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Abstract

Liv§ic theorem asserts that, for Anosov diffeomorphisms, a Lipschitz
observable is a coboundary if all its Birkhoff sums on every periodic orbits
are equal to zero. The transfer function is then Lipschitz. We prove a
positive Livsic theorem which asserts that a Lipschitz observable is bounded
from below by a coboundary if and only if all its Birkhoff sums on periodic
orbits are non negative. The new result is that the coboundary can be chosen
Lipschitz with a uniform control on the Lipschitz norm. In addition our
result holds true for possibly non invertible and not transitive C' maps. We
actually prove the main result in the setting of locally maximal hyperbolic
sets for general C'' map. The construction of the coboundary uses a new
notion of the Lax-Oleinik operator that is a standard tool in the discrete
Aubry-Mather theory.

Keywords: Anosov diffeomorphism, discrete weak KAM theory, cali-
brated subactions, Lax-Oleinik operator, Lipschitz coboundary.

1 Introduction and main results

A C" dynamical system, r > 1, is a couple (M, f) where M is a C" manifold of
dimension dj; > 2, without boundary, not necessarily compact, and f : M — M
is a C" map, not necessarily injective nor transitive. The tangent bundle T'M is
assumed to be equipped with a Finsler norm || - || depending C"~! with respect to
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the base point. A topological dynamical system is a couple (M, f) where M is a
metric space and f : M — M is a continuous map. We recall several standard
definitions. The theory of Anosov systems is well explained in Hasselblatt, Katok
[10], or in Bonatti, Diaz, Viana [1].

Definition 1.1. Let (M, f) be a C" dynamical system and A € M be a compact
set strongly invariant by f, f(A) = A. Let dyy =d* + d*, d* > 1,d°* = 1

i. A is said to be hyperbolic if there exist constants A\* < 0 < \*, Cy = 1, and
a continuous equivariant splitting over A, that is

(a) Vo e A, T,M = E}(z) ® Ef(2),
(b) the two maps
A — Grass(TM,d") A — Grass(TM,d*)
are C°,

(c) the tangent map is hyperbolic in the following sense

Veel, T.f(E"(x)) = E“(f(x)), Tof(E*(x)) = E°(f(2)),
Vo € Ex(x), |Tof"(v)] < Cye™ o],
|=C

Ve, Vn =0, w
{ Voe Bi(z), [T/ w)] = Ot e

o]l

ii. A is said to be locally maximal if there exists an open neighborhood U of A
of compact closure such that
(@) =A

neZ

We also consider a Lipschitz continuous observable ¢ : U — R. We want to
understand the structure of the orbits that minimize the Birkhoff averages of ¢.
We recall several standard definitions.

Definition 1.2. Let (M, f) be a topological dynamical system, A < M be an
f-invariant compact set, U 2 A be an open neighborhood of A, and ¢ : U — R be
a continuous function.

i. The ergodic minimizing value of ¢ restricted to A is the quantity

op := lim —1an¢ o f*(x) (1.1)
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ii. A continuous function v : U — R is said to be a subaction if
VaelUn fU(U), o) — dr > uo f(z) — u(z), (1:2)

iii. A function 1 of the form ¢ = u o f — u for some u is called a coboundary.

iv. The Lipschitz constant of ¢ is the number
Lip(¢) := sup ——F—F—,

2 syel, oty A(2,)
where d(-, ) is the distance associated to the Finsler norm.

The first main result is the following. We would remark that the new result here
is the fact that w is Lipschitz continuous, improving the known Holder regularity.

Theorem 1.3. Let (M, f) be a C' dynamical system, A = M be a locally mazimal
compact hyperbolic set, ¢ : M — R be a Lipschitz continuous function, and dx be
the ergodic minimizing value of ¢ restricted to A. Then there exist an open set
Qs containing A and a Lipschitz continuous function u : M — R such that

VoeQas, o) —dr=uo f(r)—ulx).

Moreover, Lip(u) < K\Lip(¢) for some constant K, depending only on the hyper-
bolicity of f on A.

The constant K is semi-explicit

N 1)di Q 1 -\
Ky — max (( 45 + 1)diam( AS), Ko + exp( As)) |
€AS 1 —exp(—Aag)

where

Qus ={re M :d(x,\) < ess}

and €49, Kag, Aag are constants of the shadowing lemma defined in Theorem 1.5,
and Nag denotes a covering number of Q45 by balls of radius €45/2.

The positive Liv§ic theorem becomes then a simple corollary of the Theorem 1.3
by taking ¢a = 0.

Corollary 1.4. Let (M, f) be a C* dynamical system, A = M be a locally mazimal
compact hyperbolic set, and ¢ : M — R be a Lipschitz continuous function. Assume
the Birkhoff sum of ¢ on every periodic orbit on A is non negative. Then there
exist an open neighborhood ) of A, a Lipschitz continuous function u : M — R,
such that

VeeQ, ¢(x) —uo f(z) +ulx) = 0.
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The proof of Theorem 1.3 depends on a new version of the shadowing lemma.
We recall that a sequence (z;)o<i<n of points of M is said to be an e-pseudo orbit
(with respect to the dynamics f) if

Vie [[Ovn—l]]’ d(f(xi)ale) < €.
The sequence is said to be a periodic e-pseudo orbit if x,, = x;.

Theorem 1.5 (Improved Anosov shadowing lemma). Let (M, f) be a C* dynam-
ical system and A < M be an f-invariant compact hyperbolic set. Then there exist
constants eas > 0, K5 = 1, and Aas > 0, such that for every n = 1, for every
eas-pseudo orbit (z;)o<i<n in the neighborhood Qs = {x € M : d(x,\) < €as},
there exists a point y € M such that

Vie[0,n], dlx, f'(y)) < Kas Z d(f(xg_1),x) exp(—Aaglk — i), (1.3)

k=1

Dld(zi, f1(y) < Kas Y, d(f(xx-1), 7). (1.4)
i=0 k=1

Both equations (1.3) and (1.4) are new for two reasons: the map f is not
necessarily invertible (the proof could actually be extended in infinite dimension),
the distance between the pseudo orbit (x;)", and the shadowing orbit (f*(y))™,
is not bounded by the number of jumps n (an estimate that the standard Anosov
shadowing lemma would give) but by the sum of the errors d(f(z;_1),x;).

In order to obtain a periodic shadowing point in A, we assume in addition in
the next corollary that A is locally maximal.

Corollary 1.6 (Anosov periodic shadowing lemma). Let (M, f) be a C* dynamical
system and A < M be a locally maximal compact hyperbolic set. Then there exists
a constant Kaps = 1 such that for every n = 1, for every periodic € 5-pseudo
orbit (x;)o<i<n of the neighborhood Qag := {x € M : d(x,\) < eas}, there exists a
periodic point p € A of period n such that

D d(zi, f1(p) < Kaps Y, d(f(xr-1), 21), (1.5)
i=1 k=1
where K pg = KAS%, and €a5, Kas, Aas are the constants given in

Theorem 1.5.

