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Abstract. We study the zero-temperature limit of the Gibbs measures of a class of long-
range potentials on a full shift of two symbols {0, 1}. These potentials were introduced
by Walters as a natural space for the transfer operator. In our case, they are constant
on a countable infinity of cylinders and are Lipschitz continuous or, more generally, of
summable variation. We assume that there exist exactly two ground states: the fixed
points 0∞ and 1∞. We fully characterize, in terms of the Peierls barrier between the two
ground states, the zero-temperature phase diagram of such potentials, that is, the regions
of convergence or divergence of the Gibbs measures as the temperature goes to zero.

1. Introduction and main results
We consider the problem of convergence or divergence of Gibbs measures as the absolute
temperature goes to zero. By a Gibbs measure, we mean an invariant probability µβ
describing the equilibrium at temperature β−1 of one-sided configurations (x0, x1, . . .) ∈

6 := {0, 1}N interacting according to a potential H :6→ R, as described in the
thermodynamic formalism (see [3, 15, 19, 20]). The invariance of the measure is defined
with respect to the left shift σ :6→6, σ(x0, x1, . . .)= (x1, x2, . . .). We assume, in
the following, that H is non-negative and Lipschitz continuous or, more generally, of
summable variation. When β→+∞, the Gibbs measures tend to concentrate on the
minima of H . In addition, the limit measure needs to be invariant. We assume that the only
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2 R. Bissacot et al

invariant ergodic probability measures included in the zero-level set {H = 0} are exactly
the two Dirac measures δ0∞ and δ1∞ . As the temperature goes to zero (β→+∞), two
cases may happen: either the selection case, where µβ converges to a convex combination
c0δ0∞ + c1δ1∞ , or the non-selection case, where, for some subsequence βk , {µβk } has
two accumulation points, µβ2k → δ0∞ and µβ2k+1 → δ1∞ . In this work, we consider the
smallest class of potentials in which the two cases coexist.

For potentials that depend on a finite number of coordinates, namely, that are constant
on a finite number of cylinder sets, the selection case always holds, over both finite
alphabets [6, 7, 13, 17] and countably infinite alphabets [11, 16]. For potentials that
are constant on a countable infinity of cylinders, the selection case has been proved in
particular examples (see Baraviera et al [4], Leplaideur [18], Baraviera et al [5]). The
non-selection case has been addressed more recently in [8, 10] and [9]. In a seminal
paper [10], van Enter and Ruszel have produced an example where chaotic temperature
dependence was observed. However, their alphabet is the unit circle and the construction
is only based on properties of the potential and not on the dynamics. Chazottes and
Hochman gave, in [8], examples of non-selection in any dimension D 6= 2 (with respect to
an underlying ZD-action). In one dimension, their potential is equal to the distance to some
invariant compact set that has a complex combinatorial construction. In dimension D ≥ 3,
their non-selection examples come from potentials that do depend on a finite number
of coordinates. Recently, in [2], Aubrun and Sablik extended [14], which is the main
ingredient in the proof of the multidimensional part of [8]. In principle, an analogous
proof of the non-selection for D = 2 should also work. In [9], Coronel and Rivera-Letelier
adapted van Enter and Ruszel’s ideas for finite alphabets and they ensure the existence of
non-selection examples by a perturbative approach combined with entropy arguments, as
in [8]. Moreover, they were able to verify the non-selection case also for D = 2, without
using the result of [2], but with Lipschitz continuous potentials. Thus, for potentials that
depend on a finite number of coordinates in dimension D = 2, it is an open question as to
whether there exist examples of non-selection.

Our approach is different. We highlight the simplest class of potentials whose zero-
temperature phase diagram is completely understood: it contains both the non-selection
and the selection cases, with an explicit description of the limit measures in the convergent
situation. We show that the criterion for non-selection or selection is whether the Peierls
barriers between the two configurations 0∞ and 1∞ are both equal to zero or not.

We now detail such a class of potentials. A cylinder of length n ≥ 1 is a set
Cn := [i0i1 . . . in−1] of configurations x ∈6 such that the first n states x0, x1, . . . , xn−1

coincide with i0, i1, . . . , in−1. We say that two points x, y ∈6 are n-close, and we write
x n
= y if x and y belong to the same cylinder of length n. Let H :6→ R be a C0 non-

negative potential. We say that H has summable variation if∑
n≥1

var(H, n) <+∞ with var(H, n) := sup{|H(x)− H(y)| : x n
= y}. (1.1)

We restrict the potential H to a subclass of functions that are constant on a countable
infinity of cylinders, as described in the following assumptions. Our subclass is a particular
class of Walters potentials with summable variation (see [21]).
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Selection of ground states 3

Definition 1.1. We say that H is a double-well type potential if H is non-negative, has
summable variation and is constant on the cylinders [00n1], [01n0], [11n0] and [10n1].
More precisely, there are non-negative sequences {a0

n}, {a
1
n} and strictly positive sequences

{b0
n}, {b

1
n} such that:

(1) H(x)= a0
n ≥ 0 if x ∈ [00n1], H(x)= a1

n ≥ 0 if x ∈ [11n0];
(2) H(x)= b0

n > 0 if x ∈ [01n0], H(x)= b1
n > 0 if x ∈ [10n1];

(3)
∑

n≥1 na0
n <+∞,

∑
n≥1 na1

n <+∞; and
(4)

∑
k≥1 supn≥0 |b

0
k − b0

k+n|<+∞,
∑

k≥1 supn≥0 |b
1
k − b1

k+n|<+∞.
Define

H0
min := inf

n≥1

{
b0

n +

n−1∑
k=1

a1
k

}
, H0

∞ := lim
n→+∞

b0
n +

∑
n≥1

a1
n,

H1
min := inf

n≥1

{
b1

n +

n−1∑
k=1

a0
k

}
, H1

∞ := lim
n→+∞

b1
n +

∑
n≥1

a0
n .

As example of a double-well type potential, consider H :6→ [0,+∞), given by
H(0∞)= 0= H(1∞) and H(x)= ρθ0(x)

0 ρ
θ1(x)
1 if x is not a fixed point, where ρ0, ρ1 ∈

(0, 1) and θ0, θ1 ≥ 1 are functions such that their restrictions θ0|[1], θ1|[0], θ0|[0n1]

and θ1|[1n0] are identically constant and satisfy infn≥1{θ0|[0n+11] − θ0|[0n1], θ1|[1n+10] −

θ1|[1n0]}> 0. For this particular example, Gibbs measures do converge when the system is
frozen, as follows from our main result.

Our main theorem describes the zero-temperature phase diagram of double-well type
potentials (see Figure 1). The different regions of the diagram are described by a unique
parameter, obtained by taking the minimum of three exponents

γ :=min
{ 1

2 (H
1
∞ + H0

∞), H0
min + H1

∞, H1
min + H0

∞

}
. (1.2)

Notice that γ = 0 if and only if H0
∞ = H1

∞ = 0 and if and only if the three exponents
coincide. By symmetry, we may assume that H0

∞ ≤ H1
∞. We state the theorem in this

case. If γ > 0, one exponent is irrelevant and

γ =min
{ 1

2 (H
1
∞ + H0

∞), H1
min + H0

∞

}
,

since 1
2 (H

1
∞ + H0

∞) < H0
min + H1

∞. We introduce, in that case, the coincidence number κ ,
which counts how many times the minimum is attained, that is, for H1

n := b1
n +

∑n−1
k=1 a0

k ,

κ := card
{
n ≥ 1 : 1

2 (H
1
∞ + H0

∞)= H1
n + H0

∞

}
, (1.3)

and a coefficient c, which is the largest solution of the equation X2
= κX + 1,

c :=
κ +
√
κ2 + 4
2

. (1.4)

Our main theorem is thus stated as follows.

