ldu:uthol},

n—+00 xq,...,x, ERY N

and K := sup inf [L(w,t) + u(w) — uo r(w)].
ueCH(Q) WER, teR?

We first prove the equality E,, = E. We next show that £ > K > L > E. We will
use Birkhoff ergodic theorem for the Markov extension of a holonomic measure. We
recall this construction. Since the proof is straightforward, we omit it.

Proposition-Notation 14. Let () := Q x (RHN. Bvery probability measure p on Q x RY
admits a unique disintegration along the first projection pr: Q x R* — Q,

M(dwv dt) = P (H) (dw)P(w’ dt)a

where { P(w, dt)}o,eq is a measurable family of probability measures on RY. We call
Markov extension of u the probability measure i defined by the Markov construction
with initial distribution pr.(u) and transition probabilities P(w,dt),

f(dw, dt) = pri(dw)P(w,dto) P(T, (w), dt1) - - - P(Tegpengt, (W), dby).
If p is holonomic, then [i is invariant with respect to the shift map
T (w,to,th .. ) — (TtO(UJ),tl,tQ, . )

Conversely, the projection of every 7-invariant probability measure fi on Q x R? is
holonomic. Moreover, if L(w,t) := L(w, to) is the natural extension of L on 2, then
L = inf { JLdp: fiis a T-invariant probability measure}.
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Proof of proposition[13, Step E, = E. By stationarity of F, and minimality of 7,
we have

inf E,(xg,...,xn) inf inf E,(zo+t,...,z,+1)
TO,.., Ty ERD Z0,y...,Tn ERT tERD

inf inf E. (2o, ..,7n)
wOaﬂwvaeRd teRd

= inf inf E,(xg,...,Zn),
z0,...,Tn ERT WEN

which clearly yields E,=E for every w € Q.

Step E > K. Given ¢ < K, there exists u € C°(R?) such that, for every w €
and any t € RY, u(r(w)) — u(w) < L(w,t) — c. Let uy,(x) = u(7,(w)). Then

VZL’,yERd, uw(y)fuw(x) SEw(Zvy)ica

which implies E > ¢ for every ¢ < K, and therefore E > K.

Step K > L. This part is the core of the proof of E = K. We give another proof
in appendix [A]

Let X = CY(Q x RY). A coboundary is a function f of the form f(w,t) =
uo 7 (w) — u(w) for some u € C°(2). Consider

A:={(f,s) € X xR: fisacoboundary and s > K} and

B:={(f,s) e XxR: inf (L-f)(w,t)>s}

weN, teRd
Then A and B are nonempty convex subsets of X x R. They are disjoint by the
definition of K and B is open because L is coercive. By Hahn-Banach theorem, there
exists a nonzero continuous linear form A on X x R which separates A and B. The
linear form A is given by A ® «, where X is a continuous linear form on X and o € R.
The linear form A is, in particular, continuous on C§(Q x R?) and, by Riesz-Markov
theorem,

VieCh@x kY. A= [fdn
for some signed measure p. By separation, we have
AMf)+as<ANu—wuoT)+as,
for u € C°(Q), f € X and s,s’ € R such that infqyga(L — f) > s and s’ > K. By
multiplying u by an arbitrary constant, one obtains
YueC'Q), Mu—-uoT)=0.

The case o = 0 is not admissible, since otherwise A(f) < 0 for every f € X and A
would be the null form, which is not possible. The case o < 0 is not admissible either,
since otherwise one would obtain a contradiction by taking f =0 and s — —oco. By
dividing by « > 0 and changing A/« to A (as well as p/« to u), one obtains

vVieX, A inf (L—f)<K.

f (f) + jnf (L—f) <

By taking f = c1, one obtains c¢(A(1) — 1) < K —infqga L for every c € R, and thus
A(1) = 1. By taking —f instead of f, one obtains A(f) > info.re L — K for every

f > 0, which (again arguing by contradiction) yields A(f) > 0. In particular, p is a
probability measure. We claim that

Yue C%9), /(u—uOT)duzo.
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Indeed, given R > 0, consider a continuous function 0 < ¢r < 1, with compact
support on 2 x Br11(0), such that ¢ =1 on Q x Bgr(0). Then

u—uo7T > (u—uoT)prp + min (u—uo7)(l— dg).
QxR
Since A and p coincide on C§(2 x RY) + R1, one obtains
0:)\(u—u07')2/(u—uor)qudu—i—éniﬂgd(u—uor)/(l—qﬁR)d,u
X

By letting R — +o00, it follows that [(u —wo 7)du < 0 and the claim is proved by
changing u to —u. In particular, x is holonomic. We claim that

VfeX, /fdquQiilﬂgd(L—f)gK“.

Indeed, we first notice that the left hand side does not change by adding a constant
to f. Moreover, if f > 0 and 0 < fr < f is any continuous function with compact
support on Q X Bgr4+1(0) which is identical to f on  x Br(0), the claim follows by
letting R — +o00 in

[ frdut nt (L= 1) < A(f) + ink (L~ fr) < .

We finally prove the inequality L < K. Given R > 0, denote Lz = min(L, R). Since
L is coercive, Lp € X. Then L—Lp > 0 and [Lrdp < K. By letting R — +00, one
obtains [Ldu < K for some holonomic measure .

Step L > E. We claim the infimum is attained in L := inf{ [Ldp: p € Mpe}.
Indeed, let

C:=sup L(w,0) > L and My c:= {u € My, : /Ldu < C}.
weN

We equip the set of probability measures on Q x R? with the weak topology (con-

vergence of sequence of measures by integration against compactly supported con-

tinuous test functions). By coerciveness, for every € > 0 and M > inf L such that

€> (C — inf L)/(M — inf L), there exists R(E) > 0 with inwafLHtHZR(e) L(w,t) > M.

By integrating L — inf L, we get

inf L i < M —inf L

We have just proved that the set My ¢ is tight. Let (pn)n>0 C Mporc be a se-
quence of holonomic measures such that [Ldu, — L. By tightness, we may assume
that pu, — e with respect to the strong topology (convergence of sequence of mea-
sures by integration against bounded continuous test functions). In particular, pie is
holonomic. Moreover, for every ¢ € CY(£, [0, 1]), with compact support,

0</(L L)qﬁduoo: hm /L Lqﬁdunghmlnf/(L—E)d,un:O.

fL C —inf L
V€ Mpor,os (2 x {t: ||t = R(e /M in infL _

n—)oo

Therefore, fioo is minimizing.
We now prove that L > E. Let y be a minimizing holonomic measure with
Markov extension /i (see proposition . If (w,t) € Q, then
n—1
Lo *(w,t) = Ey(xo, ..., zn) with zo=0and z) =tg+ -+ tr_1,
k=0
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and, by Birkhoff ergodic theorem,
n—1
_ 1 o _
E< [ lim —Y Lo#*di= [Ldu=L. O
_/"3&"’”;@0 o7 dfi / v

2.2. Mané subadditive cocycle

As in weak KAM theory, we will make use of the notion of Mané potential.

Definition 15. We call Mafié potential in the environment w the function on R x R?
given by
Sw(x,y) := inf inf [Ew(xo, ceyTy) — nE]
n>1 r=xg,...,Tn=y

Observe that a calibrated configuration (z)kez for E,, (equation (L3))) satisfies,

for all m < n,
E,(Tm,...,zn) — (n—m)E = S, (xm, zn). (15)

We will see in this section that the Mané potential is always finite and shares the same
properties as a pseudometric. A calibrated configuration may be seen as a geodesic
for an “algebraic distance” E,,(x,y) — E.

Since the interaction energy E,(z,y) derives from a Lagrangian L(w,t), the
Maiié potential S,,(x,y) can be lifted to Q x R? to a function ®(w,t) that we call
Mané subadditive cocycle.

Definition 16. Let (Q, {7¢}icra, L) be an almost periodic interaction model. We call
Maiié subadditive cocycle associated with L the function defined on  x R% by

n—1
q)(wat) = %gfl O=x0,wi1r,l.ft.,;cn,=t kE_:O [L(Trk (W)’ Th+1 — xk) - E] :

Note that S, (z,y) = ®(12(w),y — x).
A function U : Q x R? — [—o0, +00) is said to be a subadditive cocycle if
YweQ, Vst eRY Uw,s +1t) <U(w,s) + Ulrs(w), t) (16)

The very definitions of ® and £ show that ® is a subadditive cocycle. In addition,
® does not take infinite values and satisfies, for every w € € and s,t € R?,

0< ®(w,0) and FE — L(1(w),—t) < ®(w,t) < L(w,t) — E. (17)
Inequality 0 < ®(w,0) is proved using the fact that, for a fixed w, the sequence

E,(w,0):= inf FE,(0,z1,...,2,-1,0)
X1,y Ty—1
is subadditive in n and E < lim,,_, %En(w, 0) =inf,>1 %En (w,0).
Note that calibrated configurations are configurations realizing the infimum in
definition [I6] We first weaken the notion of calibration in the way described below.
As usual, L is supposed to be coercive.

Definition 17. A measurable subadditive cocycle U : ) x R? — [—o00, +00) is said to
be calibrated (with respect to L) when
1. VweQ, Vs,teRY U(w,t) < L(w,t) — L and U(w,0) >0,
2. for every p € Mo and i its Markov extension, if [Ldu < +oo, then, for every
n > 1, [U(w, ShZo te) fldw, dt) > 0.
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The existence of a calibrated subadditive cocycle enables us to easily construct
calibrated configurations.