Notice that the standard shadowing lemma would give the estimate

max d(z;, f'(p)) < Kaps 0<r1£13§—1d(f(xk)’wk+l)' (1.6)

O<isn—1

We conclude the introduction by comparing our results with other results re-
lated to the positive Livsic theorem.



e The existence of a Lipschitz subaction is the first unavoidable step for proving
Contreras’ theorem [3] claiming that, for a generic observable, the Mather
set is a unique periodic orbit. The proof in [3] was nevertheless done only
for one-sided subshifts or expanding maps. A multidimensional version of
Contreras’ theorem is worth considering.

o Weaker versions of Theorem 1.3 were known. Either for diffeomorphims and
not for maps as in [2] or in the Holder regularity class as in [15], [16], and

[14].
e Huang, Lian, Ma, Xu, and Zhang proved in [12, Appendix A] an integrated
version % kN;Ol [0 — @] = un o f¥ — uy for some large integer N > 1 and

some uy Lipschitz. We show it is true for N = 1 and gives a precise estimate
of the Lipschitz norm of the subaction in terms of the Lipschitz norm of the
observable.

e The improved Anosov shadowing lemma may be used in other contexts. As
we do not assume f to be invertible, the lemma is also true in infinite di-
mension where the tangent map admits an equivariant splitting with a finite
dimensional unstable direction and a possibly infinite dimensional stable di-
rection that could contain the kernel of the tangent map.

e We introduce in section 3 a notion of calibrated subactions for maps, that is
stronger than the notion of subaction (Definition 1.2). Calibrated subactions
or weak KAM solutions have been introduced in the continuous setting for
Lagrangian dynamics by Fathi [4], and in the discrete setting for twist maps
in [7]. The main advantage of our construction is that it enables us to con-
struct calibrated orbits and therefore the Aubry set, the set of points that
belong to (two-sided) calibrated orbits. So far the Aubry set has only been
defined for one-sided subshifts of finite type or covering expanding endomor-
phisms, but not for Anosov diffeomorphisms for instance. Nevertheless we
do not intend to discuss ergodic optimization in this paper.

e We highlight the notion of “discrete positive Livsic criterion” (Definition 3.2)
because it implies the existence of a Lipschitz subaction even in the case the
dynamics is not hyperbolic.

e We intend to extend Theorem 1.3 in the continuous setting for Anosov flows,
see [19]. The main technical estimate of the present paper, Theorem 2.1, is
used again in [19] for the Poincaré maps.

The plan of the proof is the following. We revisit the Anosov shadowing lemma
in section 2. We extend in section 3 to any C' maps the techniques of construction



of a coboundary in [7], valid only for twist maps, by introducing a new Laz-Oleinik
operator, Definition 3.1, and by showing under the assumption of positive Livsic
criterion the existence of calibrated subactions, Proposition 3.3. We then check in
section 4 that a locally maximal hyperbolic set satisfies the positive LivSic criterion
and prove the main result. The proof of Theorem 1.5 requires a precise description
of the notions of adapted local hyperbolic maps and graph transforms with respect
to a family of adapted charts. We revisit these notions in Appendix A for non
invertible hyperbolic maps.

2 An improved shadowing lemma for maps

We show in this section an improved version of the shadowing lemma, Theorem 1.5
that will be needed in the next section to check the existence of a fixed point of
the Lax-Oleinik operator.

The heart of the proof is done through the notion of adapted local charts. In
appendix A, we recall the notion of adapted local dynamics in which the dynamics
is observed through the iteration of a sequence of maps which are uniformly hy-
perbolic with respect to a family of norms that are adapted to the unstable/stable
splitting and the constants of hyperbolicity.

The following Theorem 2.1 is the technical counterpart of Theorem 1.5. We
consider a sequence of local hyperbolic maps as described more rigorously in Ap-
pendix A

fi: Bi(p) > R%, Bi(p) =R = B} @ Ef = B, ® B}y, A; = To f;,

where E* /* are the unstable/stable vector spaces, A; is the tangent map of f; at
the origin which is assumed to be uniformly hyperbolic with respect to an adapted
norm | - |; and the constants of hyperbolicity (0%, 0", 1, p). The constants o° <
1 < o" represent the contraction term and the expansion term along respectively
the stable and unstable direction. The constant n > 0 represents the size of the
perturbation of the non linear term f;(v) — f;(0) — A;u. The constant p > 0
represents the size of the domain of definition of f;; B;(p) is the ball of radius p for
the adapted norm | - ||;, and | f;(0)]; < €(p) is the size of the shadowing constant
with €(p) < p.

As previously said, the maps f; are not supposed to be invertible. In particular
that hypothesis will prevent us to use the backward graph transform along the
stable direction. The forward graph transform along the unstable direction is
though well defined and recalled in Appendix A.3.

Theorem 2.1 (Adapted Anosov shadowing lemma). Let (f;, A;, E' o |- )i be
a family of adapted local hyperbolic maps and (c*,0°,m, p) be a set of hyperbolic
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constants as in Definition A.1. Assume the stronger estimate (compare to (A.1))

o ((1—05)2 a“—l)
min .
" 12 ' 6

Define Ar and Kr by,
o®+3 1 7

777 U >7 KF = R
1=3n o"—3n (1 —exp(=Ar))

Let (¢;)_, be a “pseudo sequence” of points in the sense
Vie[0,n—1], qe Bz<§> and  [fi(¢;) € Bin (g)

Then there exists a “true sequence” of points (p;)i—y, pi € Bi(p), such that

i. Yie[0,n—1], fi(p;) = pis1, (the true orbit),

exp(—Ar) := max <

ii. Vie[0,n], g —pils < Kr 2 | fr—1(ar-1) — qi[x exp(=Ar|k — i),

k=1

n n
iii. > ;i — pilli < Kr Y [ fer(gr-1) — el
=0

k=1
w. OfEaX lgi — pilli < Kr 1m]?<x | fre—1(qr-1) — @[x-
Moreover assume (f;, A;, Ei“/s7 | [:)iez is n-periodic in the sense
foen = fir Aven = Ai B = B | lian = |- Dy

assume in addition that (q;)iez s a periodic pseudo sequence in the following sense

ViEZ, Gi+n = 45, QZEB< ) fz 1(% 1)€B (g)

Then there ezists a periodic true sequence (p;)icz Satisfying

v. VieZ, fz(pz) = Di+1, Pit+n = Di,

n—1 n
vi. > g —pilli < Z | fre—1(qr-1) — a@illx,
i=0 i1

with Kp := Kp(1 + exp(=Ap))/(1 — exp(=Arp)).