THEOREM 1.2. Let H :6→ R be a double-well type potential. Let µβ be the Gibbs
measure of H at temperature β−1. Assume that H0

∞ ≤ H1
∞.
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4 R. Bissacot et al

FIGURE 1. Zero-temperature phase diagram. The non-selection case can occur only at the origin. The formulas
in the boxes are the limit measures at zero temperature. The two gray planes correspond to the cases of the
coincidence of two exponents. Outside these planes, the limit measures are barycenters with rational coefficients.

If H1
∞ ≥ H0

∞, then c is the coefficient given by (1.4). If H0
∞ ≥ H1

∞, then d is the analogous coefficient.

(1) If 1
2 (H

1
∞ + H0

∞) > H1
min + H0

∞, then limβ→+∞ µβ = δ1∞ .
(2) If H1

min + H0
∞ ≥

1
2 (H

1
∞ + H0

∞) > 0, then

lim
β→+∞

µβ =
1

1+ c2 δ0∞ +
c2

1+ c2 δ1∞ . (1.5)

(3) If H0
∞ = H1

∞ = 0, then there exists a particular choice of b0
n, b1

n (necessarily
a0

n = a1
n = 0) such that H is Lipschitz and µβ does not converge. More

precisely, there exists a sequence βk→+∞ such that limk→+∞ µβ2k = δ0∞ and
limk→+∞ µβ2k+1 = δ1∞ .

(Items (1) and (2) correspond to γ > 0; item (3) corresponds to γ = 0.)

In §2, we give general results for potentials of summable variation. In §3, for a double-
well type potential H , we compute the measure of every cylinder using two series that
capture all the complexity of the limit. In §4, we prove the convergence of Gibbs measures
when γ > 0. Finally, in §5, we provide examples of divergence with γ = 0. Note that the
symmetric case a0

n = a1
n and b0

n = b1
n gives, in both cases, γ > 0 or γ = 0 the convergence

to 1
2δ0∞ +

1
2δ1∞ .

We also show that, in this particular class of potentials, the dichotomy selection/non-
selection in Theorem 1.2 can be expressed in terms of the Peierls barrier between the two
configurations 0∞ and 1∞. The Peierls barrier is defined for any potential with summable
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Selection of ground states 5

variation by

h(x, y) := lim
p→+∞

lim
n→+∞

S p
n (x, y) where

S p
n (x, y) := inf

{k−1∑
i=0

[H ◦ σ i (z)− H̄ ] : k ≥ n, z ∈6, z
p
= x, σ n(z)

p
= y

}
,

H̄ := lim
n→+∞

inf
{

1
n

n−1∑
k=0

H ◦ σ k(x) : x ∈6
}
.

The Peierls barrier indicates the minimal algebraic cost from x to y using a normalized
potential H − H̄ . In the particular case of double-well type potentials, we have the
following result.

COROLLARY 1.3. Let H be a double-well type potential. Then:
(1) 1

2 (H
0
∞ + H1

∞)=
1
2 (h(0

∞, 1∞)+ h(1∞, 0∞));
(2) H0

min + H1
∞ = lim infx→0∞ h(x, 0∞);

(3) H1
min + H0

∞ = lim infx→1∞ h(x, 1∞); and

(4) the non-selection happens if and only if h(0∞, 1∞)= h(1∞, 0∞)= 0.

Note that γ may be seen as the minimum of three energy barriers: 1
2 (H

0
∞ + H1

∞), the
mean energy barrier of a cycle of second order between the two ground states 0∞ and 1∞;
H0

min + H1
∞, the energy barrier of a cycle of first order at 0∞; and H1

min + H0
∞, a similar

energy barrier at 1∞.

2. Basic facts for potentials of summable variation
In this section, we gather some of the main elements of ergodic optimization theory for
potentials of summable variation. Ergodic optimization may be seen as a counterpart
at zero temperature of thermodynamic formalism. A useful viewpoint on ergodic
optimization is provided by Aubry–Mather theory. For more information, we refer the
reader, for instance, to [12, 13] and the references therein.

Definition 2.1. For H ∈ C0(6), a minimizing measure µmin is a σ -invariant probability
such that ∫

H dµmin =min
{∫

H dν : ν is a σ -invariant probability measure
}
.

We call a Mather set of H the invariant compact set

Mather(H) :=
⋃
{supp(µ) : µ is minimizing}.

We call a minimizing ergodic value of H the constant

H̄ :=
∫

H dµmin.

We recall or extend basic results about the Peierls barrier for functions with summable
variation.
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6 R. Bissacot et al

PROPOSITION 2.2. If H has summable variation, then

Mather(H)⊂ {x ∈6 : h(x, x)= 0}. (2.1)

The previous proposition follows from Atkinson’s theorem [1] and from the existence
of a continuous calibrated sub-action.

Definition 2.3. We call the Lax–Oleinik operator the nonlinear operator acting on
continuous functions V ∈ C0(6) defined by

T [V ](y) :=min{V (x)+ H(x) : x ∈6, σ(x)= y} for all y ∈6.

We call a calibrated sub-action any continuous function V solution of the equation T [V ] =
V + H̄ .

Clearly, V ◦ σ − V ≤ H − H̄ when V is a calibrated sub-action, which, in particular,
ensures that h(x, x)≥ 0 for all x ∈6. Atkinson’s theorem provides the opposite inequality
if x ∈Mather(H). These are the main ingredients of the proof of Proposition 2.2. To
obtain a calibrated sub-action, we will introduce a stronger notion of regularity on C0(6).
Consider thus

K :=

{
V ∈ C0(6) : ∀n ≥ 1, var(V, n)≤

∑
k≥n+1

var(H, k)
}
.

We also recall that the transfer operator is defined on the space C0(6) by

Lβ [8](x)= e−βH(0x)8(0x)+ e−βH(1x)8(1x) for all x ∈6.

The next theorem contains a version of Ruelle–Perron–Frobenius theorem and provides a
calibrated sub-action in the context of potentials with summable variation, making explicit
well-known connections between thermodynamic formalism and ergodic theory.

THEOREM 2.4. Let H :6→ R be a potential with summable variation.
(1) The transfer operator admits a unique positive and continuous eigenfunction 8β

satisfying max8β = 1, which is associated with a positive eigenvalue λβ .
(2) If Vβ := −(1/β) ln8β , then Vβ ∈ K and min Vβ = 0.
(3) The dual operator L∗β admits a unique eigenprobability νβ . The corresponding

eigenvalue is equal to λβ , L∗β [νβ ] = λβνβ .
(4) Define µβ :=8βνβ/

∫
8β dνβ . Then µβ is a σ -invariant probability measure, and

any weak∗ accumulation point of µβ as β→+∞ is a minimizing measure.
(5) There exists a sequence βk→+∞ such that (in the sup-norm topology) {Vβk }

converges to a function V∞ ∈ K with min V∞ = 0. Moreover, any accumulation
function V∞ of {Vβ} as β→+∞ is a calibrated sub-action for H.

Proof. The proof of these results are standard (see [13, 19, 20]), and hence we focus on
the part leading to the existence of calibrated sub-actions. We define a nonlinear operator
Tβ by

Tβ [u] := −
1
β

ln(Lβ [exp(−βu)]).
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Selection of ground states 7

Fix x0 ∈6 and define K0 := {U ∈ K :U (x0)= 0}. The set K0 is closed in the C0(6)

topology and bounded. By the uniform continuity of K and Arzelà–Ascoli theorem, the set
K0 is compact. In addition, K0 is convex.

If x n
= y, then

Tβ [u](x)− Tβ [u](y)≤ var(H, n + 1)+ var(u, n + 1).

In particular, var(Tβ [u], n)≤ var(H, n + 1)+ var(u, n + 1) and the map

T̃β [u] := Tβ [u] − Tβ [u](x0)

preserves K0. By the Schauder theorem, T̃β admits a fixed point or, in an equivalent way,
Tβ admits an additive eigenfunction Tβ [Uβ ] =Uβ + H̄β , which yields

Lβ [8β ] = λβ8β with 8β := e−β(Uβ−min Uβ ), λβ = e−β H̄β .