Lemma 18. If U is a calibrated subadditive cocycle U, then U grows sublinearly,
Sup,eq.erd |U(w,)|/(1+|[t]]) < 400, in particular it is finite everywhere. Besides,
for every p € My,in (L) and i its Markov extension,

n—1 n—1

Vn>1, U(w, Ztk) = Z[!i — Ll ot*(w,t), [i(dw,dt) a.e.
k=0 k=0
Proof. Part 1. We show that U is sublinear. Let K := sup,cq, ¢<1[L(w;t) — L.
Given t € RY, let n = [|t|| + 1] and ¢, = %¢ for k = 0,...,n — 1. Then the
subadditive cocycle property implies, on the one hand,

n—1
Vwe Qv Vit e Rda U(w»t) < Z U(Ttk (w)vtk+1 - tk) < nk < (1 + Ht”)K
k=0

On the other hand, thanks to the hypothesis U(w,0) > 0, we obtain
VweQ, VteRY Ulw,t) > U(w,0) — Ulry(w), —t) > —(1 + ||t]) K.

Part 2. Suppose p is minimizing. Since
n—1 n—1
VweQ, Vig,....taor €RY, > [L— L] o#*(w,t) > U(w,ztk),
k=0 k=0
by integrating with respect to fi, the left hand side has a null integral whereas the
right hand side has a nonnegative integral. The previous inequality is thus an equality
that holds almost everywhere. a

Proposition 19. Assume that L is coercive. Then ® is upper semi-continuous and
calibrated. More precisely, for every p € Mynn(L) and i its Markov extension, for
every (w,t) € supp(ft), @ < j, o = 0 and zp11 = Tk + tr, (Tk)k>0 i a one-sided
calibrated configuration for E,,,

j-1
@(Tmi(w),xj - xl) = [L - Ij} o f'k(w,t) =E(zi, zig1,...,25) — (J — i)E.

)

=
Il

Proof. Part 1. We first show the existence of a particular measurable calibrated
subadditive cocycle U(w,t). From the sup-inf formula (proposition 7 for every
p > 1, there exists u, € C°(Q) such that

VweQ, VteRY,  u,om(w) —up(w) < L(w,t) — L+ 1/p.

Let Up(w,t) := up o ¢(w) — up(w) and U := limsup,_, ,,, Up. Then U is clearly a
subadditive cocycle and satisfies U(w,0) = 0. Besides, U is finite everywhere, since
0=U(w,0) <U(w,t)+ U(r(w), —t) and U(w,t) < L(w,t) — L. We just check the
second property in definition Let u € My, be such that [Ldu < 4oc. Define,
for every n > 1,

n—1 n—1

Sy p(w,t) = kz:% [ﬁ ~L+ 1} o t*(w,t) — U, (w, tk) > 0.
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Since
n—1 n—1
Up(i0. 3 0) = S Oy #wt), Upleont) 1= Uy o).
k=0 k=0

by integrating with respect to [i, we obtain
& & = 1
0< /inf Sppdfi < inf /Sn,p(w,;) djy < n/[L ~ L+ 7} dy.
P=>q P=>q q

By Lebesgue’s monotone convergence theorem, as ¢ — +00, we have

/[n(ﬁL)U(w,nzltk)}dﬂg/n[LL]du and

k=0
n—1

/U(w, Ztk) fi(dw, dt) > 0.

Part 2. We next show that @ is calibrated. We have already noticed that ® satisfies
the subadditive cocycle property, ® < L — L, ®(w,0) > 0, and ®(w,t) is finite
everywhere. Moreover, ®(w,t) > U(w,t) and the second property of definition
follows from part 1.

Part 3. We show that ® is upper semi-continuous. Define
YVweQ, Vn>1, &,(w,t):=inf{E,(zo,...,zn):20=0, z, =t}

Then & = inf,>1 (P, — nE) is upper semi-continuous if we prove that ®,, is continu-
ous. Let D >0, ¢o == infy 4y Ew(z,y) and Kp 1= sup,ecq, 4<p Ew(0,...,0,t). By
coerciveness, there exists Rp > 0 such that

vxay € Rd? ||y - xH > RD = Vwe Qv Ew(xuy) > KD - (n - 1)60'
Choose w, xg, . .., z, such that E,(zo,...,z,) < Kp. Then, for every 0 < k < n,
Kp > E (x0,...,2n) > (n—1)co + Ey(Tk, Tht1) = ||Zr+1 — 2kl < Rp.

We have proved that the infimum in the definition of ®,(w,t), when w € Q and
It]l < D, can be realized over ||| < kRp, V 0 < k < n. By the uniform continuity
of E,(zg,...,x,) on the product space Q x Ii{||zx|| < kR}, we obtain that ®,, is
continuous on Q x {||t|| < D}.

Part 4. Let p be a minimizing measure with Markov extension ji. We show that every
(w,t) in the support of [ is calibrated. Let

n—1 n—1

S = {(w,;) cQx RY :vn>1, @(W,Ztk) >3 [L-1I] oi’k(w,g)}.

k=0 k=0

The set 3 is closed, since ® is upper semi-continuous. By lemma 3 has full -
measure and therefore contains supp(ft). Hence, the proposition is proved thanks to
the subadditive cocycle property of ® and the 7-invariance of supp(f). O

Lemma 20. Let (Q, {7¢}icra, L) be an almost periodic interaction model.

1. If L is coercive, then M, (L) # 0 and Mather(L) = supp(u) for some p €
M,in(L). In particular, the Mather set is closed.
2. If L is superlinear, the Mather set is compact.
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Proof of lemma[20, Item 1. The existence of minimizing measures ‘was obtained dur-
ing the proof of proposition (more precisely, during the step L > E). Thus, let
{V;}ien be a countable basis of the topology of Q x R? and let

I:={ieN:V;Nsupp(r) # 0 for some v € M,,;,,(L)}.

We reindex I = {iy,i2,...} and choose for every k > 1 a minimizing measure py so
that V;, N supp(uy) # 0 or equivalently ju(V;,) > 0. Let p:= 37, 21k ti. Then ,u
is minimizing. Suppose some V; is disjoint from the support of p. Then u(V;) =
and, for every k > 1, ug(V;) = 0. Suppose by contradiction that V; Nsupp(v) # 0 for
some v € My, (L), then ¢ = iy, for some k > 1 and, by the choice of g, pur(Vi) > 0,
which is not possible. Therefore, V; is disjoint from the Mather set and we have just
proved Mather(L) C supp(u) or Mather(L) = supp(u).

Item 2. We now assume that L is superlinear. From lemma the Mané sub-
additive cocycle is sublinear. There exists R > 0 such that

VweQ VteRY,  |®(w,t)] < R+ |t]).
By superlinearity, there exists B > 0 such that
VweQ, VteRY, L(w,t)>2R|t| - B
Let 4 be a minimizing measure. Since ® = L — L ;1 a.e. (lemma , we obtain
It < (R+B+|L))/R, u(dw,dt) a.e.

We have proved that the support of every minimizing measure is compact. In partic-
ular, the Mather set is compact. O

Proof of theorem[§ We show that, for every environment w in the projected Mather
set, there exists a calibrated configuration for F, passing through the origin. Let p
be a minimizing measure such that supp(u) = Mather(L). Let fi denote its Markov
extension. For n > 1, consider

Q, = {(w,ﬁ) €O x (RYN: @(w,gnzl tk) > 275 [L- L] ofk(w,;)}.
k=0 k=0

From proposition supp(ji) C Qn. From the upper semi-continuity of @, Qn is
closed. To simplify the notations, for every t, we define a configuration (zg,z1,...)
by

29 =0, 2pp1 = o + 1, so that 7%(w,t) = (T4, (W), (try thss - - -))-
Notice that, if (w,t) € Qn, thanks to the subadditive cocycle property of ® and
the fact that ® < L — L, the finite configuration (zo,...,72,) is calibrated in the
environment w, that is,

j—1 -1
VO <i<j<2n, (Tm Zt) ST L -L)o#(w.t),
k=1 k=1

or written using the family of interaction energies E,,
VO<i<j<2n, Su,(wiz;)=FEy(i...,z;)— (j—1i)E.
Thanks to the sublinearity of S, there exists a constant R > 0 such that, uniformly

inw € Qand z,y € R we have |S,(z,y)] < R(1 + ||y — z||). Besides, thanks
to the superlinearity of E,,, there exists a constant B > 0 such that E,(z,y) >
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2R|ly — z|| — B. Since Sw(gckmng) = E,(vy,Tx11) — E, we thus obtain a uniform
upper bound D := (R + B + |F|)/R on the jumps of calibrated configurations:

V(w,t) € O, VO <k < 2n, |zps1 — x| < D.

Let Q’ =7n (Q ) Thanks to the uniform bounds on the jumps, Q;l is again closed.
Since u(Q ) =1, a(€Y,) = 1 by invariance of 7. Let v := pr,(u) be the projected
measure on §). Then supp(v) = pr(Mather(L)). By the definition of {2/, we have

Q) ={weQ:I (@ pn,...,2,) €ER? st. 29=0 and
ST _p,xn) > Ey(_p,...,2,) —2nE}.