Notice that the items ii and iii are the technical counterparts of the estimates
(1.3) and (1.4). The main difficulty of the proof comes from the fact that f may
not be injective and that the backward graph transform does not exist anymore.
We use as an alternative the backward invariance of the stable cones as recalled
in A.7.
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Figure 1: A schematic description of the grid Q;(j, k) for n = 5. The horizontal axis
is the unstable direction attached at each g;, the vertical axis is the stable direction.
The dashed “horizontal lines” are obtained by iteration of the horizontal axes by
the forward graph transform; they are graphs of small slope a. We highlight the
positions of the two points ¢; and f;_1(g;i—1) at each index i to show that they
must be close. The points Q;(0,k), k € [0,i], are obtained by intersecting the
vertical axis with these dashed horizontal lines. The other points are obtained
recursively, starting at ¢ = n, by taking the preimages by f;_; of the dashed
“vertically aligned” points at index 7 except those on the horizontal axis. These
new points are pushed by f,_}, down and to the right of the previously defined
points Q;_1(0,k). The representation as vertical dashed lines and the relative
positions of the points Q;(j, k) are only a convenient way to index the grid as a
product (j,k) in [0,n —i] x [0,4]. The points p; = Q;(n — i,i) we are looking for
are located at the upper right corner of the grid. By definition f; 1(p;_1) = p;.



For the reader’s convenience, before going into the details of the proof, we
sketch the main argument, by pointing out the following steps.

e In Step 1, we construct a grid of points Q;(j, k) and prove item i;

e The proof of item ii is divided into Steps 2-4, and the proof of items iii and
iv follows readily from item ii;

e In Step 5, we show the existence of a periodic orbit and finish the proof of
items v and vi.

Proof. Let P, P’ be the projections onto E}, E? respectively. Let

6
7 , 0= Hfi—l(%’—l) - QiHia (2-1)

O—U — O-S
where « is the a priori slope of the unstable graphs given in (A.2). Let €* and €7
be the unstable and stable cone of angle a as in Definition A.6.

o =

Step 1. We construct by induction a grid of points
Qi(j, k) € Bi(p) for ie[0,n], je[0,n—14], and ke [0,i]
in the following way (see Figure 1):

(a) For all i € [0,n], let G, : Bi*(p) — B(p) be the horizontal graph passing
through the point ¢;,

Yve Bi(p), Gip(v) = Pq;.

For all i € [1,n] and k € [1,7], let G;i : Bj(p) — Bi(p) be the graph
obtained by the graph transform of G;_x o (see Proposition A.3 and equation
(A.3)), iterated k times,

Gig = (7)j 100 (T)iw(Gizko)-
Notice that |G;x(0)]; < p/2 and Lip(G;x) < a, see (A.2).

(b) For all ¢ € [0,n] and k € [0,¢], let Q;(0,k) be the point on Graph(G, )
whose unstable projection is P"g;, or more precisely,

Qi(0,k) = P'q; + Gix(P/qi).

(c) We then define recursively the other points starting at ¢ = n. Assume that
the points Q;(7, k), i = 1, have been defined for all j € [0,n—i] and k € [0, 4].
Let je[[l,n—i+ 1] and k€ [0, —1]. As Q;(j — 1,k + 1) € Graph(G} g+1),
there exists a unique point Q;—(j, k) on Graph(G;_1 ) such that

fir1(Qia(4, k) = Qi(j — 1,k + 1).
For j = 0, the points @;_1(0, k) have been defined in item (b).
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We will then choose p; = Q;(n —i,7). By construction

Vie[l,n], fii(pic1) = pi,
and item i is proved.

Step 2. Let hyj := | P?[Qi(5,0) — Qi(4,1)] |, We claim that, for all i € [1,n],

i—1,0- (2.2)

hi,0<[<1+a)+ a "J“?”’]é- A,

1—a?0v%—3n 1—«

The quantity h; o corresponds to the length between ¢; = Q;(0,0) and the furthest
point @;(0,4) above ¢; on the vertical axis. We decompose this quantity into two
lengths @Q;(0,0)—Q;(0,1) and Q;(0, 1)—Q;(0, 7). We will also use the quantity h;_1
that corresponds to the length between the vertically aligned points @;_1(1,0) and
Qi-1(1,i — 1), located next to the vertical axis at index 7 — 1 and sent by f;_; to
the points Q;(0,1) and Q;(0, 7).

Proposition A.3 with slope a = 6n/(c" — ¢®) for the unstable graphs shows
that

1P[Q:(0,0) — Q:(0, V)] | < | P[4 — fiea(gi—1)] i + | PF[ fima (gi—1) — Qi(0,1)] |

+ af P [fz 1(gi-1) — Qi(Oal)] |

i
0; + OéHP [fz I(Qz ) Qi] Hl
(14 «)d;. (2.3)

INCIN N //\

By forward induction, using (A.4) in Lemma A.7, we justify the vocabulary “hor-
izontally aligned points”,

Qi—1(J, k) = Qina(j k) e 6, = Qi(j —LE+1)—Qi(j —1,k+1)eE},
| P [Qic1 (5, k) — Qica (57, ) | i-a

< ! ||P“[( Lk+1)—Qi(j —Lk+ 1]

ot

In particular, taking & = 1, j = 0, and j' = 1, one obtains with the convention

Qz’(—L 1) = fi—l(Qi—l)a

L 1P (i) - Q0D

1
O-'lL_
1
o —3n

1Qi—1(0,0) — Qi—1(1,0)[li—1 < ey

<

3 | B[ fiz1(gi1) — @i

;. (2.4)
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By backward induction, using (A.5) in Lemma A.7, we justify the vocabulary
“vertically aligned points”,

Qi(j,k) — Qi1 k) e} = Qia(j+1,k—1)—Qia(j + 1,k —1) e €,
|P*[Qi(5: k) = Q5. K]
< (0 +30)|P[Qica(G + 1k — 1) = Qia (5 + LK — 1)][i-1.
In particular, taking j = 0, k = 0, and &’ = 4, and using (2.3), one obtains

hio = | P7[Qi(0,0) — Q;(0,4)] |
< | Pr[Qi(0,0) — Q:(0, )] [ + [ Pr[Qi(0, 1) — Qi(0,4)]]s
< (1 + a)éz + (O'S + Sn)hz’—l,b (25)

We estimate h;_;,; using a path passing through the vertical axis

Qifl,(la 0) - Qiq(O, 0) - Qi71<07i - 1) - Qifl(lai - 1)-
We obtain

hiia < P2 [Qie1(1,0) = Qi-1(0,0) -
+ | Py [Qi-1(0,0) — Qi—1(0,i — 1)] [lia
+ ||Pis—1[Qz'—1(07@ —1) = Qi—1(1,7 - 1)]||i—1
< hiro + | Py [Qica (0, = 1) = Qi (L, = D) i1 (2.6)
The last inequality is obtained using P ;[Q;_1(1,0) — Q;—1(0,0)] = 0 and the fact
that the top horizontally aligned branch @;_1(0,i — 1) — @Q;_1(1,7 — 1) belongs to
the cone €. The top branch is estimated using the path
Qi—1(0,7—1) = Q;i-1(0,0) = Q;—1(1,0) — Qi1 (1,7 —1).
We obtain