Let 8̃ be another positive and continuous eigenfunction associated with some positive
eigenvalue λ̃. We choose s, t > 0 such that s8β ≤ 8̃≤ t8β . By iterating Lβ , we obtain
sλn
β8β ≤ λ̃

n8̃≤ tλn
β8β . Then λ̃= λβ . Let s be such that min(8̃− s8β)= 0. Then the

identity

Lβ [8̃− s8β ] = λβ(8̃− s8β)

implies that the set arg minx (8̃− s8β)(x) is invariant by σ−1 and therefore 8̃= s8β .
The uniqueness of the eigenfunction is proved.

Note that the family {Vβ =−(1/β) ln8β}β>0 belongs to the compact subset {V ∈ K :
min V = 0}. Passing to the limit with respect to a suitable sequence βk→+∞, we see
that T [V∞] = V∞ + c for c = lim H̄βk . From min-plus algebra, it is well known that the
only additive eigenvalue is c = H̄ . �

The following proposition shows how calibrated sub-actions are related to the Peierls
barrier.

PROPOSITION 2.5. If H has summable variation, then the following items hold.
(1) For every x ∈Mather(H), as a function of its second variable, h(x, ·) belongs to K

and is a calibrated sub-action.
(2) If V ∈ C0(6) is a calibrated sub-action, then V ∈ K and V admits a representation

formula†

V (y)=min{V (x)+ h(x, y) : x ∈ Mather(H)} for all y ∈6. (2.2)

Proof. For the Lipschitz class, these results may be found in the literature (see, for
instance, [12, 13] and the references therein). All proofs may be easily extended by just
adapting the arguments to the regularity here considered. For the convenience of the reader,
we outline the proofs of items (1) and (2).

Item (2). Suppose y n
= z. Denoting y0 = y, since V is a calibrated sub-action, there

exists a sequence {yk} ⊂6 such that

V (y0)= V (yk)+

k−1∑
i=1

[H ◦ σ i (yk)− H̄ ], σ (yk)= yk−1 for all k ≥ 1. (2.3)

† This representation is usually stated using the Aubry set instead of the Mather set.
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8 R. Bissacot et al

For z0 = z, we thus consider a sequence {zk}, with σ(zk)= zk−1, such that zk
n+k
= yk for

all k. Note that

V (z0)≤ V (zk)+

k−1∑
i=1

[H ◦ σ i (zk)− H̄ ] for all k ≥ 1. (2.4)

From (2.3) and (2.4), var(V, n)≤
∑

k≥n+1 var(H, k): that is, V ∈ K.
From the inequality V ◦ σ − V ≤ H − H̄ , given any y ∈6, V (y)≤min{V (x)+

h(x, y) : x ∈Mather(H)}. For y0 = y, we consider again (2.3). Since V (yk)=

V (yk+p)+
∑p−1

i=1 [H ◦ σ
i (yk+p)− H̄ ] for all k, p ≥ 0, one may deduce that a limit

x̄ ∈6 of subsequence {yk j } satisfies h(x̄, x̄)= 0. By passing to the limit in V (y0)=

V (yk j )+
∑k j−1

i=1 [H ◦ σ
i (yk j )− H̄ ], we see that V (y)= V (x̄)+ h(x̄, y). For all x in

the same irreducible class as x̄ (see [12, Definition 18]), we may extend the equality
V (y)= V (x)+ h(x, y). As in [12, Proposition 19], and also for the summable variation
case, each irreducible class is compact and invariant, so that it contains the support of at
least one minimizing measure.

Item (1). It suffices to explain how to show that h(x, ·), x ∈Mather(H) is a calibrated
sub-action. The argument is standard. For x ∈Mather(H), one may use Atkinson’s
theorem [1] to obtain that, as a function of the second variable, h(x, ·) is finite everywhere
on 6. Then the calibration property follows from the very definition of the Peierls barrier.
For details, see [12, 13] and the references therein. �

3. Explicit formulas for double-well type potentials
From now on, we assume that H is a double-well type potential (see Definition 1.1). We
show, in Lemma 3.2, that we can reduce the complexity of the notation by taking a suitable
coboundary, which is constant on a countable infinity of cylinders. As the issue of selection
or non-selection is independent of the cohomological class of the potential, this lemma will
enable us to simplify the proof by using the following reduced assumptions.

Definition 3.1. Let H be a double-well type potential. We say that H is reduced if H = 0
on [00] ∪ [11]. More precisely, for every n ≥ 0:
(1) H(x)= 0 if x ∈ [00] ∪ [11];
(2) H(x)= H0

n > 0 if x ∈ [01n0], H(x)= H1
n > 0 if x ∈ [10n1]; and

(3)
∑

k≥1 supn≥0 |H
0
k − H0

k+n|<+∞,
∑

k≥1 supn≥0 |H
1
k − H1

k+n|<+∞.
Define

H0
∞ := lim

n→+∞
H0

n , H1
∞ := lim

n→+∞
H1

n ,

H0
min := inf

n≥1
H0

n , H1
min := inf

n≥1
H1

n .

LEMMA 3.2. If H is a double-well type potential, then there exists a function V :6→ R,
which is constant on a countable infinity of cylinders, such that H̃ := H − (V ◦ σ − V ) is
reduced.
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Selection of ground states 9

Proof. Let

V (x) :=
+∞∑
k=n

a0
k +

∑
k≥1

a1
k if x ∈ [0n1] and n ≥ 1,

V (x) :=
+∞∑
k=n

a1
n +

∑
k≥1

a0
k if x ∈ [1n0] and n ≥ 1.

Then

V ◦ σ − V =



∑
k≥n

a0
k −

∑
k≥n+1

a0
k = a0

n on [00n1],

∑
k≥n

a1
k −

∑
k≥n+1

a1
k = a1

n on [11n0],(∑
k≥n

a0
k +

∑
k≥1

a1
k

)
−

(∑
k≥1

a1
k +

∑
k≥1

a0
k

)
on [10n1],(∑

k≥n

a1
k +

∑
k≥1

a0
k

)
−

(∑
k≥1

a0
k +

∑
k≥1

a1
k

)
on [01n0].

The new double-well type potential H̃ := H − (V ◦ σ − V ) becomes

H̃(x)= 0 if x ∈ [00] ∪ [11],

H̃(x)= H0
n := b0

n +

n−1∑
k=1

a1
k if x ∈ [01n0],

H̃(x)= H1
n := b1

n +

n−1∑
k=1

a0
k if x ∈ [10n1]. �

From now on, H is supposed to be a reduced double-well type potential. We follow
the same methods as in [4] and [18]. Our main goal is to find the characteristic equation
of the eigenvalue λβ and the measures µβ([0]) and µβ([1]). We also want to identify the
criterion of divergence in terms of the Peierls barrier.

Since H is non-negative and H(0∞)= H(1∞)= 0, H has null ergodic minimizing
value: H̄ = 0. Since {0∞, 1∞} is the only invariant set included in {H = 0} ⊂
[00] ∪ [11] ∪ {01∞, 10∞}, the Mather set is reduced to the two fixed points, namely,
Mather(H)= {0∞, 1∞}.

The next proposition gives a complete description of the Peierls barrier.