Again by compactness of the jumps, zfr(fl’n) is closed and has full v-measure. Thus,
pAr(Q;l) D pr(Mather(L)). By a diagonal extraction procedure, we obtain, for every
w € Mather(L), a bi-infinite calibrated configuration with uniformly bounded jumps
passing through the origin. O

3. Aubry theory for weakly twist interactions

The one-dimensional Aubry theory is based of the strong form of the twist condi-
tion . The main consequence of this condition is that the set of infinite two-sided
minimizing configurations is well ordered. The weak form of the twist condition
allows us to use anharmonic interactions. We extend in this section some proofs of the
Aubry theory for weakly twist Lagrangians. We show that minimizing finite config-
urations are strictly well ordered. The fact that there is no superposition of atoms is
new and more delicate to prove. We will use these results for the proof of theorem

From now on, we consider almost periodic interaction models where L is sup-
posed to be weakly twist. The following lemma extends Aubry crossing lemma. Its
proof is similar to the standard one and is left to the reader.

Lemma 21 (Aubry crossing lemma). If w € Q and xo,z1,y0,y1 € R satisfy (yo —
20)(y1 — 1) <0, then

[Ew (0, 71) 4+ Eu(yo,11)] — [Bu(@o, y1) + Euw(yo, 21)] = ayo — z0)(y1 — 21) > 0,

_ 1 Yo (Y1 8%E,,
where o = o= Jao Jor Gioe “(z,y)dydr < 0.

The next intermediate result will be useful.
Lemma 22. Let w € Q. Forn > 2, let xq,...,T, € R be a nonmonotone sequence
(that is, a sequence which does not satisfy vo < ... <, norxg > ...> x,).

1. If xg = p, then E,(xo,...,2,) > Z?;Ol E,(zi, ;).
2. If g # xy, then there exists a subset {ig,i1,...,1.} of {0,...,n}, with ig =0

and i, =mn, such that (z;,,xi,,...,x;. ) is strictly monotone and
Eu(@0,. ) > Bu(@ig, i)+ Y Bolwi, ).
1€{i0,. i1 }

(Note that it may happen that x; = x; for i & {io,...,ir} and j € {ig,...,ir}.)
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Proof. We prove the lemma by induction.

Let 29,1, 22 € R be a nonmonotone sequence. If zg = x4, then E,, (zg, x1,z2) >
E(xg,x0) + Eu(x1,21). If 9 # 29 then xg,x1,x9 are three distinct points. Thus,
ro < x1 implies 92 < z1 and x7 < g implies x1 < 2. In both cases, lemmatells
us that

Eu(zo,21) + Eu(x1,22) > Ey(x0, 22) + Eu(z1,21).

Let (zg,...,Znt1) be a nonmonotone sequence. We have two cases: either zy <
Ty Or Tg > T,. We shall only give the proof for the case zo < x,,.
Case xy = x,. Then (xq,...,x,) is nonmonotone and by induction
n—1
Ew(xm v aanrl) > Ew(xn>xn+1) + Z Ew(l'i,.')fi)
i=0
n
= By (z0, Zny1) + Z Ey(zi,2;).
i=1
The conclusion holds whether z,, 11 = x¢ or not.
Case xg < x,,. Whether (x, ..., x,) is monotone or not, we may choose a subset
of indices {ig,...,i,} such that ioc =0, i, =n, z;, < x; <...<x; and
Ew(xOM-wl‘n-&-l) > (Ew(xioa-~-axir)+ Z Ew(xuxz)) +Ew(xnaxn+1)-
ig{iﬂa-vwir}
If 2, < xpy1, then (xq,...,2,) is necessarily nonmonotone and the previous

inequality is strict. If z, = x,,41, the lemma is proved by modifying i, = n + 1. If
Ty < Tpt1, the lemma is proved by choosing r + 1 indices and ¢,41 =n + 1.
If £,,41 < x, = z;,, by applying lemma [21] one obtains

Eo.} (xir,l ) xir) + Ew (xn; xn-&-l) > Ew (-rnv xz,) + Ew (xi,,~,1 ) xn-i—l)a

E (2o, .y Tnt1) > Bu(®igy oy @iy Tng1) + [ Z Ew(xi7xi)] + By (T, xn).
i¢{io,...,ir}

Ifz; |, < Zpt1, the lemma is proved by changing i, = ntoi, =n+1.Ifz; | = xp41,

the lemma is proved by choosing r — 1 indices and 4,1 =n+ 1. If 2,11 < z;,._,, we

apply again lemma [21| until there exists a largest s € {0,...,r} such that x5 < 2,41

or n+1 < xg. In the former case, the lemma is proved by choosing s+ 1 indices and

by modifying i,+1 = n+1. In the latter case, namely, when z,,41 < z¢ < z,, we have

EW(CC(), . ,CEnJrl) > Ew(l'o,xn+1) + ZEw(xi; SUZ)
=1

and the lemma is proved whether x,, 11 = zg or x,4+1 < 2. O

As a first consequence, note that it is enough to minimize over strictly monotone
configurations, unless ¢ = 0, in the definition of the Mané subadditive cocycle
D(w,t).

Proposition 23. The Mané subadditive cocycle ®(w,t) satisfies, for every w € €,

Cift=0, ®(w,0) = E,(0,0) — E, )
- th >0, @(w,t) = infnzl inf0:10<11<_“<%:t[Ew(mo, e ,.Tn) — Tl/l?],

- ift <0, fI)(w,t) = infnzl inf0=:100>;161>...>9c,,,=t[E‘w(1'05 ce ,In) - nE]
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Proof. Lemma [22] tells us that we can minimize the energy of E,(xg,...,7,) — nE
by the sum of two terms:
— either x,, = x¢, then

E,(zg,...,2,) —nE > [E (xo,x0) — + Z w (T, ;) E];
i¢{0,n}
— or T, # xo, then for some (z;,, ..., z;.) strictly monotone, with ip = 0 and ¢, = n,
E,(zo,...,zn) —nE > [Ew(xio,...7xir)—rE] + Z [Ew(xi7xi)—E_'].
i@{i0,.-rir}
We conclude the proof by noticing that E < inf,cg E,, (,z). O

A second consequence is the fact that minimizing finite configurations are
strictly ordered.

Proposition 24. Let w € Q. If (xq,...,x,) is a minimizing configuration for E,, such
that x; is strictly between xg and x, for every 0 < i < n — 1, then (xg,...,x,) 18
strictly monotone.

Proof. Let (xg,...,2,) be such a minimizing sequence. We show, in part 1, it is
monotone, and, in part 2, it is strictly monotone.

Part 1. Assume by contradiction that (zo,...,z,) is not monotone. According
to lemma one can find a subset of indices {ig,...,%,} of {0,...,n}, with ip =0
and i, = n, such that (z;,,...,x;,) is strictly monotone and

Eu(@o,. &) > Bu(@ig, i)+ Y Bulwi,a).
i@{i0,..vir}
We choose the largest integer r with the above property. Since (xq,...,x,) is not
monotone, we have necessarily r < n. Since (zq, ..., Z,) is minimizing, one can find

i & {i0,...,4,} such that x; & {x,,,...,2;, }. Let s be one of the indices of {0,...,r}
such that z; is between x;_ and x;_, . Then, by lemma

E, (xis ) xis+l) + B (xiﬂ .’Ez) > E, (xis ) xl) + Ey, (xia xis+l)'

We have just contradicted the maximality of . Therefore, (o, . . ., x, ) must be mono-
tone.

Part 2. Assume by contradiction that (zo,...,z,) is not strictly monotone.
Then (zg, ..., z,) contains a subsequence of the form (z;_1, 2, ..., Titr, Titrr1) with
r>1and ;.1 # x; = ... = Tjy, # Tiprr1. To simplify the proof, we assume
Ti_1 < Tiyr41. We want to built a configuration (zj_,,zj,..., 2}, 2], 1) so that
Ti_| = Ti1, Ty = Tiprs1 and

/ / !
Ey(Ti1, %y ooy Tigr, Tigri1) > By (i, 7 yees iy Tigpi1)-
Indeed, since (z;—1,...,%itr+1) is minimizing, we have
2
Eo(wi—1, .., @igry1) = Bu(Tio1, i + €,0i01 — €, ., Tigr — €, Tiyrp1) +0(€7).
Let 2 g
1 i 9*FE
a=— x,x;)dz <0,
Ti— Ti1 / OxOy Py &)

1 w92,
= it y) dy < 0.
P Lidr4+1 — Tidr /x 8 8 (x * ) Y

i+r
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By Aubry crossing lemma,
E, (xi—1,z;+€)+ Ey(z; + 6,201 — €)
= Ew(xi_l, Tit+1 — 6) —+ Ew (ZL’Z —+ €,T; + E) — 26(£€Z — SUl'_l)Oé —+ 0(6).

Since x; = 4, obviously E, (x;+€,x;+¢€) = E, (i1 +€, 24 +€). Again by Aubry
crossing lemma,

Ew (xi—i-r + €, Titr + 6) + Ew (xi—i-r — €, xi+r+1)
=FEy(@igr — €, Tinr +€) + Ep(Tiqr + €, Tigry1) — 26(Tiqrr1 — Titr) B + 0(e).