[Py [Qic1(0,i — 1) = Qia (1,0 — 1)][i-1
< 1P [Qi1(0,i — 1) — Qi—1(0,0)][li—1
+ [P [Qi-1(0,0) — Qi1 (1,0)] i1
+ P [Qica(1,0) = Qia (1,7 = 1)]ia

1
< 0; hi—11. 2.7
ot — 3n +ahi-1 ( )

The last inequality is obtained using P, [Q;—1(0,i — 1) — @;_1(0,0)] = 0 for the
first term, (2.4) for the second term, the fact that ;—1(1,0)—Q;_1(1,i—1) belongs
to the cone € ; for the third term, and the estimate

|74 [Qi1(1,0) = Qia(Li = D]t < P74 [Qi-1(1,0) = Qica (1,7 — 1) 1.
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Combining (2.6) and (2.7), we obtain

hi—iq < hi—1 +
g
< L h + a 4] (2.8)
12 T T A=) (v —3n) " ‘

Using (2.5) and (2.8) one obtains

< i+ a’h; 4 1
— 377 ’

hi70 < (1 + O./)(SZ + (O'S + 377)hz 1,1

<[(1+a) a U+377]6+01_+3nh

i—1,0
1—a20"—3ny ’

which proves the claim of Step 2.

Step 3. We claim that, for every i € [0,n — 1],

dit1 Q

The estimate (2.9) follows readily from (2.7) and (2.8) as

szu[Ql(Oa Z) - QZ(LZ)]Hl < — 3n51+1 + CVhi,l

1 «
hip < hi Oit1-
LS T (1—a?)(ov—3n)

Step 4. We simplify the previous inequalities

lopd +3n 1 a o° +3n 13
<L a<:, (1 = 2.10
gy Sbhoesy UratiThGmTa <5 (2.10)

Then for every i € [0,n — 1], using the fact that Q;(k,i) — Q;(k + 1,7) belongs to
the cone € and the estimate (2.9), one obtains

n—i—1

|P[Qi(0,4) = Qi(n —i,4)] Z 1P [Qilk, i) — Qi(k + 1,0)] |l

k
< ( 377)! [ Qin (0,1 + F) = Qi + B)]

k
< Oithi1 ¢, ) 211
< 377) < 1 —a?)(ov — 3n) etk (2.11)
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Using | P?[Qi(0,9) — Qi(n —4,9)] [ < a| P*[Qi(0,7) — Qi(n —i,9)] |, the estimate

(2.11) becomes for every i € [0,n],
1Qi(0,7) = Qi(n — 4, 8)[s < (1 + Oé)HP“[Qz( ) Qz( i, )] [l

1—a ot — )

1
n—1

-« ;Z (a“ — 377) hk’o'

(2.12)

Using (2.5), | P?[Qi(0,0) — Qi(0,9)]: = |Qi(0,0) — Qi(0,)];, and hog = 0, one

obtains

13 G ot 4 3y ik
hip = |Qi(0,0) — Q;(0,7)|; < ( ) .
As 12n < (1 —0,)?* < (0, — 04)% , we have a? < 3n. Let

o® +3n 1
1—a?’ ov—3p

Oor := max <

Combining (2.12) and (2.13), we obtain

- 13 e S e
k=1 k=i

13 k—i _k—¢

kzi ,O\Ekz 21 hts, = = UII{ \( Z or |£O-£| )541-

=1 k=>max(i,0) Or

In both cases, k=i >/lor k>/{>1,

k—i _k—¢ k—i _k—¢

Opr O 2(k—i Oor O 2(k—2

r v _ j2k=n) o o YT 9r  _ j2k=0)
|e—il r

r

Equation (2.15) becomes

7 3 7
Zal’i hkO\El—UFZ o1=s,

(=1

We obtain item ii by adding (2.14) and (2.16): for every i € [0, n],

13 1 Z
Ipi — qilli = [Qi(0,0) — Qs(n — i,7); < Z il

21—0F£1

13

(2.13)

(2.14)

(2.15)

(2.16)



Items iii and iv follow from

Vie[1,n], Za'g 1<

20'F _].+O'F
1—0'1" B 1—0'1".

Step 5. Consider now a periodic sequence (g;);ez. For every integer s > 1, consider
the restriction of that sequence over [—sn, sn] and apply item ii with a shift in
the indices i = j + sn. There exists a sequence (p;);Z such that, for every

j € [—sn,sn—1], f;(p;) = pi,, and

sn

I} = sl < Kro 35 [ fema(an1) = aille exp(=Arlk = j])

j=—sn

k=—sn+1
n s—1

< Kp ) ficalas) =l D) exp(=Arll + hn — ). (2.17)
= h=—s

Adding (2.17) over j € [0,n — 1], one obtains

Z”p] q]”J\KFZHfl (@) —als Z Z exp(—Ar|7 + hn —1])

j=1h=—s—-1
(s+1)n—1

< KFZ | fier(@-1) — @l 2 exp(—Ar|l — k). (2.18)

k=—(s—1)n

By compactness of the balls B;(£) one can extract a subsequence over the index
s of (pj)it_, converging for every j € Z to a sequence (p;)jez. In particular we
have for every j € Z, f;(pj) = pj+1. Notice that

3 1 + exp(—Ar
D exp(=Aplk]) = T_)\;-
R p r

The estimate (2.17) becomes

1 + exp(— -
gl < K —
Ip; — 4l D exp(—) exp(— ;”fl 1(qi-1) — ail-

The estimate (2.18) becomes

n—1 n

1 + exp(—Ar)

2 v = 4l < Koo 0 D fima(a-1) — aill,

= 1 —exp(—Ar) &
Define pj := pjin. As |p; — pj|; is uniformly bounded in j and both sequences

satisty f;(p;) = Pj+1, fj(p;) = pj+1, for every j € Z, the cone property given in
Lemma A.7 implies p; = p; for every j € Z and therefore (p;);ez is a periodic
sequence, p;., = p; for every j € Z. O
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The proofs of Theorem 1.5 and Corollary 1.6 are standard and consist in rewrit-
ing a pseudo orbit under the dynamics of f as a pseudo orbit in a family of adapted
local charts.

vi of Theorem 2.1, and from the precise description of the notion of a family of
local charts as described in Definition A.4. O]

3 The discrete Lax-Oleinik operator

We extend the definition of the Lax-Oleinik operator (usually defined for Hamil-
tonian dynamics [6] or for discrete twists maps [7]) for general maps (bijective or
not) and show how it produces a particular subaction (item ii of Definition 1.2)
that we call a calibrated subaction.