PROPOSITION 3.3. If H is a reduced double-well type potential, then:
(1) h(0∞, x)= 0 for all x ∈ [0], (in particular h(0∞, 0∞)= 0);

(2) h(0∞, x)= infk≥n H0
k for all x ∈ [1n0] (in particular, h(0∞, 1∞)= H0

∞);

(3) lim infx→0∞ h(x, 0∞)= H0
min + H1

∞;

(4) h(1∞, x)= 0 for all x ∈ [1] (in particular, h(1∞, 1∞)= 0);

(5) h(1∞, x)= infk≥n H1
k for all x ∈ [0n1] (in particular, h(1∞, 0∞)= H1

∞); and

(6) lim infx→1∞ h(x, 1∞)= H1
min + H0

∞.
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10 R. Bissacot et al

Proof.
Item (1) Clearly, h(0∞, x)= 0 for all x ∈ [0], since H ≥ 0 and H = 0 on [00].
Item (2) Let x ∈ [1n0] and p ≥ 1. Every z ∈6 satisfying z

p
= 0∞ and σ k(z)

p
= x belongs

to [0m11n1 . . . 0mr 1nr 0], with m1 ≥ p, nr ≥ n and k = m1 + n1 + · · · + nr − n. The
corresponding sum

∑k−1
i=0 [H ◦ σ

i (z)− H̄ ] is H0
n1
+ H1

m2
+ · · · + H0

nr
, which gives (for

every m ≥ p)
S p

m(0∞, x)= inf
k≥n

H0
k , h(0∞, x)= inf

k≥n
H0

k .

By continuity of x 7→ h(0∞, x) (see Proposition 2.5), h(0∞, 1∞)= H0
∞.

Item (3) On the one hand, if x ∈ [0], x 6= 0∞ and p ≥ 1, then every z satisfying
z

p
= x and σ k(z)

p
= 0∞ has the form z = 0m11n1 · · · 0mr 1nr 0p

· · · with mi ≥ 1, ni ≥ 1
and k = m1 + n1 + · · · + nr . The corresponding sum

∑k−1
i=0 [H ◦ σ

i (z)− H̄ ] is bounded
from below by H0

min + infq≥p H1
q and we obtain h(x, 0∞)≥ H0

min + H1
∞. On the other

hand, for every m, n ≥ 1 and k ≥ p ≥ m + n, S p
k (0

m1n0∞, 0∞)= H0
n + H1

∞. These facts
together imply that

lim inf
x→0∞

h(x, 0∞)= H0
min + H1

∞.

The other expressions are similarly obtained by permuting zero and one. �

We recall the notion of a Jacobian J of a probability measure ν that is not necessarily
invariant by the shift σ . It is a non-negative Borel function J :6→ R+ such that, for
every bounded Borel test function f :6→ R,∫

[0]
f ◦ σ(x)J (x) dν(x)=

∫
[1]

f ◦ σ(x)J (x) dν(x)=
∫
6

f (x) dν(x).

Note that, if such a Jacobian exists, it is unique.
From now on, whenever a function f :6→ R is constant on a cylinder [i0i1 . . . in−1],

we denote by f (i0i1 . . . in−1) the constant value f |[i0i1...in−1].

PROPOSITION 3.4. Let H be a reduced double-well type potential. Let 8β , νβ and λβ be
the solutions of the Perron–Frobenius equation, as defined in Theorem 2.4. Then 8β is
constant on every cylinder [0n1] or [1n0], n ≥ 1 and νβ has constant Jacobian Jβ on the
cylinders [02

], [12
], [01n0] and [10n1], n ≥ 1. More precisely:

(1) 8β(0n1)=
∑
k≥n

exp(−βH1
k )

λk−n+1
β

8β(10), 8β(0∞)=
exp(−βH1

∞)

λβ − 1
8β(10);

(2) 8β(1n0)=
∑
k≥n

exp(−βH0
k )

λk−n+1
β

8β(01), 8β(1∞)= exp(−βH0
∞)/λβ − 18β(01);

(3) if H0
∞ = H1

∞ = 0, then max8β =max{8β(0∞), 8β(1∞)} = 1;

(4) νβ [1n0] =
1

λn−1
β

νβ [10] or Jβ(x)= λβ for all x ∈ [12
];

(5) νβ [0n1] =
1

λn−1
β

νβ [01] or Jβ(x)= λβ for all x ∈ [02
];
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(6) νβ [01n0] =
exp(−βH0

n )

λn
β

νβ [10] or Jβ(x)=
λβ

exp(−βH0
n )

for all x ∈ [01n0];

and

(7) νβ [10n1] =
exp(−βH1

n )

λn
β

νβ [01] or Jβ(x)=
λβ

exp(−βH1
n )

for all x ∈ [10n1].

Proof.
Part 1. The equation Lβ [8β ] = λβ8β implies that

8β(0n1)=
1
λβ
8β(0n+11)+

1
λβ

exp(−βH1
n )8β(10)

=
1
λ2
β

8β(0n+21)+
[

1
λβ

exp(−βH1
n )+

1
λ2
β

exp(−βH1
n+1)

]
8β(10)

= · · · =

[
1
λβ

exp(−βH1
n )+

1
λ2
β

exp(−βH1
n+1)+ · · ·

]
8β(10).

A similar computation is carried out for 8β(1n0).
Part 2. For every bounded Borel function f :6→ R,∫

1[0] f ◦ σ
λβ

exp(−βH)
dνβ =

∫
Lβ

λβ

[
1[0] f ◦ σ

λβ

exp(−βH)

]
dνβ =

∫
f dνβ .

A similar computation is carried out for 1[1]. We thus obtain

Jβ(x)=
λβ

exp(−βH(x))
for all x ∈6.

In particular, Jβ(x)= λβ for x ∈ [02
] ∪ [12

], Jβ(x)= λβ/exp(−βH0
n ) for x ∈ [01n0] and

Jβ(x)= λβ/exp(−βH1
n ) for x ∈ [10n1].

Part 3. With respect to the eigenmeasure, we discuss items (4) and (6); the others are
similarly proved. Hence, by applying the Jacobian, just note that

νβ [10] = λβνβ [120] = λ2
βνβ [1

30] = · · · = λn−1
β νβ [1n0]

=
λn
β

exp(−βH0
n )
νβ [01n0]. �

For every reduced double-well type potential, we define the following analytic functions
that will play a fundamental role in the dichotomy

F0
β (λ) :=

∑
k≥1

1
λk exp(−βH0

k ), F1
β (λ) :=

∑
k≥1

1
λk exp(−βH1

k ), (3.1)

F̃0
β (λ) :=

∑
k≥1

k
λk exp(−βH0

k ), F̃1
β (λ) :=

∑
k≥1

k
λk exp(−βH1

k ). (3.2)

We will also keep in mind the following equalities

for all N ≥ 0,
∑

k≥N+1

1
λk =

1
λN (λ− 1)

,
∑

k≥N+1

k
λk =

N (λ− 1)+ λ
λN (λ− 1)2

. (3.3)
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12 R. Bissacot et al

COROLLARY 3.5. Let H be a reduced double-well type potential. Then:
(1) F0

β (λβ)F
1
β (λβ)= 1 (the characteristic equation);

(2) 8β(01)= F1
β (λβ)8β(10), 8β(10)= F0

β (λβ)8β(01); and

(3) νβ [01] = F0
β (λβ)νβ [10], νβ [10] = F1

β (λβ)νβ [01].

Proof. Item (1) of Proposition 3.4 implies, by taking n = 1, that

8β(01)= F1
β (λβ)8β(10) and 8β(10)= F0

β (λβ)8β(01).

By multiplying term to term, we obtain F0
β (λβ)F

1
β (λβ)= 1. Also

νβ [01] =
∑
n≥1

νβ [01n0] =
∑
n≥1

1
λn
β

exp(−βH0
n )νβ [10] = F0

β (λβ)νβ [10]. �

COROLLARY 3.6. Let H be a reduced double-well type potential. Then:
(1) µβ [01] = µβ [10];

(2)
µβ [0n1]
µβ [01]

=

[∑
k≥n

1
λk
β

exp(−βH1
k )

]
F0
β (λβ),

µβ [0]
µβ [01]

=
F̃1
β (λβ)

F1
β (λβ)

;

(3)
µβ [1n0]
µβ [10]

=

[∑
k≥n

1
λk
β

exp(−βH0
k )

]
F1
β (λβ),

µβ [1]
µβ [10]

=
F̃0
β (λβ)

F0
β (λβ)

;

(4)
µβ [01n0]
µβ [10]

=
exp(−βH0

n )F
1
β (λβ)

λn
β

,
µβ [10n1]
µβ [01]

=
exp(−βH1

n )F
0
β (λβ)

λn
β

; and

(5)
µβ [0]
µβ [1]

=
F0
β (λβ)

F1
β (λβ)

F̃1
β (λβ)

F̃0
β (λβ)

.