Then, for € small enough, we have

Eo(Ticty o Tigrg1) > Bo(Tio1, % — €00, T 1 — €, Tigy + €, Tigry1),
which contradicts that (x;—1,...,Zi4r+1) IS minimizing. We have thus proved that
(zo,...,2n) is strictly monotone. O

4. Locally constant Lagrangians and quasicrystals

We present in the first subsection a general framework that includes example [4] and
naturally appears in the context of quasicrystals and strongly pattern equivariant
functions. In the second subsection, we recall the construction of Kakutani-Rohlin
towers, transverse measures and homology matrices for uniquely ergodic R-actions,
which will be useful to prove theorem

4.1. One-dimensional quasicrystals

Our purpose in this section is to provide a rich variety of examples of almost crys-
talline interaction models (definition . The two main concepts are: the hull of a
quasicrystal and a strongly equivariant function (see [4, [I8 [19] for a deeper under-
standing of these notions).

We first recall the definition of a quasicrystal (see [I2]). Let w C R be a discrete
subset of R. A p-patch, or a pattern for short, is a finite set P of the form wN B, (z) for
some = € w and some constant p > 0, where B,(z) denotes the open ball of radius p
centered in x. We say that y € w is an occurrence of P if w N B,(y) is equal to P up
to a translation. A quasicrystal is a discrete set w C R satisfying

— finite local complexity: for any p > 0, w has just a finite number of p-patches up
to translations;

— repetitivity: for all p > 0, there exists M(p) > 0 such that any closed ball of
radius M (p) contains at least one occurrence of every p-patch of w;

— uniform pattern distribution: for any pattern P of w, uniformly in x € R, the
following positive limit exists

. # ({y € R : y is an occurrence of P} N B,.(x))
im
r—+o00 Leb(Br(x))

We notice that the finite local complexity is equivalent to the fact that the
intersection of the difference set w — w with any bounded set is finite. The set of
quasicrystals can be equipped with an R-action: 74(w) := w — t, for every t € R, by
translating every point in w by t. A quasicrystal is said to be aperiodic if 7(w) = w
implies t = 0, and periodic otherwise. The lattice Z or the Beatty sequence w(a) =
{ke€Z: |ka|] —|(k—-1)a] =1}, a € (0,1), are basic examples of one-dimensional

=v(P) > 0.
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quasicrystals. When « is irrational (as in example[4)), w(«) is an aperiodic quasicrystal
for which the repetitivity and the uniform pattern distribution are obtained thanks
to the minimality and the unique ergodicity of an irrational rotation on the circle.
For details, we refer to [19].

The first non trivial concept we need is given by the hull of a quasicrystal.
Given a quasicrystal w, C R, we equip the set Qw,) := {7 (w.) : t € R} of all
the translations of w, with the Gromov-Hausdorff topology. Roughly speaking, two
quasicrystals in this set are close if and only if they have the same pattern, up to
a small translation, in a large neighborhood of the origin. More precisely, we define
a metric as follows (for details, see [4], [I7]): the distance between two translations
w,w € Qw,) is the real number

1 1
dist(w,w) := inf {m 3t < - st. (w+t)NB(0) = (w+1t) N B(0)}.

The Gromov-Hausdorff topology is equivalent to the topology given by this distance.
We call hull Q(w,) of the quasicrystal w, the completion of Q(w,). The finite local
complexity hypothesis implies that Q(w,) is a compact metric space. Each element
w € Qwy) is a quasicrystal with the same patterns as w, up to translations. Each
map 7 : Q(ws) = Q(wy) is a homeomorphism. The orbit of w, is by definition dense
in Q(wy). The repetitivity hypothesis is actually equivalent to the minimality of the
R-action 7¢. The uniform pattern distribution is equivalent to the unique ergodicity
of 7; (the R-action has a unique invariant probability measure). We refer to [I8] 4]
for a more detailed analysis. We summarize these facts in the following proposition.

Proposition 25 ([I8, []). Let w. be a quasicrystal of R. Then the dynamical system
(QUwx), {7t }er) is minimal and uniquely ergodic.

We call canonical transversal Zo(w,) of the hull Q(w.,) the set of quasicrystals
w in Q(ws) such that the origin 0 belongs to w. A basis of the topology on Zg(ws)
is given by cylinder sets =, , with w € Zg(w,) and p > 0. In general, that is, for
every w € Q(wy) and p > 0 such that wN B,(0) # 0, a transverse cylinder set =, , is
defined by

Eup i={w € Qwy) :wN B,(0) =wn B,(0)}.
If w e Zp(wx), then Z,, , C Zp(ws).
The designation of transversal comes from the obvious fact that the set Zg(w.)
is transverse to the action: for any real ¢ small enough, we have 7 (w) € Zo(ws) for
any w € Eg(wx). This gives a Poincaré section.

Proposition 26 ([I8]). The canonical transversal Zo(w.) and the transverse cylinder
sets =, , associated with an aperiodic quasicrystal w, are Cantor sets. If w, is a
periodic quasicrystal, these sets are finite.

This allows us to give a more dynamical description of the hull in one dimension
by considering the return time function © : Zg(w,) — R defined by

O(w) :==inf{t > 0: 7e(w) € Zp(ws)}, Yw € Zg(wx)-

The finite local complexity implies that this function is locally constant. The first
return map T: Zo(wx) — Zo(wx) is then given by

T(w) == Tow)(w), Yw e Zo(ws).
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Remark that the unique invariant probability measure on Q(w,) induces a finite
measure on Eg(w,) that is T-invariant (see [12]).

It is straightforward to check that the dynamical system (Q(w.),{7t}tcr) is
conjugate to the suspension of the map T on the set Zg(w,) with the time map given
by the function ©. Thus, when w, is periodic, the hull Q(w,) is homeomorphic to a
circle. Otherwise, Q(w, ) has a laminated structure: it is locally the Cartesian product
of a Cantor set by an interval.

Transverse cylinder sets are base construction pieces of the notion of flow boxes
introduced in definition @ In the aperiodic case, if w € Q(wy), r > 0, and p is large
enough, the set

Uppr ={w—t:t€ B (0), we=y,,}
is open and homeomorphic to B,(0) x Z,, , by the map (t,w) — 7 (w) = w — ¢. Their
collection forms a basis of the topology of Q(w.). The set U, ,, is called a flow box
of basis Z,, ,. The following lemma shows that these flow boxes are admissible and
therefore form a flow box decomposition (definition [J).

Lemma 27 ([4]). Let w, be an aperiodic quasicrystal. Let U; := Uy, p, v, © = 1,2, be
two flow boxes such that Uy N Uy # (. Then there exists a real number a € R such
that, for every w; € By, p,, for every |t;| <r;, i =1,2,

wy—ti =wyg—ty = ta=t1 —a.

The second non trivial concept we need is the notion of strongly equivariant
function as introduced in [I7]. Let w. be a quasicrystal. We recall that a potential
Vo, : R — R is said to be strongly w,-equivariant if there exists a constant R > 0
(called the interaction range) such that

V. () =V, (y), Va,y € R with (Br(z) Nws) — 2z = (Br(y) Nws) —y.

Of course any periodic potential is strongly equivariant with respect to a discrete
lattice of periods. In example {4, the function V,,(4) is strongly w(a)-equivariant with
range R = || + 1. Let us mention another example from [I7], which holds for any
quasicrystal w,. Let § := > d, be the Dirac comb supported on the points of a
quasicrystal w, and let g: R — R be a smooth function with compact support. Then,
one may check that the convolution product d * g is a smooth strongly w,-equivariant
function. Actually, any strongly w-equivariant function can be defined by a similar
procedure [17].

We recall in the following lemma that a strongly w,-equivariant function always
arises from a global function defined on the space Q(w.).

Lemma 28 ([12, [I7]). Let w. be a quasicrystal and V,,, : R — R be a continuous
strongly w, -equivariant function with range R. Then, there exists a unique continuous
function V: Q(w.) — R such that

Vo, (@) =V ory(wi), VaeR
Besides, V' is constant on transverse cylinder sets =, pis, withw € Q(w,) and S > 0.

If V,,, is C?, then V is C? along the flow: v € R — V (1, (w)) is C?, V w.

The global function given by lemma[28]satisfies the locally transversally constant
property that is at the origin of definition We indeed observe on each flow box
Us.R+8,5

V(nw)=V(nW)), V[<S Vwuw €E,rys,
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thanks to the fact that 7, (w') € Z;, (4),r Whenever w,w’ € E, rys and |z| < S. More
generally, we introduce the following definition.

Definition 29. Let (2, {7 }ter, L) be an almost periodic interaction model. A function
V :Q — R is said to be locally transversally constant with respect to a flow box
decomposition {U, }icr, where U; = 7(Bgr, X Z;), if

Viel, Vw,w €5, Vi|z| < Ry, V(m(w)) =V (r(W)).
The examples [3] and [4] are of the form

L(w,t) = W(t) + Vi(w) + Va(r(w)) (18)
with locally transversally constant functions V; and V5. The next lemma shows that
such a Lagrangian L is locally transversally constant as in definition

Lemma 30. Let (2, {7t}+cr, L) be an almost periodic interaction model admitting a
flow box decomposition. Let V1,Va : Q@ — R be two locally transversally constant
functions on the same flow box decomposition, and W = R — R be any function.
Define L(w,t) = W(t) + Vi(w) + Va(re(w)). Then L is locally transversally constant.