Definition 3.1 (Discrete Lax-Oleinik operator). Let (M, f) be a topological dy-
namical system, A © M be a compact f-invariant subset, 2 > A be an open
neighborhood of A of compact closure, and ¢ € C°(€,R). Let C' > 0 and ¢, be
the ergodic minimizing value of the restriction of ¢ to A, see (1.1).

i. The Discrete Laz-Oleinik operator is the nonlinear operator 7" acting on the
space of functions u : 2 — R defined by

Vo e Q, T[u](z) := :;,Ielg {u(a’) + ¢(2) — gp + Cd(f(2), x)}. (3.1)

ii. A calibrated subaction of the Laz-Oleinik operator is a continuous function
u : 2 — R solution of the equation

T[u] = u. (32)

Item ii implies readily that a calibrated subaction is a particular subaction
VreQn f7HQ), uo fz) = T[u] o f(z) < u(z) + ¢(z) — ha.

The Lax-Oleinik operator is a fundamental tool for studying the set of minimiz-
ing configurations in ergodic optimization (Thermodynamic formalism) or discrete
Lagrangian dynamics (Aubry-Mather theory, weak KAM theory), see for instance
(7,9, 17, 13]. A calibrated subaction is in some sense an optimal subaction. For
expanding endomorphisms or one-sided subshifts of finite type, the theory is well
developed, see for instance Definition 3.A in Garibaldi [9]. Unfortunately the
standard definition requires the existence of many inverse branches. Definition 3.1
is new and valid either for two-sided subshifts of finite type or for more general
dynamical systems, invertible or not, hyperbolic or not.

15



Definition 3.2 (Discrete positive Livsic criterion). Let (M, f, ¢, A, Q, C) be as in
Definition 3.1. We say that ¢ satisfies the discrete positive Livsic criterion on ()
with distortion constant C' if

inf inf "Z—] (p(x;) — o + Cd(f (), 2i41)) > —00. (3.3)

nzl (zg,x1,...,zn)eQn+1

The discrete positive Livsic criterion is the key ingredient of the proof of the ex-
istence of a calibrated subaction with a controlled Lipschitz constant. Here Lip(¢),
Lip(u), denote the Lipschitz constant of ¢ and u restricted on €) respectively.

Proposition 3.3. Let (M, f,¢,A,Q,C) be as in Definition 3.1. Assume that ¢

satisfies the discrete positive Livsic criterion on 0 with distortion C'. Then
i. the Laz-Oleinik operator admits a C° calibrated subaction,
ii. every C° calibrated subaction u is Lipschitz with Lip(u) < C.

Notice that conversely the discrete positive LivSic criterion is satisfied whenever
¢ admits a Lipschitz subaction u with Lip(u) < C. When C' = 0 and the infimum
in (3.3) is taken over true orbits instead of all sequences, there always exists a
lower semi-continuous subaction (1.2) as it is discussed in [18].

We recall without proof some basic facts of the Lax-Oleinik operator.

Lemma 3.4. Let T be the Lax-Oleinik operator as in Definition 3.1. Then
i if up < ug then Tuy] < Tus],
it. for every constant c€ R, T[u + ¢] = T[u] + ¢,
iii. for every sequence of functions (uy)n=o bounded from below,

T|inf u,]| = %I;ET[UH]

n=0

The proof of Proposition 3.3 is well known in weak KAM theory, see [4, 5, 6].
We give the proof for the convenience of the reader.

Proof of Proposition 3.3. Define

Va,yeQ, E(r,y) = é(x) — o+ Cd(f(x),y),
and

n—1
I := inf inf Z E(x;,xiy1)-
—0

nzl (zg,x1,...,xn)eQn+1 i
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Part 1. We show that T'[u] is C-Lipschitz whenever u is continuous. Indeed if
2,y € Q are given,

Tlul(z") = u(z) + E(z,2"), for some z €,
Tlul(y) < uly) + E(y,y), for every y € Q.

Then by choosing y = x in the previous inequality, we obtain

Tlul(y) — Tlul(+') < E(z,y) — E(z,2') = C[d(f(2),y) — d(f(x),2")] < Cd(y',2').

Part 2. Let v := inf, > T™[0]. Notice that v < 0. We show that v is C-Lipschitz
and satisfies T[v] = v. Indeed we first have

n—1
vn =1, Vo' e Q, T"[0](z') = mf_ Z E(x;, i) = 1.

=0

In particular v is bounded from bellow by I. Moreover v is C-Lipschitz since 7™ 0]
is C-Lipschitz thanks to part 1. Finally we have

T[v] = T[inf T"[0]] = inf T"*'[v] = v.

n=0 n=0

Part 3. Let u := sup,>qT"[v] = lim,_, 40 T"[v]. We show that u is a C-
Lipschitz calibrated subaction. We already know from parts 1 and 2 that T"[v] is
C- LlpSChltZ for every n > 0. Using the definition of ¢,, we know that, for every

> 1 there exists x € A such that »'~ (1) (¢ o fi(x) — ¢a) <0, and using the fact
that T"[v] is C-Lipschitz, we have

T[] (f*(= +2Efz f ))=v(m)+2(gbofk(x)—q_5/\)<0
T"[v](x )\ d(@', f*(z)) < Cdiam(Q), Va'e Q.

In particular v is bounded from above. As T'[v] = v, we also have T'[u] > u. We
next show T[u] < u. Let 2’ € Q. For every n > 1, T[T”[ 1] = T [v] < u, there
exists z, € Q such that

T v](xn) + E(xp, ") < u(a’).

By compactness of Q, (n)n>1 admits a converging subsequence (denoted the same
way) to some o, € Q. Thanks to the uniform Lipschitz constant of the sequence
(T"™[v])n>1 and the fact that lim,,_,, o T"[v] = u, we obtain,

Va' e Q, T[u|(z') = inf{u(x) + E(z,2")} < u(zy) + E(Tw0, ') < u(z’).

z€e$)

We have proved T[u] = u and w is C-Lipschitz. O
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4 The discrete positive LivSic criterion

Let (M, f) be a C! dynamical system, A € M be a locally maximal hyperbolic
compact subset, and ¢ : M — R be a Lipschitz continuous function. A calibrated
subaction u (3.2) is in particular a subaction (1.2)

VreQ, wo f(x)—u(x) < ¢(x) — @y

Theorem 1.3 is therefore a consequence of Proposition 3.3 provided we prove that
f satisfies the discrete positive Livsic criterion (3.3).

Proposition 4.1. Let (M, f, A, ¢) be as in Theorem 1.3. Define

Nys + 1)diam(£2 .
( AS ) 1 m( AS) ’ KAPS) L1p<¢>,
€AS

Qus ={reM:d(x,\) < eus},

szax(

where €45, Kaps have been defined in Theorem 1.5 and Corollary 1.6, Nag is a
covering number of Qas by balls of radius exs/2. Then ¢ satisfies the discrete
positive Livsic criterion on Qas with distortion C.