We know that λβ→ 1 as β→+∞. In order to understand the behavior of µβ , it is
fundamental to have a better Puiseux series expansion of λβ , as is the case for potentials
that depend on finite number of coordinates (see [13]). The log-scale limit, the limit of
−(1/β) ln(λβ − 1), is usually easy to obtain using a min-plus technique. This may be
sufficient to show the convergence of µβ when there is no coincidence of exponents, as
happens in [5]. Usually, the limit is then a periodic measure. In general, the log-scale
limit is not sufficient and an expansion of the form λβ = 1+ ce−βγ + o(e−βγ ) needs to
be founded, as in [4, 18]. A barycenter of periodic measures with irrational coefficients
may be the limit in this case. Let us recall, from equation (1.2), the definition of the key
parameter γ , which, from now on, we call the Puiseux exponent

γ :=min
{ 1

2 (H
1
∞ + H0

∞), H0
min + H1

∞, H1
min + H0

∞

}
.

The coincidence of exponents is understood in the sense that the minimum γ may be
attained several times. The following proposition gives the log-scale limit of the main
quantities that appear in the dichotomy. We will give better estimates in the next section.

PROPOSITION 3.7. Let H be a reduced double-well type potential. Then:
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(1) lim
β→+∞

−
1
β

ln(λβ − 1)= γ ;

(2) lim
β→+∞

−
1
β

ln F0,1
β (λβ)=min

n≥1
{H0,1

n , H0,1
∞ − γ }; and

(3) lim
β→+∞

−
1
β

ln F̃0,1
β (λβ)=min

n≥1
{H0,1

n , H0,1
∞ − 2γ }.

Proof.
Part 1. We claim that any limit point of −(1/β) ln(λβ − 1) is finite. Recall

that H is non-negative and max8β = 1. Hence, given xmax
β ∈ arg max8β , we

see that λβ = Lβ [8β ](xmax
β )≤ 2. Since λβ8β(0∞)= Lβ [8β ](0∞) yields λβ =

1+ exp(−βH1
∞)8β(10∞)/8β(0∞)≥ 1, we have the a priori estimate 1≤ λβ ≤ 2.

Furthermore, from

exp(−β maxk H0
k )

λβ − 1
≤ F0

β (λβ)=
1

F1
β (λβ)

≤
λβ − 1

exp(−β maxk H1
k )
,

we conclude that exp(−β(max H0
k +max H1

k )/2)≤ λβ − 1≤ 1.
Part 2. For some subsequence β→+∞, assume that −(1/β) ln(λβ − 1)→ γ̄ . We

claim that−(1/β) ln F0
β (λβ)→minn≥1(H0

n , H0
∞ − γ̄ ) for the same subsequence. Indeed,

let ε > 0. We choose N ≥ 1 such that |H0
n − H0

∞|< ε for all n ≥ N . We split the series
(3.1) into two terms. For the first term, for β large enough,

exp
(
−β

(
min

1≤k≤N
H0

k + ε
))
≤

N∑
k=1

1
λk
β

exp(−βH0
k )≤ exp

(
−β

(
min

1≤k≤N
H0

k − ε
))
.

For the second term, using the estimates (3.3), for β large enough

exp(−β(γ̄ + ε))≤ λN
β (λβ − 1)≤ exp(−β(γ̄ − ε)),

exp(−β(H0
∞ + ε))

λN
β (λβ − 1)

≤

∑
k>N

1
λk
β

exp(−βH0
k )≤

exp(−β(H0
∞ − ε))

λN
β (λβ − 1)

,

exp(−β(H0
∞ − γ̄ + 2ε))≤

∑
k>N

1
λk
β

exp(−βH0
k )≤ exp(−β(H0

∞ − γ̄ − 2ε)).

The claim is proved by adding the two terms, changing the scale and passing to the limits
as β→+∞ and ε→ 0.

Part 3. We show there is a unique limit point γ̄ by showing that it is the unique solution
of a min-plus equation. Indeed, from the characteristic equation 1= F0

β (λβ)F
1
β (λβ), we

obtain
0=min

n≥1
{H0

n , H0
∞ − γ̄ } +min

n≥1
{H1

n , H1
∞ − γ̄ }.

This equation is equivalent to

min
n≥1

H0
n + H1

∞ − γ̄ = 0 or min
n≥1

H1
n + H0

∞ − γ̄ = 0 or H0
∞ + H1

∞ − 2γ̄ = 0.

We have shown that γ̄ is the Puiseux exponent γ .
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14 R. Bissacot et al

Part 4. We prove item (3) similarly as in part 2. We choose ε > 0 and N ≥ 1 as before.
The first part of the series (3.2) satisfies

lim
β→+∞

−
1
β

ln
N∑

k=1

k

λk
β

exp(−βH0
k )= min

1≤k≤N
H0

k .

Using again the estimate (3.3), for β large enough, the remaining part gives

exp(−β(2γ + ε))≤
λN
β (λβ − 1)2

N (λβ − 1)+ λβ
≤ exp(−β(2γ − ε)),

exp(−β(H0
∞ − 2γ + 2ε))≤

∑
k>N

k

λk
β

exp(−βH0
k )≤ exp(−β(H0

∞ − 2γ − 2ε)). �

COROLLARY 3.8. Let H be a reduced double-well type potential and V be a calibrated
sub-action. Then V is constant on every cylinder of the form [0n1] and [1n0], where n ≥ 1.
More precisely:
(1) V (x)=min

{
V (0∞), V (1∞)+ inf

k≥n
H1

k

}
for all x ∈ [0n1]; and

(2) V (x)=min
{

V (1∞), V (0∞)+ inf
k≥n

H0
k

}
for all x ∈ [1n0].

In particular, min V =min{V (0∞), V (1∞)}. With respect to 8β = e−βVβ , which is the
eigenfunction used in Theorem 2.4 to ensure the existence of calibrated sub-actions, we
have the following complementary information.
(3) If γ > 0 and H1

∞ ≥ H0
∞, then {Vβ} converges uniformly to the calibrated sub-action

V∞ characterized by

V∞(x)=min
{

H1
∞ − γ, inf

k≥n
H1

k

}
for all x ∈ [0n1], for all n ≥ 1,

V∞(x)= 0 for all x ∈ [1].

(4) If γ = 0, then {Vβ} converges uniformly to 0, which is the unique calibrated sub-
action satisfying min V = 0.

Proof.
Part 1. Items (1)–(2) are consequences of the representation formula (2.2).
Part 2. If H1

∞ ≥ H0
∞, then H1

∞ + H0
∞ − 2γ ≥ 0≥ H0

∞ − γ . Item (1) of
Proposition 3.4, item (2) of Corollary 3.5 and items (1) and (2) of Proposition 3.7 imply
that

lim
β→+∞

[Vβ(0∞)− Vβ(01)] = H1
∞ + H0

∞ − 2γ ≥ 0.

From item (2) of Proposition 3.4 and item (1) of Proposition 3.7,

lim
β→+∞

[Vβ(1∞)− Vβ(01)] = H0
∞ − γ ≤ 0.

Therefore, we obtain

lim
β→+∞

[Vβ(0∞)− Vβ(1∞)] = H1
∞ − γ ≥ 0.
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Let V∞ be any accumulation function of {Vβ}. Then V∞ is a calibrated sub-
action and, in particular, satisfies items (1) and (2), which have already been proved.
Thus, since min V∞ = 0, necessarily V∞(1∞)= 0 and V∞(0∞)= H1

∞ − γ , so that the
characterization given in item (3) is proved. As this is the uniquely defined limit function,
we have actually shown that Vβ→ V∞ uniformly.