Proof. Assume V; and V5 are locally transversally constant on a flow box decom-
position {U; }ier. Let 7(Bg x E) be a flow box which is compatible with respect to
{Ui}ier- If 2|, ]y| < R and w,w’ € E, then

Ew(xa y) = W(y - 'T) + ‘/l,w(x) + ‘é,w(y)'

There exist ¢ € I, |t;| < R; and Z, a clopen subset of Z; such that 2(2) = 7, (éz)
Then 7, (w) = 74, (w;) and 7, (w') = 7, (w}) for some w;,w, € =;. We have

Viw(®) = Vi, (ti) = Vi (ti) = Viw(2).
Similarly Va2 ., (y) = Va2, (y). We have thus proved E,(x,y) = E,(z,y). O

We conclude this section by describing a family of quasicrystalline interaction
models (€2, {7 }1er, L) for which the conclusions of Theorem [12] hold. We say that a
C? function W : R — R is superlinear and weakly convez if

W"”>0 ae. and lim |[W'(t)] = +oo. (19)
[t|—+o0
Corollary 31. Let w, be a quasicrystal, Vi, Va. : R = R be two C? strongly w,-
equivariant functions, and W : R — R be a C? superlinear, weakly convex function.
Let Q(ws) be the hull of ws and {1t}ier be the canonical R-action on Q(wy). Let
Vi, Vo : Q(ws) = R be the extension of Vi, Vax as explained in lemma . Define

L(w,t) = W(t) + Vi(w) + Va(1(w)).
Then (U, {1t}ter, L) is an almost crystalline interaction model.

4.2. Kakutani-Rohlin tower description

Flow boxes are open sets obtained by taking the union of every orbits of size R start-
ing from any point belonging to a closed transverse Poincaré section. The restricted
topology on a transverse section must be special: it must admit a basis of clopen sets.
We recall in lemma [34] how to construct a suspension with locally constant return
maps called Kakutani-Rohlin tower. When the flow is uniquely ergodic, we describe
in the lemmas B3] and B6l how this Kakutani-Rohlin tower enables to characterize the
unique transverse measure associated with each transverse section.
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We gather in the following lemma basic results about flow boxes. We leave the
proof of the lemma to the reader.

Lemma 32. Let (2, {7:}ter) be a minimal R-action. Assume that the action is not
periodic (t € R — 1 (w) € Q is injective for every w € ). Then
1. If 7(Bg X E) is a flow box, then there exists R’ > R such that Q = 7(Bg: x E).
2. If 7(Br x 2) is a flow boz, then T : R x Z — Q is open and 7(Bg X Z') is again
a flow boz for every clopen subset =/ C =.
3. If 7(Br x 2) is a flow bozx, then, for every R' > 0 and w € Z, there exists a
clopen set 2/ C E containing w such that 7(Br x Z') is again a flow box.
4. If T(Bartor X E) and 7(Bagyaor X Z') are flow bozes, and U = 7(Bgr X Z) and
U' = 7(Br x Z') are admissible flow bozes, then

UNU' =7(BxE)=71(B xZ)

for some clopen sets 2, = and some open convez subsets B C Br, B' C Bpg.

5. If {Ui}ier is a flow box decomposition, then, for every w € Q and R > 0, there
exits a flow box T(Br X E), with a transverse section Z containing w, that is
compatible with respect to {U, }icr.

The existence of a flow box decomposition enables us to build a global transverse
section of the flow with locally constant return times.

Definition 33. Let (2, {7:}:er) be a one-dimensional minimal R-action possessing a
flow box decomposition {U;}icr. We call Kakutani-Rohlin tower a partition {Fy}aca
of Q of the form
Fa = T([07 Ha) X 204) = U0§t<HQTt(Ea)

for some some height H, > 0 and some transverse section ¥, (closed set admitting a
basis of clopen subsets), where T((O, H,)x Ea) is a flow box (open and homeomorphic

to (0, Hy) X 3q ), and UaeaT({Ha} X o) = UaeaT({0} X 3y) = UaeaXa. Moreover,
we say that a Kakutani-Rohlin tower is compatible wzth respect to {U; }ier if, for every
o € A, there exist i € I, t; € R and a clopen subset Z; C Z; such that X, = T, (_,)
and [tl,tz +H,) C[— R“R,).

The proof of the existence of a Kakutani-Rohlin tower for one-dimensional min-
imal R-actions is similar to the construction given in [12] for quasicrystals.

Lemma 34. Let (,{7:}ier) be a one-dimensional minimal R-action possessing a
flow box decomposition {U;}icr. Then there exists a Kakutani-Rohlin tower {Fa}aca
which is compatible with respect to {U;}icr.

The existence of a Kakutani-Rohlin tower enables us to build a global transverse
section Uypecad, with a return time constant on each Y, and equal to H,. The
induction of the R-action on a particular section X, gives a second Kakutani-Rohlin
tower with larger heights. We explain in the next paragraph the notations that will
be used for these successive towers.

If {F2}aecao is a Kakutani-Rohlin tower of order 0, denote Fy := 7([0, H3) x
Eg). We say that X0 := U, X0 is the basis of the tower. Let w, be a reference point
of the base X°. Consider ag such that w, € Ego. The construction of the tower of
order 1 is done by inducing the flow on X! := Ego. We obtain a partition of X! given
by {Z}g}ﬁeAl, where f = (a,...,qp), p>1, ap =g, s Fapgfori=1,...,p—1,

S = T N7s (E0)N- N7 o e (55).
o
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By minimality, there is a finite collection of such nonempty sets Eé. Define then

Hp:=H] +...+H)

ap—17
p—1 1—1
Fy=7([0,H}) x Sf) = |J 7(fts t: + HY,) x £9,), with t; = > H).  (20)
i=0 j=0

We have just obtained a new Kakutani-Rohlin tower {Fﬁl}[ge a1 of basis Ego. We
induce again on the section Eéo that contains w, and build the tower of order 2. We
shall write {F},c 41 for the successive towers that are built using this procedure and
F! for the tower of height H! whose basis X, contains w, . The preceding construction
gives minge 4141 HFY > HL and in particular H*' > H!. Tt may happen that
H! = H*' = H!*2 — | In that case, the flow is a suspension over X! of constant
return time H! (and Q is isomorphic to X% x S1). In order to exclude this situation, we
split the basis El which contains w, into two disjoint clopen sets X!, = El U Zl "
We obtain again a Kakutani-Rohlin tower and we induce as before on the Subset
which contains w,. If (2, {7 }+er) is not periodic, we may choose the splitting so that
H!*™' > H! at each step of the construction.

We assume that the flow (2, {7 }+cr) is uniquely ergodic. Let A be the unique
ergodic invariant probability measure. The average frequency of return times to a
transverse section of a flow box measures the thickness of the section. The next lemma
gives a precise definition of a family of transverse measures {vz}= parameterized by
every transverse section =. The proof is standard and we leave it to the reader.

Lemma 35. Let (0, {7}+cr) be a minimal and uniquely ergodic R-action admitting a
flow bx decomposition. For every transverse section =, the set of return times to =2 is
given by

Re(w) ={teR:(w) €E}, YVwe
Then, for every nonempty clopen set =/ C Z, the following limit exists uniformly with
respect to w € Q and is positive:

v=(Z) == _lim #Re(w) N Br)

0.
Tt Leb(Br)

Moreover, vs extends to a o-finite measure on = of finite mass, called transverse
measure to 2, and, for every flow box U = 7(Br X E),

M7(B' x Z')) = Leb(B')v=(Z'), for all Borel sets B’ C Bg, &' C E.

Let {F'},cat be a tower of order [ and {Fé+1}BeAl+1 be the subsequent tower
as introduced in (20). The homology matrix explained in lemma 2.7 of [12] may be
here similarly defined. Indeed, for every a € Al and g € AL, B8 = (ao,...,qp),
ag = oy, oy # o for i =1,...,p— 1, we denote

Méﬂ::#{ogkgp—l:ak:a}.

A flow box of order [ + 1, T([O, Hé“) X EfB'H), is obtained as a disjoint union of flow
boxes of order [ of the type T([ti,ti + H(ll) X Zla) The integer M} g counts the
number of times a flow box of order [ + 1 indexed by [ cuts a flow box of order [
indexed by «. The main result that we shall need is given by the following lemma.
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Lemma 36. Let (2, {7 }+cr) be a minimal and uniquely ergodic R-action. Let {F}4cal
be a sequence of Kakutani-Rohlin towers built as in . Let V' be the transverse
measure associated with the transverse section Uge pt XL, If V!, := VH(ZL), then

§ M 5
BV
5€Al+1

Proof. Let = = Ugg g141 Zlgl. For w € =2, let 0 = tg, t1,ta,... be its successive return
times to =. We introduce as in lemma [35 the set of return times to the transverse
section X!, say, R (w) := {t € R: 7(w) € ¥, }. The set Rlﬁ+1(w) is defined similarly.
Since

#(Ro(w) N = > M. #(R N w)N[0,80)),
BEAL+L
we divide by t,, and apply lemma (35| to conclude. O

5. Almost crystalline interaction models

This section is devoted to the proof of the second main result of this paper, theo-
rem [12} By recalling definition [IT} we consider a one-dimensional almost crystalline
interaction model (Q, {7 }+er, L). By hypothesis, L is transversally constant with
respect to a flow box decomposition {U; = 7(Bpg, X Z;) }icr-

If for some w € Q and = € R, E,(x,z) = E, then O (),0) € Mimin (L), To(w)
belongs to the projected Mather set, and the configuration z ., = = fulfills the two
items of theorem We thus assume from now on

YweQ Ve eR, E,(z,r)>E.