For a true orbit instead of a pseudo orbit, the positive LivSic criterion amounts
to bounding from below the normalized Birkhoff sum + Z;:Ol (¢o fi(x)—o). As we
saw in [18], this is equivalent to the existence of a bounded lower semi-continuous
subaction. To obtain a better regularity of the subaction we need the stronger
criterion (3.3).

We first start by proving two intermediate lemmas, Lemma 4.2 for periodic
pseudo-orbits, and Lemma 4.4 for pseudo-orbits.

Lemma 4.2. Let C > KapgLip(¢). Then for every periodic €g-pseudo orbit
(zi)izo of Qas,

S (60) — b+ Calf (). 100) > 0

Proof. Proposition 1.6 tells us that there exists a periodic orbit p € A, f"(p) = p,
such that

S (@ £0)) < Kaps 3 d(f(2:).2001)

18



Then

— on + Cd(f (), xz’+1))

IIM|

2 (¢Ofl Z_] —¢o fip )+Cd(f($i)axi+l))
> Z_l (¢Ofl Z_l — Lip(¢)d(zs, f'(p)) + Cd(f(ﬂfi)>$i+1))
; (60 F(p) - Bn) 0. 0

-
|I

Lemma 4.3. Let N, > 1 be the smallest number of balls of radius €/2 that can
cover Q.. Let (x;)I, be a sequence of points of Q.. Then there exists r € [1, N]
and times 0 =19 <1 < --- < T, =n such that,

i. Vke[l,r—1], Vie [0,k —1], Yj€ [th,n—1], d(zj, ) =€,

i. Vke[l,r—1], if e = 1 + 2 then d(xr—1, %) <€,

iii. either d(z,, 1,2, _,) <€ ord(z, ,x,_,) <Ee.

xrnzxom X, mxrz Xz, /\
J- . y ' da - de . .

Figure 2: The schematic r returns of Lemma 4.3.

Proof. We construct by induction the sequence 75,. Assume we have constructed
Tk < n. Define
={jelm+1n]:dz;,z,) <e}.

IfT =&, choose 141 = 7+ 1; if T + ¢ and max(T) < n then 7,1 = max(T)+1,
A(Try -1, T7,) < € and for every j = 741, d(xj,z,) = € if max(T) = n then
Th+1 = n. Since (SL’Tk)k o are € apart, r < N.. O
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Lemma 4.4. Let C = KapsLip(¢) and Nag be the smallest number of balls of
radius €as/2 that can cover Qas. Let 045 := Nagdiam(Qas). Then for every
eas-pseudo orbit (x;) o of Qas,

Z — ¢a + Cd(f(2:),7:41)) = —Lip()das.
Proof. We split the pseudo orbit (x;)"-) into r < Nug segments of the form
(:cl):ijifl according to Lemma 4.3, for 0 < k < r -1 with 0 = 70 < 74 <

- < 1 = n. To simplify the notations, denote

¢i = ¢(x;) — da + Cd(f (%), Tir1)-

Notice that for every i € [0,n — 1]

¢; = ¢(x;) — Ppp = lim —mf Z_: ( z;) — ¢o fi(x )> > —Lip(¢)diam(Qa5).

n—+0o N, reA

If Thy1 = 7o +2and k € [0,r — 1] then d(z,,, 2-,,, 1) < €as, (:L’Z):i*ﬂl;l is a periodic
pseudo orbit as in Lemma 4.2 and

Th+1—2 Tr+1—1
Z ¢2 = 07 Z ¢7, = Llp )dlam(QAs)
=T I=Tg

If 7, > 7,_; + 2 then either (z;)7 "

i or (x;)_. | is a periodic pseudo orbit. In
both cases we have

Tr—1
Z ¢; = —Lip(¢)diam(Q4s).
1=Tr_1
If Th+1 = Tk +1 then
Th+1—1
S i = 0r, > ~Lip(6)diam(Qus).
1=T}

By adding these inequalities for k € [0,r — 1], we have

T—1

Z ¢z Llp NASdiam(QAS). ]

’L’TO

We recall that K4pg, €45, have been defined in Theorem 1.5, Corollary 1.6,
and Nag, 049, in Lemma 4.4.
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Proof of Proposition 4.1. Let (x;), be a sequence of points of Q45. We split

. . —1
the sequence into disjoint segments (95@):2,1 0=To< T < < TE < Tpy1 <

-+ < 7, = n, having one of the following form.
Segment of the first kind: 7,41 = 7, + 1 and d(f(2,), 25,,,) = €as. Then

(Zs(xrk) - Q_ﬁA = _Lip(¢)diam<QA5)7 d(f(x’rk)7x7'k+1) = €as-

By choosing C' = Lip(¢)diam(Q4s)/€as, we obtain

¢(x7'k) - Q_SA + Cd(f('rﬁc)v xﬂﬁ-l) = 0.

Segment of the second kind: 141 = T, + 2 and

{ VT <SS Ther — 2, d(f(xi)7xi+1> < €AS,
d(f<x7k+1—1)7x7'k+l) 2 EAS

Then (xz):ij;_l is a pseudo orbit. By using Lemma 4.4 and C' > K4psLip(¢), we
have

Tk+1—2

DT (¢(xi) = 6n + Cd(f(w:),7i41)) = —Lip(¢)das,

i:Tk

gb(xﬁwl*l) - 92_51\ + Cd(f(x7k+1*1)7 kaJrl) = _Lip(¢>diam(QAS) + CGAS'
By choosing C' > Lip(¢)(das + diam(Q24s))/€as, we obtain

Tk+1—1

>0 (@) = bn + Cd(f (), 111)) = 0.

1=Ty

Tr
1=Tp_1

Segment of the third kind: if it exists, this segment is the last one and (z;)
is a pseudo orbit. By using again Lemma 4.4

Tr—1

2 (¢(z:) = Pa + Cd(f(2:), wi41)) = —Lip(#)das-

1=Tp_1
O

Proof of Theorem 1.3. The proof readily follows from the conclusions of Propo-
sitions 3.3 and 4.1. O
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Appendices

A Local hyperbolic dynamics

We recall in this section the local theory of hyperbolic dynamics. The dynamics
is obtained by iterating a sequence of (non linear) maps defined locally and close
to uniformly hyperbolic linear maps that may be non invertible. The notion of
adapted local charts is defined in A.3. In these charts the expansion along the
unstable direction, or the contraction along the stable direction, is realized at the
first iteration, instead of after some number of iterations. It is a standard notion
that can be extended in different directions, see for instance, Hasselblatt, Katok
[10] or Gourmelon [8]. We will not give any proof here.