Part 3. If γ = 0, then H0
∞ = H1

∞ = 0. Let V∞ be any accumulation function of {Vβ}.
Then V∞ is a calibrated sub-action. By passing to the limit as n→+∞ in items (1)
and (2), we obtain V∞(0∞)= V∞(1∞). Since min V∞ = 0, V∞ is necessarily the null
function. By uniqueness of the accumulation function, we have proved that Vβ→ V∞
uniformly. �

4. The selection case
We assume that H is reduced and that γ > 0, which is equivalent to max{H0

∞, H1
∞}> 0.

We also suppose that H0
∞ ≤ H1

∞ (the opposite case is similar). In particular, H1
∞ > 0. We

know that the only accumulation points of µβ are barycenters c0δ0∞ + c1δ1∞ . Our goal is
to find an equivalent of µβ [0]/µβ [1] as β→+∞ and therefore to prove the convergence
of µβ .

Proof of item (1) of Theorem 1.2. Assume that 1
2 (H

1
∞ + H0

∞) > H1
min + H0

∞. Then γ =
H1

min + H0
∞ > 0 since H1

min = 0⇔ H1
∞ = 0. We will see that it is enough to estimate the

quotient of the measures at the log-scale. Proposition 3.7 implies that

lim
β→+∞

−
1
β

ln F0
β (λβ)=min{H0

min, H0
∞ − γ } = H0

∞ − γ,

lim
β→+∞

−
1
β

ln F̃0
β (λβ)=min{H0

min, H0
∞ − 2γ } = H0

∞ − 2γ,

lim
β→+∞

−
1
β

ln F̃1
β (λβ)=min{H1

min, H1
∞ − 2γ }.

The estimate for F1
β is obtained from the characteristic equation. Thus

lim
β→+∞

−
1
β

ln
(
µβ [0]
µβ [1]

)
= lim
β→+∞

−
1
β

ln
( F0

β (λβ)

F1
β (λβ)

F̃1
β (λβ)

F̃0
β (λβ)

)
= H0

∞ +min{H1
min, H1

∞ − 2γ }> 0.

We have proved that µβ [0]/µβ [1] → 0 or µβ→ δ1∞ . �

For the proof of item (2) of Theorem 1.2, the previous log-scale estimate is not
enough. We need to develop an analytical technique that gives equivalents of the quantities
F0,1
β (λβ), F̃0,1

β (λβ), and λβ − 1.
We first need the following lemma on sequences.

LEMMA 4.1. Let {Hn}n≥0 be a converging sequence satisfying∑
n≥0

sup
k≥0
|Hn − Hn+k |<+∞.

Then limn→+∞(Hn − H∞) ln(n)= 0, where H∞ = limn→+∞ Hn .
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16 R. Bissacot et al

Proof. Define Kn := supk≥0 |Hn − Hn+k | for all n ≥ 0. Note then that |Hn − H∞| ≤ Kn

and that {Kn}n≥0 is a non-increasing sequence converging to zero such that
∑

n≥0 Kn <

+∞. Assume, by contradiction, that there exist ε > 0 and a subsequence Ni →+∞ such
that KNi ln(Ni )≥ ε. Thanks to the non-increasing property,∑

i≥1

Ni+1 − Ni

ln(Ni+1)
≤

1
ε

∑
i≥1

∑
Ni≤n<Ni+1

Kn <+∞.

We thus observe that
1− Ni/Ni+1

ln(Ni+1)/Ni+1
→ 0 H⇒

Ni

Ni+1
→ 1,

which implies that, for every i sufficiently large,

Ni+1 − Ni

ln(Ni+1)
=

Ni

ln(Ni+1)

(
Ni+1

Ni
− 1

)
≥

Ni+1

Ni
− 1≥ ln

(
Ni+1

Ni

)
.

But then
∑

i≥1[ln(Ni+1)− ln(Ni )]<+∞ contradicts Ni →+∞. �

From now on, we write f (β)∼ g(β) to indicate that the positive functions f and g
are equivalent as β→+∞. Also, as usual f (β)� g(β) means that f is negligible with
respect to g as β→+∞.

Proof of item (2) of Theorem 1.2. Assume that 0< 1
2 (H

1
∞ + H0

∞)≤ H1
min + H0

∞. Then
γ = 1

2 (H
0
∞ + H1

∞). We recall that the coincidence number κ has been defined in (1.3) and
the coefficient c in (1.4). We will prove that

λβ = 1+ c exp(−βγ )+ o(exp(−βγ )),

F0
β (λβ)∼

exp(−βH0
∞)

λβ − 1
∼

1
c

exp
(
β

H1
∞ − H0

∞

2

)
,

F̃0
β (λβ)∼

exp(−βH0
∞)

(λβ − 1)2
∼

1
c2 exp(βH1

∞),

F1
β (λβ)∼ c exp

(
− β

H1
∞ − H0

∞

2

)
,

F̃1
β (λβ)∼

exp(−βH1
∞)

(λβ − 1)2
∼

1
c2 exp(βH0

∞).

(4.1)

Using item (5) of Corollary 3.6, we will obtain µβ [0]/µβ [1] → 1/c2 and the convergence
of the Gibbs measure, as in (1.5).

Part 1. We determine an equivalent of F0
β (λβ). If H0

k is constant and equal to H0
∞, then

the proof is complete and

F0
β (λβ)=

exp(−βH0
∞)

λβ − 1
and F̃0

β (λβ)=
exp(−βH0

∞)

(λβ − 1)2
.

We may now assume that H0
k is not constant. Let ε > 0. For β large enough, there exists

a smallest positive integer Nβ such that

β|H0
Nβ − H0

∞| ≥ ε and β|H0
k − H0

∞| ≤ ε for all k ≥ Nβ + 1.
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Selection of ground states 17

Lemma 4.1 implies that |H0
n − H0

∞| ln(n)→ 0. Since |H0
Nβ − H0

∞| ≥ ε/β, we obtain
(even in the case when Nβ is bounded with respect to β)

lim
β→+∞

1
β

ln Nβ = 0. (4.2)

Hence, we may show that

Nβ(λβ − 1) exp(−βH0
min)� exp(−βH0

∞) and λ
Nβ
β → 1. (4.3)

For the first estimate, by taking −(1/β) ln on both terms and using item (1) of
Proposition 3.7, one has γ + H0

min > H0
∞ (according to the two cases: if H1

∞ > H0
∞, then

γ > H0
∞; if H1

∞ = H0
∞, then H0

min > 0). For the above limit, note that

λβ − 1

exp(−βH1
min)
≤

1
F1
β (λβ)

= F0
β (λβ)≤

1
λβ − 1

,

λβ ≤ 1+ exp(−βH1
min/2), λ

Nβ
β ≤ exp(Nβ exp(−βH1

min/2)).

As H1
min > 0, using (4.2), Nβ � exp(βH1

min/2) and λ
Nβ
β → 1.

We are now able to compute an equivalent of F0
β (λβ). We split the series F0

β (λβ) into
two parts and use (4.3) to obtain, for β sufficiently large,

exp(−βH0
∞ − ε)

λ
Nβ
β (λβ − 1)

≤ F0
β (λβ)≤ Nβ exp(−βH0

min)+
exp(−βH0

∞ + ε)

λ
Nβ
β (λβ − 1)

,

exp(−βH0
∞ − 2ε)

λβ − 1
≤ F0

β (λβ)≤
exp(−βH0

∞ + 2ε)
λβ − 1

.