We first prove in proposition |38 that a finite configuration (zg,...,2]") which
realizes the minimum of the energy among all configurations of the same length must
be strictly monotone and must have bounded jumps, |z} — z}_;| < R, uniformly
in n. We next prove in proposition [41| that liminf,, %|xz — x| > 0. We finally
conclude this section with the proof of theorem

Lemma 37. There exists R > 0 such that, if w € Q, if (xo,...,x,) € R is minimizing
for E, and |z, — x| > R, then (xq,...,x,) is strictly monotone.

Proof. Since {U,;}icr is a finite cover, we may choose R large enough so that every
orbit of size R meets every box entirely: for every w, for every |y — x| > R, for every
i € I, there exists t; € R such that (¢; — R;,t; + R;) C [z,y] and 7%, (w) € E;.

We first show that there cannot exist » > 0 and 0 < &k < n — r such that

Ty < Tp—1, Tk =-...=Tpy, and Tk < Thtrtl-
Otherwise, Aubry crossing lemma implies that
Eo(zp—1,78) + Euw(@r, Tryri1) > Eo(Tr—1, Torri1) + Bo(Tr, T)-

We rewrite the configuration (g, ..., Tk—1,Tktrt1s---5Tn) a8 (Y05 -« Yn—r—1). Let
U; be a flow box containing 7, (w). There exists |s|] < R; and w’' € Z; such that
Tz, (W) = 75 (w'). By the choice of R, there exists ¢ such that (¢t — R;, t+ R;) C [0,z
and 7p(w) € E;. Let 20 = ... = 2z ==t +sand 1 <[ < n—r—1 be such that
yi—1 < 29 < y;. Using the fact that L is transversally constant on U;, we have

E,(zy,w1) = By (s, 8) = B, ) (5,5) = Eu(20, 20)-
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By applying again Aubry crossing lemma, we obtain
Eo(yi-1,u1) + Ew(20,20) = Ew(yi-1, 20) + Ew (20, 1),

(possibly with a strict inequality if z9 < y;). We have just obtained a new configura-

tIO0 (Yo -+ vy Yim15 205+« » Zrs Yly - - -y Yn—r—1) Of n points with a strictly lower energy,
which contradicts the fact that (zg,...,z,) is minimizing.
Similarly, there cannot exist » > 0 and 0 < & < n — r such that
Tk > Tp—1, Tk =...=Thtr and Tp > Tpyprii-
There cannot exist either a sub-configuration (zg_1, Tk, ..., Ttr, Thtrt1), ¥ > 1, of
the form zp_1 # Tp4r41 and xx = ... = x4, strictly between zp_; and xpy,.41

thanks to proposition We are thus left to a configuration of the form
To=...=2p <...<Tp_p =...= Ty OF Tog=...=Tp>...> Tp_p =...= Tp,

for some r,r’ > 0.

Assume by contradiction that zg = z1 (the case x,_1 = x,, is done similarly).
Exactly as before, there exist U; containing 7,,(w), |s|] < R; and w’ € E; such
that 75, (w) = 7s(w’), as well as there exists ¢ € R such that (t — R;,t + R;) C
[min{xo, ©, }, max{zo, z,}] and 7 (w) € Z;. One can show in an analogous way
that, whenever z := ¢ + s belongs to (min{z;_1,;}, max{z;_1,2;}] for 2 < 1 < n,
E,(xo, 21, xn) > Ey(x1,...,21-1,2,21,...,%n), with strict inequality if z <
max{x;_1,x;}. Since (zg, 1, ...,2y) is a minimizing configuration, this implies that
z = max{x;_1,2;} € {x0, 2}, and (x1,...,27-1,2,2,...,2,) IS & minimizing con-
figuration. The first part of this proof shows that this cannot happen.

The proof that (zg,...,x,) is strictly monotone is complete. |

Proposition 38. There erists R > 0 such that, for every w € Q, n > 2, and
(xo,...,xn) ER, if

E,(xg,...,2x,) = min FE . and ma. zr — x| > R,
(w0 ") (Y0,---2Yn) w (90 Yn) 0§k<lX§n| k i =
then (zo, ..., 2n) is strictly monotone and supy <<, |Tx — Tx—1| < R.
Proof. Consider w € Q, n > 2, and (zo, ..., ;) realizing the minimum of the energy

among all configurations of length n in the environment w.
Part 1. We show there exists R’ > 0 (independent from w and n) such that
|x1 — 29| < R’ and |22 — z1| < R’. Indeed, we have

E,(zg,z1) < E,(z1,21) and E,(zg,z1,22) < E,(z2, z2,z2),
which implies

E,(xg,x1) <sup E,(z,z) and E,(z1,22) <2sup E,(z,z) — inf E,(z,y).

z€R z€R z,yeR
The existence of R’ follows then from the coerciveness of L, which is uniform with
respect to w. Similarly, we have |z,—1 — z,—2| < R’ and |z, — z,—1| < R'.

Part 2. We show there exists R” > 0 such that, if (zo,. .., 2,,) is strictly mono-
tone, then |z; — x;_1] < R” for every 1 < i < m. We can find a collection of
transverse sections {Z;};ep such that {U] = 7(Bar X E}) }iers is a flow box decom-
position, {T(Br' X E})}iecr is a covering of €2, and L is transversally constant with
respect to {U]}icr. We choose R” > 0 large enough so that every orbit of length R”
meets entirely each U;.
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Let 7(Br x E}) be a flow box containing 7., (w): there exist |s1] < R’ and

w' € E! such that 7,,(w) = 74, (). From part 1, we deduce that U] contains

(3
{Tao (W), Tay (W), Tuy (W) }. Denote so := $1 + xg — x1 and Sy = $1 + T2 — x1, SO
that [sol, [s2] < 2R/, Tu(w) = 74 (W) and 74, (w) = 74, (w'). Assume by contra-
diction |x; — ;—1] > R”. Then, there exists ¢t € R such that (¢ — 2R',t + 2R') C
[min{x;_1, 2}, max{z;_1,2;}] and 7 (w) € E}. Let zo = ¢t + 9, 21 = t + s1 and
29 =t + s2. Notice that (z;—1,z;) and (2o, 21, 22) are ordered in the same way. As L

is transversally constant on U], we obtain
By (w0, 21,72) = Eur (80,51, 82) = En(w)(so, s1,82) = Eu(20, 21, 22)-
Aubry crossing lemma applied twice gives
E (xi—1,z;) + Eu(20, 21, 22) > Eu(xi—1,21) + Eu(20, 2:) + E,(21, 22),
> E,(zi—1,21,2;) + E,(20, 22)-
As L is transversally constant, E,(z0,22) = E, (20, z2) and we obtain

E,(xi—1,2;) + Ey(xo,21,22) > Ey(i—1, 21, %) + Eu(x0, x2).

The configuration (zg, za,...,Ti—1,21,Z4, - - -, L) has a strictly lower energy, which
contradicts the fact that (zo,...,z,,) is minimizing. We obtain similarly that, if
(Zymy - - -, Tp) 18 strictly monotone, then |x;—1 — ;| < R” for every m+1 < i < n.

Part 3. Let R be the constant given by lemma Take R > 2R" +4R". If
|xpn — 20| > R, then (zg,...,x,) is strictly monotone by lemma [37| and the jumps
|x; — 2;,_1] are uniformly bounded by R”. The proof is finished.

Assume by contradiction that |z, — x| < R”. Let a = ming<y<y, ) and b =
maxo<k<n Tk. Since diam({zx : 0 < k < n}) > R, one of the two inequalities
|a— x| > R/2 or |b— x| > R/2 must be satisfied. Assume to simplify |b—xq| > R/2
(the case |a — x| > R/2 is done similarly). Hence, b = z,,, for some 0 < m < n.
Since (xg, ..., Zm) and (T, ..., 2,) are minimizing and satisfy |z, — xo| > R" and
| — 2| > R, these two configurations are strictly monotone. Then, part 2 tells us
that the jumps |x; —2;_1]| are uniformly bounded by R”. In particular, |Z,,4+1—%m| <
R”. The configuration (zg, . .., Zm1) is minimizing and, since |z, —xo| > R"+2R",
it satisfies |z,,+1 — zo| > R"’. By lemma it must be strictly monotone, which is
in contradiction with the maximum z,,.

Thus, |z, —x0| > R", (x0,...,zy) is strictly monotone and |z;—z;—1| < R”. O

The proof of the fact that |z — xx—1| is uniformly bounded uses the same
ideas as in lemma 3.1 of [12]. The fact that L is transversally constant enables us
to translate subconfigurations without modifying the total energy. For a minimizing
and strictly monotone configuration, by minimality of the energy, two consecutive
points cannot enclose a translated subconfiguration of three points. More precisely,
we have the following lemma that extends lemma 3.2 of [12].