It will be important to keep in mind that we are considering maps that may not
be invertible. These maps are seen as perturbations of their tangent maps. We only
assume that the tangent maps are invertible along the unstable direction. They
may have a kernel belonging to the stable direction. In particular, the following
description is also valid for quasi-compact maps in infinite dimension.

A.1 Adapted local hyperbolic map

A local hyperbolic maps is a Lipschitz perturbation of a hyperbolic linear map that
could be non injective. The constants (o®, o%, 7, p) that appear in the following
definition are used in the proof of Theorem 2.1.

Definition A.1 (Adapted local hyperbolic map). Let (¢, 0%, n, p) be positive real
numbers called constants of hyperbolicity. Let R = E* @ E* and RY = E* @ E*
be two Banach spaces equiped with two norms | - | and | - | respectively. Let
P*:R? - E* and P*: RY — E* be the two linear projectors associated with the
splitting R? = E* @ E* and similarly P* : R? — E* and P* : R — E* be the two
projectors associated with RY = E* @ E*. Let B(p), B“(p), B*(p) be the balls of
radius p on each E, E*, E* respectively, with respect to the norm |- |. Let B(p),
B“(p), B*(p) be the corresponding balls with respect to the norm || - |. We assume
that both norms are sup norm adapted to the splitting in the sense,

Yo,we E* x E*, |v+ w| = max(|v|, |w|),
Vo,we E" x B, o+ w] = max([lv], [w]).

In particular B(p) = B%(p) x B*(p), B(p) = B*(p) x B*(p). We also assume

o' —1 1—08>
6 = 6

o —1 l—as>
2 7 8 '

o">1>0°, 'r]<min< (A.1)

€(p) = pmin(
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An adapted local hyperbolic map with respect to the two norms and the constants
of hyperbolicity is a set of data (f, A, EY/*, E%* |-|,| -|) such that:

i. f:B(p) — R?is a Lipschitz map,

ii. A:R?Y— R?is a linear map which may not be invertible and is defined into
block matrices
. Av D (v,w) e E* x E*, N 7= A% + D"w e E*,
| Ds o As | A(v +w) = 0+ w, w = D%v + A%w € E¥,

that satisfies

(pem ot >l g ([P Lo -4 <o
Vwe B, [Au] < o lul, D <, 1£(0)] < el),

where the Lip constant is computed using the two norms | - | and | - |.

The constant o* is called the expanding constant, o° is called the contracting
constant, ker(A®) could be non trivial. The constant p represents a uniform size
of local charts. The constant €(p) represents the error in a pseudo-orbit. The
constant 1 represents a deviation from the linear map and should be thought of
as small compared to the gaps % — 1 and 1 — o®. Notice that €(p) is independent
of n. The map f : B(p) — R? should be considered as a perturbation of its linear
part A.

A.2 Adapted local graph transform

The graph transform is a perturbation technique of a hyperbolic linear map. A
hyperbolic linear map preserves a splitting into an unstable vector space on which
the linear map is expanding, and a stable vector space on which the linear map
is contracting. It is standard to show that a Lipschitz map close to a hyperbolic
linear map also preserves similar objects that are Lipschitz graphs tangent to the
unstable. We recall that the operator A may have a non trivial kernel and that
we don’t assume f to be invertible.

Definition A.2. Let (¢%, 0%, 7, p), R = E*@E® = E*@®E" be as in Definition A.1.
We denote by 4" the set of Lipschitz graphs over the unstable direction E* with
controlled Lipschitz constant and height. More precisely, let

9" = {16 B*(p) > B'()] : Lin(G) < 2. [G(0)]

O-U/*O-S

N
[\l iaet

}, (A.2)

The graph of

and similarly ¢* the set of Lipschitz graphs using the norm | - |.
G € 9" is by definition the subset of B(p):

Graph(G) := {v+ G(v) : ve B“(p)}.
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Notice that, thanks to (A.1), Lip(G) < 3 for every G € ¢*. Notice also that
the Lipschitz constant of G goes to zero as f becomes more and more linear, as
n — 0, independently of the location of f(0) controlled by €(p) depending only on
(o 0%, p).

Proposition A.3 (Forward local graph transform). Let (o“, 0%, 1, p,€), R = E"®
Es = E*@® E*®, and (A, f) be as defined in Definition A.1. Then

i. For every graph G € 9% there exists a unique graph G € Gv such that

1. For every Gy,Gy € 9" and G1, Gy the corresponding graphs,

||é1 - G2Hoc < (0_5 + 27’]) ‘Gl — GQ‘QO.
11. The map

w99
St A (43)

15 called the forward graph transform.

iv. for every G € 4", f(Graph(G)) = Graph(G) ,

Vg1, g2 € Graph(G) n f 71 (Graph(G)), [ f(a1) = f(a2)| = (0" = 31) |1 — @],

For a detailed proof of this proposition we suggest the monography by Hirsch,
Pugh, Shub [11]. As we don’t assume f to be invertible, the backward graph
transform cannot be defined.

A.3 Adapted local charts

We consider in this section a C' dynamical systems (M, f) on a manifold M of
dimension d > 2 without boundary, A € M a hyperbolic f-invariant compact set,
and 2 > A an open neighborhood of A of compact closure. Let \* < 0 < A%,
Cr =2 1, and TyM = E}(z) ® E{(x) as in Definition 1.1. We show that we
can construct a family of local charts well adapted to the hyperbolicity of A. The
existence of such a family depends only on the continuity of x € A — E}(z)®E; ()
and the C! regularity of f.
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Definition A.4 (Adapted local charts). Let (M, f) be a C' dynamical system,
U < M be an open set, and A € U be an f-invariant compact hyperbolic set with
constants of hyperbolicity (A", A*). A family of adapted local charts is a set of data
'y = (I, E,N, F,A) and a set of constants (¢%,0° n,p) satisfying the following
properties:

i. The constants (0%, 0% 1, p) are chosen so that,

exp(N’) < o® <1 <" <exp(\)

- mi (0“—1 1—05) () . <a“—1 1—03>
min := pmin
n 6 ' 6 ,  €Ep P 5 g

where A\, \* are the constants of hyperbolicity of A as in Definition 1.1.
Notice that €(p) < p/8.

ii. I' = (72)zen 1S a parametrized family of charts such that for every z € A,
Y. : B(1) € R* — M is a diffeomorphism from the unit ball B(1) of R?
onto an open set in M, 7,(0) = z, and such that the C' norm of ~,,v; ' is
uniformly bounded with respect to x.

ii. B = (E;f/ *)zen is a parametrized family of splitting R = E* @ E? obtained
by pull backward of the corresponding splitting on T) M by the tangent map
Ty, at the origin of R?,

E; = (Toys) ' Ex(2),  E; = (Toy.) " Ej(@),
and by Id = P! + P, the corresponding projectors onto EY, E? respectively.