By taking ε→ 0, we have just proved that

F0
β (λβ)∼

exp(−βH0
∞)

λβ − 1
. (4.4)

Part 2. We determine an equivalent of F̃0
β (λβ). We use the same definition of Nβ as

before and similarly prove the estimates

Nβ(λβ − 1)� 1, N 2
β(λβ − 1)2 exp(−βH0

min)� exp(−βH0
∞). (4.5)

We split the series F̃0
β (λβ) and use the computation (3.3) to obtain

(Nβ(λβ − 1)+ λβ) exp(−βH0
∞ − ε)

λ
Nβ
β (λβ − 1)2

≤ F̃0
β (λβ)

F̃0
β (λβ)≤ N 2

β exp(−βH0
min)+

(Nβ(λβ − 1)+ λβ) exp(−βH0
∞ + ε)

λ
Nβ
β (λβ − 1)2

.

Using the estimates (4.5), for β sufficiently large,

exp(−βH0
∞ − 2ε)

(λβ − 1)2
≤ F̃0

β (λβ)≤
exp(−βH0

∞ + 2ε)
(λβ − 1)2

.
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18 R. Bissacot et al

Letting ε→ 0, we have just proved that

F̃0
β (λβ)∼

exp(−βH0
∞)

(λβ − 1)2
. (4.6)

Part 3. We determine an equivalent of F1
β (λβ). As before, we discuss two cases. If

H1
k is constant and equal to H1

∞, then the coincidence number (1.3) is κ = 0 and the
coefficient (1.4) is c = 1. We immediately obtain

F1
β (λβ)=

exp(−βH1
∞)

λβ − 1
and F̃1

β (λβ)=
exp(−βH1

∞)

(λβ − 1)2
.

We may assume that H1
k is not constant. For β large enough, we redefine Nβ as the

smallest positive integer such that

β|H1
Nβ − H1

∞| ≥ ε and β|H1
k − H1

∞| ≤ ε for all k ≥ Nβ + 1.

As before, (1/β) ln Nβ � 1. Recall now that H1
min ≥

1
2 (H

1
∞ − H0

∞). In the case when
κ > 0, H1

min < H1
∞ and we introduce another exponent

H1∗
min :=min

{
H1

k : k s.t. H1
k + H0

∞ 6=
1
2 (H

1
∞ + H0

∞)
}
> H1

min.

In the case when κ = 0, by convention, H1∗
min = H1

min. We show the first estimate

Nβ(λβ − 1) exp(−βH1∗
min)� exp(−βH1

∞). (4.7)

Indeed, by taking −(1/β) ln, it is enough to argue that γ + H1∗
min > H1

∞. In the case when
κ > 0, H1

min + H0
∞ =

1
2 (H

1
∞ + H0

∞)= γ and

γ + H1∗
min > γ + H1

min = H1
∞.

In the case when κ = 0, H1
min + H0

∞ >
1
2 (H

1
∞ + H0

∞)= γ and

γ + H1∗
min = γ + H1

min > H1
∞.

The limit λ
Nβ
β → 1 is similarly proved. We are now able to compute an equivalent of

F1
β (λβ). As before, we split the series into two parts: in the finite sum, we keep the indices

corresponding to the incidences and the exponents H1
min; the rest of the indices have a

larger exponent H1∗
min (unless κ = 0, where we only use one exponent H1

min). Thus, for β
large enough,

(e−εκ) exp(−βH1
min)+

exp(−βH1
∞ − ε)

λ
Nβ
β (λβ − 1)

≤ F1
β (λβ),

F1
β (λβ)≤ κ exp(−βH1

min)+ Nβ exp(−βH1∗
min)+

exp(−βH1
∞ + ε)

λ
Nβ
β (λβ − 1)

.

Taking into account the estimate (4.7), for β sufficiently large,[
κ exp(−βH1

min)+
exp(−βH1

∞)

λβ − 1

]
e−2ε
≤ F1

β (λβ)

F1
β (λβ)≤

[
κ exp(−βH1

min)+
exp(−βH1

∞)

λβ − 1

]
e2ε .
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Letting ε→ 0, we have proved (in both cases, κ > 0 or κ = 0) that

F1
β (λβ)∼ κ exp(−βH1

min)+
exp(−βH1

∞)

λβ − 1
. (4.8)

Part 4. We show an equivalent of λβ − 1. The characteristic equation (item (1) of
Corollary 3.5), the equivalents (4.4) and (4.8) give

(λβ − 1)2 exp(β(H1
∞ + H0

∞))∼ κ(λβ − 1) exp(β(H1
∞ + H0

∞)/2)+ 1.

(In the case when κ > 0, we use the equality H1
min + H0

∞ =
1
2 (H

1
∞ + H0

∞).) Let Xβ =
(λβ − 1) exp(β(H1

∞ + H0
∞)/2). Then X2

β ∼ κXβ + 1. Necessarily, Xβ is bounded with
respect to β, it is non-negative and any accumulation point c satisfies c2

= κc + 1. We
have just proved that

λβ − 1∼ c exp
(
−β 1

2 (H
1
∞ + H0

∞)
)
. (4.9)

Using the previous equivalents (4.4) and (4.6) as well as the characteristic equation, one
obtains the equivalents of F0

β (λβ), F̃0
β (λβ) and F1

β (λβ). For the equivalent of F̃1
β (λβ),

since 2γ + H1
min = H1

∞ + H1
min + H0

∞ > H1
∞, one first notices that

N 2
β(λβ − 1)2 exp(−βH1

min)� exp(−βH1
∞). (4.10)

The series F̃1
β (λβ) is then split in a more crude way

(Nβ(λβ − 1)+ λβ) exp(−βH1
∞ − ε)

λ
Nβ
β (λβ − 1)2

≤ F̃1
β (λβ),

F̃1
β (λβ)≤ N 2

β exp(−βH1
min)+

(Nβ(λβ − 1)+ λβ) exp(−βH1
∞ + ε)

λ
Nβ
β (λβ − 1)2

,

and, therefore,

F̃1
β (λβ)∼

exp(−βH1
∞)

(λβ − 1)2
∼

1
c2 exp(βH0

∞). (4.11)

The proof of all the equivalents (4.1) is now complete. �

5. The non-selection case
We construct an example of a Lipschitz double-well type potential satisfying H0

∞=H1
∞=0

that produces a non-convergent family of Gibbs measure as the temperature goes to
zero. Notice that any symmetric example, H0

n = H1
n , for all n ≥ 1, provides a family of

symmetric Gibbs measures {µβ} that converge to 1
2δ0∞ +

1
2δ1∞ . We show that the subclass

of double-well type potentials is rich enough to break the symmetry in an alternating way.
Notice also that H is necessarily reduced in order to obtain the non-selection case.

The two fixed points 0∞, 1∞ are connected by two heteroclinic orbits, {0n1∞}n≥1

and {1n0∞}n≥1. The oscillation between the two minimizing measures δ0∞ and δ1∞ are
obtained by choosing a symmetric potential H , where both {H0

n }n≥1 and {H1
n }n≥1 are

non-increasing and converge to zero. The level sets of H alternate, as in Figure 2, and are
chosen according to the following rules that are similar to the rules in [10].
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20 R. Bissacot et al

FIGURE 2. The non-selection case for a Lipschitz example. The level sets satisfy H = εk = exp(−k2k+1) on
[01n0] for every pk−1 < n ≤ pk and on [10n1] for every qk−1 < n ≤ qk . If k is even, pk = k2k and qk = k2k+1.

If k is odd, pk = k2k+1 and qk = k2k .

• Rule 1. We choose two increasing sequences {pk}k≥0 and {qk}k≥0, which alternate
according to the parity of the index k: that is,

1≤ p0 < q0 < q1 < p1 < p2 < q2 < q3 < p3 < · · · ,

p2l < q2l < q2l+1 < p2l+1 < p2l+2 < q2l+2 < · · · .