Lemma 39. For R > 0, let 7(Br x E) be a flow box compatible with respect to
{Uitier- Let (xg,...,2,) be a strictly monotone minimizing configuration for some
environment w € ). Let (a — R,a + R) and (b — R,b+ R) be two disjoint intervals
such that 7, (w) € Z and 7p(w) € E. Assume that (a — R,a+ R) is a subset of [xg, Tp].
Let A be the number of sites 0 < k < n such that xy, belongs to (a — R,a+ R) and let
B be defined similarly. Then B < A+ 2. In particular, if (b — R,b+ R) C [xo,n],
then |A — B| < 2.
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Proof. To simplify we assume that (zg,...,z,) is strictly increasing. The proof is
done by contradiction by assuming B > A + 3. Denote
{y1,-- . ya} :={x0,...,zn}N(a— R,a+ R) and
{1, yp}i={x0,...,x,} N (b— R, b+ R).
Let yo be the greatest xx < a — R and ya41 be the smallest z; > a + R. We write
s =y, —band 2z, := a+ s for k = 1,..., B. The partition into A + 1 disjoint
intervals U?:ll (Yk—1, Y] must contain A + 3 distinct points {z1,...,244+3}. We have
therefore to consider two cases.
Case 1. Either some interval (yp—1,yx], 2 < k < A, contains three points

(-1, 2i, 2i+1)- By Aubry crossing lemma,

Ew(yk—layk) +E (Z’L 1721) (yk 1721) +Ew(zi—17yk)7

Ew(zifla yk) + E (sz Z7,+1) w(zz 1, Zz+1) + Ew(zia yk)

Since L is transversally constant on 7(Bg x E), we obtain

Ew(yg—layzl‘ay§+1)+E (yk 17yk) Ew(zz 1,Zl,Zl+1)+Ew(yk—1>yk)
> Ey(Zi—1, Zit1) + Eo(Yr—1, 2i, Yk)
= E, (yz 17yz+1)+Ew(yk71aZi7yk:)~

We have obtained a configuration (if, for instance, b < a) of the form

(xOr--7yz{—1ay;+1""7le""ay17---ayk—lazi,ykw-wxn)

with strictly lower energy, which contradicts the fact that (xq, ..., 2,) is minimizing.

Case 2. Or there exist two distinct intervals (yx—1,yx] and (yi—1, ], with 2 <
k <1< A, that contain each two points (2,1, 2;) and (z;_1, z;), respectively. Notice
that we may have y; = y;—1, but we must have z; < zj_1, zit+1 € (¢ — R,a + R),
and possibly z;11 = z;—1. We want to obtain a contradiction by showing that one
can decrease the sum of energies Ei,(y;_q, -, ¥j) + Ew(Yk—1,-..,y) while fixing the
four boundary points.

In the case z; = yi, we perturb the point z; slightly by a small quantity € and
allow an increase of the energy of order €. Since (2;_1, 2, z;41) is minimizing, we
have

Eo(zi—1,2i5 2i41) = Eo(zim1, 20 — €, 2i41) + 0(62)~

By Aubry crossing lemma, either z; < yi, and the reminder in lemma [21] takes the
form

reminder := ( 1= Yk-1) yk)a >0,

z
where « = / / (z,y) dydz < 0,
(Zz 1~ Yk— 1 yk Yk—1 JYk

(in that case, we define € := 0), or z; = yg, and the reminder becomes

reminder := —e(z;_1 — yp_1)a + o(€) > o(€?),

1 %i-192F,
where o= ——— x,yr) dr < 0.
Zi—1 — Yk—1 /y 39562/( ue)

k—1
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In both cases,
Eo(Wr—1,yx) + Eu(zi—1,2; —€) = Ey,(yg—1, 2i — €) + FEu,(2i—1, yx) + reminder,
Eo(Yk—1,Yk) + Euw(2i-1, 2is zi41) > Eu(Yb—1,2i — € 2iy1) + Eu(zi-1,Yk)-
Again by Aubry crossing lemma,
Eo(yi—1,u1) + Eu(zj-1,25) > Eu(yi-1,25) + Eu(zj—1,01),

with possibly equality if z; = y;. Since L is transversally constant, we obtain

Ew(ygfh o 7y;) + Ew(ykfh o 7yl)
= Eu(zi-1,-++,25) + Eo(Yk-1,-- -, U1)
> Ew(zi—hykv s Yi-1, Z_]) =+ EW(yk—lv Ri = € %41,y Rj—1; yl)
== Ew(y;—hwka v awl—lvy_;') + Ew(yk—h Zi T € R4l aZj—layl)7
with tg == yx —a, wg :==b+tg,....t1—1 :=y—1 — a, w_1 := b+ t;_1. Hence, we have
a configuration (..., y;_1, Wk, W1, Yjs -+ oy Ykm1, 2 — € Zi 1y - - -, Zj—1, Y1, - - -) With
strictly lower energy, which contradicts the fact that (xo,...,z,) is minimizing. O

We recall that we have assumed inf,cq er Eu(7,2) > E.

Lemma 40. Let w € Q. Forn > 1, let (xf,...,z}) be a configuration realizing the
minimum of E,(xo,...,Tn) over all (xo,...,zy). Then lim, 4o 2] — 2]| = +00.

Proof. The proof is done by contradiction. Let w € Q and R > 0. Assume there exist
infinitely many n’s for which every configuration (z{,...,2") realizing the minimum
of E,(xo,...,xy) satisfies |2l — zf| < R. If (af,...,«) is not monotone, thanks
to lemma we can find distinct indices {ig,...,%.} of {0,...,n} such that ig = 0,

ir =mn, (2} ,..., 2} ) is monotone (possibly not strictly monotone) and

Eo(zg,- . 2n) > EBo(xg, ... o) + Z E,(x},x}).
i@ {i0snin}
Let € > 0 be chosen so that E,(z,y) > E+e¢ for every |y —z| < e. Thus, if §,, denotes
the number of indices 1 < k < r such that [z} —2}' | > ¢, it is clear that 6, < R/e.
Since
nE > E,(xf,...,2!) > (n—0,)(E+¢) +0, infREw(:r,y),

T, ye
we obtain a contradiction by letting n — +o0. O
We show in the following proposition that a configuration (xf, - -- , z?) realizing
the minimum of the energy E,(xq,...,2,) among all configurations of length n
admits a rotation number from below in the sense that
" — ph
lim inf —2%—-%% > 0. (21)
n—-+00 n

The existence of a rotation number for an infinite minimizing configuration (x)rez
has been established in [I2]. The following proposition extends partially this result in
two directions: the interaction model is more general and the rotation number from
below is obtained for a sequence of finite configurations and not for a unique infinite
configuration.
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Proposition 41. Let (€, {7 }er, L) be an almost crystalline interaction model satis-

fying inf,cq, zer Eu(z,2) > E. Given w € Q, for n > 1, suppose (zy,...,z1) is a
configuration realizing the minimum of E,(xo,...,xy) over all (xo,...,x,). Then,
1. E =lim,_s %Ew(xg, ceexl) = SUP,,>1 %Ew(:rg, ceeahy,
2. for n sufficiently large, (xf,--- ,x) is strictly monotone,

3. there is R > 0 (independent of w) such that sup,, > sup; <<, [t§ — 27| < R,
4. liminf, oo 2|2 — 28] > 0.

Proof. To avoid trivialities, we assume that the flow (Q, {7 }+cr) is not periodic.

Step 1. The first item has been proved in proposition the limit exists as a
supremum by superadditivity. Moreover, from lemma |z — x| — +o0. From
proposition the configuration («j,...,z") must be strictly monotone and have
uniformly bounded jumps R. We are left to prove the last item of the proposition.

Step 2. By definition of an almost crystalline interaction model, L is transver-
sally constant with respect to some flow box decomposition {U;};cr (definitions |§|
and . Let {Fy}aca be a Kakutani-Rohlin tower that is compatible with respect
to {U;}icr (definition and let ¥ = Uy,caX, be its basis. We may assume that
mingea Hy, is as large as we want and, in particular, larger than R (see the construc-
tion ) We also assume that n is sufficiently large so that every tower F,, of basis
Y. is completely cut by the trajectory 7 (w) for ¢ € (min{xf,z!}, max{z{,z!'}).
We consider v the transverse measure to % (as defined in lemma and we denote
Vo i=1(Z0).

Step 3. Let S™ < T™ be the two return times to ¥ (namely, 7g»(w) € ¥ and
Trn(w) € X) that are chosen so that [S™,T™) is the smallest interval containing the
sequence (z})7_,. From the definition of a Kakutani-Rohlin tower, [S™,T™) can be
written as a disjoint union of intervals of type I ; := [ta,i,ta,i + Ha), where the list
{ta,iti, + = 1,...,C%, denotes the successive return times to X, between S™ and
T". We distinguish two exceptional intervals among this list: the two intervals which
contain zff and zy. If 2y < 7, then N7, denotes the number of points (z7);_,
belonging to /,,; and Ny denotes the maximum of N7 . If zj; < z7, then N7, and
N& are defined similarly by considering in this case (2})7Z;. From lemma @7 we
obtain Ny —2 < N7, < Ny for every nonexceptional interval I, ;. We show that
sup,,~1 V& < +oo for every a € A. The proof is done by contradiction.

Let Ej; be the energy of the configuration localized in I, ;. More precisely,
assume first zy < 27; index the part of (z})}_, in I, ; by (xga,i),]y:l with N = N7 ;5
denote by z7 , ; the nearest point strictly smaller than z7 , ; and define the partial
energy B ; = Ey(T4 s+ -+ TN o4)- 23, < 2, the part of (xP)pZy in Iy, is indexed
by (mz,%i)kjy:_ol with N = N[ ;; denote by 27y , ; the nearest point strictly larger than
TN 1,4, and define EY ; similarly.