iv. N := (|| - |2)zea is a C° parametrized family of norms. The adapted local
norm is a sup norm adapted to the splitting EY @ E7 that satisfies

Voe By, we EL, o+ wle = max([v]a, [w].).
The ball of radius p centered at the origin of R? is denoted by B,(p).
v. The constant p is chosen so that 7,(B,(p)) < U and
Va,ye N, [f(z)e(By(p) = f((Bulp)) < w(B(1)].
vi. F'i= (foy)eyen is a family of C!' maps f,, : B.(p) — B(1) which is

parametrized by couples of points (x,y) € A satisfying f(z) € v,(B,(p)).
The adapted local map is defined by

Vve Bx(p>> fm,y(v> = 7;1 of O’V:B(U)‘
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vii. A := (Asy)zyen is the family of tangent maps A,, : RY — R? of f,, at
the origin, that is parametrized by the couples of points x,y € A satisfying

f(x) € vy(By(p)). Let
Apy = Dfx,y(()),

where Df, ,(0) denotes the differential map of v — f,,(v) at v = 0.

viil. For every x,y € A satistying f(z) € v,(By(€)), the set of data

(fows Avs B2 B s |- )

is an adapted local hyperbolic map with respect to the constant of hyper-
bolicity (¢*, 0%, n, p) as in Definition A.1. We have

a— [P;AMP; P;Agc,yP;}
y P;A%sz“ P;Ax,yP;

Vve By, HAx,yUHy > 0|, Hpngx,yP;”x,y <1,
Vve B, |Azyvly < o®fvfe, HP;A%ypaf”x,y <17,

{ [ £y (O)]ly < €(p);
Vo € By(p), | Dfoy(v) = Auylay <,

where |||, denotes the matrix norm computed according to the two adapted
local norms | - ||, and | - [,

The existence of a family of adapted local norms is one of the central results
in the Definition A.4. We don’t repeat the proof here.

Definition A.5 (Admissible transitions for maps). Let I'y be a family of adapted

local charts as given in Definition A.4. Let z,y € A. We say that x Ly yis a
I'p-admissible transition if

f(@) € w(By(e(p))) (= fay(0) € Byle(p)) ).

A sequence (x;), of points of A is said to be I'y-admissible if x; Ty x;41 for every
0<?1<n.

A.4 Adapted local unstable cones

Definition A.6 (Unstable/stable cones). Let R = E*@®E* be a splitting equipped
with a norm | - |. Let a € (0,1)
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i. The unstable cone of angle « is the set

¢"(a) := {w e R : |Pw| < a| P wl|}.

ii. The stable cone of angle a is the set

¢*(a) == {weR": |P"w| < a|PPw|}.

Notice that the unstable cone €*(a) contains the unstable vector space E™.

Lemma A.7 (Equivariance of unstable/stable cones). We consider the notations
of Definition A.1, where (0%, 0%, p,n,€) are some positive constants, R? = E*® E*
and R = E* @ E® are two vector spaces with norms | - | and || - || respectively, and
(A, f) is an adapted local hyperbolic map. Let

ae( 6_’70 ,1) and §:= 22 T
Then 8 < o and, for every a,be B(p) = B"(p) + B*(p),
i. ifb—ae€*(a), then f(b) — f(a) € €“(B) and
|PA(f(b) = f(a)] = (o = 3m)|P*(b— a)], (A4)
ii. if f(b) — f(a) € €5(c), then b—a e €*(3) and

[P (f(b) = f(a))]| < (0° + 30)|P*(b — a)]. (A.5)

References

[1] C. Bonatti, L.J. Diaz, M. Viana. Dynamics Beyond Uniform Hyperbolicity.
Encyclopaedia of Mathematical Sciences, Vol. 102, Springer (2005).

[2] T. Bousch, Le lemme de Mané-Conze-Guivarc’h pour les systéemes amphidy-
namiques rectifiables, Annales de la Faculté des Sciences de Toulouse, Vol.
20, No. 1 (2011), 1-14.

[3] G. Contreras. Ground states are generically a periodic orbit. Invent. math.
205 (2016), 383-412.

[4] A. Fathi. Théoreme KAM faible et théorie de Mather sur les systemes la-
grangiens C. R. Acad. Sci. Paris, Sér. I, Math. Vol. 324, No. 9 (1997), 1043-6.

27



[5]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

A. Fathi, Solutions KAM faibles conjuguées et barrieres de Peierls. Comptes
Rendus des Séances de I’Académie des Sciences, Série I, Mathématique, Vol.
325 (1997), 649-652.

A. Fathi, The weak KAM theorem in Lagrangian dynamics, book to appear,
Cambridge University Press.

E. Garibaldi, Ph. Thieullen. Minimizing orbits in the discrete Aubry-Mather
model. Nonlinearity, Vol. 24 (2011), 563-611.

N. Gourmelon. Adapted metrics for dominated splittings. Ergodic Theory
Dyn. Syst. 27, 1839-1849 (2007).

E. Garibaldi. Ergodic Optimization in the Expanding Case. Concepts, Tools
and Applications. SpringerBriefs in Mathematics, (2017).

B. Hasselblatt, A. Katok, Introduction to the modern theory of dynamical
systems, Cambridge university press (1995).

M.W. Hirsch, C.C. Pugh, M. Shub. Invariant manifolds. Springer, Lecture
Notes in Mathematics, Vol. 583 (1977).

Wen Huang, Zeng Lian, Xiao Ma, Leiye Xu, and Yiwei Zhang. Ergodic opti-
mization theory for a class of typical maps. Preprint 2019.

O. Jenkinson. Ergodic optimization in dynamical systems. Ergod. Th. and
Dynam. Sys., Vol. 39 (2019, 2593-2618.

A.O. Lopes, V.A. Rosas, and R.O. Ruggiero. Cohomology and subcohomology
problems for expansive, non Anosov geodesic flows. Discrete and Continuous
Dynamical Systems - A, Vol. 17, No. 2, 2007, 403-422.

A.O. Lopes, Ph. Thieullen, Sub-actions for Anosov diffeomorphisms. Geomet-
ric Methods in Dynamics (II). Astérisque, Vol. 287 (2003), 135-146.

M. Pollicott, R. Sharp. Livsic theorems, maximizing measures and the stable
norm. Dynamical Systems, Vol. 19, No. 1, 2004, 75-88.

Xifeng Su, Ph. Thieullen. Convergence of the discrete Aubry-Mather model
in the continuous limit. Nonlinearity, Vol. 31 (2018), 2126-2155.

Xifeng Su, Ph. Thieullen, Gottschalk-Hedlund theorem revisited, Math. Res.
Lett., Vol. 28, No.1 (2021), 285-300.

Xifeng Su, Ph. Thieullen. Lipschitz sub-actions for locally maximal hyperbolic
sets of a C? flow. Preprint is available at https://arxiv.org/abs/2205.10135.

28