• Rule 2. We choose a decreasing sequence {εk}k≥0 of positive numbers which goes
to zero. We choose H so that a level set of H corresponds to a union of cylinders
[01n0] (respectively, [10n1]) over n ∈ {pk−1 + 1, . . . , pk} (respectively, over n ∈
{qk−1 + 1, . . . , qk}). By convention, p−1 = q−1 = 0 and

H0
n := εk for all pk−1 < n ≤ pk, H1

n := εk for all qk−1 < n ≤ qk .

The contribution of the potential H0
n (respectively, H1

n ) exhibits a large drop at the
level pk (respectively, qk): that is,

for all n ≤ pk, H0
n ≥ εk, for all n ≥ pk + 1, H0

n ≤ εk+1,

for all n ≤ qk, H1
n ≥ εk, for all n ≥ qk + 1, H1

n ≤ εk+1.

• Rule 3. We choose a decreasing sequence of temperatures β−1
k → 0 which forces the

Gibbs measure to give larger mass to either [0] for an even index or [1] for an odd
index. The only constraints on {pk}, {qk}, {εk} and {βk} that we use are

lim
k→+∞

p2
k exp(−βkεk)= 0, lim

k→+∞
q2

k exp(−βkεk)= 0,

lim
k→+∞

βkεk+1 = 0, lim
k→+∞

q2k

p2k
=+∞, lim

k→+∞

p2k+1

q2k+1
=+∞,∑

k≥1

(pk − pk−1) exp(−εk) <+∞,
∑
k≥1

(qk − qk−1) exp(−εk) <+∞.

The last two conditions ensure the summability of the variation.
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The three previous rules enable us to say that, at the temperature β−1
k , for k even or

odd, the system is mainly governed by a system having a potential H̃ equal to zero on
[00] ∪ [01pk+1

] ∪ [11] ∪ [10qk+1
] (thanks to εk+1� εk) and positive elsewhere.

Proof of item (3) of Theorem 1.2. Let k be even. The other case is similar. To simplify the
notation, we write p = pk , q = qk and λ= λβk . Remember the a priori estimate λ≤ 2.

Part 1. We rewrite F0
β (λ) as if the energy H0

n were negligible for n > p. Then

F0
β (λ)=

1
λp(λ− 1)

(α0 + λ
p(λ− 1)θ0), (5.1)

where

α0 := λ
p(λ− 1)

∑
n≥p+1

1
λn exp(−βk H0

n ) and θ0 :=

p∑
n=1

1
λn exp(−βk H0

n ).

As H0
n ≤ εk+1 for n ≥ p + 1 and H0

n ≥ εk for n ≤ p, we obtain

exp(−βkεk+1)≤ α0 ≤ 1, θ0 ≤ p exp(−βkεk).

Rule 3 implies that α0→ 1 and θ0→ 0 as k→+∞. Similarly,

F1
β (λ)=

1
λq(λ− 1)

(α1 + λ
q(λ− 1)θ1), (5.2)

with

α1 := λ
q(λ− 1)

∑
n≥q+1

1
λn exp(−βk H1

n ) and θ1 :=

q∑
n=1

1
λn exp(−βk H1

n ).

As H1
n ≤ εk+1 for n ≥ q + 1 and H1

n ≥ εk for n ≤ q , the third rule also implies that α1→ 1
and θ1→ 0 as k→+∞. As F0

β (λ)F
1
β (λ)= 1,

λp+q(λ− 1)2 = [α0 + λ
p(λ− 1)θ0][α1 + λ

q(λ− 1)θ1] := δ
2.

Part 2. We show that δ→ 1 as k→+∞. Let N := (p + q)/2. We first observe that,
for k large enough, λN

≥ e. If not,

λ− 1≥ δe−1
≥ e−1√α0α1. (5.3)

On the one hand λ− 1→ 0 and on the other hand α0α1→ 1, so we get a contradiction.
We next observe that λ− 1≥ 1/N . Indeed,

λ= 1+
δ

λN , ln(λ)≤
δ

λN , 1≤ N ln(λ)≤
Nδ
λN , λN

≤ Nδ, (5.4)

and, from the equation λN (λ− 1)= δ, we finally obtain λ− 1≥ 1/N . We rewrite the two
terms λp(λ− 1) and λq(λ− 1) as

λp(λ− 1)= (λN )p/N (λ− 1)= [λN (λ− 1)]p/N (λ− 1)1−p/N

= δ p/N (λ− 1)(q−p)/(q+p)
≤ δ p/N ,

λq(λ− 1)= (λN )q/N (λ− 1)= [λN (λ− 1)]q/N (λ− 1)1−q/N

= δq/N (λ− 1)−(q−p)/(q+p)
≤ δq/N (λ− 1)−1

≤ qδq/N .
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Therefore,

δ2
≤ [α0 + δ

p/N θ0][α1 + qδq/N θ1]

= α0α1 + α0θ1qδq/N
+ α1θ0δ

p/N
+ θ0θ1qδ2.

Using δ p/N
≤ 1+ δ2 and δq/N

≤ 1+ δ2,

α0α1 ≤ δ
2
≤

α0α1 + (α0qθ1 + α1θ0)

1− (α0qθ1 + α1θ0 + θ0qθ1)
.

Since qθ1 ≤ q2 exp(−βkεk)→ 0 and θ0→ 0 as k→+∞, we obtain δ→ 1.
Part 3. We first prove that q(λ− 1)→+∞. Since N < q , it is enough to show that

N (λ− 1)→+∞. Indeed, for every C ≥ 1 and for k sufficiently large, λN
≥ exp(C), as

in (5.3). Using the same estimates as in (5.4),

CλN
≤ Nδ and N (λ− 1)≥ C.

Therefore, from the estimates of part 2, we see that

λp(λ− 1)2

p(λ− 1)+ λ
≤
λp(λ− 1)

p
≤
δ p/N

p
≤

1+ δ2

p
→ 0,

λq(λ− 1)2

q(λ− 1)+ λ
≤
λq(λ− 1)

q
≤

δq/N

q(λ− 1)
≤

1+ δ2

q(λ− 1)
→ 0.

Part 4. We decompose F̃0
β (λ) as before

F̃0
β (λ)=

p(λ− 1)+ λ
λp(λ− 1)2

(
α̃0 +

λp(λ− 1)2

p(λ− 1)+ λ
θ̃0

)
, (5.5)

where

exp(−βkεk+1)≤ α̃0 :=
λp(λ− 1)2

p(λ− 1)+ λ

∑
n≥p+1

n
λn exp(−βk H0

n )≤ 1

and θ̃0 :=

p∑
n=1

n
λn exp(−βk H0

n )≤ p2 exp(−βkεk).

Then α̃0→ 1 and θ̃0→ 0. Similar estimates are obtained for F̃1
β (λ).

Part 5. We may now conclude the proof. Since λp(λ− 1)/p→ 0, λq(λ− 1)/q→ 0,
pθ0→ 0 and qθ1→ 0, equations (5.1) and (5.2) imply that

F0
β (λ)∼

1
λp(λ− 1)

and F1
β (λ)∼

1
λq(λ− 1)

.

As λp(λ− 1)2/(p(λ− 1)+ λ)→ 0 and λq(λ− 1)2/(q(λ− 1)+ λ)→ 0, equation (5.5)
and a similar expression for F̃1

β (λ) provide

F̃0
β (λ)∼

p(λ− 1)+ λ
λp(λ− 1)2

and F̃1
β (λ)∼

q(λ− 1)+ λ
λq(λ− 1)2

.

Item (5) of Corollary 3.6 thus gives

µβ [0]
µβ [1]

=
F0
β (λ)

F1
β (λ)

F̃1
β (λ)

F̃0
β (λ)

∼
q(λ− 1)+ λ
p(λ− 1)+ λ

≥min
{

q
2p
,

q(λ− 1)
2λ

}
→+∞.

As a matter of fact, rule 3 requires liml→+∞ (q2l/p2l)=+∞. Hence µβ2l → δ0∞ . �
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