Thanks to the hypothesis inf,cr Eu (aj, x) > E, one can choose € > 0 such that
Ey(z,y) > E+eassoonas [y—x| < e Let H := maxaea Hy. Then, if 07, ; denotes the
number of consecutive points zy; , ; in I,,; satistying |xga2 — qu,a,i‘ > €, obviously
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0r ; < H/e. Thus, since n =Y 4 > 1c;ccm NI

.,
nE > Eyaf,....a) =3 3

a€A 1<i<Cr

> Z Z [9" mefJR E,(x,y)+ (Ng,i — 927i)(E + e)}

acA 1<i<Cn

o H
nE+e+> > 601E> E+e)+ZCa?E, (22)

acA1<i<Cn a€cA

we have that

where E = (inf, yer E,(z,y) — E — €) < 0. For « fixed, among the intervals (I,.;);,

i =1,...,C%, at most two of them are exceptional and the other intervals satisfy
Ny > N” 2. We thus get n > > . ,(Ch —2)(Ng —2). For n sufficiently large, we
have
ch cl—2
= asn < (14 €)Va, 4T"a— o >(1—¢e)v, and

,ch 1+6)ZaeAya
SR (R SRR )

If N — +o00 for some « and a subsequence n — 400, then L 3~ C" — 0 and we
obtain a contradiction with the previous inequality .
Step 4. For every v, I, ; C [z, z]] except maybe for at most two of them. Then

2 = 28] o TuealC = 2Ha

n T Y acaCRNT
Denote N, := limsup,,_,, ., NZ. From step 3 we know that N, < +oco. By dividing
by (T — S”) and by letting n — +o00, we obtain
— oHe 1
hmlnf| il > ZD‘GA = — > (.
n—+o0 n ZaeA VaNa Y ocaValNa

O

Now we are able to prove theorem [I2] Thanks to theorem [8] and the above re-
sults, we only have to show that the intersection of each {7 }+-orbit with the projected
Mather set is a nonempty relatively dense subset of the orbit.

Proof of theorem[I3 Let (€, {7 }tcr, L) be an almost crystalline interaction model.
We discuss two cases.

Case 1. Either inf,cq infyer E,(2,7) = E. Then E,, (2., 2.) = E for some
w, and z,. By hypothesis, L is transversally constant with respect to a flow box
decomposition {U; = 7(Bg, X Ei)}icr. Let @ € I be such that 7, (w«) € U;. Let
[t;| < R; and w; € Z; be such that 7, (w.) = 7%, (w;). Then

E = Ew* (ZL'*,LC*) = Ew(tl,tz) = Ew(ti,ti), Vwe 51

i

We have just proved that (5(% (w),0) 18 a minimizing measure for every w € =;. The
projected Mather set contains 7, (Z;). By minimality of the flow, we have Q = 7(Bg x
Z;), for some R > 0, thanks to item 1 of lemma The projected Mather set thus
meets every sufficiently long orbit of the flow.
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Case 2. Or inf,cqinf,cr B, (z,2) > E. Proposition shows that, if w, € Q
has been fixed, if for every n > 1 a sequence (z})o<k<rn 0f points of R realizing the
minimum E,,_(zf,...,z)) = ming, _,, Ew. (zo,...,%,) has been fixed, then
~ E=limp 400 =By, (2f,...,27),
— (@})o<k<n is strictly monotone for n large enough,
— there is R > 0 (independent of w,) such that sup,~; sup;j<p<, |2} — 27_;| < 2R,
— p:=liminf, , o L]a? — 27| > 0.

Let fir,, be the probability measure on € x R defined by

1 n—1
Hn,w, = ﬁ Z 5(TT£ (w*),mZH—-TZ)'
k=0

Notice that [Ldun ., = %Ew* (zg,...,z}). Since the consecutive jumps of x} are
uniformly bounded, the sequence of measures {fin o, }n>1 is tight. By taking a sub-
sequence, we may assume that f, .. — Hoo With respect to the weak topology.
Moreover, i is holonomic and minimizing. Let Z C ) be a transverse section of
a flow box 7(Bgr x E). Let Rz(w«) be the set of return times to = as defined in
lemma Let pr! : Q x R — Q be the first projection. Then

1 .
priiine.)(r(Br x E)) = —#{k : 2} € Urer=(w.) Br(t)}

1

—~#(Br, (cn) N Rz(wy)),

with 7,, := 3|27 — 2| and ¢, := (2§ +27). The previous inequality comes from the
fact that the intervals Br(t) are disjoints and contain at least one z}. Then

1 = » 2Tn #(Br, (0) N R=(7e, (wi))
pry (/’Ln,w*)(T(BR X H)) > T TLeb(BTn (0)) .

Y

By taking the limit as n — +o0, one obtains prl(u.)(T(Br x Z)) > pr=(Z) > 0.
Therefore, since = is arbitrary, every orbit of the flow of length 2R meets the projected
Mather set. (]

Appendices

Appendix A. The ergodic and sup-inf formulas

We give a second proof of the equality K = L in proposition We will use basic
properties of the Kantorovich-Rubinstein topology on the set of probabilities mea-
sures on a Polish space (Z,d) and a version of the Topological Minimax Theorem
which is a generalization of Sion’s classical result [24]. For a recent review on the last
topic, see [25]. We state a particular case of theorem 5.7 there.

Theorem A.1 (Topological Minimax Theorem [25]). Let X and Y be Hausdorff topo-
logical spaces. Let F(z,y) : X xY — R be a real-valued function. Define n =
sup,cy infyex F(x,y) and assume there exists a real number o* > 1 such that
1. Ya € (n,a*), for every finite set 0 # H CY, Nyep{r € X : F(z,y) < a} is
either empty or connected;
2. Va € (n,a*), for every set K C X, Npex{y €Y : F(x,y) > a} is either empty
or connected;
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3. foranyy € Y and x € X, F(x,y) is lower semi-continuous in x and upper
semi-continuous in y;
4. there exists a finite set M C Y such that Nyem{z € X : F(z,y) < a*} is
compact and nonempty.
Then,
inf sup F'(z,y) = sup inf F(z,y).
z€X y€€ (z,9) y€$ reX (@,9)
We recall basic facts on the Kantorovich-Rubinstein topology (see [23] or [I]).
Given a Polish space Z and a point zg € Z, let us consider the set of probability
measures on the Borel sets of Z that admit a finite first moment, i.e.,

PZ)={p: /Zd(zo,z) du(z) < +oo}.

Notice that this set does not depend on the choice of the point zg. The Wasserstein
distance or Kantorovitch-Rubinstein distance on P!(Z) is a distance between two
probabilities i, v € P1(Z) defined by

Wi(p,v) := inf { ILCOLICHERE T(p,v)},

where I'(u1, v) denotes the set of all the probability measures v on Z x Z with marginals
1 and v on the first and second factors, respectively.

Recall that a continuous function L: Z — R is said to be superlinear on a Polish
space Z if the map defined by z € Z — L(z)/(l + d(z,zo)) € R is proper. Notice
that this definition is also independent of the choice of zy and, by considering the
distance d := min(d, 1) on Z, any proper function is superlinear for d. The following
lemma is easy to prove and gives us a sufficient condition for relative compactness in
PL(Z) (see theorem 6.9 in [23] or [1] for a more detailed discussion).

Lemma A.2. Let Z be a Polish space, L : Z — R be a continuous function, and
X :={p € PZ) : [Ldu < +oo} be equipped with the Kantorovich-Rubinstein
distance. Then

1. the map p € X — [ Ldp is lower semi-continuous;

2. if L is a superlinear, then, for every a € R, the set {u € X : [Ldu < a} is

compact (the map p € X — [ Ldpu is proper).

Second proof of K = L in proposition . Lemma applied to the C° superlinear
Lagrangian L : Q x R? — R guarantees the existence of a minimizing probability
for L. This minimizing measure is holonomic since the set of holonomic measures is
a closed subset of P1(Q x RY) for the Kantorovich-Rubinstein distance. Notice that,
for every u € C°(Q),

inf (L — t) = inf L — dd,,
wef%,nteRd( tu—uor)(w,t) wef%,nte]Rd /( Tumuor)diuy
> inf L — d
- ;AGiPll(an]Rd) /( tusue T) a
> inf L — t).
> we(%,nteRd( +u—uort)(w,t)

Let X := {pn € PY QU x RY) : [Ldu < +oo} and Y := C°(Q). Then

K =sup inf [(L+u— dp < min L(w, 0).
igg;gx/( +u—uoT)dy < minLw,0)
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Define a* := mingeq L(w,0) + 1 > K and
F: (u,u)eXxY»—>/(L+u—uo7')du.

Since F is affine in both variables, it satisfies items [I] and [2] of theorem Item
is also satisfied since F'(u,u) is lower semi-continuous in g and continuous in wu.
By taking M = {0}, the singleton set reduced to the null function in Y, the set
Nuem{p € X : F(p,u) < a*} is compact and nonempty, so that item [4] is satisfied.
The Topological Minimax Theorem therefore implies

K = inf sup/(L—i—u—uor)du. (A1)
heEX yey

We show that every 1 € X such that sup,,cy [(L+u—uoT)dp < 400 is holonomic. If

not, there would exist a function u € C°(2) such that [(u—wuo7)dy > 0. Multiplying

(u—woT) by a positive scalar A and letting A — 400 would lead to a contradiction.

Thus, the infimum in may be taken over holonomic measures with respect to

which L is integrable. We finally conclude that

K = inf su L+u—uor)du= inf /Ld =1I. O
,ueXuEg/( ) a HEMpor a
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